有限元法
第1章有限元法简介
Fix uix k ii 0 F v iy iy 0 0 K = = F jx u jx k ji 0 F jy v jy 0 0
k ij 0 uix 1 v 0 0 iy EA 0 l 1 k jj 0 u jx 0 0 0 v jy
钱学森
钱伟长
胡海昌
杨桂通
徐芝伦
软件名称
简介
MSC/Nastran
LS-Dyna MSC/Dytran MSC/Marc ANSYS FLUENT ABAQUS
著名结构分析程序,最初由NASA研制。
动力学分析程序(大多为显式算法) 非线性分析软件 通用结构分析软件(耦合场分析) 流场分析软件 非线性分析软件(非协调单元,非线性 直接解算方法)
令杆件两端节点分别产生单位位移,可以计算产生这样的单 位位移所需要的力,而力的大小就是刚度系数。 EA 首先取 ui 1,u j 0, 此 时 需 要 压 力 ui。 按 照 局 部 坐 标 系 l EA EA 和力的规定, Fi ui,F j ui, 则 l l EA EA ui l k , k
单元2 3
F3 10N
x
考虑y方向的单元刚度矩阵
Fi k ii k ij ui EA 1 1 ui = u l F u k k 1 1 jj j j ji j
若考虑y方向,则有:
——宏观假设
弹性力学的基本假定
2、线弹性(Linear elastic)
物体的变形与外力作用的关系是线性的, 除去外力,物体可回复原状 ,而且这个关系和 时间无关,也和变形历史无关,称为完全线弹 性材料
有限元法概述
大型商用的FEM通用软件分类
目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局(NASA)在1956年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国PAFEC,法 国AYATUS,美国ABAUS、ADNA、ANSYS、BERSAF E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 等。下面仅介绍几种当前比较流行的有限元软件。 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、
电磁场分析、声场分析、压电分析以及多物理场的耦分 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力;后处理的计算结果有多种显示和表达 能力。ANSYS软件系统主要包括ANSYS/Mutiphysics 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 工具、Design Space设计前期CAD集成工具、Design Xploere多目标快速优化工具和FE-SAFE结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、流体力 学、热传导、电磁学、声学和生物学等领域,能够求解由 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。
有限元法介绍
通俗地说,有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。
这项技术带来的好处就是,在图纸设计阶段就能够让人们在计算机上观察到设计出的产品将来在使用中可能会出现什么问题,不用把样机做出来在实验中检验会出现什么问题,可以有效降低产品开发的成本,缩短产品设计的周期。
有限元法也叫有限单元法(finite element m ethod, FEM),是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
五十年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析中,用以求得结构的变形、应力、固有频率以及振型。
由于这种方法的有效性,有限单元法的应用已从线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料,从连续体扩展到非连续体。
有限元法最初的思想是把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。
事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。
理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。
为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。
有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。
大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。
