第九章透射电子显微镜优秀课件
合集下载
透射电子显微镜原理及结构课件
观察与记录系统
荧光屏
将投影镜输出的像投影在荧光屏 上,便于观察。
摄像机
将荧光屏上的图像拍摄下来,记录 并传输至计算机进行后续处理。
图像处理软件
对摄像机拍摄的图像进行数字化处 理,如调整亮度、对比度、色彩平 衡等,以便更好地观察和分析样品 结构。
04
透射电子显微镜的操作 与维护
透射电镜的操作步骤
衍射是指波遇到障碍物或孔洞时,会沿着障碍物边缘弯曲传播的现象。 在透射电子显微镜中,电子波的衍射使得电子能够散射并形成明暗相间 的斑点或条纹。
电子的干涉与衍射
当电子通过透镜系统时,会受到电场和磁场的作用,从而改 变它们的波函数。透镜系统的设计使得电子在到达样品时具 有相同的相位,从而形成干涉现象。干涉使得电子在样品上 散射并重新聚焦,形成明暗相间的图像。
放置样品
将需要观察的样品放置在电镜 的样品台上,确保样品稳定不 动。
调节亮度与对比度
根据观察的需要,适当调节电 镜的亮度与对比度旋钮,使图 像更加清晰。
打开电源
首先打开透射电镜的电源开关, 确保电源正常。
调整焦距
通过调节焦距旋钮,使电镜的 物镜逐渐接近样品,直到清晰 看到样品的图像。
观察与记录
观察并记录样品的图像,可以 通过电镜的摄像系统或记录仪 进行记录。
衍射是指电子在遇到样品时,会沿着样品的晶格结构散射。 散射的角度取决于样品的晶格常数和电子的波长。通过测量 衍射斑点的位置和强度,可以获得样品的晶体结构和相信息 。
透射电镜成像原理
透射电镜的成像原理是将电子束通过 样品,然后使用透镜系统将散射的电 子聚焦并成像在荧光屏幕上。由于电 子的波长比可见光的波长要短得多, 因此透射电镜能够获得比光学显微镜 更高的分辨率。
《透射电子显微镜》课件
光阑
限制照明区域,减小成像的视场,提高成像的分辨率 。
光路调节器
调节光路中的光束方向和大小,确保光束正确投射到 样品上。
成像系统
Hale Waihona Puke 物镜将样品上的图像第一次放 大并投影到中间镜上。
中间镜
将物镜放大的图像进一步 放大并投影到投影镜上。
投影镜
将中间镜放大的图像最终 放大并投影到荧光屏或成
像设备上。
真空系统
谢谢您的聆听
THANKS
透射电子显微镜技术不断改进,分辨率和放大倍数得到显著提 高。
透射电子显微镜技术不断创新,出现了许多新型的透射电子显 微镜,如高分辨透射电子显微镜、冷冻透射电子显微镜等。
透射电子显微镜的应用领域
生物学
观察细胞、蛋白质、核酸等生物大分子的 结构和功能。
医学
研究病毒、细菌、癌症等疾病的发生、发 展和治疗。
真空泵
01
通过抽气作用维持透射电子显微镜内部的高真空状态。
真空阀门
02
控制真空泵的工作时间和进气流量,以保持透射电子显微镜内
部真空度的稳定。
真空检测器
03
监测透射电子显微镜内部的真空度,当真空度不足时提醒操作
人员进行处理。
03
透射电子显微镜的操作与维护
透射电子显微镜的操作步骤
打开电源
确保实验室电源稳定,打开透射电子显微镜 的电源开关。
记录
对透射电子显微镜的使用和维护情况进行 记录,方便日后追踪和管理。
04
透射电子显微镜的样品制备技术
金属样品的制备技术
电解抛光
通过电解抛光液对金属样品进行抛光 ,去除表面杂质和氧化层,使样品表 面光滑、平整。
离子减薄
限制照明区域,减小成像的视场,提高成像的分辨率 。
光路调节器
调节光路中的光束方向和大小,确保光束正确投射到 样品上。
成像系统
Hale Waihona Puke 物镜将样品上的图像第一次放 大并投影到中间镜上。
中间镜
将物镜放大的图像进一步 放大并投影到投影镜上。
投影镜
将中间镜放大的图像最终 放大并投影到荧光屏或成
像设备上。
真空系统
谢谢您的聆听
THANKS
透射电子显微镜技术不断改进,分辨率和放大倍数得到显著提 高。
透射电子显微镜技术不断创新,出现了许多新型的透射电子显 微镜,如高分辨透射电子显微镜、冷冻透射电子显微镜等。
透射电子显微镜的应用领域
生物学
观察细胞、蛋白质、核酸等生物大分子的 结构和功能。
医学
研究病毒、细菌、癌症等疾病的发生、发 展和治疗。
真空泵
01
