计算方法:数值积分共30页文档
第3章 数值积分法
式中,
第3章 数值积分法 3.2.2 辛普生求积公式 如果用二次插值多项式——抛物线 y=g(x) 所围成的曲边梯形 面积近似替代 y=f(x) 所围成的曲边梯形的面积,这时所得积分公 式称为辛普生公式
同前理,将区间 [a, b] 经 k 次等分,得 n=2k 个子区间,则 计算精度得以进一步改善的复合辛普生求积公式为
(2)载流螺线管的磁场
设内、外半径为 r1 与 r2,管长为h的载流螺线管线圈,如图 3-8 所示,显 然,其磁场分布同样具有轴对称场特征。在圆柱坐标系下,取轴对称平面ρOz 为分析场域(见图 3-9)。将载流为I的n匝螺线管看作无限多个环形载流为 dI (=JdS)的线圈的组合,则对应于式(3-47)、式(3-49)可得载流螺线管 磁场在任意场点P处的磁感应强度BP的两个分量分别为
第3章 数值积分法
为提高数值积分的计算精度,可再继续将区间分半,即令 k=2, k=3,…,从而通过所谓复合求积方法的应用,以改善 求积精度。具体说来,复合梯形求积公式为
显然,若当积分区间 [a,b] 为 n=2k 等分时,其结果尚不 够精确,则 如上所述,可把每个子区间再对半分,得 2n=2k+1 个子区间,分别应用梯形公式计算。但注意到算 Tn 时的分点 也是算 T2n 时的分点,故编程计算 T2n 时,只需把新分点上的 函数值算出加到 Tn 中去即可,得
在平行平面场中,按所设定的直角坐标系,如前所述,当 给定场源 J=Jzez,则场中各点的向量磁位 A=Azez=Aez。由此即 得相应的磁感应强度的分量为
第3章 数值积分法 将以上结果代入式(3-38),便得
由此可见,在平行平面磁场中, A等于定值的轨迹即为B线。 显然,以等A线来描绘B线能 极大地简化场图的绘制。为使 B线的分布密度能定量地描绘 出磁场分布的强弱,还必须遵 循相邻两磁力线间的磁通量 ΔΦ相等的原则。以图3-5所示 长直载流导线的磁场为例,通 过单位轴向长度(Δz=1)的磁 通量ΔΦ为
数值积分-计算方法
(k=0,1,…,n) 作代换x=a+th带入上式,变为: 其中:
(k=0,1,…,n) (1-1) 这个积分是有理多项式积分,它与被积函数f(x)和区间[a,b]无关。
只要确定n就能计算出系数
。 于是得到称为Newton—Cotes公式的求积公式: (1-2) 其中
称为Newton—Cotes系数。如表1所示。 表1 Newton—Cotes系数
§3.1计算n阶求积公式
若有m次代数精度,对(k=0,1,…)应有
而。
§3.2 Gauss求积公式的基本原理
更一般形式: (2-1) 为权函数,设>0,且在[a,b]上可积,构造n阶求积公式:
(2-2) 积分点使得(2-2)式达到2n+1次代数精度,则积分点称为Gauss 点,(2-2)式称为Gauss求积公式。
§2Newton—Cotes公式 §2.1Newton—Cotes公式的推导
当§1.1插值求积公式的插值节点为等距节点时,就得到Newton— Cotes公式。
将区间[a,b]n等分,,n+1个节点为 xk=a+kh (k=0,1,…,n)
在节点上对f(x)的Lagrange插值多项式是:
用Pn(x)代替f(x)构造求积公式: 记
y=(1-1/2*(sin(x)).^2).^(1/2); 在Matlab工作窗口中调用函数:
y2=gauss2('gaussf',0,pi/2) 运行结果为:
y2= 1.3508
第5章 结论
通过以上变成和计算,得到所求的两组积分:
应用Newton—Cotes积分公式所求的结果分别是 y1=1.5078,y2 = 1.3506,而应用Gauss-Legendre方法所求得的结果分别是y1=1.5705 和 y2= 1.3508。单从结果上看,我们也能看出,Newton—Cotes积分公式 和Gauss-Legendre积分公式在精度上的确存在着差异(两者n的取值不 同)。而结果上的差异来源很明显是插值积分在近似替代时产生的,结 合第1章理论依据的内容,Newton-Cotes积分公式的精度最高可达n+1 次,Gauss-Legendre积分公式的精度为2n+1次,由此可知,当n相同 时, Gauss -Legendre积分公式比Newton—Cotes积分公式具有更高的 代数精度。而就本题而言Gauss -Legendre积分公式具有5次代数精度, Newton—Cotes积分公式也具有5次代数精度。因此二者所求积分只存在 微小的差异,结果都比较准确。
计算方法 第5章 数值积分与数值微分
第五章 数值积分与数值微分在高等数学中我们学过定积分⎰badx x f )(的计算方法,若找到被积函数)(x f 在],[b a 区间上的一个原函数)(x F ,利用Newton-Leibniz 公式⎰-=baa Fb F dx x f )()()(可以轻易得计算出积分值,但在实际问题中,往往会遇到一些困难。
1) 有些函数虽然能找到原函数, 但表达式过于复杂,例如411)(x x f +=的原函数为 )]12arctan()12[arctan(2211212ln 241)(22-++++-++=x x x x x x x F2) 有些函数找不到初等函数形式的原函数,例如积分⎰⎰-1102,sin dx edx x x x3) 有些情况下,函数值是用表格形式给出的,例如:6.1178.876.651.496.364.275.203.1587654321y x对于以上这些积分问题,解决的方法就是使用数值积分方法。
其实数值积分方法不仅可以解决上述问题,最为重要的优点是对任意被积函数任意积分区间的积分问题都可以采用统一的数值积分公式,非常便于计算机编程实现。
对于微分问题,虽然对每一个初等函数都可以求出其导数,但是不同函数其求导方法依赖于各自不同的求导公式,没有简单、统一的处理方法,而数值微分法却可以对不同的函数使用统一的数值微分公式或数值微分算法。
本章首先介绍一些数值积分公式,最后再简单的介绍数值微分问题。
5.1 数值积分公式1. 数值积分的基本思想我们知道定积分⎰badx x f )(的几何意义就是{})(,0,,x f y y b x a x ====所围成的曲边形面积,而数值积分的基本思想是利用函数)(x f y =在区间],[b a 上某些点处函数值的线性组合来计算其定积分的近似值,把计算定积分这一复杂问题转换为仅仅涉及到函数值的计算问题,而无需考虑函数本身的结构以及函数值的真实来源,这样就很便于计算机编程实现。
数值积分
W(x) W(x 0) W(x 1) W(x2 ) W' (x 1) 0, x xi, i 0,1,2.
类似于上面对插值误差的讨论,在区间内至少有一点,使
(4)
W
整理上式,得到
0
(x x 0)(x x 1) 2 (x x 2) (4) f(x) G 3(x) f ( ), x 0 x 2. 4!
于是,由式(1.8)得到
(x x 0)(x x 1) 2 (x x 2) (4) E 2 [f(x) N 3(x)] dx f (ξ ) dx x0 x0 4!
