人教版七年级数学下册第六章第三节实数课件(共26张PPT)

合集下载

人教版《实数》优秀课件初中数学ppt

人教版《实数》优秀课件初中数学ppt
品比赛,小红很高兴,他 想裁出一块面积为25dm2 的正方形画布,画上自己 的得意之作参加比赛,这 块正方形画布的边长应取 多少?你能帮小明算一算 吗?
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方

最新人教版七年级数学下册 6.3实数2 优质课件

最新人教版七年级数学下册 6.3实数2 优质课件

=
9 8 2 3 1 2 3
=-2.4ቤተ መጻሕፍቲ ባይዱ4101615≈-2.464
计算:
(1)
(2)
3
4 (精确到 18 0.01)
2 (结果保留 3各有效数字)
( 精确到 10 7 0.01)
(3)
典型例题
例2:计算 解:原式= =
2 9 2


5 2

2 (9 2



究 探
计算下面的式子:
9 2
活 动
与2
9 2 2
2 与 3
23
你发现了什么?换几个数再试一试,是否 有相同的规律?
6.3
实数运算(2)
合作学习
请同学们总结有理数的运算律和运算法则
1.交换律 : 加法 a+b=b+a 乘法a×b=b×a 2.结合律: 加法(a+b)+c=a+(b+c) 乘法(a×b)×c=a×(b×c) 3.分配律: a× (b+c)= a×b+ a×c 注:有理数的运算律和运算法则在实数范围内同样适用
实数的运算顺序
先算乘方和开方,再算乘除,最后算加减。如 果遇到括号, 则先进行括号里的运算
典型例题
例1 计算:
(1)
(2)
解:(1) (2)
8 (精确到 9 0.001)
3
(结果保留 9 2(4 3) 4个有效数字)
3 0.748343301≈0.748 8= 9
= 3) 9 2(4
=
=
5 4)
2 (5 2 5 )
10 2 2 5

人教版七年级数学下册第六章实数PPT教学课件

人教版七年级数学下册第六章实数PPT教学课件
0.16 ,
11 1 25
36 6 = 25 5
2 , ( 3) ,
0.25 .
=0.4
=3
=0.5
二 、师生互动,课堂探究 (二)导入知识,解释疑难 (3)3x-4为25的算术平方根,求x的值.
解:由题意知: (3x-4)2=25,
则 3x-4=±5, 即3x-4=5或3x-4=-5, 所以x=3,或x=
a 是一个无限不循环小数.
三、练习设计
(一)双基练习
1.用计算器求出下列各式的值.
260 , 0.005 37 8 955 , 12 345 ,
解: 8 955 94.630 861
260 16.124 515
12 345 111.108 055 0.005 37 0.073 280
PowerPoint
Template
6.1 平方根
第6章 实数
第2课时 用计算器求算术平方根
一、创设情境,导入新课
某同学想用一张正方形纸片折小船,但他手头上没有现 成的正方形纸片,于是他撕下一张作业本上的纸,如图,沿AE 对折使点B落在点F的位置上,再把多余部分FECD剪下,如果 他事先量得长方形ABCD的面积为90 cm2,又测量剪下的多余 的矩形纸片的面积为40 cm2.请根据上述条件算出剪出的正
把这个数的取值说出来吗?
1 1 4 25,0,4, , , ,1.69. 4 25 144
二 、师生互动,课堂探究
1 1 4 ,1.69. 25,0,4, , , 4 25 144
4 2 25 5 1 1 12 144
2 2
4 2 25 5
二、师生互动,课堂探究

人教版七年级下册数学第六章实数课件:6.3 实数

人教版七年级下册数学第六章实数课件:6.3 实数

正有理数
正实数
实数
正无理数
0 负实数
负有理数
负无理数
4.实数与数轴上的点是一一对应的.
教学课件 七年级数学下册(RJ)
第六章 实数
6.3 实根(2)
课前预习
带着问题自学课本P54“思考”
1.无理数也有相反数吗?怎么表示? 2.有绝对值吗?怎么表示? 3.有倒数吗?怎么表示?
探究新知
(1) 2的相反数是 ____2___ -π的相反数是____π_____ 0的相反数是____0_____
无理数的概念
所有的数都可以写成有限小数和无限循 环小数的形式吗?
2 =1.41421356237309504880168… 3 5 =1.70997594667669698935310…
π=3.1415926535897932384626…
1.01001000100001…(两个1之间依次多一个0)
解:- 的相反数是 π -3.14的相反数是3.14-π
(2)指出 - 5 ,1- 3 3 分别是什么数的相反数;
(2)- 是 的相反数; 1- 是 -1 的相反数;
例题讲解
(3)求 3 64 的绝对值;
|
|=|-4|=4.
(4)已知一个数的绝对值是 3 ,求这个数。
绝对值为 的数是 或-
实数的运算
35
9
3 4