通过抽气作用维持透射电子显微镜内部的高真空状态。
真空阀门
02
控制真空泵的工作时间和进气流量,以保持透射电子显微镜内
部真空度的稳定。
真空检测器
03
监测透射电子显微镜内部的真空度,当真空度不足时提醒操作
人员进行处理。
03
透射电子显微镜的操作与维护
透射电子显微镜的操作步骤
打开电源
确保实验室电源稳定,打开透射电子显微镜 的电源开关。
记录
对透射电子显微镜的使用和维护情况进行 记录,方便日后追踪和管理。
04
透射电子显微镜的样品制备技术
金属样品的制备技术
电解抛光
通过电解抛光液对金属样品进行抛光 ,去除表面杂质和氧化层,使样品表 面光滑、平整。
离子减薄
透射电子显微镜-TEM-医学课件
透射电子显微镜-TEM
Transmission electron microscope
1
内容
简介 结构原理 样品制备 透射电子显微像 选区电子衍射分析
2
TEM 简介
1898年J.J. Thomson发现电子 1924年de Broglie 提出物质粒子波动性假说和1927年实验的 证实。 1926年轴对称磁场对电子束汇聚作用的提出。 1932年,1935年,透射电镜和扫描电镜相继出现,1936年, 透射电镜实现了工厂化生产。 上世纪50年代,英国剑桥大学卡文迪许实验室的Hirsch和 Howie等人建立电子衍射衬度理论并用于直接观察薄晶体缺陷和 结构。 1965年,扫描电子显微镜实现商品化。 70年代初,美国阿利桑那州立大学J.M. Cowley提出相位衬度理 论的多层次方法模型,发展了高分辨电子显微象的理论与技术。 饭岛获得原子尺度高分辨像(1970) 。 80年代,晶体缺陷理论和成像模拟得到进一步发展,透射电镜和 扫描电镜开始相互融合,并开始对小于5埃的尺度范围进行研究。 90年代至今,设备的改进和周边技术的应用。
21
成像系统
照明系统
成像系统
观察记录系统
22
(1)物镜 物镜是将试样形成一次放大像和衍射谱。 决定透射电镜的分辨本领,要求它有尽可 能高的分辨本领、足够高的放大倍数和尽 可能小的像差。通常采用强激磁,短焦距 的物镜。 放大倍数较高,一般为100~300倍。 目前高质量物镜分辨率可达0.1nm左右。
3
透射电子显微镜-TEM
TEM用聚焦电子束作照明源,使 用于对电子束透明的薄膜试样, 以透过试样的透射电子束或衍射 电子束所形成的图像来分析试样 内部的显微组织结构。
Transmission electron microscope
1
内容
简介 结构原理 样品制备 透射电子显微像 选区电子衍射分析
2
TEM 简介
1898年J.J. Thomson发现电子 1924年de Broglie 提出物质粒子波动性假说和1927年实验的 证实。 1926年轴对称磁场对电子束汇聚作用的提出。 1932年,1935年,透射电镜和扫描电镜相继出现,1936年, 透射电镜实现了工厂化生产。 上世纪50年代,英国剑桥大学卡文迪许实验室的Hirsch和 Howie等人建立电子衍射衬度理论并用于直接观察薄晶体缺陷和 结构。 1965年,扫描电子显微镜实现商品化。 70年代初,美国阿利桑那州立大学J.M. Cowley提出相位衬度理 论的多层次方法模型,发展了高分辨电子显微象的理论与技术。 饭岛获得原子尺度高分辨像(1970) 。 80年代,晶体缺陷理论和成像模拟得到进一步发展,透射电镜和 扫描电镜开始相互融合,并开始对小于5埃的尺度范围进行研究。 90年代至今,设备的改进和周边技术的应用。
21
成像系统
照明系统
成像系统
观察记录系统
22
(1)物镜 物镜是将试样形成一次放大像和衍射谱。 决定透射电镜的分辨本领,要求它有尽可 能高的分辨本领、足够高的放大倍数和尽 可能小的像差。通常采用强激磁,短焦距 的物镜。 放大倍数较高,一般为100~300倍。 目前高质量物镜分辨率可达0.1nm左右。
3
透射电子显微镜-TEM
TEM用聚焦电子束作照明源,使 用于对电子束透明的薄膜试样, 以透过试样的透射电子束或衍射 电子束所形成的图像来分析试样 内部的显微组织结构。
课件:透射电子显微镜
全部部件都必须干净,在肯定真空 度下工作!