有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。
偏微分方程的有限元法
第五章 偏微分方程的有限元法
有限元法特点有限元法的物理意义直观明确,理论完整可靠。 因为变分原理描述了支配物理现象的物理学中的最小作用原理(如力学中的最小势能原理)。 优异的解题能力。有限元法对边界几何形状复杂以及媒质物理性质变异等复杂物理问题求解上,有突出优点: ① 不受几何形状和媒质分布的复杂程度限制。 ②不必单独处理第二、三类边界条件。 ③ 离散点配置比较随意,通过控制有限单元剖分密度和单元插值函数的选取,可以充分保证所需的数值计算精度。
有限元法于上世纪50年代首先在力学领域-----飞机结构的静、动态特性分析中得到应用,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元法主要用于求解拉普拉斯方程和泊松方程所描述的各类物理场中。
第1页/共106页
第五章 偏微分方程的有限元法
有限元法---变分原理
第4页/共106页
5.1 泛函与变分原理
数学上,通常自变量与因变量间的关系称为函数,而泛函则是函数集合的函数,也就是函数的函数,即自变量为函数,而不是变量。
5.1.1 泛函的定义 泛函通常是指一种定义域为函数,而值域为实数的“函数”。 设C是函数的集合,B是实数集合。如果对C中的任一元素y(x),在B中都有一个元素J与之对应,则称J为y(x)的泛函,记为J[y(x)]。
5.1.3 泛函的变分
定义最简泛函
F(x,y,y’)称为泛函的“核函数”
泛函的变分
最简泛函: 核函数只包含自变量 x、未知函数y(x)以及导数y’(x)
第9页/共106页
5.1 泛函与变分原理
利用二元函数的泰勒展开
第10页/共106页
5.1 泛函与变分原理
其中
分别称为泛函的一阶变分和二阶变分。
有限元法及应用总结
有限元法及应用总结有限元法(Finite Element Method,FEM)是一种数学建模方法,用于求解连续介质的力学问题。
它通过将连续介质分割为有限数量的小单元,通过离散化的方式将连续问题转化为离散问题,然后通过数值计算方法进行求解。
有限元法的基本步骤是:建立初始网格、选择合适的单元类型和数学模型、建立有限元方程、求解有限元方程组、计算和评估结果。
1.建立初始网格:将连续介质分割为离散的小单元。
可以根据问题的特点选择不同形状的单元,如三角形、四边形、六边形等。
初始网格的密度应根据问题的要求进行合理的选择。
2.选择合适的单元类型和数学模型:根据问题的情况,选择合适的数学模型,如线性模型、非线性模型、静力学模型、动力学模型等。
同时,根据问题的要求选择合适的单元类型,如三角形单元、四边形单元等。
3.建立有限元方程:根据选择的数学模型,使用变分原理或其他方法建立有限元方程。
有限元方程通常是一个矩阵方程,包含未知变量和已知条件,通过求解该方程可以得到问题的解。
4.求解有限元方程组:将有限元方程组转换为代数方程组,使用数值计算方法求解。
常用的求解方法有直接解法和迭代解法,如高斯消元法、LU分解法、共轭梯度法等。
根据问题的特点选择合适的求解方法。
5.计算和评估结果:得到问题的解后,可以通过计算和评估结果来验证数值解的准确性和可靠性。
常见的评估方法有误差分析、收敛性分析、模型验证等。
有限元法的应用非常广泛,涉及机械、土木、航空航天、电子、生物医学等多个领域。
通过有限元法可以模拟和分析各类结构的力学行为和变形特性,以及流体、热传导等物理问题。
在机械工程中,有限元法可以用于模拟零件的变形、应力和疲劳行为,优化结构设计,确定最佳工艺参数等。
在土木工程中,可以用于模拟建筑物、桥梁、隧道等结构的稳定性和强度,评估结构的安全性。
在航空航天工程中,可以用于模拟飞机、航天器的疲劳和破坏行为,优化材料和结构设计。
在电子工程中,有限元法可以用于模拟芯片、电路板的热分布和应力分布,优化散热和布线设计。
有限元法PPT课件
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
有限元法,有限差分法,有限体积法
有限元法,有限差分法,有限体积法
有限元法、有限差分法和有限体积法都是数值计算方法,用于求解偏微分方程的数值解。
有限元法是一种将连续问题离散化为有限个简单子问题的方法,将连续的物理问题转化为离散的数学问题,通过求解离散问题得到连续问题的近似解。
它将求解区域分割成有限个小区域,每个小区域内的解用一组基函数表示,通过求解基函数系数得到整个求解区域的解。
有限差分法是一种将偏微分方程中的导数用差分近似表示的方法,将求解区域离散化为有限个网格点,通过差分方程求解得到每个网格点的解,从而得到整个求解区域的解。
有限体积法是一种将偏微分方程中的积分用体积平均值表示的方法,将求解区域离散化为有限个体积元,通过求解体积元上的平衡方程得到每个体积元的解,从而得到整个求解区域的解。
这三种方法各有优缺点,适用于不同类型的问题。
在实际应用中,需要根据具体问题的特点选择合适的数值计算方法。
有限元法介绍