0.6
(6)实数集合: 9 3 5

0.6
3 4
3 9 3 0.13
64

0.6
3
3
4
0.13

3 9

64 3

3 9

人教版七年级初一数学下册 《6.3 实数》课件1

人教版七年级初一数学下册 《6.3 实数》课件1

9/13/2019
13
4.布置作业 教科书 习题 6.3 第1、2题;
9/13/2019
14
学习重点:
了解无理数和实数的概念,知道实数与数轴上的点
的一一对应关系.
9/13/2019
3
1.探究新知
有理数包括整数和分数,如果将下列分数写 成小数的形式,你有什么发现?
2 , 3 ,27 ,11 ,9 . 5 5 4 9 11
9/13/2019
4
1.探究新知
你认为小数除了上述类型外,还会有什么 类型的小数?
9/13/2019
5
1.探究新知
无理数的概念:无限不循环小数叫无理数.

正 有 理 数

数有

数0 负


有 数








小数


数负 正 无 无
理 理 数 数无






9/13/2019
6
1.探究新知
因为非零有理数和无理数都有正负之分,那 么你能类比有理数的分类方法,按大小关系 对实数分类吗?
正实数 实数0
负实数
9/13/2019
7
1.探究新知
例1 下列实数中,哪些是有理数?哪些是 无理数?
5,3.14,0, 3 ,
4 3
,0.

5
7 ,
4 ,- π,
0.1010010001……(相邻两个1之间0的 个数逐次加1).
9/13/2019
8
1.探究新知
我们知道,每个有理数都可以用数轴上的点 来表示,那么无理数是否也可以用数轴上的 点表示出来呢?你能在数轴上找到表示无理 数的点吗?

新人教版初中七年级数学下册《实数 数字活动》课件

新人教版初中七年级数学下册《实数 数字活动》课件

数学活动1

如何估计一个带根号的无理数的大小?
找到两个整数,使这个无理数介于它们之 间,就可以估计出这个无理数的大小.
数学活动1

如要确定 3 60 介于两个整数之间, 应该如何去做?
3 60 4 , 3 60 4 .
3 3 3
数学活动1

3
如何确定
59319 的位数?
因为 103 59319 1003 ,
2 是什么数? 为什么说 2 不是有理数?
阅读与思考
为什么说

2 不是有理数?
公元前6世纪,古希腊的毕达哥拉斯学派有“万物皆数”的思想,这种
认为“一切量都可以用整数或整数的比(分数)表示”的思想统治了古希 腊数学相当长的一段时间,许多几何命题都是根据这一点来证明的。当时
的很多数学证明都隐性地承认了“所有数都可以表示为整数之比”,“万
数学活动1

据说,我国著名数学家华罗庚在一次出国访问途 中,看到飞机上邻座的乘客阅读的杂志上有一道智力 题:一个数是59 319,希望求它的立方根.华罗庚脱口 而出:39.邻座的乘客十分惊奇,忙问计算的奥妙.
数学活动1

你知道华罗庚是怎样迅速准确地 计算出来的吗? 确定结果的位数.
确定各个数位上的数字.
3 3 3 59 4 又因为 ,所以 3 59 319 的十 位上的数是3.
数学活动1


