北师大版必修三 循环结构 学案
循环结构(一) 北师大版高中数学必修3教案
§2.2 算法的基本结构及设计第五课时 2.2.3循环结构(一)一、课程标准:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件、循环.二、教学目标:1.进一步理解程序框图的概念;2.掌握运用程序框图表达循环结构的算法;3.培养学生逻辑思维能力与表达能力.三、教学重点:运用程序框图表达循环结构的算法。
教学难点:循环体的确定,计数变量与累加变量的理解.四、教学过程(一)、回顾练习:引例:设计一个计算1+2+…+100的值的算法.解:算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10;……第九十九步:将第九十八步中的运算结果4950与100相加,得到5050.简化描述:第一步:sum=0;第一步:sum=0,i=1;第二步:sum=sum+1;第二步:依次i从1到100,反复做sum=sum+i;第三步:sum=sum+2; 第三步:输出sum.第四步:sum=sum+3;……第一百步:sum=sum+99;第一百零一步:sum=sum+100第一百零二步:输出sum.在本题中如果我们仍然用顺序结构和选择结构来画流程图,就显得比较繁琐,为了使得算法简洁我们今天学习循环往复的逻辑结构――循环结构。
(二)、新课循环结构:在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这种结构称为循环结构.循环体:反复执行的处理步骤称为循环体.计数变量:在循环结构中,通常都有一个起到循环计数作用的变量,这个变量的取值一般都含在执行或终止循环体的条件中.例1、见.课本P95 例7;练习1:画出引例的循环的程序框图(这是一个典型的用循环结构解决求和的问题,可以体会三种结构在流程图中的作用,学会画流程图)例2、见课本P96 例8点评:需要反复进行的相同操作,如果按照顺序结构来描述,算法显的十分烦琐,不利于阅读,如果采取循环结构来描述,算法就显得简洁,清楚。
北师大版高中数学必修三循环结构教案(精品教学设计)
循环结构1.教学目标根据新课标的要求和学生的认知特点,确定本节课的教学目标。
(1)知识与技能学生能理解循环结构概念;把握循环结构的三要素:循环的初始状态、循环体、循环的终止条件;能识别和理解循环结构的框图以及功能;能运用循环结构设计程序框图以解决简单的问题。
(2)过程与方法通过由实例对循环结构的探究与应用过程,培养学生的观察类比,归纳抽象能力;参与运用算法思想解决问题的过程,逐步形成算法分析,算法设计,算法表示,程序编写到算法实现的程序化算法思想;培养学生严密精确的逻辑思维能力;掌握循环结构的一般意义及应用方法;培养由特殊到一般,再到特殊,及具体,抽象,具体的螺旋上升式的认识事物的能力并发现解决问题的方法。
(3)情感、态度与价值观通过师生、生生互动的活动过程,培养学生主动探究、勇于发现的科学精神,提高数学学习的兴趣,体验成功的喜悦。
通过实例,培养学生发现、提出问题的意识,积极思考,分析类比,归纳提升,并能创造性地解决问题;感受和体会算法思想在解决具体问题中的意义,提高算法素养;经历体验发现、创造和运用的历程与乐趣,形成在继承中提高、发展,在思辩中观察、分析并认识客观事物的思维品质;体会数学中的算法与计算机技术建立联系的有效性和优势体现;培养学生的逻辑思维能力,形式化的表达能力,构造性解决问题的能力,培养学生程序化的思想意识,为学生的未来和个性发展及进一步学习做好准备。
2.教学重点、难点及关键点(1)重点循环结构的概念、功能、要素、框图及应用(2)难点描述和应用循环结构时,三要素的准确把握和正确表达(3)关键点跟踪变量变化,理解程序的执行过程3.教学手段与方法(1)教学手段采用多媒体辅助教学(2)教法探究启发式教学法(3)学法探索发现式学习法4.教学过程导入阶段(1)温故知新,探究发现课前演练:问题1:给定三角形的三条边长,计算三角形的面积。
填充完成程序框图:【复习引入】复习已学得顺序和分支结构,同时在判断给出的三条边是否构成三角形(两边之和大于第三边)时,承上启下,同时注意提醒学生注意观察哪些是重复进行的部分,为新知作好铺垫。
高中数学新北师大版精品教案《北师大版高中数学必修3 2.3循环结构》
§循环结构宿州市第二中学白彬一、教学内容的分析1.教材的地位和作用《循环结构》是北京师范大学出版社课程教材研究所编著的普通高中课程标准实验教科书数学(必修3)中§的内容,是新课标教材的新增内容。
算法是数学及其应用的重要组成部分,是计算机科学的重要基础.算法的程序化思想已成为现代人应具备的一种数学素养。
培养算法思想对高中学生养成思考、分析问题的条理性和逻辑思维的严谨性有着积极、深远的意义。
本节课所学习的是算法三种基本逻辑结构中的循环结构,是算法中最重要、最核心的一种结构;循环结构是算法三大基本逻辑结构中最灵活,内涵最丰富的一种结构,该算法结构充分体现了算法的优势。
循环结构的学习,对于学生体会算法的基本思想以及算法的重要性和有效性,有重要的意义循环结构广泛存在于许多著名算法设计中,譬如二分法,欧几里德算法,秦九韶算法等,且循环结构是学习循环语句的基础,循环结构中蕴含的“递推”思想为必修五数列的学习奠定了基础,是整个算法教学的重点与难点,同时也是高考关注的重点。
本节课是在学习了顺序结构,条件结构和赋值语句的基础上进行的,安排1课时。
2.教学的重点和难点由于循环变量赋初值、循环体、循环的终止条件是在顺序结构和条件结构未出现的概念,同时也是掌握循环结构的关键,由此确立本节课的重难点是:重点:循环结构的三要素的理解;难点:循环三要素的确定以及循环执行时变量的变化规律;3学情分析学生已经学习了算法的概念、顺序结构、条件结构及简单的赋值问题。
高一学生形象思维、感性认识较强,理性思维、抽象认识能力还很薄弱,因此教学中选择学生熟悉的,易懂的实例引入,通过对例子的分析,使学生逐步经历循环结构设计的全过程,学会有条理的思考问题,表达循环结构,并整理成程序框图。
二、学习目标分析1、知识与技能通过模仿、操作、探索的过程,引导学生能理解循环结构概念。
学会画简单的循环结构框图,把握循环结构的三要素:循环的初始值、循环体、循环的终止条件;能识别和理解循环结构的框图以及功能。
2020-2021学年数学北师大版必修3学案:2.2.3 循环结构含解析
2.3循环结构知识点循环结构[填一填]1.循环结构(1)定义:按照一定条件,反复执行某一步骤的算法结构称为循环结构,反复执行的部分称为循环体.(2)循环变量:控制着循环的开始和结束的变量,称为循环变量.(3)循环的终止条件:决定是否继续执行循环体的判断条件,称为循环的终止条件.2.在画出算法流程图之前,需要确定三件事(1)确定循环变量和初始条件;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.3.循环结构的算法流程图的基本模式[答一答]如何理解循环结构中的计数变量和累计变量?提示:在大部分循环结构中会有一个计数变量和一个累计变量.计数变量用于记录循环次数,累计变量用于输出结果,它们一般是同步执行,累计一次,计数一次,例如i=i+1,sum=sum+t.i=i+1的含义是:将变量i的值加1,然后把计算结果再存储到变量i中,即i在原值的基础上又增加了1.变量sum作为累加变量,用来表示所求数据的和.如sum的初值为0,当第一个数据送到变量t中时,累加的动作为sum=sum+t,即把sum的值与变量t的值相加,将所得结果再送到变量sum中,如此循环,则可实现数的累加求和.类似于这个原理,我们也可以实现累乘求积的问题.在具体画算法框图时,要注意:流程线上要有标志执行顺序的箭头;判断框后边的流程线应根据情况标注“是”或“否”;在循环结构中,要注意根据条件设计合理的计数变量、累加变量等,特别是条件的表述要恰当、精确.画循环结构算法框图的要领:①确定循环变量和初始条件;②确定算法中反复执行的部分,即循环体;③确定循环的转向位置;④确定循环的终止条件.类型一循环结构的基本概念【例1】在使用循环结构描述一个具体问题的算法时,循环变量的初始值()A.是唯一的B.是固定不变的C.根据结构特点有时可以变化D.以上答案都不对【解析】循环结构中,若循环体不同,所给的循环变量的初值可以不同,故选C.【答案】 C规律方法对循环结构的有关概念的正确理解是解循环结构题目的关键,应认真掌握.下面的算法流程图中是循环结构的是(C)A.①②B.②③C.③④D.②④解析:①为顺序结构,②为条件结构,③④为循环结构.类型二含循环结构的程序的运行【例2】如果执行如图所示的算法框图,输入x=-2,h=0.5,那么输出的各个数的和等于()A.3B.3.5C.4D.4.5【思路探究】本题主要考查循环结构内嵌套多个选择结构的算法框图,需要反复进行判断和运算直到满足条件.题中涉及三个变量,注意每个变量的运行结果和执行情况.【解析】按照算法框图依次执行为:初始值x=-2,h=0.5.(1)x=-2,h=0.5,y=0;(2)x=-1.5,h=0.5,y=0;(3)x=-1,h=0.5,y=0;(4)x=-0.5,h=0.5,y=0;(5)x=0,h=0.5,y=0;(6)x =0.5,h =0.5,y =0.5;(7)x =1,h =0.5,y =1;(8)x =1.5,h =0.5,y =1;(9)x =2,h =0.5,y =1.