上册专题圆的基本性质人教版九年级数学全一册课件
合集下载
课件人教版九年级数学上册课件24.1圆的有关性质精品课件ppt.ppt

A
课件
O B
活动一:复习导入
垂径定理
▪ 定理 垂直于弦的直径平分弦,并且平分弦所对的两条
弧.
C
如图∵ CD是直径,
A M└
B
●O
D
CD⊥AB,
∴AM=BM,
A⌒C =B⌒C, A⌒D=B⌒D.
推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
课件
活动二:名题引路
▪ 如图,已知AB是⊙O
▪ 的中点,弦CD经过点M,∠CMA=30°,
▪
则CD4=15
cm
C
8
E
A
O2
M
B
4 D
课件
活动四:顺利闯二关
▪ 1、(1)⊙O的半径为5 cm,弦AB∥CD, AB=6 cm, CD=8 cm,
▪ ①请画出图形
▪ ②根据图形,求出AB与CD之间的距离 是 。 7cm或1cm
▪
(2)你能直接写出此题的答案么:
O
B
A
课件
D
思考:
1、图中有哪些相等的量?
2.AB作怎样的变换时,
AC=BC, AD=BD? C
3、将弦AB进行
平移时,以上结A O
B
论是否仍成立?
课件
D
思 1.图中有哪些相等的量?
?
考 2.AB作怎样的变换时,
AC=BC, AD=BD ?
3.将弦AB进行平移时, C 以上结论是否仍成立?
4.当弦AB与直径 CD不垂直时,以 A
课件
思考: 1、图中有哪些相等的量?
2.AB作怎样的变换时,
AC=BC, AD=BD?
C B
O
九年级数学上册 24.1 圆的概念与基本性质课件 (新版)新人教版

c.平分弦所对的一条弧的直径垂直平分弦,并且平分弦 所对的另一条弧. 推 圆的两条平行弦所夹的弧相等. 论 2
推 过圆心、平分弦、垂直于弦、平分弦所对的劣弧、平分 论 弦所对的优弧,若一条直线具备这五项中的任意两项, 3 则必具备另外三项.
• 1、熟练地运用垂径定理及其推论、勾股定理,并 用方程的思想来解决问题.
(1)是轴对称图形.直径CD所在的 直线是它的对称轴
(2) 线段: AE=BE
A
弧 :AD=BD,AC=BC
C
·O
E B
D
C
已知:直径CDAB于E,
结论:AE=BE,AD=BD,AC=BC
·O
即:直径CD平分弦AB, 并且平分AB及ACD
E
A
B
D
垂径定理:垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
2、对于一个圆中的弦长a、圆心到弦的距离d、圆 半径r、弓形高h,这四个量中,只要已知其中任意 两个量,就可以求出另外两个量,如图有:
⑴d + h = r ⑵ r2 d2 (a)2
2
在a,d,r,h中,已知其中任意两 个量,可以求出其它两个量.
活动三
练习
例1.如图,在⊙O中,弦AB的长为8cm,圆心 O到AB的距离为3cm,求⊙O的半径.
(2)圆的内部可以看作是由到定点的距离小于定长的所有的点 组成的图形. (3)圆的外部可以看作是由到定点的距离大于定长的所有的点 组成的图形.
2、圆的有关概念 1)弦:连接圆上任意两点间的线段叫做弦.经过圆心的
弦叫做直径,直径是特殊的弦.(弦是线段,只有长度)
2)弧:圆上任意两点间的部分叫做弧.小于半圆的弧叫 劣弧,大于半圆的弧叫优弧.(弧既有弧度又有长度。)
推 过圆心、平分弦、垂直于弦、平分弦所对的劣弧、平分 论 弦所对的优弧,若一条直线具备这五项中的任意两项, 3 则必具备另外三项.
• 1、熟练地运用垂径定理及其推论、勾股定理,并 用方程的思想来解决问题.
