裂缝宽度和挠度

合集下载

钢筋混凝土受弯构件的裂缝宽度和挠度验算

钢筋混凝土受弯构件的裂缝宽度和挠度验算

受压翼缘加强系数
3、钢筋应变不均匀系数
sm sk s sm s sk
钢筋应力不均匀系数 是反映裂缝间混凝土参加受拉工作 程度的影响系数。 越小,裂缝之间的混凝土协助钢筋抗拉的
作用越强。
1.1 0.65 ftk s sk te
sk分布图
1.1 0.65 ftk s sk te
sm sk
Sm cm cck
sm
cm
c

(
' f
Mk
0 )bh02Ec
cm

Mk
bh02 Ec
sm

Mk
Ash0 Es
ቤተ መጻሕፍቲ ባይዱ
Bs

Mk

M k h0
sm cm
cm

Mk
bh02 Ec
Bs

1
Ash02 Es

1
bh03 Ec
Bs

Es Ash02
E

E 0.2 6 E

1 3.5 f
Bs

1.15
Es Ash02 0.2
6E
1 3.5 f
1.1 0.65 ftk s sk te
在短期弯矩Mk=(0.5~0.7)Mu范围,三个参数、 和 中, 和 为常数,而 随弯矩增长而增大。
wm smlm cmlm
εsm、εcm——分别为裂缝间钢筋及砼的平均应变; lm——裂缝间距。
平均裂缝宽度wm
wm smlm cmlm


sm
(1


cm sm

钢筋混凝土受弯构件的裂缝宽度和挠度计算

钢筋混凝土受弯构件的裂缝宽度和挠度计算

钢筋混凝土受弯构件的裂缝宽度和挠度计算【最新版】目录1.钢筋混凝土受弯构件裂缝宽度和挠度计算的背景和意义2.裂缝宽度和挠度计算的理论基础3.裂缝宽度和挠度计算的方法和步骤4.计算结果的分析和应用5.结论和展望正文钢筋混凝土受弯构件的裂缝宽度和挠度计算是建筑结构设计中的重要环节,关系到结构的安全性、稳定性和耐久性。

在实际工程中,裂缝宽度和挠度通常是混凝土结构受弯构件的主要设计控制参数,因此,对它们的精确计算和分析具有重要的现实意义。

一、钢筋混凝土受弯构件裂缝宽度和挠度计算的理论基础裂缝宽度和挠度是受弯构件的两个主要变形参数。

其中,裂缝宽度是指混凝土受弯构件在弯曲过程中,由于内部应力达到极限而产生的裂缝的宽度;而挠度则是指受弯构件在弯曲过程中,构件的中性轴线偏离原位置的距离。

二、裂缝宽度和挠度计算的方法和步骤在实际工程中,裂缝宽度和挠度的计算通常采用以下的方法和步骤:1.确定受弯构件的材料性能参数,包括混凝土的抗压强度、抗拉强度、弹性模量等;2.根据受弯构件的几何参数和荷载条件,确定构件的截面几何形状和尺寸;3.采用适当的数学方法(如有限元法、矩方法等)计算受弯构件在荷载作用下的应力和应变分布;4.根据计算结果,确定裂缝宽度和挠度的数值。

三、计算结果的分析和应用裂缝宽度和挠度的计算结果可以反映受弯构件在弯曲过程中的变形情况,为结构设计提供重要的依据。

通常,我们需要对计算结果进行以下的分析和应用:1.检验裂缝宽度和挠度是否符合设计规范的要求;2.如果不符合要求,则需要调整设计参数(如增加截面尺寸、改变材料性能等)重新计算,直到满足设计要求;3.根据裂缝宽度和挠度的计算结果,确定受弯构件的耐久性和安全性。

四、结论和展望钢筋混凝土受弯构件的裂缝宽度和挠度计算是建筑结构设计的重要内容。

随着计算机技术和数学方法的发展,计算方法和工具也越来越精确和便捷。

建筑结构-钢筋混凝土构件裂缝宽度和挠度验算

建筑结构-钢筋混凝土构件裂缝宽度和挠度验算

Bl
Bl
M l (
Ms 1)
Ms
Bs
…8-6
Ms ––– 荷载短期效应组合算得的弯矩。 (恒载+活载) ––– 标准值。
Ml ––– 荷载长期效应组合算得的弯矩。
(恒载+活载q) ––– 标准值。
––– 挠度增大系数。 = 2.0 0.4' /
Bs ––– 短期刚度按式(8-5)计算。
3). 最小刚度原则:
e0
e0
Ns Ns
(a)
Ns
Ts
Ns
(b)
Ns
Ns
(c)
图8-1
(d T
(e)

为防止温度应力过大引起的开裂,规定了最
荷 载
大伸缩缝之间的间距。表8-1


为防止由于钢筋周围砼过快的碳化失去对钢

筋的保护作用,出现锈胀引起的沿钢筋纵向
裂 缝
的裂缝,规定了钢筋的混凝土保护层的最小
厚度。
通常,裂缝宽度和挠度一般可分别用控制最大 钢筋直径和最大跨高比来控制,只有在构件截面尺 寸小,钢筋应力高时进行验算。
2 裂缝宽度验算
随机性 《规范》在若干假定的基础上,根据裂缝出
现机理,建立理论公式,然后按试验资料确定系 数,得到相应的裂缝宽度计算经验式。
Ns
NNcr
1
ct=ftk
1
NNcr
Ns
(a)
ftk (b)
s ss
max
(c)
图8-2
(d)
1). 裂缝的出现和开展
出现:
当c ftk,在某一薄弱环节第一条裂缝出现,
1). 短期刚度 Bs的计算
M 1 EI r