所以输出的各个数的和等于3.5.【答案】 B规律方法 对于循环结构的算法框图的读图问题,要读懂框图的执行方向和其中的判断条件,明确循环次数,弄清每次的赋值.如图所示,算法框图的输出结果是( D )A.16B.2524C.34D.1112解析:第一次循环,s =12,n =4;第二次循环,s =34,n =6;第三次循环,s =1112,n =8.此时跳出循环,输出s =1112.类型三 含循环结构算法框图的设计【例3】 写出一个求满足1×3×5×7×…×n >60 000的最小正整数n 的算法,并画出相应的算法框图.【思路探究】本题需要重复执行乘法,故引入循环结构,算法的结束需要引入一个累乘变量来控制.【解】算法如下:1.令s=1;2.令n=1;3.如果s≤60 000,那么n=n+2,s=s×n,重复执行第3步,否则,执行第4步;4.输出n.算法框图如图所示.规律方法设计循环结构的算法框图的注意点解决具体的循环结构的算法问题,要尽可能少地引入循环变量,否则较多的变量会使得设计程序比较麻烦,同时应尽可能使得循环嵌套的层数少.另外,要注意:(1)在循环结构中,循环变量要赋初始值,循环变量的自加不要忘记,自加多少不能弄错.(2)循环结构中循环的次数要严格把握,区分“<”与“≤”等.另外,同一问题利用两种不同的结构解决时,其判断条件不同.设计一个算法计算11×2+12×3+13×4+14×5+15×6的值,并画出相应的算法框图.解:具体算法步骤如下:1.k=1,S=0;2.S=S+1k(k+1),k=k+1;3.若k<6,则反复执行第2步,否则,执行第4步;4.输出S.相应的算法框图如图.类型四循环结构的实际应用【例4】用分期付款的方式购买价格为2 150元的冰箱,如果购买时先付1 150元,以后每月付50元,并加付欠款的利息,若一个月后付第一个月的分期付款,月利率为1%,那么购冰箱钱全部付清后,实际共付出款额多少元?画出算法框图.【思路探究】用循环结构设计算法解决应用问题.【解】购买时付款1 150元,余款1 000元分20次分期付款,每次的付款数为:a1=50+(2 150-1 150)×1%=60(元),a2=50+(2 150-1 150-50)×1%=59.5(元),……a n=50+[2 150-1 150-(n-1)×50]×1%=60-12(n-1).∴a20=60-12×19=50.5(元),总和S=1 150+60+59.5+…+50.5=2 255(元).算法框图如图:规律方法用循环结构设计算法解决应用问题的步骤:1.审题;2.建立数学模型;3.用自然语言表述算法步骤;4.确定每一个算法步骤所包含的逻辑结构,对于要重复执行的步骤,通常用循环结构来设计,并用相应的算法框图表示,得到表示该步骤的算法框图;5.将所有步骤的算法框图用流程线连接起来,并加上终端框,得到表示整个算法的算法框图.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60,画出求80分以上的同学的平均分的算法框图.解:程序框图如下:——易错警示——循环结束的条件判断不准致误【例5】如图所示,若此程序运行结果为S=720,则在判断框中应填入关于k的判断条件是()A.k≥6B.k=7 C.k≥8D.k≥9【错解】本题可以按照开始的输入值、程序执行的规律和输出结果进行综合解决.容易出错的地方是不清楚这个判断条件是什么,本题是当不满足判断框中的条件时结束循环,当判断框中的条件满足时执行循环,故应该从k=10开始按照递减的方式逐步进行,直到S 的输出结果为720.【错解分析】考生应注意题中“否”对应着输出框,所以只有不满足判断框内的条件时,循环才能结束.另外,计数变量k在题中不仅体现了循环的次数,而且还参与了累乘变量的变化过程,如果计数变量k的变化与累乘变量的变化的先后顺序改变,则k的初始值和判断框中的条件也要发生变化.【正解】第一次运行结果为S=10,k=9;第二次运行结果为S =10×9=90,k=8;第三次运行结果为S=720,k=7.这个程序满足判断框的条件时执行循环,故判断条件是k≥8.故选C.【答案】 C执行如图所示的算法框图,如果输出的a值大于2 015,那么判断框内应填(C)A.k≤6 B.k<5C.k≤5 D.k>6解析:第一次循环,a=4×1+3=7,k=1+1=2;第二次循环,a=7<2 015,故继续循环,所以a=4×7+3=31,k=2+1=3;第三次循环,a=31<2 015,故继续循环,所以a=4×31+3=127,k=3+1=4;第四次循环,a=127<2 015,故继续循环,所以a=4×127+3=511,k=4+1=5;第五次循环,a=511<2 015,故继续循环,所以a=4×511+3=2 047,k=5+1=6;第六次循环,a=2 047>2 015,故不符合条件,终止循环,输出a值.所以判断框内应填的条件是k≤5.一、选择题1.以下说法不正确的是(C)A.顺序结构是由若干个依次执行的处理步骤组成的,每一个算法都离不开顺序结构B.循环结构是在一些算法中从某处开始按照一定条件,反复执行某一处理步骤,故循环结构中一定包含选择结构C.循环结构中不一定包含选择结构D.用算法流程图表示算法,使之更加直观形象,容易理解解析:任何算法都是由若干个顺序结构组成,循环结构中要对是否循环进行判断,所以一定包含选择结构,故选C.2.执行两次下图所示的算法框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为(C)A.0.2,0.2 B.0.2,0.8C.0.8,0.2 D.0.8,0.8解析:本题考查了循环结构.第一次输入a=-1.2<0→a=-1.2+1=-0.2<0→a=-0.2+1=0.8>0且a<1→输出a=0.8;第二次输入a=1.2≥1→a=1.2-1=0.2→输出a=0.2.3.如图所示,算法框图的输出结果是(B)A.3 B.4C.5 D.8解析:本题考查了算法循环结构的直到型的流程图及赋值语句问题.x 1248y 123 4要有针对性的复习.二、填空题4.阅读如图所示的算法框图,运行相应的程序,若输入m的值为2,则输出的结果i=4.解析:本题考查算法框图的循环结构.i=1,A=2,B=1;i=2,A=4,B=2;i=3,A=8,B=6;i=4,A=16,B=24;此时A<B,则输出i=4.5.执行如图所示的算法框图,若输入n的值为8,则输出s的值为8.解析:本题考查算法框图的循环结构.第1次,i =2,s =2,第2次i =4,s =12(2×4)=4;第3次,i =6,s =13(4×6)=8,第4次,i =8,输出s =8.注意变量赋值的顺序. 三、解答题6.已知有一列数12,23,…,nn +1,设计算法求这列数前100项的和.解:S 1 赋值i =1,S =0 S 2 S =S +ii +1S 3 i =i +1 S 4 判断i >100 S 5 i >100,则输出S 否则,返回S 2 S 6 结束 程序框图:。
北师大版高中必修32.3循环结构课程设计
北师大版高中必修32.3循环结构课程设计课程目标本课程旨在使学生掌握循环结构的基本概念、掌握循环结构的运用方法、了解循环结构的应用场景,并通过实例让学生感受循环结构的实际应用。
教学内容和步骤教学内容1.循环结构的基本概念及语法2.循环结构的运用方法3.循环结构的应用场景4.循环结构的实例分析教学步骤1.引入通过介绍循环结构在日常生活中的应用,如数到10、倒计时等,引发学生对循环结构的兴趣和认识。
2.正文2.1 循环结构的基本概念及语法通过讲解循环结构的基本语法和语句,如for循环、while循环、do-while循环等,让学生掌握循环结构的基本概念,并能够根据需求选择合适的循环结构。
2.2 循环结构的运用方法通过讲解循环结构的运用方法,如循环结构中变量的使用、循环控制语句的使用等,让学生掌握使用循环结构解决问题的方法。
2.3 循环结构的应用场景通过实例介绍循环结构的应用场景,如计算1到100的和、求最大公约数、输出九九乘法表等,让学生了解循环结构在实际问题中的应用。
2.4 循环结构的实例分析通过分析一些实际场景下的问题,并让学生自己编写代码解决问题,让学生深入了解循环结构的应用。
3.总结通过总结和讨论,强化学生对循环结构的理解和应用能力。
同时,鼓励学生尝试使用循环结构解决实际问题,提高自己编程的能力。
教学方法本节课采用讲授、实例分析、讨论等多种教学方法相结合,注重学生的实际应用能力和思维拓展能力。
教学流程时间内容5min 介绍循环结构在日常生活中的应用15min 讲解循环结构的基本概念及语法15min 讲解循环结构的运用方法20min 介绍循环结构的应用场景并分析实例30min 分组讨论解决实际问题的编程过程及方法10min 总结和展望教学评估本节课的评估主要采用思维导图、编程实践和思维拓展题目的方式,从不同角度全面评估学生的掌握程度和能力提升。
总结循环结构是编程语言中最基本且最重要的结构之一,掌握循环结构的基本概念、掌握循环结构的运用方法、了解循环结构的应用场景是每个程序员都需要具备的基本技能。
3.2循环语句-北师大版必修3教案
3.2 循环语句-北师大版必修3教案一、教学目标1.理解循环语句的概念及运作原理。
2.掌握使用for循环和while循环实现特定代码逻辑的方法。
3.培养学生良好的编程思维和代码风格。