(1)是轴对称图形.直径CD所在的 直线是它的对称轴
(2) 线段: AE=BE
A
弧 :AD=BD,AC=BC
C
·O
E B
D
C
已知:直径CDAB于E,
结论:AE=BE,AD=BD,AC=BC
·O
即:直径CD平分弦AB, 并且平分AB及ACD
E
A
B
D
垂径定理:垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
2、对于一个圆中的弦长a、圆心到弦的距离d、圆 半径r、弓形高h,这四个量中,只要已知其中任意 两个量,就可以求出另外两个量,如图有:
⑴d + h = r ⑵ r2 d2 (a)2
2
在a,d,r,h中,已知其中任意两 个量,可以求出其它两个量.
活动三
练习
例1.如图,在⊙O中,弦AB的长为8cm,圆心 O到AB的距离为3cm,求⊙O的半径.
(2)圆的内部可以看作是由到定点的距离小于定长的所有的点 组成的图形. (3)圆的外部可以看作是由到定点的距离大于定长的所有的点 组成的图形.
2、圆的有关概念 1)弦:连接圆上任意两点间的线段叫做弦.经过圆心的
弦叫做直径,直径是特殊的弦.(弦是线段,只有长度)
2)弧:圆上任意两点间的部分叫做弧.小于半圆的弧叫 劣弧,大于半圆的弧叫优弧.(弧既有弧度又有长度。)
最新人教版初中九年级上册数学《圆的有关性质》精品课件

2
2
在Rt△OAD中,由勾股定理,得OA2=AD2+OD2,
即R2=18.52+(R-7.23)2.
解得R≈27.3.
因此,赵州桥的主桥拱半径约为27.3 m.
新知探究
知识点1
涉及垂径定理时辅助线的添加方法
在圆中有关弦长a,半径r,弦心距d(圆心到弦的距
·O
离),弓形高h的计算题时,常常通过连半径或作弦
2
如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线
y=kx-3k+4与圆O交于B,C两点,则弦BC的长的最小值为 24 .
解:∵直线y=kx-3k+4必过点(3,4)(设为点D),
∴连接OD,OB,当OD⊥BC时,BC最短,如图所示,
∵点D的坐标是(3,4),∴OD= 32 + 4² =5,
2.弦的定义
连接圆上任意两点的线段叫做弦.
3.弧的定义
圆上任意两点间的部分叫做弧.
学习目标
1.进一步认识圆,了解圆是轴对称图形.
2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单
的计算、证明和作图问题.
3.灵活运用垂径定理解决有关圆的问题.
课堂导入
你能通过折叠的方式找到圆形纸片的对称轴吗?在折的过程中
④平分弦所对的优弧 ;
⑤平分弦所对的劣弧.
在一个圆中,一条直线只要满足上面五个条件中的任意两个,都可以推出
其他三个结论(知二推三).
新知探究
知识点1
垂径定理的推论
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
“不是直径”这个条
件能去掉吗?如果不
能,请举出反例.
C
2
在Rt△OAD中,由勾股定理,得OA2=AD2+OD2,
即R2=18.52+(R-7.23)2.
解得R≈27.3.
因此,赵州桥的主桥拱半径约为27.3 m.
新知探究
知识点1
涉及垂径定理时辅助线的添加方法
在圆中有关弦长a,半径r,弦心距d(圆心到弦的距
·O
离),弓形高h的计算题时,常常通过连半径或作弦
2
如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线
y=kx-3k+4与圆O交于B,C两点,则弦BC的长的最小值为 24 .
解:∵直线y=kx-3k+4必过点(3,4)(设为点D),
∴连接OD,OB,当OD⊥BC时,BC最短,如图所示,
∵点D的坐标是(3,4),∴OD= 32 + 4² =5,
2.弦的定义
连接圆上任意两点的线段叫做弦.
3.弧的定义
圆上任意两点间的部分叫做弧.
学习目标
1.进一步认识圆,了解圆是轴对称图形.
2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单
的计算、证明和作图问题.
3.灵活运用垂径定理解决有关圆的问题.
课堂导入
你能通过折叠的方式找到圆形纸片的对称轴吗?在折的过程中
④平分弦所对的优弧 ;
⑤平分弦所对的劣弧.
在一个圆中,一条直线只要满足上面五个条件中的任意两个,都可以推出
其他三个结论(知二推三).