x2 x2
因子(xx0)(xx1)2(xx2)在区间[x0,x2]内不会变号,故可以应用广 义中值定理,即在[x0,x2]内存在,使
(1.11)
所以,辛卜生公式的误差项为 1 5 (4) E2 h f ( ), x0 x2 90
(1.12)
Newton-Cotes公式的代数精度
定理: 由(n+1)个相异节点x0 、x1 、…x n构造的求积公式的代
数精度至少为n。
证明:记Ln(x)为x0,x1,x2...xn的Lagrange 插值多项式,即Ln ( x ) 因为 f ( x ) L ( x ) n
x
x3
0
3h P 3(x) (f 0 3 f 1 3 f 2 f 3) 8
(1.4)
当n=2时,为抛物线公式
b
a
ba ab f ( x)dx ( f (a) 4 f ( ) f (b)) 6 2
y
y=P2(x) y=f(x)
0
x0
x1
数值计算中的数值积分方法
数值计算中的数值积分方法数值计算是应用数学的一个分支,它主要涉及数值计算方法、算法和数值实验。
其中,数值积分作为数值计算中的一个重要环节,其作用在于将连续函数转化为离散的数据,从而方便计算机进行计算和处理。
本文将介绍数值积分的概念、方法和应用。
一、数值积分的概念数值积分是利用数值方法对定积分进行估计的过程。
在数值积分中,积分被近似为离散区间的和,从而可以被计算机进行处理。
数值积分中,被积函数的精确的积分值是无法计算的,而只能通过数值方法进行估计。
数值积分的目的是通过选取合适的算法和参数来尽可能减小误差,达到精度和效率的平衡。
二、数值积分的方法1. 矩形法矩形法是数学上最简单的数值积分方法之一。
矩形法的算法是将要积分的区间分为若干个小区间,然后计算每个小区间中矩形的面积,最后将所有小矩形的面积加起来得到近似的积分值。
矩形法的精度一般较低,适用于计算不需要高精度的函数积分。
2. 梯形法梯形法是数值积分中常用的一种方法,其原理是将区间分为若干个梯形,并计算每个梯形的面积,最后将所有梯形的面积加起来得到近似的积分值。
梯形法的计算精度较高,但其计算量较大。
3. 辛普森法辛普森法是数值积分中一种高精度的方法,它是利用二次多项式去估计原函数。
辛普森法的原理是将区间分为若干等分小区间,并计算每个小区间中的二次多项式的积分值,最后将所有小区间的积分值加起来得到近似的积分值。
辛普森法的优点是其精度高,计算量相对较小。
三、数值积分的应用数值积分方法在各个领域都有广泛的应用。
例如,它可以被用于工程学、物理学和金融学中的数值计算。
在工程学中,数值积分被用于数值模拟和计算机辅助设计中。
在物理学中,数值积分则被用于数值求解微分方程和计算机模拟等领域。
在金融学中,数值积分则被应用于计算复杂的金融模型和风险分析。
总之,数值积分方法是数学和计算机科学中非常重要的一部分。
通过不同的数值积分方法来近似计算定积分,我们能够利用计算机更加高效地进行数学计算和数据分析,从而使得数学和物理等学科的研究者能够更加快速地得出准确的结果。
数值计算方法数值积分与微分方程数值解
数值计算方法数值积分与微分方程数值解数值计算是计算数值结果的一种方法,广泛应用于科学、工程和金融等领域。
数值计算方法涉及到估算数学问题的解,其中包括数值积分和微分方程数值解。
本文将分别介绍数值积分和微分方程数值解的基本原理和常用方法。
一、数值积分数值积分是通过数值计算方法来估计函数的积分值。
积分是数学中的重要概念,广泛应用于物理、经济等领域的问题求解中。
传统的积分计算方法,如牛顿-柯特斯公式和高斯求积法,需要解析求解被积函数,但是对于大多数函数来说,解析求解并不容易或者不可能。
数值计算方法通过离散化被积函数,将积分问题转化为求和问题,从而得到近似的积分结果。
常见的数值积分方法包括梯形法则、辛普森法则和复化求积法。
1. 梯形法则梯形法则是最简单的数值积分方法之一。
它将积分区间划分为若干个小区间,然后在每个小区间上用梯形的面积来近似原函数的面积,最后将所有小区间的梯形面积相加得到近似积分值。
2. 辛普森法则辛普森法则是一种比梯形法则更精确的数值积分方法。