练习:探究19 683和110 592的立方 根分别是多少?
(先自己试一试,然后小组讨论,最后各小组派 代表发言)
数学活动2

2
你能制作一个表面积为12 dm 的正方体纸盒吗?(先独立完成,

【新】人教版七年级数学下册第六章《实数(3)》精品课件.ppt

【新】人教版七年级数学下册第六章《实数(3)》精品课件.ppt
1 3 3 的相反数是 3 3 1. (3)3 64 的绝对值是4. (4) 绝对值是 3 的数是 3 或 3 .
3.运用新知
例2 计算下列各式的值: (1) ( 3 2) 2
3 2 2(加法结合律)
30 3; (2) 3 3 2 3
32 ( 3 分配律)
5 3.
3.运用新知
例3 计算(结果保留小数点后两位):
6.3 实数
(第2课时)
课件说明
本节在引入无理数后,数的范围从有理数 扩充到实数,这个扩充过程既体现了概念、运 算等的一致性,又体现了它们的发展变化.
课件说明
学习目标: 会求实数的相反数与绝对值,会对实数进行简单的运算.
学习重点: 知道有理数的运算律和运算性质同样适合于实数的运算, 并会进行简单的运算.
10、人的志向通常和他们的能力成正比例。2020/12/152020/12/152020/12/1512/15/2020 12:59:11 PM
11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/152020/12/152020/12/15Dec-2015-Dec-20
12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/152020/12/152020/12/15Tuesday, December 15, 2020
13、志不立,天下无可成之事。2020/12/152020/12/152020/12/152020/12/1512/15/2020 • 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of

实数课件人教版数学七年级下册3

实数课件人教版数学七年级下册3

填空:设a,b,c是任意实数,则
(1)a+b = b+a (2)(a+b)+c = a+(b+c) (3)a+0 = 0+a = a
(加法交换律); (加法结合律);

(4)a+(-a) = (-a)+a = 0

(5)ab = ba
(乘法交换律);
(6)(ab)c =a(bc) (乘法结合律);
(1)( 3 2) 2;
(2)3 3 2 3.
解:(1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
在实数运算中,当遇到无理数并且需要求出结果的近似值时, 可以按照所要求的精确度用相应的近似有限小数去代替无理 数,再进行计算.
例3 计算(结果保留小数点后两位):
(1)规定用符号[m]表示实数 m 的整数部分,例如:[23 ]=0,[ 6 ]=2, 按此规定[ 10 +1]的值为__4__;
(2)若 7 的整数部分为 a,小数部分为 b,且|c|= 7 ,求 c(a-b)- 4(c-2)的值.
解:(2)∵ 4 < 7 < 9 ,即 2< 7 <3,∴a=2,b= 7 -2, ∴a-b=2-( 7 -2)=4- 7 ,∵|c|= 7 ,∴c=± 7 .当 c= 7 时,原式= 7 (4- 7 )-4( 7 -2)=4 7 -7-4 7 +8=1;当 c =- 7 时,原式=- 7 (4- 7 )-4(- 7 -2)=-4 7 +7+ 4 7 +8=15,即 c(a-b)-4(c-2)的值为 15 或 1
(乘法对于加法的分配律),
在进行实数的运算时,有理数的运算法则及运算性质等同样适用.

人教版七年级数学下册全册第六章《实数》PPT课件

人教版七年级数学下册全册第六章《实数》PPT课件
… 0.25 0.790 6 2.5 7.906 25 79.06 250 …
规律:被开方数的小数点向右每移动 2 位,它的 算术平方根的小数点就向右移动 1 位;被开方数 的小数点向左每移动 2 位,它的算术平方根的小 数点就向左移动 1 位.
(2)用计算器计算 3(精确到0.001),并利用你在(1) 中发现的规律说出 0.03, 300, 30 000 的近似值,你 能根据 3 的值说出 30 是多少吗?
2.会求非负数的算术平方根,掌握算术平方根的非负 性.(重点、难点)
导入新课
历史感悟
毕达哥拉斯(公元前570年~公元前500年) 公元前500多年古希腊的哲学家、数学家、天文学家。
导入新课
万物皆数
导入新课
情境引入 学校要举行美术作品比赛,小明很高兴,他想
裁出一块面积为25dm2的正方形画布,画上自己的得 意之作参加比赛,这块正方形画布的边长应取多少? 你能帮小明算一算吗?
所以这个数是3或-3. 会不会是巧合呢?
解:设每块地板砖的边长为x m.由题意得
240x2 60, x2 1 . 4
x 1 1 0.5 42
故每块地板砖的边长是0.5 m.
拓展提升
已知:|x+2y|+ 3x 7 (5y z)2 0
求x-3y+4z的值. 解:由题意得:
3x 7 0, x 2y 0,5y z 0,
所以正数 t 4 2 (秒). 即铁球到达地面需要2秒.
当堂练习
1.填空:(看谁算得又对又快) (1) 一个数的算术平方根是3,则这个数是 9 . (2) 一个自然数的算术平方根为a,则这个自然数 是_a_2_;和这个自然数相邻的下一个自然数是 a2+1 .