有限元法介绍周宇 2012330300302 12机制(1)班理论研究、科学实验以及计算分析是人们进行科学研究和解决实际工程问题的重要手段,随着计算机技术及数值分析方法的发展,以有限元方法为代表的数值计算技术得到越来越广泛的应用。
有限元法是一种高效能、常用的数值计算方法。
科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。
有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。
一、基本思想有限元方法是一种求解复杂对象方程的方法,基本思想来源于“化整为零”、“化弧为直”的直观思路,将实体的对象分割成不同大小、种类、小区域称为有限元。
根据不同领域的需求推导出每一个元素的作用力方程,组合整个系统的元素并构成系统方程组,最后将方程组求解。
由有限元的发展,该法具有下列的特色:1、整个系统散为有限个元素;2、利用能量最低原理与泛函数值定理(见附录)转换成一组线性联立方程;3、处理过程简明;4、整个区域左离散处理,需庞大的资料输出空间与计算机内存,解题耗时;5、线性、非线性均适用;6、无限区域的问题较难仿真。
二、基本概念1、有限元法是把分析的连续体假想地分割成有限个单元所组合成的组合体;2、这些单元仅在顶角处相互联接,这些联接点称为结点。
离散化的组合体和真实的弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。
但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠——单元之间只能通过结点来传递内力。
通过结点来传递的内力称为结点力,作用在结点上的载荷称为结点载荷。
当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,称为结点位移。
在有限元中,常以结点位移作为基本未知量。
并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理(见附录)或其他方法,建立结点里与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。
有限元法的基本概念和特点
边界条件和载荷对分析结果的影 响
边界条件和载荷的设置直接影响分析结果 的精度和可靠性,因此需要仔细考虑和验 证。
03 有限元法的特点
适应性
有限元法能够适应各种复杂形状和边 界条件,通过将连续的求解域离散化 为有限个小的单元,实现对复杂问题 的近似求解。
有限元法的适应性表现在其能够处理 不规则区域、断裂、孔洞等复杂结构 ,并且可以根据需要自由地组合和修 改单元,以适应不同的求解需求。
降低制造成本。
THANKS FOR WATCHING
感谢您的观看
通过将不同物理场(如结构、流体、电磁等)耦 合在一起,可以更准确地模拟复杂系统的行为。
多物理场耦合分析将为解决复杂工程问题提供更 全面的解决方案面具有重要作用。
通过先进的建模技术和优化 算法,可以更有效地设计出 高性能、轻量化的结构。
有限元法在结构优化方面的应 用将有助于提高产品的性能和
近似性
利用数学近似方法对每个单元体的行 为进行描述,通过求解代数方程组来 获得近似解。
通用性
适用于各种复杂的几何形状和边界条 件,可以处理多种物理场耦合的问题。
高效性
通过计算机实现,能够处理大规模问 题,提高计算效率和精度。
02 有限元法的基本概念
离散化
离散化
将连续的物理系统分割成有限个小的、相互连接的单元,每个单 元称为“有限元”。
随着计算机技术的发展,有限元法的精度不断提高,对于一些高精度要求的问题 ,有限元法已经成为一种重要的数值分析工具。
04 有限元法的应用领域
工程结构分析
01
02
03
结构强度分析
通过有限元法,可以对工 程结构进行强度分析,评 估其在各种载荷条件下的 稳定性。
工程电磁场数值分析(有限元法)
04
有限元法在工程电磁场中的应用
静电场问题
总结词
有限元法在静电场问题中应用广泛,能够准确模拟和预测静电场 的分布和特性。
详细描述
静电场问题是指电荷在静止状态下产生的电场,有限元法通过将 连续的静电场离散化为有限个单元,对每个单元进行数学建模和 求解,能够得到精确的解。这种方法在电力设备设计、电磁兼容 性分析等领域具有重要应用。
单元分析
对每个单元进行数学建模,包 括建立单元的平衡方程、边界 条件和连接条件等。
整体分析
将所有单元的平衡方程和连接 条件组合起来,形成整体的代 数方程组。
求解代数方程组
通过求解代数方程组得到离散 点的场量值。
有限元法的优势和局限性
02
01
03
优势 可以处理复杂的几何形状和边界条件。 可以处理非线性问题和时变问题。
传统解析方法难以解决复杂电磁场问题,需要采用数值分析方法 进行求解。
有限元法的概述
有限元法是一种基于离散化的数值分 析方法,它将连续的求解域离散为有 限个小的单元,通过求解这些单元的 近似解来逼近原问题的解。
有限元法具有适应性强、精度高、计 算量小等优点,广泛应用于工程电磁 场问题的数值分析。
02