二、教学重点和难点教学重点1.循环语句的概念及分类。
2.for循环和while循环的使用。
教学难点1.学生对循环语句的理解和掌握。
2.如何优化循环结构以提高代码效率。
三、教学过程1.引入新知识通过学生自行编写一个乘法表的例子,引导学生思考循环语句的作用以及循环体和循环控制条件的关系。
2.讲授循环语句的概念及分类1.定义循环语句: 循环语句是一种特殊的控制语句,它可以让程序执行重复的操作,直到达到指定的条件才停止。
2.分类:循环语句主要有for循环和while循环,根据循环条件的位置可以把循环语句分为前测试循环、后测试循环和无限循环。
3.讲解for循环的使用for循环语法如下:for (初始化表达式; 循环条件; 循环后的操作表达式) {循环体}其中初始化表达式只在循环开始前执行一次,循环条件每次循环前都会执行,循环后的操作表达式每次循环后都会执行一次。
循环体是需要重复执行的代码块。
4.讲解while循环的使用while循环语法如下:while (循环条件) {循环体}该循环只有一个循环条件,每次循环开始前都会判断循环条件是否成立,只要循环条件成立,循环就会一直执行,直到循环条件不成立为止。
5.通过实例讲解二者使用的区别1.for循环属于前测试循环,在循环进入时就会进行测试条件是否成立,判断之后才会开始执行循环体,循环结束后也会进行测试并判断循环条件是否成立,如果不成立,就跳出循环。
2.while循环属于后测试循环,在循环进入时不会进行测试,直接进入循环体执行,循环结束后会进行测试并判断循环条件是否成立,如果成立,就继续执行循环体,直到循环条件不成立时跳出循环。
6.编写练习题目编写一个在控制台打印1到100的数字,一行打印10个数字的程序。
北师大版数学高一(北师大)必修3学案 循环语句
2.3.3循环语句【课程标准】经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想【学习目标】1.理解、掌握循环语句;2.能运用循环语句表达解决具体问题的过程;3.培养学生逻辑思维能力与表达能力,进一步体会算法思想.【学习重点】循环语句的表示方法、结构和用法【学习难点】将具体问题的程序框图转化为程序语句的过程,当型循环和直到型循环的格式与逻辑的区别与联系.【学习过程】一、回顾知识1. 什么是循环结构?画出其程序框图.2. 引例:设计一个计算1+2+…+100的值的算法,并画出程序框图.分析:由程序框图转化为程序语句,引入循环语句.二、循环语句1. 当型(WHILE型)语句的一般格式:WHILE 条件循环体WEND说明:当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止.这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句.因此,当型循环有时也称为“前测试型”循环.2. 直到型(UNTIL型)语句的一般格式:循环体LOOP UNTIL 条件说明:当计算机遇到UNTIL语句时,先执行DO和LOOP UNTIL之间的循环体,然后判断条件是否成立,如果不成立,执行循环体.这个过程反复执行,直到某一次符合条件为止,这时不再执行循环体,跳出循环体执行LOOP UNTIL后面的语句. 因此,直到型循环有时也称为“后测试型”循环.3.当型循环与直到型循环的区别:①当型循环先判断后执行,直到型循环先执行后判断.②当型循环用WHILE语句,直到型循环用UNTIL语句.③对同一算法来说,当型循环和直到循环的条件互为反条件.三、知识应用〖例1〗:编写程序,计算自然数1+2+3+……+99+100的和。
高中数学必修3北师大版 第二章§2第3课时 循环结构 学案(Word版含答案)
第3课时循环结构[核心必知]1.循环结构的概念在算法中,从某处开始,按照一定的条件反复执行某些步骤的结构称为循环结构,用算法框图如图所示.反复执行的部分称为循环体,控制着循环的开始和结束的变量,称为循环变量,决定是否继续执行循环体的判断条件,称为循环的终止条件.2.循环结构的设计过程设计循环结构之前需要确定的三件事:(1)确定循环变量和初始值;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.循环结构的算法框图的基本模式,如图所示.[问题思考]1.循环结构中一定含有选择结构吗?提示:在循环结构中需要判断是否继续循环,故循环结构中一定含有选择结构.2.循环结构中判断框中条件是唯一的吗?提示:不是,在具体的算法框图设计时,判断框中的条件可以不同,但不同的表示应该有共同的确定的结果.3.算法框图的基本结构有哪些?提示:顺序结构、选择结构和循环结构.讲一讲1.利用循环结构写出12+23+…+100101的算法并画出相应的算法框图.[尝试解答] 算法如下: 1.S =0; 2.i =1; 3.S =S +ii +1;4.i =i +1;5.如果i 不大于100,转第3步,否则输出S . 相应框图如下图表示:1.如果算法问题中涉及到的运算进行了多次重复,且参与运算的数前后有规律可循,就可以引入变量以参与循环结构.2.在不同的循环结构中,应注意判断条件的差别,及计数变量和累加(乘)变量的初始值与运算框先后关系的对应性.练一练1.利用循环结构写出1×2×3×…×100的算法.并画出相应的框图. 解:算法步骤如下: 1.S =1;2.i=1;3.S=S×i;4.i=i+1;5.判断i是否大于100,若成立,则输出S,结束算法;否则返回第3步重新执行.算法框图如图所示:讲一讲2.1×3×5×…×n>1000.问:如何寻找满足条件的n的最小正整数值?请设计算法框图.[尝试解答]算法框图如下图所示:解决该类问题一般分以下几个步骤:(1)根据题目条件写出算法并画出相应的框图;(2)依据框图确定循环结束时,循环变量的取值;(3)得出结论.练一练2.看下面的问题:1+2+3+…+()>10 000,这个问题的答案虽然不唯一,但我们只要确定出满足条件的最小正整数n0,括号内填写的数字只要大于或等于n0即可.画出寻找满足条件的最小正整数n0的算法的算法框图.解:1.S=0;2.n=0;3.n=n+1;4.S=S+n;5.如果S>10 000,则输出n,否则执行6;6.回到3,重新执行4,5.框图如右图:讲一讲3.某高中男子田径队的50 m赛跑成绩(单位:s)如下:6.3 , 6.6, 7.1, 6.8, 7.1, 7.4, 6.9, 7.4, 7.5, 7.6, 7.8, 6.4, 6.5, 6.4, 6.5, 6.7, 7.0, 6.9, 6.4, 7.1, 7.0, 7.2.设计一个算法,从这些成绩中搜索出成绩小于6.8 s的队员,并画出算法框图.[尝试解答]此男子田径队有22人,要解决该问题必须先对运动员进行编号.设第i 个运动员编号为N i,成绩为G i,设计的算法如下:1.i=1.2.输入N i,G i.3.如果G i<6.8,则输出N i,G i,并执行4;否则直接执行4.4.i=i+1.5.如果i≤22,则返回2;否则,算法结束.该算法的框图如图所示.解决此类问题的关键是读懂题目,建立合适的模型,注意循环结构与选择结构的灵活运用.练一练3.2000年底我国人口总数约为13亿,现在我国人口平均年增长率为1%,写出计算多少年后我国的人口总数将达到或超过18亿的算法框图.解:【解题高手】【易错题】阅读如图所示的算法框图,若输出S的值为-7,则判断框内可填写()A.i<3B.i<4 C.i<5 D.i<6。
高中数学必修三北师大版 第二章§3.2循环语句 学案(Word版含答案)
3.2 循环语句1.理解For循环语句和Do Loop循环语句在算法语句中的作用.2.能举例说明循环语句的作用,并掌握循环流程分析的方法,进一步体会算法的基本思想.1.For语句(1)格式:(2)适用于预先________循环次数的循环结构.①在For语句里,我们默认循环变量每次的增量为1,增量不为1的情况,需用参数Step,即“For循环变量=初始值To终值Step增量”.②For语句的执行流程:当程序执行时,遇到For语句,首先把初始值赋予循环变量,记下终值,并比较初始值和终值,如果初始值不超过终值,开始执行循环体,执行到N e x t语句时循环变量加1并且与终值比较,若不超过终值,则继续执行循环体,否则退出循环.【做一做1】下列程序中的For语句终止循环时,S等于( ).S=0For M=1 To 10S=S+MN e x t输出SA.1 B.5 C.10 D.552.Do Loop语句(1)格式:(2)适用于预先________循环次数的循环结构.(3)Do Loop语句的执行流程:先进入循环体,执行一次循环体后,检查While后的条件是否被满足,“是”则继续执行循环体,“否”则退出循环体.For语句和Do Loop语句的异同For语句和Do Loop语句都是表达循环结构的算法,但是它们在表达方式和功能上又有一定的区别,主要表现在以下几点:(1)书写形式不同.(2)作用不同:For语句主要适用于预先知道循环次数的循环结构;如果预先不知道循环次数,则使用Do Loop语句.(3)For语句中循环条件在前,首先判断循环条件,如果条件不满足一次也不能执行循环体;而Do Loop语句中循环条件在后,即使刚开始不满足条件也要执行一次循环体.【做一做2】请用Do Loop语句设计一个算法求平方小于1 000的所有正整数的平方和.什么时候使用循环语句?