它将积分区间划分为若干个小区间,然后在每个小区间上用一个二次多项式来近似原函数,最后将所有小区间的二次多项式积分值相加得到近似积分值。
3. 复化求积法复化求积法是一种将积分区间进一步细分的数值积分方法。
通过将积分区间划分为更多的小区间,并在每个小区间上应用辛普森法则或者其他数值积分方法,可以得到更精确的积分结果。
二、微分方程数值解微分方程是描述自然现象中变化的数学模型。
求解微分方程的解析方法并不适用于所有的情况,因此需要利用数值计算方法来估计微分方程的解。
常见的微分方程数值解方法包括欧拉法、改进的欧拉法、龙格-库塔法等。
1. 欧拉法欧拉法是最简单的微分方程数值解方法之一。
它通过将微分方程离散化,将微分运算近似为差分运算,从而得到微分方程的近似解。
2. 改进的欧拉法改进的欧拉法是对欧拉法的改进。
它通过使用两个不同的点来估计微分方程的解,从而得到更精确的近似解。
计算方法_数值积分
复习
求定积分 I b f(x )dx a 若函数f(x)在区间[a, b]上连续且其原函数为F(x) , 则可用牛顿―莱布尼兹公式,来求定积分。
b
a
f
( x)dx
F
(b)
F
(a)
(5―1)
第5章 数值积分
被积函数f(x)的原 函数F(x)不易找到
sin x , 1 x ln x
f
(b)]
其中xk=a+kh
(k=0,1,2,…,N),
h
ba N
2.复合Simpson公式
如果在每个子区间上使用Simpson公式,就得到复
合Simpson公式。将N等分后的每个子区间再对分一次,
于是共有2N+1个节点,xk 在每个N等分的子区间[x2k ,
ak x2k+2]
h (k=0,1,2,…,2N), (2k=0,1,2,…,N-1)上应
n
Ln (x) f (xk )lk (x)
k 0
于是 令 则有
I
b
a
f
(x)dx
abLn
(x)dx
n
(abl
k
(x)dx)
f
(xk
)
k 0
Ak
bl
a
k
( x)dx
b( n x x j )dx a j0 xk x j
jk
b
a
f
( x)dx
n
Rn
(
f
)
(n
1 1)!
b a
数值积分方法
(b a)3 12n 2
f (),
[a,b]
5.2.2 复化Simpson公式:
★ 计算公式
将[a, b] 2m 等分, m 为积分子区间数,记 n = 2m,n+1
为节点总数 ,h = xi+1- xi= (b -a)/n, xi = a + ih,
i = 0,1,2,…,n,
在[a, b]上恒为正时,f ( x)在[a, b]上为凹,表示梯形的面积大
于曲边梯形的面积,此时(5.2)式计算出的值比积分
b
f ( x)dx
a
的值大.
二、Simpson公式 n=2时的求积公式
将 [a, b] 二 等分,等分节点 x0 = a ,x1 = (a +b)/2,
x2 = b 作为积分节点,构造二次Lagrange插值多
b x bdx 1 (b a) a ab 2
1
b
a l1( x)dx
b x adx 1 (b a) a ba 2
b
a
f
( x)dx
ba 2
f
(a)
f
(b)
T(f)
(5.2)
这是用线性插值函数代替被积函数导出的定积分近 似计算公式,称为梯形数值积分公式。
第五章 数值积分方法
问题提出
计算
I
b
f ( x)dx
F(a) F(b)
a
但是在许多实际问题经常遇到下列情况:
(1)原函数存在但不能用初等函数表示;
(2)原函数可以用初等函数表示,但结构复杂;
(3)被积函数没有表达式,仅仅是一张函数表。
第五章 数值积分
第五章 数值积分—2
背 景
《 计 算 方 法 》
定积分定义
设
f(x) 是定义在[a,b]上的函数。在(a,b)中任意插入 若干分点 a= x0 < x1 < < xn =b 来划分区间[a,b]。 在每个部分区间[ xi-1 , xi ]中任取一点i,做和式
f ( ) x ,其中 xi xi xi 1 , max{ x }。 若 lim f ( ) x 存在,且此极限值不依赖于i
第五章 数值积分—14
令:C
《 计 算 方 法 》
(n) i
(1)ni n i ! (n i)!