静磁场问题
总结词
有限元法在静磁场问题中同样适用,能够有效地解决磁场分布、磁力线走向等问题。
详细描述
静磁场问题是指恒定磁场,不随时间变化的磁场问题。有限元法通过将磁场离散化为有限个磁偶极子,对每个磁 偶极子进行数学建模和求解,能够得到静磁场的分布和特性。这种方法在电机设计、磁力泵设计等领域具有重要 应用。
有限元法的基本步骤
01
有限元法
称为有限元刚度矩阵,但 不能直接求解,需要消去
1行、1列。
2. 一维有限元法
由边界条件对整个问题的代数方程组消元:
由问题的边界条件,第5 个节点电位为0.5V,已知,故消去该节点的方程:5 行5列。必有这一步,实际上原K矩阵行列式的值为0,本质上是找参考电位
5 5
1 0.1
1. 有限元法
上一讲,利用加权余数法和变分法将偏微分方程转化为代数方程组求解
KC f b
kij k ji j i d
f
=
j
jq
d
bj
2
jh
d
通过尝试函数的 选取,近似解满 足1类边界条件,
该矩阵方程包括系数矩阵、激励源矩阵和边界矩阵,而计算这些矩阵的元素 时,常常用到分部积分法。如果为了计算精度而选取很多个尝试函数,那么 计算这些为数众多的分部积分既十分复杂又很费时间,并且很难用计算机进 行数值计算。
2. 一维有限元法
局部系数矩阵的计算
k
e ij
kkieie,1i,i
ke i ,i 1
ke i 1,i 1
f
e i
f
e i
f
e i 1
bie
bbieie1
kiej e j i de
2. 一维有限元法
本例,场域分割成4个单元,5个节点, 求场域内电势分布,转化为求5个节点的 电位即可。 场域内其它点(各单元内)的电位,由5 个节点电位来插值表示。(一阶插值、高 阶插值)
对一 维场域来说,单元就是一个线段; 对二维场域,有限元单元形状可为二角 形、矩形等,单元形状对有限元的简化 有影响,通常为三角形
有限元法_精品文档
12
一、有限元法的基本概念
1.什么是有限元法
我们实际要处理的对象都是连续体,在传统设 计思维和方法中,是通过一些理想化的假定后,建 立一组偏微分方程及其相应的边界条件,从而求出 在连续体上任一点上未知量的值。
25
4)具有灵活性和适用性,适应性强(它可以把形状 不同、性质不同的单元组集起来求解,故特别适 用于求解由不同构件组合的结构,应用范围极为 广泛。它不仅能成功地处理如应力分析中的非均 匀材料、各向异性材料、非线性应力应变以及复 杂的边界条件等问题,且随着其理论基础和方法 的逐步完善,还能成功地用来求解如热传导、流 体力学及电磁场领域的许多问题)
21
对于一个具体的工程结构,单元的划分越小, 求解的结果就越精确,同时,其计算工作量也就越 大。
梯子的有限元模型不到100个方程; 在ANSYS分析中,一个小的有限元模型可能有几 千个未知量,涉及到的单元刚度系数几百万个。 单元划分的精细程度,取决于工程实际对计算 结果精确性的要求。
22
4)有限元分析 有限元分析就是利用数学近似的方法对真实
5)在具体推导运算过程中,广泛采用了矩阵方法。
26
2.有限元法的作用 1)减少模型试验的数量(计算机模拟允许对大量
的假设情况进行快速而有效的试验); 2)模拟不适合在原型上试验的设计(例如:器官
移植、人造膝盖); 3)节省费用,降低设计与制造、开发的成本; 4)节省时间,缩短产品开发时间和周期; 5)创造出高可靠性、高品质的产品。
因为点是无限多的,存在无限自由度的问题, 很难直接求解这种偏微分方程用来解决实际工程问 题,因此需要采用近似方法来处理。
有限元
但在 23 边两端节点仅有二个节点法向导数值,不能唯
一确定 的二次函数,它与单元另一个节点 1 处的变
形有关。
2.2单元刚度矩阵
• 与上节矩形板弯曲单元的推导过程一样,单元刚度矩阵[k]的 计算公式是
• 式中
(2.7)
考虑到
式中
为常数矩阵,上式可改写为
(2.8)
式中
• 根据面积坐标求导公式
• 和
确定。由此证明,相邻单元在共同边界上位移连续, 在单元边界上由于法向
导数是 y(或 x)的三次多项式,而边界两端的两个节点上仅已知两个法向导数,
不能维一确定法向导数,故相邻单元在共同边界上法向导数不连续。
• 将节点坐标 1(-a,-b),2(a,-b),3(a,b),4(-a,b)代入挠度表达式(1.2)及其转 角表达式 中,列出各节点挠度值及转角值与待定系数
• 等等,代回(2.9)式得
(2.11)
左侧小孔固定 右侧小孔下侧受 压力作用
这是一个直角 支架的结构静 力分析的例子
ANSYS中支 架计算模型
ANSYS中计算 模型的网格划 分图
支架应力
彩图
• 及(1.9)式,得内力列阵
(1.14)
式中 为内力矩阵。弹性矩阵 见上页式,
见(1.8)式。 。再由(1.14)
求解线性方程组,就可得到单元节点位移列阵
式求出内力列阵
有 x、y坐标变量,因此内力列阵 有关。
。值得指出的是, 矩阵内含
与计算点的坐标值 x、y
有了计算点(x,y)处的内力列阵,就可计算该处的应力列阵 {σ},考虑到在板表面 处有最大应力,因此
是保证刚体运动条件所必需的,中间三项