剖析:循环结构是算法中的基本结构,循环语句是实现这一算法的基础,它能解决那些需要重复进行运算的问题,把循环结构的算法转化为易于理解的类似计算机的语言,从而实现程序在计算机上的运行.例如,要求1+2+3+…+100的计算就要反复进行加法运算,就可以使用循环语句实现.循环语句主要有两种类型:(1)For语句是表达循环结构最常见的语句之一,其格式为:(2)另一种是Do Loop语句,其格式为:题型一 For语句的基本应用【例题1】使用For语句设计算法,计算1+3+5+…+999的值.分析:每次加的数都比前一个数大2,这是该问题的规律,怎么利用这个规律呢?在计算机上我们用For语句,把循环变量的增量设为2,这样就实现了每次加的数比前一个数大2.反思:用For语句描述算法的步骤是:(1)首先明确循环的次数;(2)设置循环变量控制循环的次数,并给定初始值和终值;(3)套用For语句的一般形式.题型二 For语句与条件语句的综合应用【例题2】用For语句描述一个算法,找出满足以下三个条件的矩形:(1)四条边长均为整数;(2)面积值与周长值相等;(3)各边长都不超过400.反思:本题算法语句中省略了增量1,当循环变量的增量为1时,常省略.题型三 Do Loop语句的基本应用【例题3】用基本语句描述一个算法,求满足1+3+5+…+n>500的最小自然数n.分析:结束循环的条件是和大于500,可以用累加的方法,一个数一个数地加到累加器中,每加一个数就把累加器的值与500比较,直到大于500为止.由于预先不知道循环次数,故用Do Loop语句描述该算法.反思:对于重复执行某操作的算法,一般用循环语句来实现.如果预先不知道循环的次数,一般用Do Loop语句来实现.题型四易错辨析【例题4】设计程序计算并输出13+15+17+…+137的值.错解:用For语句描述为:S=0For i=1 To 17m=1/(2*i+1)S=S+mNest输出S错因分析:原式中共有18个数相加,错解中由“i=1 To 17”共循环17次,结果错误.1下列关于For循环的说法错误的是( ).A.在For循环中,循环表达式也称为循环体B.在For循环中,步长为1,可以省略不写;若为其他值,则不可省略C .理解For 循环关键是理解为循环变量设定初值、步长、终值D .在For 循环中,“End”控制结束一次循环,开始一次新的循环2下列程序的运行结果为( ).A .5B .6C .7D .83下列程序的运行结果为( ).A .6B .7C .8D .94如图,把求11111425365053++++⨯⨯⨯⨯ 的值的程序补充完整,则(1)__________;(2)__________.5设计一个计算1×3×5×…×99的程序.答案:基础知识·梳理1.(1)初始值终值(2)知道【做一做1】D2.(1)条件为真(2)不知道【做一做2】解:用算法语句描述为:S=0i=1DoS=S+i2i=i+1Loop While i2<1 000输出S典型例题·领悟【例题1】解:用For语句描述为:S=0For i=1 To 999 Step 2S=S+iNext输出S【例题2】解:用For语句描述为:F or a=1 To 400For b=1 To 400If a*b=2(a+b) Then输出a,bEnd IfNextNext【例题3】解:用Do Loop语句描述为:i=1sum=0Dosum=sum+ii=i+2Loop While sum≤500i=i-2输出i【例题4】正解:S=0For i=1 To 18m=1/(2*i+1)S=S+mNext输出S随堂练习·巩固1.D2.B 由于0+1+2+3+4+5=15,0+1+2+3+4+5+6=21,∴i=6.3.B S=0,i=1;S=0+1,i=2;…;S=0+1+2+3+4+5,i=6,由于此时S=15<20,∴继续执行S=0+1+2+3+4+5+6,i=6+1=7,此时S=21>20,故i=7.4.(1)S=S+1/[i*(i+3)] (2)i≤505.解:算法程序为i=1S=1For i=1 To 99S=S*ii=i+2Next输出S。
高中数学北师大版必修3 2.2 教学设计 《循环结构》(北师大)
《循环结构》
现代社会是一个信息技术发展很快的社会,算法进入高中数学正是反映了时代的需要,它是当今社会必备的基础知识,算法的学习是使用计算机处理问题前的一个必要的步骤,它可以让学生们知道如何利用现代技术解决问题,又由于算法的具体实现上可以和信息技术相结合。
因此,算法的学习十分有利于提高学生的逻辑思维能力,培养学生的理性精神和实践能力。
本节通过对解决具体问题的过程与步骤的分析理解并掌握程序框图的基本逻辑结构:循环结构,要求学生学会识别程序框图,会画程序框图。
【知识与能力目标】
掌握画程序框图的基本原则,能正确画出循环结构程序框图,学会灵活、正确地画程序框图。
【过程与方法目标】
通过模仿、操作、探索,经历设计程序框图表达解决问题的过程,学会灵活、正确地画
顺序结构的程序框图。
【情感态度价值观目标】
通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
【教学重点】
循环结构的特点及程序框图的画法。
【教学难点】
循环结构的运用及画程序框图。
电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。
一、导入部分
高一(1)班有50人,现在要抽样检测同学们的身体素质,要求学号能被3整除的同学参加体检,已知同学们的学号是从1到50号,请编写输出参加体检的学生学号的一个程序框图。
设计意图:从生活实际切入,激发了学生的学习兴趣,又为新知作好铺垫。
二、研探新知,建构概念
1、电子白板投影出该程序框图。
高中数学 2.2.3《循环结构》学案 北师大版必修3
1、1、2、3循环结构一、【学习目标】1、熟练掌握两种循环结构的特点及功能.2、能用两种循环结构画出求和等实际问题的程序框图,进一步理解学习算法的意义.二、【自学内容和要求及自学过程】现在国家在实施新农村建设,争取每个村庄都能达到碧水蓝天.事实上,有些重污染企业都是建在偏远的山村.这些山村要真正的实现碧水蓝天,就要对污水进行处理.那么大家知道污水是怎样处理的吗?污水进入处理装置后,进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,知道达到标准为止.事实上污水处理装置就是一个循环系统,对于处理需要反复操作的事情具有巨大的优势.我们数学中的很多问题需要反复操作,譬如用二分法求方程的近似解,数列求和等等.这些问题如果交给计算机去做就会方便得多,这就需要我们编写计算机程序,分析算法.今天我们来学习能够反复操作的逻辑结构——循环结构.<1>什么是循环结构、循环体?<2>试用程序框图表示循环结构.<3>请你简要解释直到型循环结构和当型循环结构.结论:<1>在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是 . 称为循环体.<2>见教材第13页图1.1—12,1.1—13.<3>①直到型循环结构:这个循环结构有如下特征:在执行了一次循环体,,就继续执行循环体,直到终止循环.因此,这种循环结构称为直到型循环结构.②当型循环结构:这种循环结构有如下特征:在每次执行循环提,对条件进行判断,,执行循环体,否则终止循环.这种循环称为当型循环结构.从以上两种不同形式的循环结构可以看出,循环结构中一定包含,用于确定何时终止执行循环体.三、【综合练习与思考探索】练习一:教材例6、设计一个计算1+2+…+100的值的算法,并画出程序框图.算法分析:通常,我们按照下列过程计算1+2+…+100的值.第一步,0+1=1第二步,1+2=3第三步,3+3=6第四步,6+4=10……第100步,4950+100=5050显然,这个过程中包含重复操作的步骤,可以用循环结构表示.分析上述计算过程,可以发现每一步都可以表示为:第(i-1)步的结果+i=第i步的结果.为了方便、有效的表示上述过程,我们用一个累加变量S来表示每一步的计算结果,即把S+i的结果仍记为S,从而把第i步表示为S=S+i.其中S的初始值为0,i依次取为1,2,…,100.由于i同时记录了循环的次数,所以也称为计数变量.解决这一问题的算法是:第一步,令i=1,S=0.第二步,若i≤100成立,则执行第三步;否则,输出S,结束算法.第三步,S=S+i.第四步,i=i+1.返回第二步.程序框图如图所示(当型循环结构)引申:请用直到型循环结构表示,画出程序框图.四、【作业】1、必做题:理解例6、7,并把程序框图画到作业本上.2、选做题:习题1.1A组第2题.。
高中数学 224 循环结构导学案 北师大版必修3 学案
§2.2.4 循环结构
授课
时间
第周星期第节课型新授课主备课人
学习目标1.理解循环结构概念;
2.把握循环结构的三要素:循环的初始状态、循环体、循环的终止条件;
3.能识别和理解循环结构的框图以及功能;
4.能运用循环结构设计程序框图以解决简单的问题。
重点难点重点:循环结构的概念、功能、要素、框图及应用
难点:描述和应用循环结构时,三要素的准确把握和正确表达
学习过程与方法自主学习
复习回顾:
问题1:给定三角形的三条边长,计算三角形的面积。
完成程序框图:
新知探究:
问题2:设计算法,输出1000以内能被3和5整除的所有正整数,画出算法框图.