twinned grain
•Aperture is centred on the optical axis.
学习材料
37
dislocation
•Aperture displaced, selecting a diffracted beam.
学习材料
38
•No aperture - the diffraction pattern is centered on the optical axis.
Vacuum
• Why 电子平均自由程 至少10-3 Torr
• 电子源寿命 • W 灯丝 10-4 Torr • LaB6灯丝 10-7 Torr
• Field Emission 10-10 Torr
怎样获得
• 机械泵和扩散泵 • 液氮冷凝 • 涡轮分子泵 • 离子泵 注意: 电子枪面对真空度要求最高;
1152条/mm衍射光栅复型放大像
8750×
27
9.4 透射电子显微镜的技术参数
28
9.5 以TEM为代表的电子显微术特点
优点: 同时获得结构〔衍射〕、形貌〔成象〕和
成分〔X光能谱和波谱、电子能量损失谱等〕 信息;
电子束的波长很小,可覆盖从微观到宏观 的全部结构尺度;
高分辩率。 缺点:
主要是电子穿透能力弱〔穿透能力为十分 之一微米量级〕,带来样品制备和实验等方面 的困难;电子与物质的作用十分强烈,致使结 果分析较复杂。
由3)阴电极子、速栅度要大。电子离开照明系统时,动能愈 极大和,阳成极象组愈亮。电子动能愈大,穿透能力愈强, 成试。样可以相应地厚些。
4
9.1 透射电子显微镜的电子光学系统
twinned grain
•Aperture is centred on the optical axis.
学习材料
37
dislocation
•Aperture displaced, selecting a diffracted beam.
学习材料
38
•No aperture - the diffraction pattern is centered on the optical axis.
Vacuum
• Why 电子平均自由程 至少10-3 Torr
• 电子源寿命 • W 灯丝 10-4 Torr • LaB6灯丝 10-7 Torr
• Field Emission 10-10 Torr
怎样获得
• 机械泵和扩散泵 • 液氮冷凝 • 涡轮分子泵 • 离子泵 注意: 电子枪面对真空度要求最高;
1152条/mm衍射光栅复型放大像
8750×
27
9.4 透射电子显微镜的技术参数
28
9.5 以TEM为代表的电子显微术特点
优点: 同时获得结构〔衍射〕、形貌〔成象〕和
成分〔X光能谱和波谱、电子能量损失谱等〕 信息;
电子束的波长很小,可覆盖从微观到宏观 的全部结构尺度;
高分辩率。 缺点:
主要是电子穿透能力弱〔穿透能力为十分 之一微米量级〕,带来样品制备和实验等方面 的困难;电子与物质的作用十分强烈,致使结 果分析较复杂。
由3)阴电极子、速栅度要大。电子离开照明系统时,动能愈 极大和,阳成极象组愈亮。电子动能愈大,穿透能力愈强, 成试。样可以相应地厚些。
4
9.1 透射电子显微镜的电子光学系统
14 透射电子显微镜——【材料分析方法 精品课件】
2)聚光镜(Condenser Lens)