( n) i
n
0
t (t 1)(t n) dt t i
(5.10)
Ai (b a)C
b
a
f ( x)dx (b a)
Ci( n ) f ( xi )
解:利用梯形求积公式
1
0.5
1 0.5 xdx ( 0.5 1) 2 0.4267767
第五章 数值积分—18
《 计 算 方 法 》
利用抛物线求积公式 1 1 0.5 0.5 xdx 6 ( 0.5 4 0.75 1) 0.43093403 利用牛顿-科茨公式
f ( x)dx
a
b
b
a
P2 ( x)dx
b
a
R2 ( x)dx
ba ab ( f (a) 4 f ( ) f (b)) 6 2 (3) b f ( ) ab ( x a )( x )( x b)dx a 3! 2
计算方法 2数值积分
a x0 x1 xn b
作f (x)的n 次插值多项式:
4
Ln ( x)
其中
f (x
k 0
n
k
)lk ( x)
lk ( x)(k 0,1,, n)
为n 次插值基函数。用 Ln(x) 近似代替被 积函数f (x),则得
a f ( x)dx a Ln ( x)dx
记
Ck( n )
n (1) nk t (t 1) (t k 1)(t k 1) (t n)dt 0 n k!(n k )!
(2.1)
19
则
Ak b a Ck( n )
于是,由(1.3)就可写出相应的插值
型求积公式
b
a
f ( x)dx b a Ck( n ) f ( xk ) (2.2)
算意义。由插值型求积公式的余项(1.4) 易得
定理1 含有n +1个节点 xk (k=0,1,…,n )的
插值型求积公式(1.3)的代数精 度至少为n .
16
§2 牛顿—柯特斯公式
在§1 中,介绍了插值型求积公
式及其构造方法。在实际应用时,考 虑到计算的方便,常将积分区间等分
之,并取分点为求积分节点。这样构
xk a kh, (k 0,1,, n)
其中
ba h n
31
称为步长,然后在每个小区间[ xi-1,xi ] 上应用梯形公式(2.3),即
xk
xk 1
f ( x)dx
h f xk 1 ) f ( xk 2 (k 1, 2, n)
就可导出复合梯形公式
1 8 16 45 25 144 34 105
计算机方法-数值积分
14
算例: 试确定下面积分公式中的参数使其代数精确度尽量高.
I
h 0
h f ( x )dx [ f (0) f ( h)] ah2 [ f (0) f ( h)] I 2
0
解:
f ( x) x
I
h
0
x 0dx h
I2 h
f ( x ) x1 f ( x) x 2
有 特别地:当 x
x1 x0
f ( x)dx
x1 x0
L2 ( x)dx
1 ( x0 x1 ) ,于是, 2
x1 x0
( x1 x0 ) x0 x1 f ( x )dx f ( x0 ) 4 f ( ) f ( x1 ) 6 2
Simpson公式
n
Ak
Ak
b a
k j
( x x j ) ( xk x j )
dx
由 节点决定, 与 f (x) 无关。
19
§5.1.4 插值求积法 - 余项
误差:
R[ f ] f ( x)dx Ak f ( xk )
b a k 0
n
[ f ( x) Ln ( x)]dx Rn ( x)dx
a f ( x)dx F (b) F (a)
其中 F(x) 是 f (x) 的原函数之一,可用不定积分求得.
b
问题
被积函数 f (x) 是用函数表格提供; f(x) 极为复杂,求不出原函数; 大量函数的原函数不容易或根本无法求出.