算法步骤:算法框图:
①什么是循环结构、循环体、循环变量、循环的终止条件?
②循环结构有三要素是:
③循环结构的算法框图的基本模式:
精讲互动
1.循环结构的算法框图的基本模式;
2.例8、例9
达标训练
1.课本例10、例11;
2.练习1、练习2.
作业
布置。
北师大版数学高一(北师大)必修3学案 2.3.2 循环语句
§2.3.2 循环语句授课
时间第周星期第节课型新授课
主备课
人
学习目标1.正确理解循环语句的概念,并掌握其结构;
2.会应用循环语句编写程序.
重点难点重点:两种循环语句的表示方法、结构和用法;用循环语句表示算法.
难点:理解循环语句的表示方法、结构和用法,会编写程序中的循环语句.
学习过程与方法自主学习
复习回顾:
①循环结构的流程图:②条件语句的适用条件及一般格式:
新知探究:
1.菲波那契数列是这样的一列数0,1,1,2,3,5,8,13,21,34……..,后一项数等于前两项的和.设计一个算法,输出菲波拉契数列的前50项,使用for语句描述该算法.
算法:For语句的一般形式是:
For语句算法的处理功能:
2.如果预先不知道循环的次数,要根据其他形式的终止条件停止循环,在这种情况下,一般要用Do Loop 语句来描述.
Do Loop 语句的一般形式为:。
高中数学 第二章 算法初步 2.3 循环结构学案 北师大版必修3
2.3 循环结构[学习目标] 1.掌握循环结构的有关概念.2.理解循环结构的基本模式,会用循环结构描述算法.3.体会循环结构在重复计算中的重要作用.知识点一常量与变量的概念1.循环结构的定义在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.2.循环结构的特点(1)重复性:在一个循环结构中,总有一个过程要重复一系列的步骤若干次,而且每次的操作完全相同.(2)判断性:每个循环结构都包含一个判断条件,它决定这个循环的执行与终止.(3)函数性:循环变量在构造循环结构中起了关键作用,蕴含着函数的思想.3.设计一个算法的算法框图的步骤(1)用自然语言表述算法步骤;(2)确定每一个算法步骤所包含的逻辑结构,并用相应的算法框图表示,得到该步骤的算法框图;(3)将所有步骤的算法框图用流程线连接起来,并加上终端框,得到表示整个算法的算法框图.思考(1)循环结构的算法框图中一定含有判断框吗?(2)任何一个算法的算法框图中都必须含有三种基本逻辑结构吗?答(1)循环结构的算法框图中一定含有判断框.(2)不一定.但必须会有顺序结构.知识点二循环结构的设计过程循环结构的算法框图的基本模式,如图所示.题型一循环结构的识别与解读例1 (1)当m=7,n=3时,执行如图所示的算法框图,输出S的值为( )A.7 B.42C.210 D.840(2)如图所示,算法框图(算法框图)的输出结果是( )A.34 B.55 C.78 D.89答案(1)C (2)B解析(1)算法框图的执行过程如下:m=7,n=3时,m-n+1=5,k=m=7,S=1,S=1×7=7;k=k-1=6>5,S=6×7=42;k=k-1=5=5,S=5×42=210;k=k-1=4<5,输出S=210.故选C.(2)当输入x=1,y=1,执行z=x+y及z≤50,x=y,y=z后,x,y,z的值依次对应如下:x=1,y=1,z=2;x=1,y=2,z=3;x=2,y=3,z=5;x=3,y=5,z=8;x=5,y=8,z=13;x=8,y=13,z=21;x=13,y=21,z=34;x=21,y=34,z=55.由于55≤50不成立,故输出55.故选B.反思与感悟高考中对算法框图的考查类型之一就是读图,解决此类问题的关键是根据算法框图理解算法的功能.考查的重点是算法框图的输出功能、算法框图的补充,以及算法思想和基本的运算能力、逻辑思维能力,试题难度不大,大多可以按照算法框图的流程逐步运算而得到.跟踪训练1 阅读如图所示的算法框图,运行相应的程序,若输入m的值为2,则输出的结果i=________.答案 4解析m=2,A=1,B=1,i=0.第一次:i=0+1=1,A=1×2=2,B=1×1=1,A>B;第二次:i=1+1=2,A=2×2=4,B=1×2=2,A>B;第三次:i=2+1=3,A=4×2=8,B=2×3=6,A>B;第四次:i=3+1=4,A=8×2=16,B=6×4=24,A<B;终止循环,输出i=4.题型二用循环结构解决累加、累乘问题例2 设计一个计算1+2+…+100的值的算法,并画出算法框图.解方法一第一步,令i=1,S=0.第二步,若i≤100成立,则执行第三步;否则,输出S,结束算法.第三步,S=S+i.第四步,i=i+1,返回第二步.算法框图:方法二第一步,令i=1,S=0.第二步,S=S+i.第三步,i=i+1.第四步,若i>100不成立,则返回第二步;否则,输出S,结束算法.算法框图:反思与感悟循环结构分为两种:一种循环结构是先执行一次循环体,然后再判断是否继续执行循环体,是在条件不满足时执行循环体,另一种循环结构是先判断是否执行循环体,是在条件满足时执行循环体.跟踪训练2 设计一个算法,求13+23+33+…+1003的值,并画出算法框图.解算法如下:第一步,使S=0.第二步,使I=1.第三步,使S=S+I3.第四步,使I=I+1.第五步,若I>100,则输出S,算法结束;否则,返回第三步.算法框图如图所示:题型三确定循环变量最值的框图例3 写出一个求满足1×3×5×7×…×i>50 000的最小正整数i的算法,并画出相应的算法框图.解算法如下:1.S=1.2.i=3.3.如果S≤50 000,那么S=S×i,i=i+2,重复第3步;否则,执行第4步.4.i=i-2;5.输出i.算法框图如图所示:反思与感悟 1.在使用循环结构时,需恰当地设置累加(乘)变量和计数变量,在循环体中要设置循环体终止的条件.2.在最后输出结果时,要避免出现多循环一次或少循环一次的情况出现.跟踪训练3 求使1+2+3+4+5+…+n>100成立的最小自然数n的值,只画出算法框图.解算法框图如下:题型四循环结构的实际应用例4 某工厂2013年生产小轿车200万辆,技术革新后预计每年的生产能力比上一年增加5%,问最早哪一年该厂生产的小轿车数量超过300万辆?写出解决该问题的一个算法,并画出相应的算法框图.解算法如下:1.令n=0,a=200,r=0.05.2.T=ar(计算年增量).3.a=a+T(计算年产量).4.如果a≤300,那么n=n+1,返回第2步;否则执行第5步.5.N=2 014+n.6.输出N.算法框图如图所示.反思与感悟这是一道算法的实际应用题,解决此类问题的关键是读懂题目,建立合适的模型,找到解决问题的计算公式.跟踪训练4 电脑游戏中,“主角”的生命机会往往被预先设定,如某枪战游戏中,“主角”被设定生命机会5次,每次生命承受射击8枪(被击中8枪则失去一次生命机会).假设射击过程均为单发发射,试将“主角”耗用生命机会的过程设计成一个算法框图.解方法一“主角”所有生命机会共能承受8×5=40(枪)(第40枪被击中则生命结束).设“主角”被击中枪数为i(i=0,1,2,…,39),算法框图可设计为如图1.方法二与方法一相对,电脑中预先共承受枪数40,“主角”生命机会以“减法”计数,算法框图可设计为如图2.累加变量和计数变量的应用例5 画出求满足12+22+32+…+n2>2 0152的最小正整数n的算法框图.错解如图(1).错解分析累加变量的初始值为1,第一次运算为S=1+12导致错误.一般把计数变量的初始值设为1,累加变量的初始值设为0,本例中S=0,i=1.自我矫正算法框图如图(2)所示:图(1) 图(2)1.下列关于循环结构的说法正确的是( )A.循环结构中,判断框内的条件是唯一的B.判断框中的条件成立时,要结束循环向下执行C.循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D.循环结构就是无限循环的结构,执行程序时会永无止境地运行下去答案 C解析由于判断框内的条件不唯一,故A错;由于循环结构中,判断框中的条件成立时可能和执行循环体,故B错;由于循环结构不是无限循环的,故C正确,D错.2.阅读如图所示的算法框图,则输出的S等于( )A.14 B.30C.20 D.55答案 B解析第一次循环,S=1,i=2;第二次循环,S=1+22=5,i=3;第三次循环,S=5+32=14,i=4;第四次循环,S=14+42=30,i=5,满足条件,输出S=30.第2题图第3题图3.如图所示的算法框图输出的S是126,则①应为( )A.n≤5 B.n≤6 C.n≤7 D.n≤8答案 B解析2+22+23+24+25+26=126,所以应填“n≤6”.4.执行如图的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3 B.4C.5 D.6答案 C解析第一次循环a=6-4=2,b=6-2=4,a=4+2=6,i=6,n=1;第二次循环a=-6+4=-2,b=4-(-2)=6,a=6-2=4,i=10,n=2;第三次循环a=6-4=2,b=6-2=4,a=4+2=6,i=16,n=3;第四次循环a=4-6=-2,b=4-(-2)=6,a=6-2=4,i=20,n=4,满足题意,结束循环.第4题图第5题图5.如图所示的算法框图,当输入x的值为5时,则其输出的结果是________.答案 2解析∵x=5>0,∴x=5-3=2,∵x=2>0,∴x=2-3=-1.∴y=0.5-1=2.1.(1)循环结构是指在算法中需要重复执行一条或多条指令的控制结构;(2)在循环结构中,通常都有一个起循环计数作用的变量;(3)循环变量、循环体、循环终止条件称为循环结构的三要素.2.画算法框图要注意:(1)使用标准的框图符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框外,大多数框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)一种判断是“是”与“否”两分支的判断,而且有且仅有两个结果,另一种是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练、清楚.。