是保证常曲
(计算物理学)第10章有限元方法
使用数值方法求解线性方程组,得到每个节点的物 理量值。
03
求解线性方程组是有限元方法的核心步骤,其结果 的精度和稳定性对整个计算过程至关重要。
04
有限元方法的实现与应用
有限元分析软件介绍
COMSOL Multiphysics
COMSOL是一款强大的有限元分析软件, 支持多物理场模拟,包括电磁场、流体动力 学、化学反应等。
求解方程
通过有限元方法求解微分方程, 得到每个有限元的位移、应力 等结果。
建立模型
根据实际问题建立数学模型, 包括几何形状、材料属性、边 界条件等。
施加载荷和约束
根据实际情况,对有限元施加 适当的载荷和约束条件。
结果后处理
对求解结果进行后处理,包括 绘制云图、生成动画等。
有限元方法的应用领域
01
02
案例二:机械零件的应力分析
总结词
机械零件的应力分布和最大承受载荷是设计 时必须考虑的重要因素,有限元方法能够精 确模拟零件在不同工况下的应力状态。
详细描述
利用有限元方法,可以建立机械零件的模型 并模拟其在工作过程中所承受的应力分布。 这种方法能够预测零件在不同工况下的最大 承受载荷,为设计优化提供依据,提高零件
03
结构分析
用于分析结构的应力、应 变、位移等,广泛应用于 航空航天、汽车、土木工 程等领域。
流体动力学
用于分析流体动力学问题, 如流体流动、传热等,广 泛应用于能源、环境等领 域。
ቤተ መጻሕፍቲ ባይዱ
电磁场分析
用于分析电磁场问题,如 电磁波传播、电磁感应等, 广泛应用于通信、雷达、 电子设备等领域。
05
有限元方法的优缺点与改进 方向
03
有限元方法
有限元方法有限元方法(Finite Element Method,简称FEM)是一种基于物理数学原理和工程力学理论的数值计算方法,它广泛应用于工程领域中结构分析、流体力学和热传导等问题的求解。
本文将为读者介绍有限元方法的原理、应用和发展,并探讨其在工程实践中的重要性。
有限元方法的核心思想是将一个连续的物理问题离散化,通过将其分解为许多小的有限单元,利用数值计算的方法来求解整个问题。
因此,所使用的数学模型将物理问题转化成一个由大量独立节点和元素组成的离散系统,并通过求解节点上的未知量(通常是位移或其他物理量)来得到问题的数值解。
有限元方法的工作流程主要包括以下几个步骤:建立物理模型、离散化、确定边界条件、建立刚度矩阵和荷载向量、组装和求解代数方程组、后处理结果。
首先,将真实的物理问题抽象成一个数学模型,包括几何形状、材料性质和加载条件等。
然后,将物理模型离散化为许多小的有限单元,通常是三角形或四边形。
接下来,根据边界条件确定节点的约束和加载条件。
然后,根据离散化后的模型建立刚度矩阵和荷载向量,用于描述各个单元之间的相互作用关系和力的传递。
随后,将每个单元的刚度矩阵和荷载向量组装成整个系统的刚度矩阵和荷载向量。
最后,通过求解代数方程组,得到节点上的位移或其他物理量的数值解,并进行后处理分析,如应力、应变和位移等。
有限元方法在工程实践中具有重要的意义。
首先,它可以帮助工程师和科学家研究和理解各种复杂的物理现象和工程问题。
其次,通过有限元分析,可以在设计阶段对工程结构进行性能预测和优化,提高产品质量和工程效率。
此外,有限元方法还能为工程实践提供快速、准确和经济的解决方案,节约成本和时间。
近年来,随着计算机技术和数值算法的不断发展,有限元方法在计算规模、精度和可视化方面取得了重大突破。
在结构分析领域,有限元方法已经成为工程设计和分析的重要工具。
同时,在流体力学和热传导等领域,也有广泛的应用。
有限元方法的发展使得工程师和科学家能够更好地理解和解决复杂的工程问题。
弹性力学-第5章 有限元法
(a)从上到下建模 从生成体(或面)开始,并结合其它方
法生成最终的形状。
加
用于产生最终形状的合并称为布尔运算
提示: 当生成二维体素时,ANSYS定义一个面及其它所包含 的线和关键点。当生成三维体素时,ANSYS定义一个 体及其所包含的面、线及关键点。 如果低阶的图元连在高阶图元上,则低阶图元不能删除.
§5-2 建模
一. 有限元模型的建立
a.建模的方法 b.坐标系统与工作平面 c.实体建模
1.建模方法
有限元模型的建立方法可分为: (1)直接法
直接根据机械结构的几何外型建立节点和单元,因此直接 法只适应于简单的机械结构系统。
(2)间接法(Solid Modeling)
适用于节点及单元数目较多的复杂几何外型机械结构系 统。该方法通过点、线、面、体积,先建立实体模型, 再进行网格划分,以完成有限元模型的建立。
第五章 有限元法解平面问题
§5-1有限元法简介 一. 有限元法的基本思想
1.将连续的问题域离散为有限数目的单元; 2.单元之间通过节点相连; 3.每一个单元都有精确的方程来描述它如何对一定载 荷去响应; 4.单元内部的待求量可由单元节点量通过选定的函数 关系插值得到; 5.模型中所有单元的响应之和给出设计的总响应。
由于单元形状简单,易于建立节点量的平衡关系和能量关 系方程式,然后将各单元方程集组成总体代数方程组,计 入边界条件后可对方程求解。