裂缝规范规定

裂缝规范规定

1. 板构件(1)裂缝宽度是否满足要求检查板计算的裂缝宽度是否满足要求,板裂缝宽度限值见《混规》GB50010-2002第3.3.4条。

(2)配筋率是否满足要求检查板配筋率是否满足最大及最小配筋率要求,最小配筋率要求见《混规》GB50010-2002第9.5.1条;最大配筋率程序根据界限受压区高度自动计算。

(3)钢筋直径是否满足要求检查板配筋直径是否满足最小直径的规定,见《混规》GB50010-2002第10.1.6条。

(4)挠度限值检查板的挠度是否满足规范要求,见《混规》GB50010-2002第3.3.2条。

2. 梁构件(1)裂缝宽度是否满足要求检查梁的裂缝宽度是否满足要求,见《混规》GB50010-2002第3.3.4条。

(2)挠度超限检查梁挠度是否满足要求,见《混规》GB50010-2002第3.3.2条。

(3)是否设置吊筋或附加箍筋按《混规》GB50010-2002第10.2.13条要求,检查梁的集中荷载处是否设置了吊筋或附加箍筋。

(4)配筋率是否满足要求检查梁的纵向受拉、抗扭钢筋和箍筋的最大及最小配筋率是否满足规范要求,详见《混规》GB50010-2002第9.5.1条、第10.2.5条、第10.2.10条、第10.2.12条、第11.3.1条、第11.3.6条、第11.3.9条。

(5)通长筋是否满足要求沿梁全长顶面和底面至少应各配置两根通长的纵向钢筋,且分别不应少于梁两端顶面和底面纵向受力钢筋中较大截面面积的1/4。

见《混规》GB50010-2002第11.3.7条和《抗规》GB50011- 2001第6.3.4条。

(6)腰筋设置是否满足要求当梁腹板高度hw≥450mm时,在梁的两个侧面应沿高度配置纵向构造钢筋,每侧纵向构造钢筋的截面面积不应小于腹板截面面积(b*hw)的0.1%,且其间距不宜大于200mm。

见《混规》GB50010-2002第10.2.16条。

(7)钢筋直径/等级是否满足要求检查梁主筋直径、箍筋直径及钢筋强度等级是否满足规范要求。

混凝土梁柱极限挠度和裂缝宽度计算

混凝土梁柱极限挠度和裂缝宽度计算

件能承受的最大弯矩和最大剪力。代入求得最大弯矩
为 179.507kN ·m, 最 大 剪 力 为 71.8kN。
1!0=
"$,'")2
/02 *
'
(2)
式中: 为计算截面的剪跨比,=3/'0,3 为集中荷
载作用点距支座截面或节点边缘的距离;当 <1.5时
取 1.5;当 >3时取 3。由公式(2)可计算箍筋。截面配
心受拉构件,取 *+=2.7;45 为最外层纵向受拉钢筋外
边 缘 至 受 拉 区 底 边 的 距 离 , 当 45<20mm 时 ,取
45=20mm;当 45>65mm时,取 45=65mm。由公式(4)计
算得跨中最大挠度变形为 11.872mm;由公式(5)计算
得最大裂缝宽度为 0.414mm。
"!#=20.1N/mm2,"$=1.43N/mm2,"$#=2.01N/mm2,%&=3.00× 104N/mm2,'(=460mm。 钢 筋 材 料 参 数 :")=360N/mm2, %*=2.00×105N/mm2。
+ "!,-.")/0
(1)
=.")/(0 '0-2- )
式中:1混凝土强度等级小于获等于 C50时,取 1=1.0。纵筋面积 /0=1256mm2。由公式(1)可计算出构
典型的受弯构件正截面试验梁一般为单筋矩形 截面简支梁,该梁应具有足够的抗剪能力,以保证在 受弯实验中不发生剪切破坏。其加载方式为集中荷载 跨中加载,荷载逐级加载,由零开始直至梁正截面受
. A弯l破l 坏R,i此gh时t跨s中R变es形e最rv大e,d即.为最大挠度,同时也是