北师大版数学高一必修3学案 循环结构
2.3循环结构1.理解循环结构的概念,把握循环结构的三个构成要素.(重点)2.体会循环结构在有关重复计算的算法设计中的重要作用,能识别和理解循环结构的框图以及功能.(难点)3.掌握三种算法结构的区别与联系.[基础·初探]教材整理循环结构阅读教材P93~P101回答下列问题.1.循环结构的概念(1)定义:按照一定条件,反复执行某一步骤的算法结构称为循环结构,反复执行的部分称为循环体.(2)循环变量:控制着循环的开始和结束的变量,称为循环变量.(3)循环的终止条件:决定是否继续执行循环体的判断条件,称为循环的终止条件.2.循环结构的基本模式在画出循环结构的算法框图之前,需要确定三件事:(1)确定循环变量和初始条件;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.这样,循环结构的算法框图的基本模式如图2-2-13所示:图2-2-13判断(正确的打“√”,错误的打“×”)(1)循环结构中一定有选择结构.()(2)循环结构中循环体只能反复执行几次.()(3)判断是否继续执行循环体的条件是唯一的.()【解析】(1)√,在循环结构中,需有循环的终止条件,这就需要选择结构.(2)×,在循环结构中,只要满足执行条件,该循环体可以执行很多次,而不仅仅是几次.(3)×,在算法框图中,判断框内的条件可以不同,只要等价变形就行.【答案】(1)√(2)×(3)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]循环结构程序框图(1)根据如图2-2-14所示框图,当输入x为6时,输出的y=()图2-2-14A.1B.2C.5 D.10(2)(2015·重庆高考)执行如图2-2-15所示的程序框图,则输出s的值为()图2-2-15A.34 B.56 C.1112 D.2524【精彩点拨】(1)解题的关键是判断什么时候退出循环.(2)先判断条件是否成立,再确定是否循环,一步一步进行求解.【自主解答】(1)当x=6时,x=6-3=3,此时x=3≥0;当x=3时,x=3-3=0,此时x=0≥0;当x=0时,x=0-3=-3,此时x=-3<0,则y=(-3)2+1=10.(2)由s=0,k=0满足条件,则k=2,s=12,满足条件;k=4,s=12+14=34,满足条件;k=6,s=34+16=1112,满足条件;k=8,s=1112+18=2524,不满足条件,此时输出s=2524,故选D.【答案】(1)D(2)D高考中对算法框图的考查类型之一就是读图,解决此类问题的关键是根据算法框图理解算法的功能.考查的重点是算法框图的输出功能、算法框图的补充,以及算法思想和基本的运算能力、逻辑思维能力,试题难度不大,大多可以按照算法框图的流程逐步运算而得到.[再练一题]1.(2015·北京高考)执行如图2-2-16所示的程序框图,输出的k值为() 【导学号:63580025】图2-2-16 A .3 B .4 C .5 D .6【解析】 程序框图运行如下:k =0,a =3×12=32,k =1,此时32>14;a =32×12=34,k =2,此时34>14;a =34×12=38,k =3,此时38>14;a =38×12=316,k =4,此时316<14,输出k =4,程序终止.【答案】 B循环结构的程序框图的填充如图2-2-17,给出计算12+14+16+…+120的值的一个程序框图,其中判断框内应填入的条件是( )图2-2-17A .i ≥10B .i >10C .i ≤9D .i <9【精彩点拨】 明确循环结构的类型,结合循环次数,依据初始条件,逐步写出循环过程,确定循环条件.【自主解答】第一次循环:S=0+12,n=4,i=2;第二次循环:S=0+12+14,n=6,i=3;第三次循环:S=0+12+14+16,n=8,i=4;…第十次循环:S=0+12+14+16+…+120,n=22,i=11.此时已得到所求,故应结束循环.所以应填i>10.故选B.【答案】 B对于循环结构的程序框图的条件填充,首先要弄清循环结构是当型循环还是直到型循环,二是确定循环次数.若混淆两种循环结构,则得到相反的循环条件.[再练一题]2.(2015·重庆高考)执行如图2-2-18所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()图2-2-18A.s≤34B.s≤56C.s≤1112D.s≤2524【解析】由s=0,k=0满足条件,则k=2,s=12,满足条件;k=4,s=1 2+14=34,满足条件;k=6,s=34+16=1112,满足条件;k=8,s=1112+18=2524,不满足条件,输出k=8,所以应填s≤1112.【答案】 C[探究共研型]循环结构程序框图的设计探究1【提示】在循环结构中需要判断是否继续循环,故循环结构中一定含有选择结构.探究2循环结构中判断框中条件是唯一的吗?【提示】不是,在具体的算法框图设计时,判断框中的条件可以不同,但不同的表示应该有共同的确定的结果.探究3在循环结构中,循环体是否可以被无限次地执行?【提示】不可以,循环体执行的次数是有限的,符合一定条件时就会终止循环.设计算法求11×3+13×5+15×7+…+151×53的值,要求画出算法框图.【精彩点拨】这是一个累加求和问题,共26项相加,因此不宜运用顺序结构采用逐一相加的策略,可设计一个计数变量i,一个累加变量S,用循环结构来实现这一算法.【自主解答】算法如下:1.S=0;2.i=1;3.S=S+1i(i+2);4.i=i+2;5.如果i>51,执行第6步;否则,返回重新执行第3步和第4步;6.输出S.算法框图如图所示:1.确定循环变量及初始值,循环变量用于控制循环的次数,也就是控制参与累加、累乘的项的个数,通常情况下,累加问题循环变量的初值设为0,累乘问题循环变量的初值设为1.2.确定循环体.循环体是循环结构的核心,通常由两部分构成,一是进行累加、累乘,二是设置控制变量的增加值.3.确定循环终止的条件,实质是一个条件分支结构,根据累加、累乘的项数确定终止循环的条件.[再练一题]3.利用循环结构写出12+23+…+100101的算法并画出相应的算法框图.【解】算法如下:1.S=0;2.i=1;3.S=S+ii+1;4.i=i+1;5.如果i不大于100,转第3步,否则输出S. 相应框图如下图所示:[构建·体系]1.下列关于循环结构的说法正确的是() A.循环结构中,判断框内的条件是唯一的B.判断框中的条件成立时,要结束循环向下执行C.循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D.循环结构就是无限循环的结构,执行程序时会永无止境地运行下去【解析】判断框内的条件不唯一,故A错;判断框内的条件成立时可能执行,也可能不执行,故B错.由于循环结构不是无限循环的,故C正确,D 错.【答案】 C2.如图2-2-19所示,该框图运行后输出的结果为()图2-2-19A.2B.4C.8D.16【解析】第一次循环:b=21=2,a=1+1=2;第二次循环:b=22=4,a=2+1=3;第三次循环:b=23=8,a=3+1=4,退出循环,输出b=8.【答案】 C3.阅读如图2-2-20所示的算法框图,输出的i值等于()图2-2-20A.2 B.3C.4 D.5【解析】①s=0,i=1;②a=1×21,s=0+1×21,i=2;③a=2×22=8,s=2+8=10,i=3;④a=3×23=24,s=34,i=4.此时结束循环,输出i=4.【答案】 C4.