用来会聚电子枪射出 的电子束,以最小的 损失照明样品,调节 照明强度、孔径角和 束斑大小。
采用双聚光镜系统
强激磁透镜
弱激磁透镜
14
照明系统 成像系统 观察记录
系统
9.1 透射电子显微镜的电子光学系统
由电子枪、聚光镜和相应的平移对中、倾斜调节 装置所组成。
3)垂直照明和倾斜照明—电磁偏转器
9,光镜的操作及样品制备简单。 透射电镜操作复杂,同时因为是要辐射源穿透样品成像,要
求样品很薄,至少要小于1000Å ,所以样品制备困难。
10,透射电镜的造价要大于光镜100倍以上。
光镜和电镜比较的不同点
光源 透镜 介质 焦距 放大倍数改变 景深 像 辐照损伤 操作及样品制
备 造价
透射电镜
光镜
电子束,位于仪器顶部 磁透镜 真空
用来会聚电子枪射出 的电子束,以最小的 损失照明样品,调节 照明强度、孔径角和 束斑大小。
采用双聚光镜系统
强激磁透镜
弱激磁透镜
10
三种电子枪的性能比较
特性
钨丝热阴极
LaB6
工作温度
亮度(在 200kV) 光源尺寸
能量发散度
2800K 5105A/cm2sr
ห้องสมุดไป่ตู้50m 2.3eV
1800K 5106A/cm2sr
BF
DF
15
照明系统 成像系统 观察记录
系统
9.1 透射电子显微镜的电子光学系统
由物镜、中间镜和投影镜组成。
1.物镜
强激磁、短焦距 低象差、高分辨率 100~300倍
物镜
中间镜
2.中间镜
弱激磁、长焦距 变倍透镜 0~20倍
用来会聚电子枪射出 的电子束,以最小的 损失照明样品,调节 照明强度、孔径角和 束斑大小。
采用双聚光镜系统
强激磁透镜
弱激磁透镜
14
照明系统 成像系统 观察记录
系统
9.1 透射电子显微镜的电子光学系统
由电子枪、聚光镜和相应的平移对中、倾斜调节 装置所组成。
3)垂直照明和倾斜照明—电磁偏转器
9,光镜的操作及样品制备简单。 透射电镜操作复杂,同时因为是要辐射源穿透样品成像,要
求样品很薄,至少要小于1000Å ,所以样品制备困难。
10,透射电镜的造价要大于光镜100倍以上。
光镜和电镜比较的不同点
光源 透镜 介质 焦距 放大倍数改变 景深 像 辐照损伤 操作及样品制
备 造价
透射电镜
光镜
电子束,位于仪器顶部 磁透镜 真空
用来会聚电子枪射出 的电子束,以最小的 损失照明样品,调节 照明强度、孔径角和 束斑大小。
采用双聚光镜系统
强激磁透镜
弱激磁透镜
10
三种电子枪的性能比较
特性
钨丝热阴极
LaB6
工作温度
亮度(在 200kV) 光源尺寸
能量发散度
2800K 5105A/cm2sr
ห้องสมุดไป่ตู้50m 2.3eV
1800K 5106A/cm2sr
BF
DF
15
照明系统 成像系统 观察记录
系统
9.1 透射电子显微镜的电子光学系统
由物镜、中间镜和投影镜组成。
1.物镜
强激磁、短焦距 低象差、高分辨率 100~300倍
物镜
中间镜
2.中间镜
弱激磁、长焦距 变倍透镜 0~20倍
透射电子显微镜TEM(PPT121页)
透射电子显微镜 (Transmission Electron Microscope, TEM)
TEM是以波长极短的电子束作为照明源,用电磁透 镜聚焦成像的一种高分辨率、高放大倍数的电子光学 仪器。可同时实现微观形貌观察、晶体结构分析和成 分分析(配以能谱或波谱或能量损失 谱)。
为什么采用电子束而不用自然光?