钢筋混凝土受弯构件的裂缝宽度和挠度计算

钢筋混凝土受弯构件的裂缝宽度和挠度计算

钢筋混凝土受弯构件的裂缝宽度和挠度计算钢筋混凝土受弯构件在使用过程中常常会出现裂缝,这对其承载能力和使用寿命产生了直接影响。

因此,正确计算裂缝宽度和挠度是保证构件安全和性能的重要环节。

本文将就钢筋混凝土受弯构件的裂缝宽度和挠度计算进行详细介绍,希望对相关工程人员有所指导。

首先,我们来介绍裂缝宽度的计算方法。

裂缝宽度主要受到荷载、构件尺寸、材料性能以及钢筋布置等因素的影响。

一般而言,裂缝宽度的计算可以采用两种方法:一是基于应变的方法,二是基于变形的方法。

基于应变的方法是通过计算构件内部混凝土的应变来确定裂缝宽度。

根据国内外的研究成果,一些常用的裂缝宽度计算公式可以参考,比如“行位裂缝宽度计算公式”和“游离裂缝宽度计算公式”。

这些公式可以根据结构的具体情况进行选择和应用。

另一种方法则是基于构件变形的方法,即根据构件变形的大小和变形能力来确定裂缝宽度。

这种方法一般采用挠度与裂缝宽度之间的经验关系,通过实测数据或者试验结果来获得。

此外,挠度也是钢筋混凝土受弯构件在设计和施工过程中需要考虑的一个重要参数。

挠度主要受到荷载、构件尺寸、材料性能等因素的影响。

正确计算挠度可以保证构件的稳定性和使用性能。

挠度的计算需要通过结构的静力分析和动力分析来确定。

静力分析方法一般适用于简单的构件,通过使用梁的弯曲理论可以求解得到挠度。

而动力分析方法适用于复杂结构和地震荷载作用下的构件,需要借助于数值计算和计算机模拟来完成。

通过合理地计算裂缝宽度和挠度,可以帮助我们了解钢筋混凝土受弯构件的行为,进一步指导施工过程中的操作,并保证结构的安全和使用寿命。

因此,工程人员在进行相关计算时应注意选取合适的计算方法,并结合实际情况进行验证和调整,以达到设计要求和规范的要求。

综上所述,钢筋混凝土受弯构件的裂缝宽度和挠度计算是保证结构安全和性能的重要环节。

正确计算裂缝宽度和挠度需要综合考虑荷载、构件尺寸、材料性能等因素,并采用合适的计算方法。

混凝土结构09挠度、裂缝宽度验算及延性和经久性

混凝土结构09挠度、裂缝宽度验算及延性和经久性

延性和经久性的定义和要求
延性
结构在发生破坏前具有较大的变形能力,能够吸收和分散荷载。
经久性
结构在使用寿命内能够满足设计要求,不出现过度变形、破坏和损坏。
延性和经久性的评价和检验方法
结构破坏
评价结构是否具有足够的延性和 经久性的关键因素。
定期维护
通过定期检查和维护,延长结构 的使用寿命。
混凝土测试
2ห้องสมุดไป่ตู้
挤压挠度
由于混凝土的收缩和膨胀引起的变形,需要控制在允许范围内。
3
剪切挠度
主要考虑梁柱节点的剪切变形,应满足相关规范要求。
裂缝宽度的验算方法
应力平衡法
通过考虑混凝土的应力平衡条 件,计算裂缝的宽度。
应变调整法
通过考虑混凝土的温度变形和 收缩变形,计算裂缝的宽度。
静惯性法
通过考虑结构惯性和刚度,计 算裂缝的宽度。
通过对混凝土进行强度、硬度等 参数的测试,评估结构的延性和 经久性。
混凝土结构设计中的注意事项
1 合理的梁、柱布局
通过合理的布局,减小结构的变形和应力集中。
2 正确选择混凝土强度等级
根据结构的要求和使用条件,选择合适的混凝土强度等级。
3 考虑温度和湿度变化
混凝土在干燥或潮湿环境下会发生收缩或膨胀,需要考虑这些因素。
混凝土结构09挠度、裂缝 宽度验算及延性和经久性
本演示将介绍混凝土结构中的挠度、裂缝宽度的验算方法,以及延性和经久 性的定义、评价和检验方法。
设计要求
混凝土结构设计应符合建筑设计规范和强度要求,并考虑结构的安全性、可靠性和经济性。
混凝土的挠度验算
1
弯曲挠度
通过梁的截面形状和受力状态计算得出,应满足设计要求。

混凝土受弯构件裂缝和变形计算

混凝土受弯构件裂缝和变形计算

混凝土受弯构件是建筑物中的重要组成部分,其裂缝和变形计算对于建筑物的安全性和稳定性具有重要意义。

本文将介绍混凝土受弯构件裂缝和变形计算的方法和步骤。

一、裂缝计算
裂缝出现时间
裂缝出现时间是指混凝土受弯构件在承受荷载后出现裂缝的时间。

根据实验观察,裂缝出现时间与荷载大小、构件尺寸、配筋率等因素有关。

根据经验公式,可以计算出裂缝出现时间。

裂缝宽度
裂缝宽度是指裂缝的最大宽度,可以通过观察和测量得到。

根据实验结果,可以总结出一些经验公式,用于计算不同条件下的最大裂缝宽度。

裂缝数量和分布
裂缝的数量和分布与构件的受力状态有关。

在计算时,需要考虑不同受力条件下的裂缝数量和分布情况。

通常可以采用概率方法进行计算。

二、变形计算
挠度计算
挠度是指构件在荷载作用下的最大挠曲变形。

根据材料力学方法和实验结果,可以得出一些经验公式,用于计算不同条件下的挠度值。

转角计算
转角是指构件在荷载作用下的最大转角变形。

根据材料力学方法和实验结果,可以得出一些经验公式,用于计算不同条件下的转角值。

三、结论
混凝土受弯构件的裂缝和变形计算对于建筑物的安全性和稳定性具有重要意义。

本文介绍了裂缝和变形的计算方法和步骤,包括裂缝出现时间、裂缝宽度、裂缝数量和分布、挠度和转角的计算等。

这些计算方法可以为工程设计和施工提供重要的参考依据。

裂缝宽度验算及减小裂缝宽度地主要要求措施

裂缝宽度验算及减小裂缝宽度地主要要求措施

8.2.5 裂缝宽度验算及减小裂缝宽度的主要措施对裂缝宽度的限制,应从保证结构耐久性,钢筋不被锈蚀及过宽的裂缝影响结构外观,引起人们心理上的不安两个因素来考虑。

《混凝土结构设计规范》(GB50010)规定,钢筋混凝土构件在荷载的标准组合下,并考虑长期作用影响的最大裂缝宽度,应符合下式规定:(8-20)式中w max——按荷载的标准组合并考虑长期作用影响计算的构件最大裂缝宽度,按式;w lim——裂缝宽度限值,根据构件所处的环境类别(表8-1)不同,裂缝宽度限值取表8-2中的值。