(2014·安徽高考)如图2-2-21所示,程序框图(算法流程图)的输出结果是()图2-2-21A.34 B.55C.78 D.89【解析】运行程序:z=x+y=1+1=2<50,x=y=1,y=z=2;第一次循环:z=1+2=3<50,x=y=2,y=z=3;第二次循环:z=2+3=5<50,x=y=3,y=z=5;第三次循环:z=3+5=8<50,x=y=5,y=z=8;第四次循环:z=5+8=13<50,x=y=8,y=z=13;第五次循环:z=8+13=21<50,x=y=13,y=z=21;第六次循环:z=13+21=34<50,x=y=21,y=z=34;第七次循环:z=21+34=55>50,输出z=55,故选B.【答案】 B5.执行如图2-2-22所示的程序框图,输出的S值为________.图2-2-22【解析】k=0,S=1;S=1,k=1;S=2,k=2;S=8,k=3,k<3不成立,输出S=8.【答案】86.设计求1×2×3×4×…×2 016的算法,并画出相应的算法框图.【解】算法如下:1.设m的值为1;2.设i的值为2;3.如果i≤2 016则执行第四步,否则转回执行第六步;4.计算m乘i并将结果赋给m;5.计算i加1并将结果赋给i,转回执行第三步;6.输出m的值并结束算法.算法框图如下图所示:我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.给出下列说法:①循环结构的算法离不开顺序结构;②循环结构是在一些算法中从某处开始按照一定条件,反复执行某一处理步骤,所以循环结构中一定包含条件分支结构;③循环结构中不一定包含条件分支结构;④很多循环结构中的控制条件不是唯一确定的.其中正确说法的个数是()A.1B.2C.3 D.4【解析】结合循环结构可知①②④正确.【答案】 C2.(2016·潍坊高一检测)执行如图2-2-23的算法框图,如果输入的N是6,那么输出的p是()图2-2-23A.120 B.720C.1 080 D.5 040【解析】①k=1,p=1;②k=2,p=1×2=2;③k=3,p=2×3=6;④k=4,p=6×4=24;⑤k=5,p=24×5=120;⑥k=6,p=120×6=720.【答案】 B3.(2015·四川高考)执行如图2-2-24所示的程序框图,输出S的值为()图2-2-24A.-32 B.32C.-12 D.12【解析】当k=5时,输出S=sin 5π6=sin⎝⎛⎭⎪⎫π-π6=sin π6=12.【答案】 D4.运行如图2-2-25所示的算法框图,若输出的结果是7,则判断框中的横线上可以填入的最大整数为()图2-2-25A.7 B.8C.9 D.10【解析】在循环体内部,执行运算s=s+i,i=i+2,可知当执行完第三次循环后s=1+3+5=9,i=7,所以第三次循环是最后一次循环,返回判断条件时,应满足判断条件,退出循环,即s=9时,满足判断条件.故答案为9.【答案】 C5.(2015·全国卷Ⅰ)执行下面的程序框图,如果输入的t=0.01,则输出的n =()图2-2-26A.5B.6C.7D.8【解析】运行第一次:S=1-12=12=0.5,m=0.25,n=1,S>0.01;运行第二次:S=0.5-0.25=0.25,m=0.125,n=2,S>0.01;运行第三次:S=0.25-0.125=0.125,m=0.062 5,n=3,S>0.01;运行第四次:S=0.125-0.062 5=0.062 5,m=0.031 25,n=4,S>0.01;运行第五次:S=0.031 25,m=0.015 625,n=5,S>0.01;运行第六次:S=0.015 625,m=0.007 812 5,n=6,S>0.01;运行第七次:S=0.007 812 5,m=0.003 906 25,n=7,S<0.01.输出n=7.故选C.【答案】 C二、填空题6.(2015·山东高考)执行下边的程序框图2-2-27,若输入的x的值为1,则输出的y的值是________.图2-2-27【解析】当x=1时,1<2,则x=1+1=2;当x=2时,不满足x<2,则y=3×22+1=13.【答案】137.(2016·山东高考)执行如图2-2-28所示的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为________.图2-2-28【解析】第1次循环:a=0+1=1,b=9-1=8,a<b,此时i=2;第2次循环:a=1+2=3,b=8-2=6,a<b,此时i=3;第3次循环:a=3+3=6,b=6-3=3,a>b,输出i=3.【答案】 38.(2014·浙江高考)若某程序框图如图2-2-29所示,当输入50时,则该程序运行后输出的结果是________.图2-2-29【解析】输入n=50,由于i=1,S=0,所以S=2×0+1=1,i=2,此时不满足S>50;当i=2时,S=2×1+2=4,i=3,此时不满足S>50;当i=3时,S=2×4+3=11,i=4,此时不满足S>50;当i=4时,S=2×11+4=26,i=5,此时不满足S>50;当i=5时,S=2×26+5=57,i=6,此时满足S>50,因此输出i=6.【答案】 6三、解答题9.画出求使1+2+3+…+n>10 000成立的最小自然数n的算法框图.【解】10.某高中男子体育小组的50 m赛跑成绩(单位:s)为 6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5,7.6,6.3,6.4,6.4,6.5,6.7,7.1,6.9,6.4,7.1,7.0.设计一个算法,从这些成绩中搜索出小于6.8 s的成绩,并画出流程图.【解】体育小组共20人,要解决该问题必须对运动员进行编号,设第i 个运动员编号为N i,成绩为G i.可以设计下面的算法.算法如下:1.i=1;2.输入N i,G i;3.如果G i<6.8,则输出N i、G i,并执行第四步,否则,也执行第四步;4.i=i+1;5.如果i>20,则结束,否则返回第二步.算法框图如下图所示:[能力提升]1.(2015·安徽高考)执行如图2-2-30所示的程序框图(算法流程图),输出的n 为()图2-2-30A.3B.4C.5D.6【解析】a=1,n=1时,条件成立,进入循环体;a=32,n=2时,条件成立,进入循环体;a=75,n=3时,条件成立,进入循环体;a=1712,n=4时,条件不成立,退出循环体,此时n的值为4.【答案】 B2.(2015·北京高考)执行如图2-2-31所示的程序框图,输出的结果为()图2-2-31A.(-2,2) B.(-4,0)C.(-4,-4) D.(0,-8)【解析】x=1,y=1,k=0,s=x-y=0,t=x+y=2,x=s=0,y=t=2,k=1,不满足k≥3;s=x-y=-2,t=x+y=2,x=-2,y=2,k=2,不满足k≥3;s=x-y=-4,t=x+y=0,x=-4,y=0,k=3,满足k≥3,输出的结果为(-4,0).【答案】 B3.(2016·温州高一检测)若如图2-2-32所示的算法框图运行结果为S=90,那么判断框中应填入的关于k的条件是________. 【导学号:63580026】图2-2-32【解析】k=10时,S=1×10=10;k=9时,S=10×9=90.又因为运行结果为S=90,所以k=8时应输出S,所以判断框中应填入k≤8.【答案】k≤84.运行如图2-2-33所示的算法框图.图2-2-33(1)若输入x 的值为2,根据运行过程完成下面的表格,并求输出的i 与x 的值.第i 次 i =1 i =2 i =3 i =4 i =5 x =2×3i(2)若输出【解】 (1)第i 次 i =1 i =2 i =3 i =4 i =5 x =2×3i61854162486因为(2)由输出i 的值为2,则程序执行了循环体2次, 即⎩⎪⎨⎪⎧3x ≤168,9x >168,解得563<x ≤56, 所以输入x 的取值范围是563<x ≤56.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 循环结构知识点循环结构[填一填]1.循环结构(1)定义:按照一定条件,反复执行某一步骤的算法结构称为循环结构,反复执行的部分称为循环体.(2)循环变量:控制着循环的开始和结束的变量,称为循环变量.(3)循环的终止条件:决定是否继续执行循环体的判断条件,称为循环的终止条件.2.在画出算法流程图之前,需要确定三件事(1)确定循环变量和初始条件;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.3.循环结构的算法流程图的基本模式[答一答]如何理解循环结构中的计数变量和累计变量?提示:在大部分循环结构中会有一个计数变量和一个累计变量.计数变量用于记录循环次数,累计变量用于输出结果,它们一般是同步执行,累计一次,计数一次,例如i=i+1,sum=sum+t.i=i+1的含义是:将变量i的值加1,然后把计算结果再存储到变量i中,即i在原值的基础上又增加了1.