二. 有限元法的位移解法 1.有限元法的单元和节点
1.有限元法的单元和节点 2.有限元的基本未知量(DOFs) 3.单元形函数
节点自由度是随 单元类型 变化的。
J 三维杆单元 (铰接) UX, UY, UZ
有限元法的基本原理和应用
有限元法的基本原理和应用前言有限元法(Finite Element Method,简称FEM)是一种常用的数值分析方法,用于求解工程和物理问题。
它能够将一个复杂的问题分解为许多小的、简单的部分,通过数学方法将这些部分逼近为连续函数,并进行求解。
本文将介绍有限元法的基本原理和应用。
基本原理1.离散化:有限元法将连续域分解为多个离散的小单元,这些小单元称为有限元。
离散化可以将复杂问题简化为易于处理的小部分。
每个有限元由节点和单元组成,节点是问题解的近似点,单元是在节点周围定义的几何形状。
2.变量表示:在有限元法中,通过数学函数对变量进行近似表示。
常用的近似函数有线性、二次、三次等。
通过选择合适的形状函数,可以有效地近似解决问题。
3.形成方程:根据物理方程,将离散域中每个有限元的贡献进行求和,形成一个整体方程。
这个整体方程可以是线性方程、非线性方程、常微分方程等。
通过求解这个整体方程,可以得到问题的解。
应用领域有限元法广泛应用于各个领域,包括但不限于: - 结构分析:有限元法可以用来模拟和分析工程结构的强度、刚度和振动等特性。
通过对结构进行有限元分析,可以预测和优化结构的性能。
- 热传导:有限元法可以用来模拟物体内部的温度分布和热传导过程。
通过对热传导问题进行有限元分析,可以优化物体的热设计和散热能力。
- 流体力学:有限元法可以用来模拟和分析流体的流动和压力分布。
通过对流体力学问题进行有限元分析,可以优化管道、风扇等设备的设计。
- 电磁场:有限元法可以用来模拟和分析电磁场的分布和电磁设备的性能。
通过对电磁场问题进行有限元分析,可以优化电磁设备的设计和电磁干扰问题。
有限元法的优点和局限性•优点:有限元法适用于复杂的几何形状和边界条件,并可以考虑多物理场耦合。
它具有较高的灵活性,可以适应各种问题的求解。
•局限性:有限元法的计算精度和效率受到离散化精度和网格剖分的影响。
对于高度非线性和大变形问题,有限元法可能需要更多的时间和计算资源。
有限单元法知识点总结
有限单元法知识点总结1. 有限元法概述有限单元法(Finite Element Method ,简称FEM)是一种数值分析方法,适用于求解工程结构、热传导、流体力学等领域中的强耦合、非线性、三维等问题,是一种求解偏微分方程的数值方法。
有限元法将连续的物理问题抽象为由有限数量的简单几何单元(例如三角形、四边形、四面体、六面体等)组成的离散模型,通过对单元进行适当的数学处理,得到整体问题的近似解。
有限元法广泛应用于工程、材料、地球科学等领域。
2. 有限元法基本原理有限元法的基本原理包括离散化、加权残差法和形函数法。
离散化是将连续问题离散化为由有限数量的简单单元组成的问题,建立有限元模型。
加权残差法是选取适当的残差形式,并通过对残差进行加权平均,得到弱形式。
形函数法是利用一组适当的形函数来表示单元内部的位移场,通过形函数的线性组合来逼近整体位移场。
3. 有限元法的步骤有限元法的求解步骤包括建立有限元模型、建立刚度矩阵和载荷向量、施加边界条件、求解代数方程组和后处理结果。
建立有限元模型是将连续问题离散化为由简单单元组成的问题,并确定单元的连接关系。
建立刚度矩阵和载荷向量是通过单元的应变能量和内力作用,得到整体刚度矩阵和载荷向量。
施加边界条件是通过给定位移或力的边界条件,限制未知自由度的取值范围。
求解代数方程组是将有限元模型的刚度方程和载荷方程组成一个大型代数方程组,通过数值方法求解。
后处理结果是对数值结果进行处理和分析,得到工程应用的有用信息。
4. 有限元法的元素类型有限元法的元素类型包括结构单元、板壳单元、梁单元、壳单元、体单元等。
结构单元包括一维梁单元、二维三角形、四边形单元、三维四面体、六面体单元。
板壳单元包括各种压力单元、弹性单元、混合单元等。
梁单元包括梁单元、横梁单元、大变形梁单元等。
壳单元包括薄壳单元、厚壳单元、折叠单元等。
体单元包括六面体单元、锥体单元、八面体单元等。
5. 有限元法的数学基础有限元法的数学基础包括变分法、能量方法、有限元插值等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【第1章思考题】1、何为有限元法?其基本思想是什么?1)“有限单元法”简称“有限元法”,是借助于电子计算机解决工程问题的近似方法。
2)“化整为零,集零为整”。
也就是将一个原来连续的物体假想地分割成由有限个单元所组成的集合体,简称“离散化”。
然后对每个单元进行力学特征分析,即建立单元节点力和节点位移之间的关系。
最后,把所有单元的这种关系式集合起来,形成整个结构的力学特性关系,即得到一组以节点位移为未知量的代数方程组。
处理后即可求解,求得结点的位移,进一步求出应变和应力2、为什么说有限元法是近似的方法,体现在哪里?p3用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。