新知探究
知识点1
垂径定理的推论
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
“不是直径”这个条
件能去掉吗?如果不
能,请举出反例.
C
圆课件(共18张PPT)人教版数学九年级上册

【实践性作业】找 一 根绳子,以其中 一 头为圆心,自选
长度为半径画圆,感受圆的定义 .
∴点B、C、D、E在以点M为圆心的同一个圆上.
【题型二】圆的基本概念解析
例3 下列说法中,正确的个数是( A )
①长度相等的两条弧一定是等弧;②半圆是最长的弧;③弦
是直径;④半圆是弧.
A.1个
B.2个
C.3个
D.4个
变式 如图,_______是直径,______________是弦,以E为端
AB,CD,EF
点C,四边形CDEF是正方形,连接BD.若 = ,
= ,则BD的长为 (
) B
.
.
C.13
.
例5:如图,OA、OB是⊙O的半径,C是⊙O上一点, ∠ =
°, ∠ = °,则 ∠的度数为_____.
30°
课堂小结
圆
的
定
义Hale Waihona Puke 圆心AB点的劣弧有___________________________,以A为端点的优
弧EC,弧EB,弧EF,弧ED,弧EA
弧有____________________________
弧AEF,弧AED,弧ADC,弧ADE .
【题型三】与圆有关的计算
例4:如图,在⊙O中,AB为直径,D为⊙O上一点, ⊥ 于
为什么要把轮子做成圆形,而不是做成三角形、四边形或者
椭圆形呢?
知识讲解
自主探究
1.请同学们阅读课本79-80页.
2.请同学们完成上面任务后思考以下问题:
①圆和圆面有什么不同?如何证明几个点在同一个圆上?
(圆是一种几何图形,指的是平面中到一个定点距离为定值的
长度为半径画圆,感受圆的定义 .
∴点B、C、D、E在以点M为圆心的同一个圆上.
【题型二】圆的基本概念解析
例3 下列说法中,正确的个数是( A )
①长度相等的两条弧一定是等弧;②半圆是最长的弧;③弦
是直径;④半圆是弧.
A.1个
B.2个
C.3个
D.4个
变式 如图,_______是直径,______________是弦,以E为端
AB,CD,EF
点C,四边形CDEF是正方形,连接BD.若 = ,
= ,则BD的长为 (
) B
.
.
C.13
.
例5:如图,OA、OB是⊙O的半径,C是⊙O上一点, ∠ =
°, ∠ = °,则 ∠的度数为_____.
30°
课堂小结
圆
的
定
义Hale Waihona Puke 圆心AB点的劣弧有___________________________,以A为端点的优
弧EC,弧EB,弧EF,弧ED,弧EA
弧有____________________________
弧AEF,弧AED,弧ADC,弧ADE .
【题型三】与圆有关的计算
例4:如图,在⊙O中,AB为直径,D为⊙O上一点, ⊥ 于
为什么要把轮子做成圆形,而不是做成三角形、四边形或者
椭圆形呢?
知识讲解
自主探究
1.请同学们阅读课本79-80页.
2.请同学们完成上面任务后思考以下问题:
①圆和圆面有什么不同?如何证明几个点在同一个圆上?
(圆是一种几何图形,指的是平面中到一个定点距离为定值的
人教版九年级数学上册《圆的有关性质》PPT课件PPT

弦
与圆有关的概念
(1)连接圆上任意两点的线段(如图
线段AC)叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
B
O·
A
C
直径是圆中最长的弦。
人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件
人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件
人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件
人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件 人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件
人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件
1.阅读材料 引入新知
我国古代,半坡人就已经会造圆形的房顶了.大约 在同一时代,美索不达米亚人做出了世界上第一个轮 子——圆的木轮.很早之前,人们将圆的木轮固定在木 架上,这样就成了最初的车子. 2 000 多年前,墨子给 出圆的定义“一中同长也”,意思是说,圆有一个圆心, 圆心到圆周的长都相等.这个定义比古希腊数学家欧几 里得给圆下的定义要早很多年.
O●
A⌒BC
A⌒CB
B⌒CAC
A
它们一样么?