表8-1 混凝土结构的使用环境类别环境类别说明一室内正常环境;无侵蚀性介质、无高温高湿影响、不与土壤直接接触的环境a室内潮湿环境、露天环境及与无侵蚀性的水或土壤直接接触的环境二b严寒和寒冷地区的露天环境及与无侵蚀性的水或土壤直接接触的环境三使用除冰盐的环境、严寒及寒冷地区冬季的水位变动环境、滨海室外环境四海水环境(海水潮汐区、浪溅区、海面大气区、海水水下区)表8-2 混凝土结构构件的最大裂缝宽度限值w lim (mm)《公路钢筋混凝土和预应力混凝土桥涵设计规范》(JTJ023)规定,钢筋混凝土构件在正常使用极限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应影响进行验算,且不得超过以下规定的限值:一般环境0.20mm有气态、液态或固态侵蚀物质环境0.10mm这里,一般环境系指寒冷和严寒、无侵蚀物质影响的地面和水下及与土直接接触的环境;有气态、液态或固态侵蚀物质环境系指包括海水、使用除冰盐在内及工业污染的环境。

从影响裂缝宽度的主要因素以及两本规范的裂缝宽度计算公式中我们发现,当设计计算发现裂缝宽度超限,或要求减小裂缝宽度时,选择较细直径的钢筋及变形钢筋是最为经济的措施。

因为同样面积的钢筋,直径小则其周长与面积比就大,这就增大了钢筋与混凝土间的粘结力,采用变形钢筋亦是这个道理。

粘结力大,可使裂缝间距缩短,裂缝即多而密,裂缝间距内钢筋与混凝土之间的变形差就小,裂缝宽度减小。

钢筋混凝土构件的裂缝宽度和挠度计算

钢筋混凝土构件的裂缝宽度和挠度计算

【例8.4】某教学楼楼盖中的一根钢筋混凝土简支梁,计 算跨度为l0=7.0m,截面尺寸b×h=250mm×700mm。混 凝土强度等级为C25(Ec=2.8×104N/mm2, ftk=1.78N/mm2),钢筋为HRB335级(Es=2.0×105 N/mm2)。梁上所承受的均布恒荷载标准值(包括梁自重) gk=19.74kN/m,均布活荷载标准值qk=10.50kN/m。按正截 面计算已配置纵向受拉钢筋4φ0As=1256mm2).梁的允许挠 度[f]=l0/250。试验算梁的挠度是否满足要求。
图8.8
图8.8 钢筋混凝土受弯构件不需作挠度验算的最大跨高比
8.2.5.2 提高受弯构件截面刚度的措施
(1) 最有效的措施是提高截面高度h,即减小跨高 比l0/h0 (2) (3) (4) 选用合理的截面,如Ⅰ形或T (5) 采用预应力构件。
Bs 6 E 1.15 0.2 1 3.5rf Es As h02
8.2.3 长期刚度的计算
当构件在持续荷载的作用下,其变形(挠度) 将随时间的增长而不断增长。其变化规律是:先快 后慢,一般要持续变化数年之后才比较稳定。产生 这种现象的主要原因是截面受压区混凝土的徐变。
规范规定,受弯构件的挠度应按荷载效应标准 组合并考虑荷载长期作用影响的刚度B 规范规定,受弯构件的刚度B
f=22.26mm<[f]=28.0mm (
图8.7 刚度原理
(a) 简支梁最小刚度;(b)
8.2.5 最小截面高度或最大跨高比
8.2.5.1 图8.8的制作原理
图8.8中的构件配置的钢筋为Ⅱ级钢筋,混凝土强 度等级为C15~C30,允许挠度值为l0/200,结构重要性 系数γ0=1,活荷载的准永久值系数ψq=0.4,且承受均

构件挠度、裂缝变形允许值

构件挠度、裂缝变形允许值

构件挠度、裂缝变形允许值《混凝土结构设计规范》3.4.3钢筋混凝土受弯构件的最大挠度应按荷载的准永久组合,预应力混凝土受弯构件的最大挠度应按荷载的标准组合,并均应考虑荷载长期作用的影响进行计算,其计算值不应超过表3.4.3规定的挠度限值。

表3.4.3受弯构件挠度限值注:1 表中L0为构件的计算跨度;计算悬臂构件的挠度限值时,其计算跨度L0按实际悬臂长度的2倍取用;2 表中括号内的数值适用于使用上对挠度有较高要求的构件;3 如果构件制作时预先起拱,且使用上也允许,则在验算挠度时,可将计算所得的挠度值减去起拱值;对预应力混凝土构件,尚可减去预加力所产生的反拱值;4 构件制作时的起拱值和预加力所产生的反拱值,不宜超过构件在相应荷载组合作用下的计算挠度值。

3.4.5 结构构件应根据结构类型和本规范第3.5.2条规定的环境类别,按表。

3.4.5的规定选用不同的裂缝控制等级及最大裂缝宽度限值ωlim注:1 对处于年平均相对湿度小于60%地区一类环境下的受弯构件,其最大裂缝宽度限值可采用括号内的数值;2 在一类环境下,对钢筋混凝土屋架、托架及需作疲劳验算的吊车梁,其最大裂缝宽度限值应取为0.20mm;对钢筋混凝土屋面梁和托梁,其最大裂缝宽度限值应取为0.30mm;3 在一类环境下,对预应力混凝土屋架、托架及双向板体系,应按二级裂缝控制等级进行验算;对一类环境下的预应力混凝土屋面梁、托梁、单向板,应按表中二a类环境的要求进行验算;在一类和二a类环境下需作疲劳验算的预应力混凝土吊车梁,应按裂缝控制等级不低于二级的构件进行验算;4 表中规定的预应力混凝土构件的裂缝控制等级和最大裂缝宽度限值仅适用于正截面的验算;预应力混凝土构件的斜截面裂缝控制验算应符合本规范第7章的有关规定;5 对于烟囱、筒仓和处于液体压力下的结构,其裂缝控制要求应符合专门标准的有关规定;6 对于处于四、五类环境下的结构构件,其裂缝控制要求应符合专门标准的有关规定;7 表中的最大裂缝宽度限值为用于验算荷载作用引起的最大裂缝宽度。