6.3实数(课件)七年级数学下册(人教版)

6.3实数(课件)七年级数学下册(人教版)







-2
-1

●●
0
π
1
2



3
4
从图中可以看出,OO’的长是这个圆的周长π,所以点O’对应的数是π.
这样,无理数π可以用数轴上的点表示出来.
探究新知
人教版数学七年级下册
数轴上的点可以表示有理数,那它可以表示无理数吗,
你能在数轴上画出表示 的点吗?
2
-2
2-1
0
1
2
2
当数的范围从有理数扩充到实数后,实数与数轴上的点是一一对应
例1 (1)分别写出− 和π-3.14的相反数;
(2)指出− , −

��分别是什么数的相反数;

(3)求 −的绝对值;
(4)已知一个数的绝对值是 ,求这个数.
解:(1)因为
( 6) 6 ,-(π-3.14)=3.14-π,
所以, 6 ,π-3.14的相反数分别为 6 ,3.14-π.
人教版数学七年级下册
人教版数学七年级下册
第6.3 实数
学习目标
人教版数学七年级下册
1.理解无理数和实数的概念.
2.对实数进行分类,判断一个数是有理数还是无理数.
3.理解实数和数轴上的点一一对应.
4.掌握实数的运算法则及运算律.
情境引入
人教版数学七年级下册
探究
我们知道有理数包括整数和分数,请把下列分数写成
例题讲解
例2
人教版数学七年级下册
计算下列各式的值:
(1)( 3
2)
2; (2)3 3 2 3
解:
(1)( 3 2) 2

人教版七年级数学下册第六章实数全章优质教学课件

人教版七年级数学下册第六章实数全章优质教学课件

三 、研学教材
认真阅读课本第40页内容,完成下 面练习并体验知识点的形成过程.
三、研学教材
知识点一 算术平方根的概念
问题:学校要举行美术作品比赛,小欧 想裁出一块面积为25dm2的正方形画布 ,画上自己的得意之作参加比赛,这 块正方形画布的边长应取多少?
分析: ∵( 5 )2=25 ∴这个正方形画布的边长应取
(3)∵( 3)2= 32 ∴32的算术平方根 是__3___ 即 32 =___3___;
2、求下列各式的值:
(1)
1
;(2)
9 25
;(3)
22
解:(1)∵12=1
∴ 1 =1
9
(2) 25 3 2 9
解:(2)∵ 5 = 25
∴ 9= 3
(3) 22
25 5
解:(3)∵(2)2=22
∴ 2 2 =2
温馨提示:正数和0统称非负数.
练一练
1、你能根据等式:122=144,说出144的 算术平方根是多少吗?用等式表示出来
解:∵122=___1_4_4__ ∴__1_4_4__的算术平方根是12,
即 144 =___1_2_____
2、225的算术平方根是__1_5,0的 算术平方根是__0___.
思考: 2 它到底是个多大的数? 因为 12 =_1__, 2 2 =__4_,所以1< 2 <2 因为 1.42= _1_._96_,1.52=_2_.2_5_, 所以__1_.4_< 2 <__1_._5_;......
事实上, 2 =1.414 213 562 373..., 它是一个无限不循环小数.
引导学生读懂数学书
四、归纳小课件结制作:李周林

【新】人教版七年级数学下册第六章《实数(3)》公开课课件.ppt

【新】人教版七年级数学下册第六章《实数(3)》公开课课件.ppt
新课引入 学习目标 研读课文 归纳小结 强化训练
引导学生读懂数学书课题
研究成果配套课件
第七课时 6.3实数(2)
饭可以一日不吃,觉可以一 日不睡,书不可以一日不读。
——毛泽东
一、新课引入
请将图中数轴上标有字母的各点与
下列实数对应起来: 3 ,-1.5,- 5
, 0.4, 10
二、学习目标
解:(1)∵ 6 = ___6_
3.14 =_3_.1_4_-_π_
∴ 6 ,3.14的相反数分别
为_____6 ___,_3_._1_4_-_π__.
(2)∵ 5= ______5___
1-3 3 =___3__3_-_1___
∴ ____5__,_3__3__-_1分别是 5 331 的相反数
(3)∵ 3 64 =___-___4___
∴ 3 64 =_∣_-__4_∣__=____4___.
(4)∵ 3 =_____3__, 3 =____3__
∴绝对值为 3 的数是____3__或__-___3_.
1、填表(求出下列各数的相反数 与绝对值):
相反数 绝对值
2.5
7
2
2.5 7
2
2.5 7 2
32 0 2- 3 0 2- 3 0
x 2、求下列各式中的实数
(1) (3)
x =2
3
x = 10
(2) x = 0
(4) x =
解: (1)x=
2 3
(2)x= 0
(3)x= 10 (4)x=
知识点二 实数的运算
例2 计算下列各式的值:
(1) 322(2) 3 32 3
1、进一步了解实数和数轴 上的点一一对应;