C
2 .劣弧有: A⌒B B⌒C
优弧有: A⌒CB B⌒AC B⌒CA
B
O
A
C
劣弧与优弧
小于半圆的弧(如图中的 ⌒AC )叫做劣弧;
大于半圆的弧(必须用三个字母表示,
⌒ 如图中的 ABC )叫做优弧.
AB与ACB都是弦AB
与圆有关的概念
(1)连接圆上任意两点的线段(如图
线段AC)叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
B
O·
A
C
直径是圆中最长的弦。
人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件
人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件
人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件
人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件 人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件
人 教 版 九 年 级数学 上册 2 4.1《 圆的有 关性质 》(第1 课时)P PT课件
1.阅读材料 引入新知
我国古代,半坡人就已经会造圆形的房顶了.大约 在同一时代,美索不达米亚人做出了世界上第一个轮 子——圆的木轮.很早之前,人们将圆的木轮固定在木 架上,这样就成了最初的车子. 2 000 多年前,墨子给 出圆的定义“一中同长也”,意思是说,圆有一个圆心, 圆心到圆周的长都相等.这个定义比古希腊数学家欧几 里得给圆下的定义要早很多年.
O●
A⌒BC
A⌒CB
B⌒CAC
A
它们一样么?
C
2 .劣弧有: A⌒B B⌒C
优弧有: A⌒CB B⌒AC B⌒CA
B
O
A
C
劣弧与优弧
小于半圆的弧(如图中的 ⌒AC )叫做劣弧;
大于半圆的弧(必须用三个字母表示,
⌒ 如图中的 ABC )叫做优弧.
AB与ACB都是弦AB
最新人教版初中数学九年级上册《24.1.1 圆》精品教学课件

“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知
(
(
( (
( ( (( ((
素养考点 1 圆的有关概念的识别 例1 如图. (1)请写出以点A为端点的优弧及劣弧;
劣弧:AF, AD, AC, AE.
D
B
优弧:AFE,AFC, ADE, ADC.
F
O
E
(2)请写出以点A为端点的弦及直径;
分析:作辅助线构造△OCE和△ODF,然后证明两 三角形全等,最后根据全等的性质得出结论. 解:连接OC,OD,∵OC=OD,∴∠C=∠D,
∵CE=DF. ∴△OCE≌△ODF(SAS), ∴OE=OF, ∴△OEF是等腰三角形.
探究新知
知识点 2 圆的有关概念
弦:
A
连接圆上任意两点的线段(如图中的AC)叫做弦.
探究新知
素养考点 2 圆的有关概念的应用
例2 如图,MN是半圆O的直径,正方形ABCD的顶点A、D
在半圆上,顶点B、C在直径MN上.(1)求证:OB=OC.
(2)设⊙O的半径为10,则正方形ABCD的边长为 4 5 .
A
D
Ⅱ
2x 10 ?
M
xB O
C
N
图4
连OA,OD即可,
同圆的半径相等.
解:(1)连接OA,OD, 证明Rt∆ABO≌Rt∆DCO.
例 矩形ABCD的对角线AC,BD相交于点O. 求证:A,B,C,D四个点在以点O为圆心的同一个圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知
(
(
( (
( ( (( ((
素养考点 1 圆的有关概念的识别 例1 如图. (1)请写出以点A为端点的优弧及劣弧;
劣弧:AF, AD, AC, AE.
D
B
优弧:AFE,AFC, ADE, ADC.
F
O
E
(2)请写出以点A为端点的弦及直径;
分析:作辅助线构造△OCE和△ODF,然后证明两 三角形全等,最后根据全等的性质得出结论. 解:连接OC,OD,∵OC=OD,∴∠C=∠D,
∵CE=DF. ∴△OCE≌△ODF(SAS), ∴OE=OF, ∴△OEF是等腰三角形.
探究新知
知识点 2 圆的有关概念
弦:
A
连接圆上任意两点的线段(如图中的AC)叫做弦.
探究新知
素养考点 2 圆的有关概念的应用
例2 如图,MN是半圆O的直径,正方形ABCD的顶点A、D
在半圆上,顶点B、C在直径MN上.(1)求证:OB=OC.