变量sum作为累加变量,用来表示所求数据的和.如sum的初值为0,当第一个数据送到变量t中时,累加的动作为sum=sum+t,即把sum的值与变量t的值相加,将所得结果再送到变量sum中,如此循环,则可实现数的累加求和.类似于这个原理,我们也可以实现累乘求积的问题.在具体画算法框图时,要注意:流程线上要有标志执行顺序的箭头;判断框后边的流程线应根据情况标注“是”或“否”;在循环结构中,要注意根据条件设计合理的计数变量、累加变量等,特别是条件的表述要恰当、精确.画循环结构算法框图的要领:①确定循环变量和初始条件;②确定算法中反复执行的部分,即循环体;③确定循环的转向位置;④确定循环的终止条件.类型一循环结构的基本概念例1在使用循环结构描述一个具体问题的算法时,循环变量的初始值()A.是唯一的B.是固定不变的C.根据结构特点有时可以变化D.以上答案都不对解析循环结构中,若循环体不同,所给的循环变量的初值可以不同,故选C.答案 C规律方法对循环结构的有关概念的正确理解是解循环结构题目的关键,应认真掌握.下面的算法流程图中是循环结构的是(C)A.①②B.②③C.③④D.②④解析:①为顺序结构,②为条件结构,③④为循环结构.类型二含循环结构的程序的运行例2如果执行如图所示的算法框图,输入x=-2,h=0.5,那么输出的各个数的和等于()A.3B.3.5C.4D.4.5思路探究本题主要考查循环结构内嵌套多个选择结构的算法框图,需要反复进行判断和运算直到满足条件.题中涉及三个变量,注意每个变量的运行结果和执行情况.解析按照算法框图依次执行为:初始值x=-2,h=0.5.(1)x=-2,h=0.5,y=0;(2)x=-1.5,h=0.5,y=0;(3)x=-1,h=0.5,y=0;(4)x=-0.5,h=0.5,y=0;(5)x=0,h=0.5,y=0;(6)x=0.5,h=0.5,y=0.5;(7)x=1,h=0.5,y=1;(8)x=1.5,h=0.5,y=1;(9)x=2,h=0.5,y=1.所以输出的各个数的和等于3.5.答案 B规律方法对于循环结构的算法框图的读图问题,要读懂框图的执行方向和其中的判断条件,明确循环次数,弄清每次的赋值.如图所示,算法框图的输出结果是( D )A.16B.2524C.34D.1112解析:第一次循环,s =12,n =4;第二次循环,s =34,n =6;第三次循环,s =1112,n =8.此时跳出循环,输出s =1112.类型三 含循环结构算法框图的设计例3 写出一个求满足1×3×5×7×…×n >60 000的最小正整数n 的算法,并画出相应的算法框图.思路探究 本题需要重复执行乘法,故引入循环结构,算法的结束需要引入一个累乘变量来控制.解 算法如下: 1.令s =1; 2.令n =1;3.如果s ≤60 000,那么n =n +2,s =s ×n ,重复执行第3步,否则,执行第4步; 4.输出n .算法框图如图所示.规律方法 设计循环结构的算法框图的注意点解决具体的循环结构的算法问题,要尽可能少地引入循环变量,否则较多的变量会使得设计程序比较麻烦,同时应尽可能使得循环嵌套的层数少.另外,要注意:(1)在循环结构中,循环变量要赋初始值,循环变量的自加不要忘记,自加多少不能弄错. (2)循环结构中循环的次数要严格把握,区分“<”与“≤”等.另外,同一问题利用两种不同的结构解决时,其判断条件不同.设计一个算法计算11×2+12×3+13×4+14×5+15×6的值,并画出相应的算法框图.解:具体算法步骤如下: 1.k =1,S =0;2.S =S +1k (k +1),k =k +1;3.若k <6,则反复执行第2步,否则,执行第4步; 4.输出S .相应的算法框图如图.类型四 循环结构的实际应用例4 用分期付款的方式购买价格为2 150元的冰箱,如果购买时先付1 150元,以后每月付50元,并加付欠款的利息,若一个月后付第一个月的分期付款,月利率为1%,那么购冰箱钱全部付清后,实际共付出款额多少元?画出算法框图.思路探究 用循环结构设计算法解决应用问题.解 购买时付款1 150元,余款1 000元分20次分期付款,每次的付款数为: a 1=50+(2 150-1 150)×1%=60(元), a 2=50+(2 150-1 150-50)×1%=59.5(元), ……a n =50+[2 150-1 150-(n -1)×50]×1%=60-12(n -1).∴a 20=60-12×19=50.5(元),总和S =1 150+60+59.5+…+50.5=2 255(元). 算法框图如图:规律方法用循环结构设计算法解决应用问题的步骤:1.审题;2.建立数学模型;3.用自然语言表述算法步骤;4.确定每一个算法步骤所包含的逻辑结构,对于要重复执行的步骤,通常用循环结构来设计,并用相应的算法框图表示,得到表示该步骤的算法框图;5.将所有步骤的算法框图用流程线连接起来,并加上终端框,得到表示整个算法的算法框图.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60,画出求80分以上的同学的平均分的算法框图.解:程序框图如下:——易错警示——循环结束的条件判断不准致误例5如图所示,若此程序运行结果为S=720,则在判断框中应填入关于k的判断条件是()A.k≥6B.k=7 C.k≥8D.k≥9错解本题可以按照开始的输入值、程序执行的规律和输出结果进行综合解决.容易出错的地方是不清楚这个判断条件是什么,本题是当不满足判断框中的条件时结束循环,当判断框中的条件满足时执行循环,故应该从k=10开始按照递减的方式逐步进行,直到S的输出结果为720.错解分析考生应注意题中“否”对应着输出框,所以只有不满足判断框内的条件时,循环才能结束.另外,计数变量k在题中不仅体现了循环的次数,而且还参与了累乘变量的变化过程,如果计数变量k的变化与累乘变量的变化的先后顺序改变,则k的初始值和判断框中的条件也要发生变化.正解第一次运行结果为S=10,k=9;第二次运行结果为S=10×9=90,k=8;第三次运行结果为S=720,k=7.这个程序满足判断框的条件时执行循环,故判断条件是k≥8.故选C.答案 C执行如图所示的算法框图,如果输出的a值大于2 015,那么判断框内应填(C)A.k≤6 B.k<5C.k≤5 D.k>6解析:第一次循环,a=4×1+3=7,k=1+1=2;第二次循环,a=7<2 015,故继续循环,所以a=4×7+3=31,k=2+1=3;第三次循环,a=31<2 015,故继续循环,所以a=4×31+3=127,k=3+1=4;第四次循环,a=127<2 015,故继续循环,所以a=4×127+3=511,k=4+1=5;第五次循环,a=511<2 015,故继续循环,所以a=4×511+3=2 047,k=5+1=6;第六次循环,a=2 047>2 015,故不符合条件,终止循环,输出a值.所以判断框内应填的条件是k≤5.一、选择题1.以下说法不正确的是(C)A.顺序结构是由若干个依次执行的处理步骤组成的,每一个算法都离不开顺序结构B.循环结构是在一些算法中从某处开始按照一定条件,反复执行某一处理步骤,故循环结构中一定包含选择结构C.循环结构中不一定包含选择结构D.用算法流程图表示算法,使之更加直观形象,容易理解解析:任何算法都是由若干个顺序结构组成,循环结构中要对是否循环进行判断,所以一定包含选择结构,故选C.2.执行两次下图所示的算法框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为(C)A.0.2,0.2 B.0.2,0.8C.0.8,0.2 D.0.8,0.8解析:本题考查了循环结构.第一次输入a=-1.2<0→a=-1.2+1=-0.2<0→a=-0.2+1=0.8>0且a<1→输出a=0.8;第二次输入a=1.2≥1→a=1.2-1=0.2→输出a=0.2.3.如图所示,算法框图的输出结果是(B)A.3 B.4C.5 D.8解析:本题考查了算法循环结构的直到型的流程图及赋值语句问题.x 1248y 123 4二、填空题4.阅读如图所示的算法框图,运行相应的程序,若输入m的值为2,则输出的结果i =4.解析:本题考查算法框图的循环结构.i=1,A=2,B=1;i=2,A=4,B=2;i=3,A=8,B=6;i=4,A=16,B=24;此时A<B,则输出i=4.5.执行如图所示的算法框图,若输入n的值为8,则输出s的值为8.解析:本题考查算法框图的循环结构.第1次,i =2,s =2,第2次i =4,s =12(2×4)=4;第3次,i =6,s =13(4×6)=8,第4次,i =8,输出s =8.注意变量赋值的顺序.三、解答题6.已知有一列数12,23,…,n n +1,设计算法求这列数前100项的和. 解:S 1 赋值i =1,S =0S 2 S =S +i i +1S 3 i =i +1S 4 判断i >100S 5 i >100,则输出S否则,返回S 2S 6 结束程序框图:。