人教版数学七年级下册课件6.3实数(共20张PPT)

人教版数学七年级下册课件6.3实数(共20张PPT)

实数的大小比较
实数也有大小,其比较方法与有理数大小的比较方法相同.
1.两个正实数比较大小绝对值大的较大; 2.两个负实数比较大小绝对值大的反而小; 3.正实数都大于0,负实数都小于0,即正实数>0>负实数.
如: π__<_ 3.146
3 _<__1.732
实数的运算
实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方 运算,而且正数和0可以进行开平方运算,任意一个实数可以进行 开立方运算.
第六章 实数
6.3 实数
复习引入 (1)
即设 a 表示一个实数,则: (1)
例1 (1)分别写出
的相反数;
(跟2有)理数一样是什,无么理的数是相也反有有数正理;负之数分?,如有理数可以如何分类?
一一个个负 负实实数数的的绝绝对对值值是是整它它数的的相相和反反数数分;;数统称为有理数
(3)求
的绝对值;
有理数的运算法则和运算性质同样适用于实数. 实数的混合运算顺序:先乘方、开方,再乘除,后加减.
例2 计算下列各式的值:
(1) ( 3 2) 2
3 2 2
3 0 3;
(2) 3 3 2 3
3 2 3
5 3.
加法结合律 分配律
在实数运算中,当遇到无理数并且需要求出结果的近似值时, 可以按照所要求的精确度用相应的近似有限小数去代替无理数, 再进行计算.
反过来,任何有限小数或无限循环小数也都是有理数.
无理数
前边我们学习了平方根和立方根,我们知道很多数的平方根或立方 根都是无限不循环小数.
我们把无限不循环小数叫做无理数.
例如, 2, 5, 3 2, 3 3 等都是无理数,π=3.14159265…也是无理数 .

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

6,

••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.

2

3
22
,7
36
无理数是: 6
,,

2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:

七年级数学下册第六章实数6.3实数讲义(新人教版)本.ppt

七年级数学下册第六章实数6.3实数讲义(新人教版)本.ppt
6.3 实 数 (二)
1 …核…心…目…标…..

2…课…前…预…习…..

3 …课…堂…导…学…..

4 …课…后…巩…固…..

5 …培…优…学…案…..

1
核心目标
能熟练进行实数运算,会比较两个实数的大小,了 解实数与数轴上的点一一对应的关系.
2
课前预习
1.实数与数轴上的点是_一___一__对__应__关系,即每一个实 数都可以用数轴上的点来表示;反过来,数轴上的 每一个点都表示___一__个__实__数_____.
A.3
B.-3
C. 1
3
10.3 27 的相反数是 ( B )
A.-3
B.3
C.±3
D.

1 3
D.2 3
10
课后巩固
11.下列运算正确的是
A. 9 =±3 C. 3 (3)3=3
(D )
B. (2)2=-2
D. ︱-π︱=π
12.下列各组数中,互为相反数的是 ( D )
A.-3与 1
3
则、运算律相同.
7
课堂导学
对点训练二 6.计算: (1)3 3+5 3 =___8___3____; (2) 5-( 5-2)=____2_____;
(3)(3 2 - 3 )+ 3 =___3__2____;
(4)︱3- 5︱+3 5 =__3__2__5__.
8
课堂导学
7.计算:
(1)
1 3
C.-3与 3 27
B.-5与 25 D.︱-6︱与-6
11
课后巩固
13.化简︱2- 3︱+ 3 =
(A )
A.2

人教版七年级数学下册 6.3 第1课时 实数 课件(共22张PPT)

人教版七年级数学下册 6.3 第1课时 实数  课件(共22张PPT)

π

0. 6
3 4
3 9
3 0.13
9
, 64 ,0.6 ,
3 ,3 ,0.13 4
... }
(2)无理数:{
3 5 ,π ,3 9 ...