钢筋混凝土受弯构件的裂缝宽度和挠度计算

钢筋混凝土受弯构件的裂缝宽度和挠度计算

【钢筋混凝土受弯构件的裂缝宽度和挠度计算】一、引言钢筋混凝土结构是现代建筑中常见的结构形式之一,而受弯构件作为其重要组成部分,其裂缝宽度和挠度的计算是设计过程中的关键内容。

在本文中,我将分析钢筋混凝土受弯构件的裂缝宽度和挠度计算,并对其进行深度探讨,希望能为您提供有价值的信息。

二、裂缝宽度计算1.裂缝宽度计算公式钢筋混凝土受弯构件的裂缝宽度计算可以使用以下公式进行:\[w_k = k \times \frac{f_s}{f_y} \times \frac{M_s}{b \times d}\]其中,\(w_k\)为裂缝宽度,\(k\)为调整系数,\(f_s\)为梁内应力,\(f_y\)为钢筋的屈服强度,\(M_s\)为抗弯强度矩,\(b\)为截面宽度,\(d\)为截面有效高度。

2.裂缝宽度计算包含的因素在裂缝宽度计算中,需要考虑梁内应力、钢筋的屈服强度以及抗弯强度矩等因素。

通过对这些因素的综合考虑,可以准确计算出钢筋混凝土受弯构件的裂缝宽度,从而确保结构的安全性。

三、挠度计算1.挠度计算公式钢筋混凝土受弯构件的挠度计算可以使用以下公式进行:\[f = \frac{5 \times q \times l^4}{384 \times E \times I}\]其中,\(f\)为挠度,\(q\)为荷载,\(l\)为构件长度,\(E\)为弹性模量,\(I\)为惯性矩。

2.挠度计算的影响因素在挠度计算中,荷载、构件长度、弹性模量和惯性矩等因素都会对挠度产生影响。

通过对这些因素进行综合考虑,并结合实际工程情况,可以准确计算出钢筋混凝土受弯构件的挠度,从而满足设计要求。

四、个人观点和理解钢筋混凝土受弯构件的裂缝宽度和挠度计算是结构设计中的重要内容,它直接关系到结构的安全性和稳定性。

在实际工程中,我们需要充分理解裂缝宽度和挠度计算的原理和方法,结合设计规范和实际情况,确保结构设计的合理性和可行性。

五、总结与展望通过本文的分析,我们深入探讨了钢筋混凝土受弯构件的裂缝宽度和挠度计算,并对其进行了详细介绍。

减少受弯构件挠度和裂缝宽度的措施

减少受弯构件挠度和裂缝宽度的措施

减少受弯构件挠度和裂缝宽度的措施一、引言受弯构件是建筑结构中常见的构件类型之一,其承载能力主要依靠截面的抗弯刚度。

然而,在受弯构件受到荷载作用时,由于其自身重量和荷载的作用,会产生挠度和裂缝。

挠度和裂缝的出现不仅会影响建筑物的美观性,还可能对结构安全造成威胁。

因此,减少受弯构件挠度和裂缝宽度是非常重要的。

二、减少受弯构件挠度的措施1.增加截面尺寸增加截面尺寸可以提高截面抗弯刚度,从而减小挠度。

但是,在实际工程中,由于经济性等原因往往无法满足这个要求。

2.增加材料强度增加材料强度可以提高截面抗弯刚度,从而减小挠度。

但是,在实际工程中,由于经济性等原因往往无法满足这个要求。

3.增加支承条件增加支承条件可以提高受弯构件在支座处的刚度,从而减小挠度。

例如,可以增加支承点的刚度,增加支承点的数量等。

4.采用预应力混凝土预应力混凝土可以提高受弯构件的刚度和强度,从而减小挠度。

但是,在实际工程中,由于施工难度大、工期长等原因往往无法满足这个要求。

5.采用钢筋混凝土梁钢筋混凝土梁具有较高的抗弯刚度和抗剪承载能力,从而能够有效地减小挠度。

但是,在实际工程中,由于经济性等原因往往无法满足这个要求。

6.采用桥架结构桥架结构具有较高的抗弯刚度和抗剪承载能力,从而能够有效地减小挠度。

但是,在实际工程中,由于经济性等原因往往无法满足这个要求。

三、减少受弯构件裂缝宽度的措施1.增加截面尺寸增加截面尺寸可以提高截面抗弯刚度和抗拉承载能力,从而减小裂缝宽度。

2.增加钢筋数量和直径增加钢筋数量和直径可以提高截面抗弯刚度和抗拉承载能力,从而减小裂缝宽度。

3.采用预应力混凝土预应力混凝土可以提高受弯构件的刚度和强度,从而减小裂缝宽度。

4.采用钢筋混凝土梁钢筋混凝土梁具有较高的抗弯刚度和抗剪承载能力,从而能够有效地减小裂缝宽度。

5.控制荷载大小控制荷载大小可以避免受弯构件超过其承载能力,从而避免裂缝的产生。

6.增加支座面积增加支座面积可以降低支座压应力,从而降低受弯构件产生裂缝的风险。

钢筋混凝土受弯构件变形和裂缝宽度计算

钢筋混凝土受弯构件变形和裂缝宽度计算

单元六钢筋混凝土受弯构件变形和裂缝宽度计算《桥规》(JTG D62——2004)规定;钢筋混凝土构件,在正常使用极限状态下的裂缝宽度,应按作用(或荷载)短期效应组合并考虑长期效应影响进行验算,钢筋混凝土受弯构件,在正常使用极限状态下挠度,可根据给定的构件刚度用结构力学的方法计算。