(2)设⊙O的半径为10,则正方形ABCD的边长为 4 5 .
A
D
Ⅱ
2x 10 ?
M
xB O
C
N
图4
连OA,OD即可,
同圆的半径相等.
解:(1)连接OA,OD, 证明Rt∆ABO≌Rt∆DCO.
例 矩形ABCD的对角线AC,BD相交于点O. 求证:A,B,C,D四个点在以点O为圆心的同一个圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
人教版九年级数学上册 (圆)圆的有关性质课件

1.理解圆周角的定义,了解与圆心角的关系,会在具体情景中辨别圆周角。 2.掌握圆周角定理及推论,并会运用这些知识进行简单的计算和证明; 3.学习中经理操作、观察、猜想、分析、交流、论证等数学活动,体验圆周角的、定理的探索。
重点难点
重点:理解并掌握圆周角定理及推论。 难点:圆周角定理的证明。
情景引用
点C,且有DC=OE,若∠C=20°,则∠EOB的度数是 60°.
• 6.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD. • 求证:OC=OD. • 证明:∵OA、OB为⊙O的半径, • ∴OA=OB. • ∴∠A=∠B. • 又∵AC=BD, • ∴△ACO≌△BDO. • ∴OC=OD.
在纸上画出一个圆,并截取任意一条圆弧画出其所对的圆心角和圆周角, 测量它们的度数,你能得出什么结论?
C
经过测量, 同弧所对的圆周角度数等于 所对圆心角的一半。
O
A
B
圆心角和圆周角之间存在的关系
下面我们分以下三种情况验证上述猜想:
圆心角和圆周角之间存在的关系
1
2 3
证明二:
OA=OC=>∠1=∠2
• 2.下列说法中,不正确的是(D )
• A.过圆心的弦是圆的直径
• B.等弧的长度一定相等
• C.周长相等的两个圆是等圆
• D.长度相等的两条弧是等弧
• 3.一个圆的最大弦长是10cm,则此圆的半径是 5 cm. • 4.在同一平面内与已知点A的距离等于5cm的所有点所组成的图形是 圆 .
• 5.如右图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线相交于
在以点O为圆心的圆上。
证明:
∵四边形ABCD为矩形,
∴OA=OC=
重点难点
重点:理解并掌握圆周角定理及推论。 难点:圆周角定理的证明。
情景引用
点C,且有DC=OE,若∠C=20°,则∠EOB的度数是 60°.
• 6.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD. • 求证:OC=OD. • 证明:∵OA、OB为⊙O的半径, • ∴OA=OB. • ∴∠A=∠B. • 又∵AC=BD, • ∴△ACO≌△BDO. • ∴OC=OD.
在纸上画出一个圆,并截取任意一条圆弧画出其所对的圆心角和圆周角, 测量它们的度数,你能得出什么结论?
C
经过测量, 同弧所对的圆周角度数等于 所对圆心角的一半。
O
A
B
圆心角和圆周角之间存在的关系
下面我们分以下三种情况验证上述猜想:
圆心角和圆周角之间存在的关系
1
2 3
证明二:
OA=OC=>∠1=∠2
• 2.下列说法中,不正确的是(D )
• A.过圆心的弦是圆的直径
• B.等弧的长度一定相等
• C.周长相等的两个圆是等圆
• D.长度相等的两条弧是等弧
• 3.一个圆的最大弦长是10cm,则此圆的半径是 5 cm. • 4.在同一平面内与已知点A的距离等于5cm的所有点所组成的图形是 圆 .
• 5.如右图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线相交于
在以点O为圆心的圆上。
证明:
∵四边形ABCD为矩形,
∴OA=OC=
人教版九年级数学上册第24章圆课件 (共31张PPT)

∴CF= 12.在Rt△COF中,OF= OC2 CF2 ,
24 12 5 ∴EF=EO+OF= ,∴ CE EF2 CF2 . 5 5
9 5
5
【例4】如图,AB是⊙O的直径,C.D是⊙O上一 点,∠CDB=20°,过点C作⊙O的切线交AB的延 长线于点E,则∠E等于( B ) A.40° B.50° C.60° D.70°
(1)点在圆内 (2)点在圆上 (3)点在圆外 如果规定点与圆心的距离为d,圆的半径 为r,则d与r的大小关系为:
C
.