β=±25度
EM420透射电子显微镜
(日本电子) 加速电压20KV、40KV、60KV、 80KV、100KV、120KV 晶格分辨率 2.04Å 点分辨率 3.4Å 最小电子束直径约2nm 倾转角度α=±60度
β=±30度
FEI Titan 80-300 kV S/TEM 世界上功能最强大的商用透射电子显 微镜 (TEM)。已迅速成为全球顶级研 究人员的首选 S/TEM,从而实现了 TEM 及 S/TEM 模式下的亚埃级分辨 率研究及探索。
➢ 电子显微镜发展史
1898年J.J. Thomson发现电子 1924年de Broglie 提出物质粒子波动性假说和1927年实验的证实。 1926年轴对称磁场对电子束汇聚作用的提出。 1932年,1935年,透射电镜和扫描电镜相继出现,1936年,透射电
镜实现了工厂化生产。 20世纪50年代,英国剑桥大学卡文迪许实验室的Hirsch和Howie等人
主要技术参数: 1.TEM分辨率 <1 2.STEM分辨率 <1 3.能量分辨率 <0.15eV 或 <0.25eV 4.加速电压 80-300kV
内容
8.1 简介 8.2 结构原理 8.3 样品制备 8.4 透射电子显微镜的电子衍射 8.5 透射电子显微镜图像分析
8.2 透射电子显微镜结构原理
电磁透镜的分辨本领比光学玻璃透镜提高一千 倍左右,可以达到2Å 的水平,使观察物质纳米 级微观结构成为可能。
第九章透射电子显微镜 PPT
大透镜,形成第一幅高分辨率电 子显微图像与电子衍射花样。 物镜特点:强激磁、短焦距(13mm),高放大倍数,高分辨率。
物镜决定透射电子显微镜分辨 本领
物镜就是一个强激磁短焦距得透镜,它得放 大倍数较高,一般为100-300倍。目前,高质 量得物镜其分辨率可达0、1nm左右。
(一)物镜
提高物镜分辨率得措施:
各国代表人物
美国伯克莱加州大学G、Thomas将TEM第 一个用到材料研究上。
日本岗山大学H、 Hashimoto日本电镜研 究得代表人。
中国:钱临照、郭可信、李方华、叶恒强、 朱静。
国内电镜做得好得有:北京电镜室(物理所)、 沈阳金属所、清华大学。
为什么要用TEM?
1)可以实现微区物相分析。
如果中间镜得像平面出现一定得位移,这个位 移距离仍处于投影镜得景深范围之内,因此,在 荧光屏上得图像仍旧就是清晰得。
§ 9-1 透射电子显微镜得结构与成像机理
(四)成像与衍射操作:背焦面
背焦面:样品得电子衍射斑点。
§ 9-1 透射电子显微镜得结构与成像机理
(四)成像与衍射操作:像平面
像平面
像平面
分析透射电子显微镜 JEM200CX
分析透射电子显微镜JEM2010
分析型透射电子显微镜
超高压电 镜
TEM发展简史
1924年de Broglie提出波粒二象性假说 1926 Busch指出“具有轴对称性得磁场对电子束
起着透镜得作用,有可能使电子束聚焦成像”。 1927 Davisson & Germer, Thompson and Reid 进行
物镜光阑得另一个主要作用就是在后焦面上 套取衍射束得斑点(即副焦点)成像,这就就是 所谓暗场像。利用明暗场显微照片得对照分 析,可以方便地进行物相鉴定与缺陷分析。
物镜决定透射电子显微镜分辨 本领
物镜就是一个强激磁短焦距得透镜,它得放 大倍数较高,一般为100-300倍。目前,高质 量得物镜其分辨率可达0、1nm左右。
(一)物镜
提高物镜分辨率得措施:
各国代表人物
美国伯克莱加州大学G、Thomas将TEM第 一个用到材料研究上。
日本岗山大学H、 Hashimoto日本电镜研 究得代表人。
中国:钱临照、郭可信、李方华、叶恒强、 朱静。
国内电镜做得好得有:北京电镜室(物理所)、 沈阳金属所、清华大学。
为什么要用TEM?