6-1受弯构件的变形计算1;承受作用的受弯构件,如果变形过大,将会影响结构的正常使用。

一、受弯构件在试用阶段按短期效应组合的挠度计算1;结构力学中的挠度计算公式前提;对于普通的匀质弹性梁在承受不同作用时的变形(挠度)计算,可用《结构力学》中的相应公式计算。

1;在均布荷载作用下,简支梁的最大挠度为f=5ML²/48EI或f=5qL⁴/384EI当集中荷载作用简支梁跨中时梁的最大挠度为f=1ML²/12EI 或f=PL³/48EI有公式得,不论作用的形式和大小如何,梁的挠度f总是与EI 值成反比。

EI值愈大,绕度f就愈小;反之。

EI值反映了梁的抵抗弯曲变形的能力,故EI又称为受弯构件的抗弯刚度。

2,钢筋混凝土受弯构件的挠度计算公式《1》混凝土是一种非匀质的弹塑形体,受力后除了弹性变形外还会产生塑性变形。

《2》钢筋混凝土受弯构件在承受作用时会产生裂缝,其受拉区成为非连续体,这就决定了钢筋混凝土受弯构件的变形(挠度)计算中涉及的抗弯刚度不能直接采用匀质弹性梁的抗弯刚度EI,钢筋混凝土受弯构件的抗弯刚度通常用B表示B=EIfs=5qL⁴/384B和fs=PL³/48B《桥规》(JTG D62——2004)规定;对于钢筋混凝土受弯构件的刚度按下式计算B=Bο/(M cr/M s)²+(1-(M cr/M s)²)×Bο/B crM cr=γ×f tk×Wογ=2Sο/Wο式中;B——开裂构件等效截面的抗弯刚度;Bο——全截面的抗弯刚度,Bο=0.95E c IοB cr——开裂截面的抗弯刚度,B cr=E c I crM s——按作用(或荷载)短期效应组合计算的弯矩值M cr——开裂弯矩γ——构件受拉区混凝土塑性影响系数Sο——全截面换算截面中心轴以上(或一下)部分面积对中心轴的面积矩;Wο——换算截面抗裂边缘的弹性抵抗矩Iο——全截面换算截面惯性矩;I cr——开裂截面换算截面惯性矩F tk——混凝土轴心抗拉强度标准值。