.
A.
点与圆的位置关 系
d与r的关系
. B
点在圆内 点在圆上 点在圆外
d<r d=r d>r
2.直线和圆的位置关系:
.
O
.
O l
.
O l
l (1) 相离: 一条直线与一个圆没有公共点,叫做 直线与这个圆相离. (2) 相切: 一条直线与一个圆只有一个公共点,叫 做直线与这个圆相切. (3) 相交: 一条直线与一个圆有两个公共点,叫 做直线与这个圆相交.
定义:顶点在圆周上,两边和圆相交的角, 叫做圆周角.
性质: 同弧或等弧所对的圆周角相等,都等于这条
弧所对的圆心角的一半。
D E
O A
1 ADB=∠ ACB = ∠ AEB= AOB 2 在同圆或等圆中,相等的圆周角 C 所对的弧相等 推论: 半圆(或直径)所对的圆 周角是直角,90°的圆周角所 B 对的弦是直径
【分析】如图所示,连接OC, ∵∠BOC与∠CDB是弧BC 所对的圆心角与圆周角, ∴∠BOC=2∠CDB。 又∵∠CDB=20°,∴∠BOC=40°, 又∵CE为圆O的切线,∴OC⊥CE, 即∠OCE=90°, 则 ∠E=90°﹣40°=50°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.如图 Z4-3,一根横截面为圆形的下水管道的直径为 1 m,管内有少量的污水, 此时的水面宽 AB 为 0.6 m.
图 Z4-3 (1)求此时的水深(即阴影部分的弓形高); (2)当水位上升到水面宽为 0.8 m 时,求水面上升的高度.
解:(1)如答图,作半径 OD⊥AB 于点 C,连接 OB,
图Z4-6
解:(1)如答图,连接 FA, ∵∠FEB=90°,∴EF⊥AB, ∵BE=AE,∴BF=AF, ∵∠FEA=∠FEB=90°,∴AF 是⊙O 的直径, ∴AF=DE,∴BF=ED, 在 Rt△EFB 与 Rt△ADE 中,BE=AE,BF=DE, ∴Rt△EFB≌Rt△ADE;
变式跟进5答图
变式跟进4答图
5.如图 Z4-6,已知 ED 为⊙O 的直径且 ED=4,点 A(不与 E,D 重合)为⊙O 上一个动点,线段 AB 经过点 E,且 EA= EB,F 为⊙O 上一点,∠FEB=90°,BF 的延长线交 AD 的 延长线于点 C. (1)求证:△EFB≌△ADE; (2)当点 A 在⊙O 上移动时,直接写出四边形 FCDE 的最大面 积为多少.
当水位上升到圆心以上时,水面上升的高度为 0.4+0.3=0.7.
综上可得,水面上升的高度为 0.1 m 或 0.7 m.
题型三 圆周角定理的综合 典例 如图 Z4-4,⊙O 是△ABC 的外接圆,∠AOB=70°,AB=AC,则∠ABC= ___3_5_°___. 【解析】 ∵⊙O 是△ABC 的外接圆, ∴∠C=12∠AOB=35°,又∵AB=AC, ∴∠ABC=∠C =35°.