0 e
1
x2
dx
sin x 0 x dx
1
数值积分方法与应用
数值积分方法与应用数值积分方法是一种数值计算技术,用于计算函数在给定区间上的定积分。
在实际应用中,我们经常会遇到无法通过解析方法求解的定积分,这时候就可以借助数值积分方法来进行近似计算。
本文将介绍数值积分的基本原理、常用方法以及在实际问题中的应用。
一、基本原理在介绍数值积分方法之前,我们先来回顾一下定积分的几何意义。
对于函数f(x),在区间[a, b]上的定积分∫[a, b]f(x)dx表示函数f(x)在区间[a, b]上与x轴之间的面积。
当函数f(x)是非常复杂的时候,我们往往无法通过解析方法求解定积分,这时候就需要借助数值积分方法进行近似计算。
数值积分方法的基本原理是将积分区间分割成若干个小区间,然后在每个小区间上选取一个节点进行函数值的采样,最后通过对这些采样值的加权和来近似表示定积分的值。
常用的数值积分方法包括Newton-Cotes公式、Gauss求积法等。
二、常用方法1. Newton-Cotes公式Newton-Cotes公式是最简单的数值积分方法,其基本思想是将积分区间均匀分割成若干个小区间,然后在每个小区间上取若干个节点进行函数值的采样。
最常见的Newton-Cotes公式为梯形公式和Simpson 公式。
梯形公式是将积分区间[a, b]分割成n等分,然后在相邻两个节点上计算函数值,最后通过梯形面积的加权和来近似表示定积分的值。
Simpson公式是将积分区间[a, b]分割成2n等分,然后在每个子区间的两个端点和中点上计算函数值,最后通过三次多项式的插值来近似表示定积分的值。
2. Gauss求积法Gauss求积法是通过选取一定的节点和权重来提高数值积分方法的精度。
其基本思想是在给定区间上选取一些特定的节点和权重,然后通过这些节点和权重的组合来构造一个更高阶的数值积分公式。
Gauss求积法的优点是可以通过适当选择节点和权重来提高数值积分的精度,适用于高阶多项式的数值积分。
三、应用案例数值积分方法在科学计算、工程建模等领域有着广泛的应用。
计算方法 第5章 数值积分
(7―1)
2020/1/11
2
公式(7―1)虽然在理论上或在解决实际问题中 都起了很大的作用,但它并不能完全解决定积分 的计算问题。因为定积分的计算常常会碰到以 下三种情况:
(1)被积函数f(x)的原函数F(x)不易找到。许多
很简单的函数,例如
sin x , 1 , ex2 x ln x
2 0
(s 1)(s 2)ds 1 6
C ( 2 ) 1
1 2
2 0
s(s 2)ds 4 6
C ( 2 ) 2
1 4
2 0
s(s 1)ds 1 6
b f (x)dx b a [ f (a) 4 f ( a b) f (b)]
a
6
2
这是抛物线(Simpson)公式。
C (1) 0
1 0
(s 1)ds 1 2
C (1) 1
1 0
sds 1 2
此时式(7―10)为
b f (x)dx b a [ f (a) f (b)]
a
2
(7―12)
这是梯形公式。
2020/1/11
25
当n=2时,可得
于是
C ( 2 ) 0
1 4
k i
Rn
(
f
)
(n
1 1)!
b a
f (n1) ( )n1(x)dx
(7-8) (7-9)
我们称
b
n
f (x)dx
a
ai yi
i0
(7-10)
为牛顿―柯特斯(Newton-Cotes)求积公式,Rn(f)为 牛顿―柯特斯求积公式的余项。
数值计算方法 数值积分基本公式 - 数值积分基本公式
求
积 公 式
? 存在的问题
1.插值型求积公式的求积系数当节点不等 距时很难求得;
2.误差表达式中的不确定点的处理有难度
4
设 将 积 分 区 间a , b n等 分 , 记 步 长h b a ,
n
牛
选 取 等 距 节 点xk a kh
顿 - 柯 特 斯
将xk
a
kh, h
b
a n
,
x
a
th代 入 求 积 公 式 得 :
当 n 2时 , 这 时 柯 特 斯 系 数 为
C
2
0
1 4
2 t 1t 2dt 1 ,
0
6
C
1
2
1 2
2 tt 2dt 4 ,
0
6
C
2
2
1 4
2 tt 1dt 1 .