1)可以实现微区物相分析。
如果中间镜得像平面出现一定得位移,这个位 移距离仍处于投影镜得景深范围之内,因此,在 荧光屏上得图像仍旧就是清晰得。
§ 9-1 透射电子显微镜得结构与成像机理
(四)成像与衍射操作:背焦面
背焦面:样品得电子衍射斑点。
§ 9-1 透射电子显微镜得结构与成像机理
(四)成像与衍射操作:像平面
像平面
像平面
分析透射电子显微镜 JEM200CX
分析透射电子显微镜JEM2010
分析型透射电子显微镜
超高压电 镜
TEM发展简史
1924年de Broglie提出波粒二象性假说 1926 Busch指出“具有轴对称性得磁场对电子束
起着透镜得作用,有可能使电子束聚焦成像”。 1927 Davisson & Germer, Thompson and Reid 进行
物镜光阑得另一个主要作用就是在后焦面上 套取衍射束得斑点(即副焦点)成像,这就就是 所谓暗场像。利用明暗场显微照片得对照分 析,可以方便地进行物相鉴定与缺陷分析。
透射电子显微镜课件
还原到物平面
为象散引起的最大焦距差; 透镜磁场不对称,可能是由于极靴被污染,或极靴的机械不 对称性,或极靴材料各项磁导率差异引起。象散可由附加磁场的 电磁消象散器来校正。
透镜平面
平面B
物
光轴
P PA PB fA
平面A
图1-5(b)象散
3)色差
电子的能量不同,从而波长不一造成的,电子透镜的焦距随着电子 能量而改变,因此,能量不同的电子束将沿不同的轨迹运动。产生的 漫散圆斑还原到物平面,其半径为
CM200-FEG场发射枪电镜
加速电压20KV、40KV、80KV、 160KV、200KV 可连续设置加速电压 热场发射枪 晶格分辨率 1.4Å 点分辨率 2.4Å 最小电子束直径1nm 能量分辨率约1ev 倾转角度α=±20度 β=±25度
JEM-2010透射电镜
加速电压200KV LaB6灯丝 点分辨率 1.94Å
透射电镜---技术指标
包括 ●分辨本领(亦称分辨率) 表征电镜观察物质微观细节的能力,它是标志电镜水 平的首要指标。 ●放大率 ●加速电压 ●自动化程度及所具备的功能等。
点分辨率(点分辨本领):
定义:电子图像上刚能分 辨开的相邻两点在试样 上的距离。 测量方法: 在照片上量出两个斑点 中心之间的距离,除以 图像的放大倍数。 近代高分辨电镜的点分 辨率可达0.3 nm。
日本日立公司H-700 电子显微镜,配有双倾台 ,并带有7010扫描附件和 EDAX9100能谱。该仪器 不但适合于医学、化学、 微生物等方面的研究,由 于加速电压高,更适合于 金属材料、矿物及高分子 材料的观察与结构分析, 并能配合能谱进行微区成 份分析。
● ● ● ● ●
分 辨 率:0.34nm 加速电压:75KV-200KV 放大倍数:25万倍 能 谱 仪:EDAX-9100 扫描附件:S7010
第九章 透射电子显微镜
第二篇 材料电子显微分析
第八章 第九章 第十章 第十二章 电子光学基础 透射电子显微镜 电子衍射
第十一章 第十三章
第十四章 第十五章 第十六章
晶体薄膜衍衬成像分析
高分辨透射电子显微术
扫描电子显微镜
电子背散射衍射分析技术 电子探针显微分析 其他显微结构分析方法
1
第九章 透射电子显微镜
本章主要内容 第一节 透射电子显微镜的结构与成像原理
Hale Waihona Puke 第二节 主要部件的结构与工作原理
第三节 透射电镜分辨率和放大倍数的测定
2
第一节 透射电子显微镜的结构与成像原理
透射电子显微镜的基本组成:电子光学系统、电源与控 制系统和真空系统。电子光学系统通常称为镜筒,其光路原 理与透射式光学显微镜相似, 如图9-1所示 电子光学系统的组成: 照明系统 成像系统 观察记录系统
8
第一节 透射电子显微镜的结构与成像原理
二、成像系统 透射电镜外观参见图9-5;透射电镜镜筒结构和真空系统参见 图9-6。高性能透射电镜多采用5级(或5级以上)放大成像
图9-5 CM300透射电镜外观图
图9-6 JEM-2010F透射电镜 a) 镜筒剖面图 b) 真空系统
9
第一节 透射电子显微镜的结构与成像原理
图9-3 双聚光镜原理图
5
第一节 透射电子显微镜的结构与成像原理
二、成像系统