3、单元、节点的概念?网格划分中的每一个小部分称为单元。
网格间相互联结点称为节点。
4、有限元法分析过程可归纳为几个步骤?p4结构离散化、单元分析、整体分析5、有限元方法分几种?本课程讲授的是哪一种?从选择基本未知量的角度来看,可分为3类:1、位移法:以节点位移为基本未知量的求解方法称为位移法。
本课程讲授的内容2、力法:以节点力为基本未知量的求解方法称为力法;3、混合法:一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。
位移法6、弹性力学的基本变量是什么?p8何为几何方程p11、物理方程p12及虚功方程?p14弹性矩阵的特点?弹性力学变量:外力、应力、应变和位移。
描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。
弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。
7、何为平面应力问题和平面应变问题p17平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。
b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。
平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。
b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题【第2章思考题】1、何为结构的离散化?离散化的目的?何为有限元模型?结构的离散化:把连续的结构看成由有限个单元组成的集合体②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点?①单元的数量要根据计算精度的要求和计算机的容量来确定,因此在保证精度的前提,力求采用较少的单元。
②节点的布置:a集中载荷的作用点b分布载荷强度的突变点 c分布载荷与自由边界的分界点d支承点e厚度不同或材料不同的区域等都应取为节点。
3、节点总码的编号原则?何为半带宽?半带宽与节点总码的编号有何关系?p21①节点编号时,应注意尽量使同一单元的相邻节点的号码差值尽可能地小些,以便缩小刚度矩阵的带宽,节约计算机存储。
节点应顺短边编号为好②包括对角线在内的半个带状区域中每行具有的元素的个数,③半带宽B=(相关节点编号最大差值+1)*24、何为单元分析?单元分析的目的?p4⑴单元分析的主要任务是推导单元节点力与单元节点位移之间的关系,建立单元平衡方程,形成单元刚度矩阵(2)实质上就是求出单元刚度矩阵。
⑶化整为零,化繁为简的分析方法。
5、何为位移函数?位移函数的收敛准则?(1)选择一个简单函数,近似地表示单元位移分量随坐标变化的分布规律,这种函数称为位移函数。
(2)位移函数必须能反映单元的刚体位移的常数;位移函数必须能反映单元常量应变的一次项;位移函数在单元内要连续,在单元之间的边界要协调。
6、试述选择单元位移函数的一般原则?以6节点三角形单元、8节点四边形单元、10节点四面体单元为例,建立其位移函数多项式?a要考虑到解的收敛性,即要考虑到完备性和协调性的要求。
b在选取位移函数多项式时,还应是所选取的多项式具有坐标的对称性,模式应该与局部坐标系的方位无关,这一性质称为几何各向同性。
c多项式中的项数必须等于或稍大于单元边界上的外节点的自由度数。
通常是取项数与单元的外节点的自由度数相等。
7、形函数的特点?形函数它是坐标x,y的一次函数,与节点坐标有关,与节点位移无关。
8、单元刚度矩阵的性质?①每一个元素物理意义:是单位节点位移分量所引起的节点力分量。
②是对称矩阵。
③每一行(或列)元素之和为零。
是奇异矩阵,④的元素决定于单元的形状、大小、方位和弹性常数,而与单元的位置无关,即不随单元(或坐标轴)的平行移动或作(n为整数)角度的转动而改变。
9、结构整体刚度矩阵的集成方法?1)先对每个单元求出其单元刚度矩阵,以分块形式按节点编号顺序排列。
2)将单元刚度矩阵扩大阶数为2n×2n,并将单元刚度矩阵中的分块矩阵按局部码与总码的对应关系,搬到扩大后的矩阵中,形成单元贡献矩阵 3)将所有单元贡献矩阵同一位置上的分块矩阵简单叠加成总体刚度矩阵中的一个子矩阵,各行各列都按以上步骤即形成总体刚度矩阵。
10、整体刚度矩阵的性质?何为稀疏性?为什么整体刚度矩阵具有稀疏性?1)整体刚度矩阵是对称矩阵。
2)整体刚度矩阵的主对角线上的元素总是正的。
3)整体刚度矩阵是一个稀疏阵。
4)整体刚度矩阵是一个奇异阵稀疏性:整体刚度矩阵中非零元素少,零元素多。
大型结构离散后节点很多,而某一节点仅与周围少数单元节点相关,因此整体刚度矩阵中存在大量零元素,节点越多整体刚度矩阵越稀疏。
11、针对有限元网格模型,形成整个结构的节点载荷列阵和节点位移列阵?12、何为绕节点平均法或两单元平均法?1)把环绕该节点的各单元应力加以平均,视为该节点的应力。