0
6
这时的求积公式为:
S
ba 6
f
a
4
f
a
2
b
f
b
辛普森公式的误差
取 H 3(a) f (a), H 3(b) f (b),
H
3
(
a
2
b
)
f
(
a
2
b
),
H
3
(
a
2
b
)
f ( a b ) 2
误差估计
根 据H ermite 插 值 余 项 :
b
b
nb
a f ( x )dx a Ln ( x )dx a lk ( x)dx f ( xk )
k0
求 积 公
注意到:Ak
b
a lk ( x)dx
数值积分方法课件
通过数值积分方法,可以对物体的传热过程进行精确 分析。
在金融计算中的应用
01
股票价格预测
数值积分方法可以用于预测股票 价格的变动趋势,为投资决策提 供支持。
02
03
风险管理
精算学
在金融风险管理中,数值积分方 法可以用于评估投资组合的风险 水平。
在精算学中,数值积分方法可以 用于计算生命保险、养老保险等 保险产品的精算现值。
THANKS
感谢观看
按照被积函数的特征分类
可以分为有理函数的积分、无理函数的积分、超越函数的积分等。
02
常见数值积分方法
矩形法
总结词
简单、易理解、精度低
详细描述
矩形法是一种简单的数值积分方法,其基本思想是将积分区间划分为一系列小的矩形,然后用每个小 矩形的面积近似代替该区域的积分。该方法易于理解和实现,但精度较低。
分。
Gauss-Legendre积分法
03
精度高,计算量较大,适用于求解具有特定形状的积
分。
适用范围与场景
梯形法则
适用于简单的一维函数不定积分,如常数函 数、三角函数等。
Simpson法则
适用于具有对称性的积分,如奇函数或偶函数的积 分。
Gauss-Legendre积分法
适用于求解具有特定形状的积分,如圆环域 、球域等。
常见的数值积分公式包括梯形法则、辛普森法则 、高斯积分等。
数值积分的重要性
解决实际问题
数值积分被广泛应用于各种实际问题中,如物理学、工程学、经济学等。
理论计算基础
数值积分也是许多理论计算的基础,如微分方程、偏微分方程的求解等。
数值积分的分类
按照所使用的数值方法分类
计算方法数值积分教学PPT
ji
Rn ( f )
b a
f (n (n
1) ( )
1)!
n
1
(
x
)
dx
b f ( x)dx
a
n
f ( xi )ai(n) Rn ( f )
i0
}
推导具体计算公式
由
ai(n)
b a
jn x x j dx, j0 xi x j
ji
xi a ih, x j a jh, ba
5888/ 28350
-928/ 28350
10496/ 28350
-4540/ 28350
10496/ 28350
例如:n=2时,有
c(2) 0
1 6
,
c(2) 1
4 6
,
c(2) 2
1 6
n=3时,有
c(3) 0
1 8
,
c(3) 1
3 8
,
c(3) 2
3 8
,
c(3) 3
1 8
-928/ 28350
a
( i
n)
i!
(1)ni (n i)!
hn
n 0
n
(s
j0 ji
j) hn hds
(1)ni (b a)
i! (n i)!
n 0
n
(s
j0 ji
j ) ds
a(n) i
(b
a)
c(n) i
,
ci(n)
(1)ni i! (n i)!
n 0
n
(s
j0
j ) ds
ji
}
由
}
5.1.1 牛顿-柯特斯求积公式的构造
数值积分课件 (《计算方法》)讲解共83页
36、殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