(一) 物镜 物镜是用来形成第一幅图像的透镜, 所以透射电镜分辨 率的高低主要取决于物镜,物镜是最核心的部件 物镜是一个强励磁、短焦距的透镜 ( f =1~3mm),高质量物镜 的分辨率达0.1nm左右,放大倍数一般为100~300倍 入射电子束穿过样品经物镜聚焦成像, 在物镜背焦面上形成 衍射花样,在像平面上形成显微图像 物镜的分辨率主要取决于极靴的形状和加工精度, 极靴内孔 和上下极靴之间的距离越小,物镜的分辨率就越高
第八章 第九章 第十章 第十二章 电子光学基础 透射电子显微镜 电子衍射
第十一章 第十三章
第十四章 第十五章 第十六章
晶体薄膜衍衬成像分析
高分辨透射电子显微术
扫描电子显微镜
电子背散射衍射分析技术 电子探针显微分析 其他显微结构分析方法
1
第九章 透射电子显微镜
本章主要内容 第一节 透射电子显微镜的结构与成像原理
Hale Waihona Puke 第二节 主要部件的结构与工作原理
第三节 透射电镜分辨率和放大倍数的测定
2
第一节 透射电子显微镜的结构与成像原理
透射电子显微镜的基本组成:电子光学系统、电源与控 制系统和真空系统。电子光学系统通常称为镜筒,其光路原 理与透射式光学显微镜相似, 如图9-1所示 电子光学系统的组成: 照明系统 成像系统 观察记录系统
8
第一节 透射电子显微镜的结构与成像原理
二、成像系统 透射电镜外观参见图9-5;透射电镜镜筒结构和真空系统参见 图9-6。高性能透射电镜多采用5级(或5级以上)放大成像
图9-5 CM300透射电镜外观图
图9-6 JEM-2010F透射电镜 a) 镜筒剖面图 b) 真空系统
9
第一节 透射电子显微镜的结构与成像原理
图9-3 双聚光镜原理图
5
第一节 透射电子显微镜的结构与成像原理
二、成像系统
(一) 物镜 物镜是用来形成第一幅图像的透镜, 所以透射电镜分辨 率的高低主要取决于物镜,物镜是最核心的部件 物镜是一个强励磁、短焦距的透镜 ( f =1~3mm),高质量物镜 的分辨率达0.1nm左右,放大倍数一般为100~300倍 入射电子束穿过样品经物镜聚焦成像, 在物镜背焦面上形成 衍射花样,在像平面上形成显微图像 物镜的分辨率主要取决于极靴的形状和加工精度, 极靴内孔 和上下极靴之间的距离越小,物镜的分辨率就越高
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析透射电子显微镜 JEM200CX
分析透射电子显微镜JEM2010
分析型透射电子显微镜
超高压电 镜
TEM发展简史
1924年de Broglie提出波粒二象性假说 1926 Busch指出“具有轴对称性的磁场对电子束
起着透镜的作用,有可能使电子束聚焦成像”。 1927 Davisson & Germer, Thompson and Reid 进行
二、成像系统
1、物镜 2、中间镜 3、投影镜
成像系统
(一)物镜 物镜作用:成像系统的第一级
放大透镜,形成第一幅高分辨 率电子显微图像和电子衍射花 样。 物镜特点:强激磁、短焦距 (1-3mm),高放大倍数, 高分辨率。
物镜决定透射电子显微镜分辨 本领
物镜是一个强激磁短焦距的透镜,它的放 大倍数较高,一般为100-300倍。目前,高 质量的物镜其分辨率可达0.1nm左右。
§ 9-1 透射电子显微镜的结构和成像机理
5万倍
§ 9-1 透射电子显微镜的结构和成像机理
规则微孔
孔径: 6.2 Å
§ 9-1 透射电子显微镜的结构和成像机理
规则介孔
孔径: 7-8 nm
§ 9-1 透射电子显微镜的结构和成像机理
透射电子显微镜的组成结构
通常透射电镜由电子 光学系统、电源与控 制系统、真空系统、 和循环冷却系统组成, 其中电子光学系统是 电镜的主要组成部分。
§ 9-1 透射电子显微镜的结构和成像机理
电子光学系统组成结构
1.照明系统: 电子枪+聚光镜
2.成像系统: 物镜+中间镜+投影镜
3.观察记录系统: 荧光屏+照相底片
§ 9-1 透射电子显微镜的结构和成像机理
一、照明系统
照明系统主要组成: 电子枪+平移对中、 倾斜调节装置+聚光 镜
照明系统的作用:提 供一束亮度高、照明 孔径角小、平行度好、 束流稳定的照明源。
GaP纳米线的形貌及其衍射花样
为什么要用TEM?
2)高的图像分辨率。
0.61 r0 nsin
不同加速电压下电子束的波长
V(kV) 100 200 300 1000
(Å) 0.0370 0.0251 0.0197 0.0087
纳米金刚石的高分辨图像
为什么要用TEM?