2)把相邻两单元应力的平均值作为公共边中点的应力。
13、矩形单元与三角形单元比较有哪些特点?①矩形单元为双线性位移模式,所以单元的应力、应变分量都不是常量。
②在弹性体中,若用相同数目的节点时,矩形单元比三角形单元能更好地反映应力急剧变化的情况,所以计算精度高。
但矩形单元也存在明显的缺点:从单元的几何形状看,矩形单元比三角形单元的适应性要差1、四面体单元是否是常应变和常应力单元?单元刚度矩阵有多少个元素?1)是2)1442、何为轴对称问题?为什么该问题可以转化为二维问题?1)结构的几何形状、承受的载荷以及约束条件都对称于某一固定轴。
此时在载荷作用下,结构所产生的位移、应变和应力也对称于该轴,这类问题称为轴对称问题。
2)由对称性可知,所有的位移、应力、应变都将与无关,只是r和z的函数。
任一点的位移只有r、z两个方向的分量即w、u、。
因此该问题转化为二维问题。
1、等参数单元的定义?p69形状不规则的实际单元,称为等参数单元2、采用等参数单元有何优点?①单元能很好地适应曲线边界和曲面边界,准确地模拟结构形状;②这种单元具有较高次的位移模式,能更好地反映结构的复杂应力分布情况,即使单元网格划分比较稀疏,也可以得到比较好的计算精度1、ANSYS软件的功能?Ansys软件是有限元分析软件。
2、ANSYS交互界面环境包括几个窗口?两个窗口:一个是交互界面主窗口,另一个是信息输出窗口3、ANSYS程序退出前,有提示退出前的选取操作,每一个选项的意义。
Save Geom+Loads:存储几何与载荷数据。
Save Geo+Ld+Solu:存储几何、载荷与求解数据。
Save Everything:存储所有数据。
Quit-No Save:不存储任何数据。
4、ANSYS主菜单中有几种主要处理器?各自的功能是什么?(1)前处理器(Preprocessor):建立有限元模型。
(2)求解器(Solution):施加载荷并获得求解。
(3)通用后处理器(General Postprocessor):获得某时刻整个模型的结果。
(4)时间历程后处理器(Time Hist Postpro):处理模型上某位置点的结果随时间变化情况。
5、在工具菜单中包含哪些子菜单项?包含文件管理、选择、列表、绘图、图形控制、工作平面、参数控制、宏、菜单控制及帮助系统等子菜单项。
6、在大多数ANSYS对话框中,一般都有两个执行按钮,即OK与Apply,它们的用法?单击OK按钮,执行操作并关闭该对话框。
单击Apply按钮,执行操作并重新弹出该对话框,以便重复执行当前操作。
7、图形变换对话框的作用?在ANSYS中默认的视图方位?(1)以便快速观察各种方位、比例和大小的图形信息,对各实体对象进行选择、拾取、查询等操作。
图形变换涉及图形窗口选择,各方向视图,图形放大、缩小、平移、旋转、单次旋转角度等。
(2)默认的视图方位是主视图方向,即从Z轴正向观察模型。
8、ANSYS常用的坐标系有几种?启动ANSYS,最初的默认激活坐标系是何种坐标系?总体坐标系和局部坐标系分几种?(1)7种总体坐标系,局部坐标系,工作平面,显示坐标系,节点坐标系,单元坐标系,结果坐标系(2)最初的默认激活坐标系总是总体直角坐标系(0号CS)(3)总体坐标系分四种总体直角坐标系(0)、总体柱坐标系(1)、总体球坐标系(2)、总体柱坐标系(5);局部坐标系也分四种有直角坐标、柱坐标、球坐标和环坐标系9、何为ANSYS的总体坐标系?局部坐标系?局部坐标系如何编号?总体坐标系:用于确定几何结构的空间位置,是绝对参考系局部坐标系是在总体坐标系中创建的固定坐标系,可以指定为某单元或节点的坐标系,很多情况下用户必须创建自己的坐标系。
局部坐标系的编号必须是大于或等于11的整数10、何为ANSYS的工作平面?如何显示工作平面?(1)在总体坐标系中可以任意移动和旋转的流动坐标系(2)菜单路径:Utility Menu>Work Plane>Display Working Plane 此时该菜单为显示状态,在总体坐标系上重合显示工作平面坐标架WX-O-WY11、标准的ANSYS有限元分析过程一般包括几个步骤?1.ANSYS分析的开始准备工作2.建立模型3.施加载荷并求解4.查看分析结果12、默认的文件名是什么?默认的文件名是File13、何为ANSYS的工作路径?工作路径是ansys进行有限元分析时用于储存各种数据的系统路径。
14. 试述采用ANSYS软件,对带孔薄板进行静力分析的过程及具体步骤?1,清空数据库并开始新分析;2,指定新的工作文件名;3,指定新的工作路径;4,指定新标题;5,选择定义单元类型;6,定义实常数;7,定义材料属性;8,创建几何模型;9,划分单元获得网格模型;10,模型检查;11,选择分析类型并设置分析选项;12,设置载荷步选项;13,施加载荷;14,执行求解;15,查看分析结果;16,分析处理并评估结果1、ANSYS几何实体建模的思路(方法)有几种?两种①自底向上的几何实体建模②自顶向下的几何实体建模2、何为布尔运算?拖拉?①布尔运算是对生成的实体模型进行求交,相加,相减等逻辑运算处理。