钢筋混凝土构件的裂缝宽度和挠度计算

钢筋混凝土构件的裂缝宽度和挠度计算

钢筋混凝土构件的裂缝宽度和挠度计算钢筋混凝土结构是一种广泛应用的建筑结构形式。

在使用的过程中,由于各种因素的影响,钢筋混凝土构件会出现裂缝和挠度。

裂缝宽度和挠度的计算是设计和施工中非常重要的一步,下面将详细介绍钢筋混凝土构件的裂缝宽度和挠度计算的方法。

首先,我们先来了解什么是裂缝宽度。

裂缝宽度是裂缝两侧的最大间隔距离,通常用毫米来表示。

裂缝宽度的计算与构件所承受的荷载大小有关。

弹性模量法是一种基于线弹性理论的裂缝宽度计算方法。

该方法假设构件的截面保持线弹性行为,并且裂缝开口处的应力等于截面中的应力。

根据这个假设,可以通过使用构件的几何特征、材料性质以及荷载情况来进行计算。

弹性模量法的计算步骤如下:1.确定构件的几何特征,包括构件的截面形状、尺寸和钢筋的分布情况。

2.根据构件的截面形状和计算荷载,计算构件的抗弯承载力和抗剪承载力。

3.根据构件的弹性模量、截面的惯性矩和荷载情况,计算出构件所受到的弯矩和剪力。

4.计算裂缝宽度,可以使用一些经验公式或者根据经验计算裂缝宽度的公式,如ACI224R-01中给出的公式。

极限平衡法是一种基于非线性分析的计算方法,广泛用于钢筋混凝土构件的裂缝宽度计算。

该方法考虑了材料的非线性行为和构件在承受荷载过程中的变形情况。

极限平衡法的计算步骤如下:1.确定构件的几何特征和材料性质。

2.将构件的截面划分为若干离散截面,然后使用有限元或其他非线性分析方法计算每个离散截面的受力情况。

3.根据计算出的应力分布,计算裂缝宽度。

可以使用一些经验公式或者根据经验计算裂缝宽度的公式。

除了计算裂缝宽度,钢筋混凝土构件的挠度也是需要考虑的。

挠度是构件在受到荷载作用后产生的弯曲变形,通常用单位长度的偏移量表示。

挠度的计算方法与裂缝宽度计算类似,可以使用弹性模量法和极限平衡法等进行计算。

总而言之,钢筋混凝土构件的裂缝宽度和挠度的计算是设计和施工中的关键步骤。

正确的计算方法能够保证构件的安全性和使用寿命,并且提供准确的数据指导设计和施工。

钢筋混凝土受弯构件—梁的挠度裂缝宽度验算

钢筋混凝土受弯构件—梁的挠度裂缝宽度验算

(4)长期刚度
B
MK
M q 1 M k
Bs
110.25 106
91.125106 2 1 110.25106
4.72 1013
2.584 1013 N.mm2
(5)挠度验算
f S M k l02 B
5 48
110.25106 60002 2.584 1013
5 384
(16 8.5) 60004 2.584 1013
s
Mq 0.87As h0
91.125106 200.34N / mm2 0.87 942 555
te
As Ate
As 0.5bh
942 0.5 250 600
0.0126
0.01
3Φ20 250
1.1 0.65 ftk 1.1 0.65
1.78
0.642
te sk
0.0126 200 .34
混凝土抗拉强度低,一般都带裂缝工作。 裂缝按其形成的原因可分为两大类: ① 荷载作用引起的裂缝;---计算控制 ② 由变形因素引起的裂缝:如温度变化、材料收缩以 及地基不均匀沉降引起的裂缝。---构造措施控制
1.裂缝出现、分布和发展
M<Mcr,未开裂,混凝土拉应力小 于抗拉强度标准值
M=Mcr,受拉区边缘混凝土 在最薄弱截面处达到极限拉应 变,出现第一条或第一批裂缝
0.08 deq )
te
解:由表查得
ftk 1.78 N / mm 2 Es 2.0 10 5 N / mm 2 h0 650 45 605 mm
Mq
M gk
q M qk
1 15 6.62 8
0.5 1 7.5 6.62 8
81.675 0.5 40.838 102.094
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中 b-矩形截面宽度,T形和工字形截面腹板厚度 h-截面高度; bf'hf'-分别为受拉翼缘的宽度和高度。
对于矩形、T形、倒T形及工字形截面, Ate的取 值见图所示的阴影面积。
b f
h/2
b (a) b
h
h f h h/2
b
(b) b f
hf h/2 bf (c)
h
h f b hf h/2 h
§8.1
概述
结构设计应满足的预定功能是安全性、适用 性及耐久性。 安全性:即结构构件能承受在正常施工和正常使用时 可能出现的各种作用以及在偶然事件发生时 及发生后,仍能保持必需的整体稳定性。 适用性:即在正常使用时,结构构件具有良好的工作 性能,不出现过大的变形和过宽的裂缝 耐久性:即在正常的维护下,结构构件具有足够的耐 久性能,不发生锈蚀和风化现象。
为防止由于钢筋周围砼过快的碳化失去对钢筋 的保护作用,出现锈胀引起沿钢筋纵向的裂 缝,规定了钢筋的最小混凝土保护层厚度。
混凝土
第 七 章
通常,裂缝宽度一般可用控制最大受力钢筋直
径来保证,只有在构件截面尺寸小,钢筋应力高时
才进行验算。裂缝宽度的验算主要是按荷载效应准
永久组合并考虑长期作用影响的最大裂缝宽度的计
第 8章
钢筋混凝土构件裂缝、变形和耐久性
提 要
本章主要内容: 了解考虑构件变形、裂缝和耐久性的重要性; 分析受弯构件竖向弯曲裂缝的出现和开展过程; 掌握钢筋混凝土构件裂缝宽度的验算; 掌握受弯构件截面刚度计算与变形(挠度)验算。 熟悉减小构件变形和裂缝宽度以及增加结构构件 耐久性的方法。
混凝土
第 七 章
d eq lcr 1.9cs 0.08 te
① 平均裂缝间距
式中:
–––系数,
轴心受拉 =1.1, 偏心受拉 =1.05 受弯、偏心受压 =1.0
cs ––– 最外层纵向受力钢筋至受拉区底边的距离, 当cs<20mm时,取cs=20mm;当 cs>65mm时,取 cs=65mm。
第 七 章
(c)偏心受拉
图7-4
(d)偏心受压
混凝土
轴心受拉:

sq

Nq As
Mq 0.87h 0 A s
N q e A s (h0 as )Leabharlann 第 七 章受 弯:
sq

偏心受拉:

sq

混凝土
偏心受压:
s
N q (e z ) As z
h0 2 z [0.87 0.12(1 f )( ) ]h0 e e s e0 ys
混凝土
第 七 章
前面各章承载力的计算是满足结构的安全性, 属于承载能力极限状态下的计算。而本章构件的 裂缝宽度和挠度验算是满足结构的适用性及耐久 性,属于正常使用极限状态下的验算。 挠度过大会影响使用功能,不能保证适用性:
过大的变形会造成房屋内粉刷层剥落、填充墙和
隔断开裂及屋面积水等后果;在多层精密仪表车
i 2
n
准永久组合: S S q Gk