(3)整数: { (4)负数: { (5)分数: { (6)实数: {
9 , 64 ,3 ...

3 ,3 9 ...

4 0.6 ,
3 ,0.13
...

4
人教版七年级数学下册
第六章 实数
6.3 实数
第1课时 实数
一 情境导入
-1
1
2
4
平方根 不存在 ±1
2
±2
立方根
-1
1
32
34
上表中所填的这些数都是有理数吗?
±1,±2,-1,1 都是有理数 2,3 2,3 4 也是有理数吗?
二 新课探究
知识点1:立方根的概念及性质
(1)请把下列有理数写成小数的形式,你有什么发现?任何有 理数都能写成有限小数和无限循环小数吗? 3, 3 , 47 , 9 , 11 , 5 5 8 11 90 9
0
负实数
正有理数
正无理数 负有理数
负无理数
1.下列说法中,正确的是( C ).
A. 实数分为正实数和负实数 B. 无限小数都是无理数
C. 无理数都是无限小数
D. 带根号的数都是无理数
2. 有一个数值转换器,原理如图所示,当输入的 x 为 81 时,
输出的 y 是( D ).
输入x 是有理数
取算术 平方根
考 点 1 求数轴上的点表示的实数值
如图所示,数轴上A,B两点表示的数分别为-1和 3,点B

【新】人教版七年级数学下册第六章《 实 数》公开课课件.ppt

【新】人教版七年级数学下册第六章《 实 数》公开课课件.ppt
famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about. 。2020年12月15日星期二2020/12/152020/12/152020/12/15
【预习导学】
②用一张硬纸片前一个半径为1cm的小圆,计算圆的周长,周长是有理 数还是无理数?如何在数轴上表示圆的周长呢?
归纳总结:实数与数轴上的点是 一一对应的 ,即任何一个都可以用数轴上的一 个点来表示;反过来,数轴上的每一个点都表示一个实数。数轴上的任意两个 点,右边的点表示的数总比左边的点表示的数 大 。
1、有理数的运算法则及运算律同样适用于实数的运算;当 遇到无理数并需要求出结果的近似值时,应按照要求的精 确度用相应的近似有限小数去代替无理数,再进行计算。
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
【预习导学】
一、自学指导 1、自学1:自学课本P53-54页,完成54页“探究”,掌握实数的相关概念,理解实数与
数轴上的点的对应关系,完成下列填空。5分钟 归纳总结: 有理数 和 无理数 统称实数。 实数按正负分可分为 正实数 、 0 、 负实数 。
点拨精讲:带根号的不一定都是无理数;所有的无限循环小数都可以化成分数。
解:没有最大的实数,没有最小的实数,绝对值最小的实数是0. 2、设a是最小的自然数,b是最大的负整数,c是绝对值最小的实数,求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试一试
你能把 在数轴上表示出来吗?请与同 桌一起试一试。 问题:边长为1的正方形,对角线长为多少?
2
2
-2
-1 0
1
2
3
4
事实上:每一个无理数都可以用数轴上的一个点来 表示.数轴上的点有些表示有理数,有些表示无理数.
归纳 当数的范围从有理数抗充到实数后, 实数与数轴上的点是一一对应的,即每一 个实数都可以用数轴上的一个点来表示, 反过来,数轴上的每一个点都表示一个实 数。
5 2
3 2.5, 0.6, 5
11 9
27 4
6.75,
9 0. 81, 11
1. 2 ,

事实上,任何一个有理数都可以写成有限小数或无 限循环小数. 反过来,任何有限小数或无限循环小数也都是有理 数.
无限不循环的小数 -- 叫做无理数. 你能举出一些无理数吗?
运用新知 1.把下列各数填入相应的集合内:
2 3 15 , 4 , 16 , , 27 , 0.15 , 7.5 , π, 0, 2.3 . 3
①有理数集合:{
…};
②无理数集合:{
③正实数集合:{
…};
…};
④负实数集合:{
…}.
运用新知
2.下列各数中,哪些是有理数?哪些是无理 数?
3、实数与数轴上的点是 一一对应 ___ 的. 4、学习反思:________________________ _____________________________________.
课堂检测
一、判断下列说法是否正确:

1.实数不是有理数就是无理数. (
2.无限小数都是无理数.
3.无理数都是无限小数.
4、归纳小结
知 识 点 : 实 数 的 分 类 实数 1、有理数和无理数统称为 ___________ 2、实数的分类 正有理 ________数 有限小数或无限循环小数 ___________________________________________ 0 有理 ______ 数 (1) 负有理 ________数 实数 无理 数 _________ 正无理数 ______ 无限不循环小数 _______________________________________ 负无理 数 ________ 正 实数 (2) _____ 0 实数 _____ 负 实数 _____
“农村初中教师科研素养的培养研究”课题 研究成果配套课件
新课引入
展示目标
研读课文
归纳小结
强化训练
第六章
6.3实数
课件制作: 灵山县苑西中学 黄世环
课件说明
本节先将有理数与有限小数和无限循环小数统 一起来,再采用与有理数对照的方法引入无理数, 接着类比用数轴上的点表示有理数,指出实数与 数轴上的点的一一对应关系.
探究新知
我们知道,每个有理数都可以用数轴上的点 来表示,那么无理数是否也可以用数轴上的 点表示出来呢?你能在数轴上找到表示无理 数的点吗?
探究新知 如图,直径为1个单位长度的圆从原点 沿数轴向右滚动一周,圆上的一点由原点 O到达点O',点O' 对应的数是多少?
为什么?
1.解决新知 从图上可以看出,OO'的长是这个圆的周 长π,所以点O' 对应的数是π。这样,无 理数π可以用数轴上的点表示出来
学习目标:
(1)了解无理数和实数的概念.
(2)知道实数与数轴上的点具有一一对应关系,初
步体会“数形结合”的数学思想.
学习重点: 了解无理数和实数的概念,知道实数与数轴上的点 的一一对应关系.
自学指导
自学课本P53页内容,完成下列思考题
(1)观察下列有理数写成小数的形式,你有什么 发现?任何有理数都能写成有限小数和无限循环 小数吗? 3 27 11 9 5 , 2, 4 , 9 , 5 11

2 1
7, 3, 12
0.1010010001…〔两个1之间依次多1个0 〕 -168.3232232223…〔两个3之间依次多1个2 〕
无理数的特征:
1.圆周率 及一些含有 的数 2.开不尽方的数 3.有一定的规律,但 不循环的无限小数 注意:带根号 的数不一定是 无理数
有理数和无理数统称实数.
1 0.4583 , 3.7 , π, , 18, 2. 7

运用新知 3.在下列每一个圈里,至少填入三个适当的 数.
……
……
有理数集合
无理数集合
3、强化训练
1、若无理数a满足:1<a<4,请写出两个你熟 2 悉的无理数:•_____,•______. 2、判断下列说法是否正确: (1)带根号的数是无理数;( × ) (2)不带根号的数一定是有理数;( × ) (3)负数没有立方根;( × ) (4)- 17 是17的平方根.( √ )
整数 有理数 实 数 无理数 分数 无限不循环小数 正有理数 正无理数 0 负有理数 负实数 负无理数
正实数
实 数
运用新知
例1 下列实数中,哪些是有理数?哪些是 无理数?
4 , 4 ,- π, 5,3.14,0, 3 , , 0.57 3
0.1010010001„„(相邻两个1之间0的 个数逐次加1).
(2)已知正方形ABCD的面积为2cm2,这个正方 形的边长是 cm,它可以是整数吗?可以是分数 吗?你知道它是什么数吗
自学指导
自学课本P53页内容,完成下列思考题
(3)请用计算器把 2 和3 5 写成小数的形式,你有什么 发现?像这样的数我们把它叫什么数?你还能说出一些 这样的数吗? (4)我们把哪些数统称为实数?你能把实数进行分类 吗?


))Βιβλιοθήκη 4.带根号的数都是无理数.



5.两个无理数之和一定是无理数.(
6.所有的有理数都可以在数轴上表示,反过来, 数轴上所有的点都表示有理数. ( )
思维拓展
填空 请你写出两个无理数,使这两个无理数的和为无理数, 积为有理数,这两个数可以是 。
作业设计
课本P57习题6.3第2、7题
相关文档
最新文档