3)获得立体丰富的信息。
三极管的沟道边界的高分辨环形探测器(ADF)图像及能量损失谱
(三)投影镜
投影镜的作用是把经 中间镜放大(或缩小) 的像(电子衍射花样) 进一步放大,并投影到 荧光屏上
透射电镜的外观照片
§ 9-1 透射电子显微镜的结构和成像机理
透射电子显微镜的组成结构 照明系统
电子光学系统 成像系统 观察记录系统
电源与控制系统
TEM
真空系统
循环冷却系统
电子光学系统组成
电 电子枪 照明部分 子 聚光镜
光 样品台 样品装置部分
学 物镜
系 中间镜
成像部分
统 投影镜
荧光屏 照相底片
观察记录部分
大学物理系 A.Howie (建立了直接观察薄晶体缺陷和结构的实验技术及电
子衍射衬度理论) 高分辨像理论(70年代初): 美国阿利桑那州立大学物理系J.M.Cowley,70年代发展
了高分辨电子显微像的理论与技术。 高空间分辨分析电子显微学( 70年代末,80年代初)
采用高分辨分析电子显微镜(HREM,NED,EELS, EDS)对很小范围(~5Å)的区域进行电子显微研 究(像,晶体结构,电子结构,化学成分)
(一)物镜
提高物镜分辨率的措施:
1. 物镜的分辨率主要取决于极靴的形状和加工精 度。一般来说,极靴的内孔和上下极之间的距 离越小,物镜的分辨率越高。
2. 在物镜的后焦面上安放一个物镜光阑。物镜光 阑不仅具有减少球差,像散和色差的作用,而 且可以提高图像的衬度。
光学透镜的焦距是固定的。电磁透镜的焦距是可以 通过调节电流大小来改变。
了电子衍射实验。 1933年柏林大学的Knoll和Ruska研制出第一台电
镜(点分辨率50nm, 比光学显微镜高4倍),Ruska 为此获得了Nobel Prize(1986)。 1949年Heidenreich观察了用电解减薄的铝试样;
近代TEM发展史上三个重要阶段
像衍理论(50-60年代): 英国牛津大学材料系 P.B.Hirsch, M.J.Whelan;英国剑桥
§ 9-1 透射电子显微镜的结构和成像机理
(一)电子枪
§ 9-1 透射电子显微镜的结构和成像机理
(二)聚光镜
§ 9-1 透射电子显微镜的结构和成像机理
一、照明系统(二)聚光镜
聚光镜:会聚电子枪射 出的电子束,以最小的 损失照射样品,调节照 明强度、孔径角和束斑 大小
双聚光镜系统:第一聚 光镜是强激磁透镜;第 二聚光镜是弱激磁透镜
§ 9-1 透射电子显微镜的结构和成像机理
一、照明系统 灯丝
§ 9-1 透射电子显微镜的结构和成像机理
一、照明系统 (一)电子枪
透射电镜常用75-200k极+栅极帽+阳极,
栅极作用:限制和稳定电子 束流
电子源:阴极和阳极之间电 子束会集成的交叉点
电子源直径:几十个微米
第九章透射电子显微镜
1
第九章 透射电子显 微镜
透射电镜结构与工作原理
§ 9-1 透射电子显微镜的结构和成像机理
透射电子显微镜 Transmission Electron Microscope, TEM 是以波长极短的电子束作为照明源、用电磁透镜聚焦成像的一 种高分辨本领、高放大倍数的电子光学仪器,是观察分析材料 的形貌、组织和结构的有效工具。
各国代表人物
美国伯克莱加州大学G.Thomas将TEM第一 个用到材料研究上。
日本岗山大学H. Hashimoto日本电镜研究 的代表人。
中国:钱临照、郭可信、李方华、叶恒强、 朱静。
国内电镜做得好的有:北京电镜室(物理 所)、沈阳金属所、清华大学。
为什么要用TEM?
1)可以实现微区物相分析。
在用透射电子显微镜进行图像分析时,物镜和样品 之间和距离固定不变的,(即物距L1不变)。因此 改变物理学电镜放大倍数进行成像时,主要是改变 物镜的焦距和像距(即f 和 L2)来满足成像条件。
(二)中间镜
作用:在电镜操作过程中,主 要是利用中间镜的可变倍率来 控制电镜的放大倍数。
特点:弱激磁,长焦距,可变 倍透镜,放大倍数0-20倍。