i 1
n
qi
SQik

仅适用于荷载效 应为线性的情况
P47
混凝土
第 七 章
§8.2 裂缝宽度验算 引起裂缝的原因可以是荷载因素和变形因素 荷载引起的裂缝: 与力的作用方式有关,当ct > ftk , 构件开裂,占全部裂缝的20%。 计算要求max lim 由材料收缩、温度变化、钢 变形因素引起的裂缝: 筋锈蚀、地基不均匀沉降等 (非荷载) 引起,占全部裂缝的80%, 由构造措施来保证。
混凝土
第 七 章
由荷载引起的裂缝情况如图8-1所示。
Nk Nk (a)轴心受拉 e0 Nk Nk (b)偏心受拉 Nk Nk (c)偏心受压 (e) 受 扭 Tk (d) 受 弯
Tk
e0
图8-1
混凝土
第 七 章
非 荷 载 引 起 的 裂 缝
为防止温度应力过大引起的开裂,规定了伸缩
缝之间的最大间距。 在温度应力较大处加强配筋。
rf'——受压翼缘面积与腹板有效面积之比值;
混凝土
第 七 章
③ 钢筋应力不均匀系数 表示混凝土参与工作的程度
系数为裂缝之间钢筋的平均应变与裂缝截面 钢筋应变之比,即 sm sm
sq
sq
当系数=1,即sm =sk时,裂缝截面之间的钢筋 应力等于裂缝截面的钢筋应力,钢筋与混凝土之 间的粘结应力完全退化,混凝土不再协助钢筋抗 拉。 sm 0.65 f tk 1.1
混凝土
第 七 章
(1)平均裂缝宽度 wm
ck
Nk lcr+cmlcr lcr+smlcr Nk
cm
(b)
c分布
sk m
sm
(c)
s分布
m
(a)
图8-4
在轴向力Nk作用下,平均裂缝间距lcr之间的各截面,由于 混凝土承受的应力(应变)不同,相应的钢筋应力(应变) 也发生变化,在裂缝截面混凝土退出工作,钢筋应变最大; 中间截面由于粘结应力使混凝土应变恢复到最大值,而钢 筋应变最小。裂缝宽度是由于钢筋与混凝土之间的粘结破 坏,出现相对滑移,引起裂缝处混凝土回缩而产生的。
sk
(d)
(e) Nk Ncr+N Ncr+N
1
2
1
(a)
1
<ftk
2
(b)
(c)
3
Nk
sm
图8-3
8.2.2
max 的计算方法 1. 建筑工程规范关于 wmax 的计算
规范采用平均裂缝宽度乘以扩大系数的方法 确定最大裂缝宽度。
扩大系数

荷载短期效应组合下,裂缝宽度不均匀性 荷载长期作用影响下,裂缝间混凝土不断 退出工作,平均裂缝宽度有所增大。
混凝土
第 七 章
有效配筋率 te 是指按有效受拉混凝土截面面积Ate 计算的纵向受拉钢筋配筋率,即:
te As / Ate
有效受拉混凝土截面面积Ate按下列规定取用: A、对轴心受拉构件, Ate 取构件截面面积; B、对受弯、偏心受压和偏心受拉构件,取
Ate 0.5bh (b f b)h f
图8-3
bf
(d)
② 裂缝截面处钢筋应力sq 根据不同的受力状态由下面计算图式确定。
Mq
Nq C h0 0.87h0
sqAs
sqAs
(a)轴心受拉 e e0 (b)受弯 e e Nq Nq nse0 As
As
As
As
sAs C
sqAs
h0–a s
sqAs
Z
Cc
C
sAs
max lim
max
lim
—按荷载效应准永久组合并考虑长期作用影 响计算的最大裂缝宽度;
—最大裂缝宽度限值
第 七 章
混凝土
裂缝的出现和开展:
Nk
N N cr
1
ct=ftk
1
ftk
N N cr
Nk
(a)轴心受拉构件开裂示意 (b)混凝土应力
s max
(c)钢筋应力
sk
图8-2

m c
s
Es
lcr
上式适用于轴心受拉、受弯、偏心受拉和偏心受压构
件。
ω m是指构件表面的裂缝宽度,在钢筋位置处,由于 钢筋对混凝土的约束,使得截面上各点的裂缝宽度并 非处处相等。
第 七 章
混凝土
混凝土
第 七 章
lcr 裂缝间距主要取决于有效配筋率ρ te,钢筋直径d及 其表面形状。此外,还与混凝土cS有关。
第 七 章
混凝土
开展: 当荷载继续增加,在一定区段由钢筋与砼应 变差的累积量,即形成了裂缝宽度。 裂缝的开展是由于混凝土的回缩,钢筋的伸长,
导致混凝土与钢筋之间相对滑移的结果。
《规范》规定:裂缝开展宽度是指受拉钢筋重心 水平处构件侧表面上混凝土的裂缝宽度。
混凝土
第 七 章
裂缝宽度的计算理论
粘结 ––– 滑移理论: 认为裂缝宽度是由 于钢筋与混凝土之间的 粘结退化,出现相对滑 移,引起裂缝处混凝土 的回缩而引起的。

7.2.1 验算公式
根据正常使用阶段对结构构件裂缝的不同要求,将 裂缝控制等级分为三级:
第 七 章
混凝土
一级:正常使用阶段严格要求不出现裂缝的构件;
(按荷载效应标准组合计算时,构件受拉边缘混凝土不应产生 拉应力 )
二级:正常使用阶段一般要求不出现裂缝的构件;
(按荷载效应标准组合计算时,构件受拉边缘混凝土拉应力 不应大于混凝土轴心抗拉强度标准值;按荷载效应准永久组 合计算时,构件受拉边缘混凝土不宜产生拉应力 )
l0 2 1 s 1 ( ) 4000e0 / h0 h
ηs——使用阶段的偏心距增大系数; l0/h≤14时, ηs =1
混凝土
第 七 章
As ——受拉区纵向钢筋截面面积; e'——轴向拉力作用点至受压区或受拉较小边纵向 钢筋合力点的距离;
e——轴向拉力作用点至纵向受拉钢筋合力点的距离
z——纵向受拉钢筋合力点至受压区合力点之间的距 离,且 z 0.87h0 ; ηs——使用阶段的偏心距增大系数; ys——截面重心至纵向受拉钢筋合力点的距离,对矩 形截面ys=h/2-as ;
混凝土
七 章
正常使用极限状态的一般验算公式为
S C
S—正常使用极限状态的荷载效应组合值; C—结构构件达到正常使用要求所规定的变形、裂缝 宽度和应力限值。
标准组合:
Sk SGk SQ1k ci SQik
i 2
相关文档
最新文档