由垂径定理,得 BC=12AB=0.3,
在 Rt△OBC 中,OC= OB2-BC2=0.4,
∴CD=0.5-0.4=0.1,此时的水深为 0.1 m;
(2)当水位上升到圆心以下时,水面宽 0.8 m, 则 OC= 0.52-0.42=0.3,
变式跟进 3 答图
水面上升的高度为 0.2-0.1=0.1;
题型二 垂径定理及其推论 典例 如图 Z4-1,⊙O 的直径 CD=10,弦 AB=8,AB⊥CD,垂足为 M,则 DM 的长为( D )
A.5
B.6
图 Z4-1 C.7
D.8
【解析】 如答图所示,连接 OA,
∵⊙O 的直径 CD=10,∴OA=5,
∵弦 AB=8,AB⊥CD,∴AM=12AB=12×8=4,
专题4 圆的基本性质
题型一 点与圆的位置关系
典例 若⊙O 的半径为 5 cm,平面上有一点 A,OA=6 cm,那么点 A 与⊙O 的位置
关系是( A )
A.点 A 在⊙O 外
B.点 A 在⊙O 上
C.点 A 在⊙O 内
D.不能确定
【解析】 ∵⊙O 的半径为 5 cm,OA=6 cm,∴d>r,
题型四 直线与圆的位置关系
典例 在平面直角坐标系 xOy 中,经过点(sin45°,cos30°)的直线与以原点为圆心,2
为半径的圆的位置关系是( A )
A.相交
B.相切
C.相离
D.以上三者都有可能
【解析】 如答图,设直线经过的点为 A,
在 Rt△AOM 中,OM= OA2-AM2= 52-42=3,
典例答图
∴DM=OD+OM=5+3=8.
【点悟】 已知直径与弦垂直的问题中,常连半径构造直角三角形,其中斜边为圆的
半径,两直角边是弦长的一半和圆心到弦的距离,从而运用勾股定理来计算.
变式跟进 2.[2019·菏泽]如图 Z4-2,AB 是⊙O 的直径,C,D 是⊙O 上的两点,且 BC 平分∠ABD,AD 分别与 BC,OC 相交于点 E,F,则下列结论不一定成立的是
(2)∵Rt△EFB≌Rt△ADE, ∴∠B=∠AED,∴DE∥BC, ∵ED 为⊙O 的直径,∴AC⊥AB, ∵EF⊥AB,∴EF∥CD, ∴四边形 FCDE 是平行四边形, ∴E 到 BC 的距离最大时,四边形 FCDE 的面积最大,即点 A 到 DE 的距离最大, ∴当 A 为弧 DE 的中点时,点 A 到 DE 的距离最大,最大值是 2, ∴四边形 FCDE 的最大面积为 4×2=8.BED
图 Z4-2 B.AD⊥OC D.AF=FD
【解析】 ∵AB 是⊙O 的直径,BC 平分∠ABD, ∴∠ADB=90°,∠OBC=∠DBC, ∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC, ∴∠DBC=∠OCB,∴OC∥BD,选项 A 成立; ∴AD⊥OC,选项 B 成立;∴AF=FD,选项 D 成立; ∵△CEF 和△BED 中没有相等的边,∴△CEF 与△BED 不全等,选项 C 不成立, 故选 C.
∴点 A 与⊙O 的位置关系是点 A 在⊙O 外.
变式跟进 1.若圆的半径为 5,圆心的坐标是(0,0),点 P 的坐标是(4,3),则点 P
与⊙O 的位置关系是( A )
A.点 P 在⊙O 上
B.点 P 在⊙O 内
C.点 P 在⊙O 外
D.点 P 不在⊙O 上
【解析】 由勾股定理得 OP= 32+42=5,∵⊙O 的半径为 5,∴点 P 在⊙O 上.
图Z4-4
【点悟】 (1)在同圆(或等圆)中,圆心角(或圆周角)、弧、弦中只要有一组量相等, 则其他对应的各组量也分别相等,利用这个性质可以将问题互相转化,达到求解或 证明的目的;(2)注意圆中的隐含条件(半径相等)的应用;(3)圆周角定理及其推论, 是进行圆内角度数转化与计算的主要依据,遇直径,要想到直径所对的圆周角是 90°, 从而获得直角三角形;遇到弧所对的圆周角与圆心角,要想到同弧所对的圆心角等 于圆周角的 2 倍以及同弧所对的圆周角相等.
变式跟进 4. [2018·淮安]如图 Z4-5,点 A,B,C 都在⊙O 上,若∠AOC=140°, 则∠B 的度数是( C )
A.70° C.110°
图 Z4-5 B.80° D.140°
【解析】如答图,在优弧 AC 上任取一点 D,连接 AD,CD,则∠ADC =12∠AOC=70°,又∵四边形 ABCD 是圆的内接四边形,故∠B= 180°-∠ADC=110°,故选 C.