惯性矩计算公式
极惯性矩常用计算公式
极惯性矩常用计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。
静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。
定义式:,(Ⅰ-1)量纲为长度的三次方。
由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。
静矩与所选坐标轴有关,其值可能为正,负或零。
如一个平面图形是由几个简单平面图形组成,称为组合平面图形。
设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。
【解】由对称性,,。
现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。
【例I-2】确定形心位置,如图Ⅰ-3所示。
【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。
,(Ⅰ-5)量纲为长度的四次方,恒为正。
相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。
组合图形的惯性矩设,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。
下式(Ⅰ-10)定义为图形对一对正交轴、轴的惯性积。
极惯性矩常用计算公式
极惯性矩常用计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。
静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。
定义式:,(Ⅰ-1)量纲为长度的三次方。
由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。
静矩与所选坐标轴有关,其值可能为正,负或零。
如一个平面图形是由几个简单平面图形组成,称为组合平面图形。
设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。
【解】由对称性,,。
现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。
【例I-2】确定形心位置,如图Ⅰ-3所示。
【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。
,(Ⅰ-5)量纲为长度的四次方,恒为正。
相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。
组合图形的惯性矩设,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。
下式(Ⅰ-10)定义为图形对一对正交轴、轴的惯性积。
计算惯性矩的公式
矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。
静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。
定义式:,(Ⅰ-1)量纲为长度的三次方。
由于均质薄板的重心与平面图形的形心有相同的坐标和。
则由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。
静矩与所选坐标轴有关,其值可能为正,负或零。
如一个平面图形是由几个简单平面图形组成,称为组合平面图形。
设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。
【解】由对称性,,。
现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。
【例I-2】确定形心位置,如图Ⅰ-3所示。
【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。
,(Ⅰ-5)量纲为长度的四次方,恒为正。
相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。
组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。
极惯性矩常用计算公式
极惯性矩常用计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。
静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。
定义式:,(Ⅰ-1)量纲为长度的三次方。
由于均质薄板的重心与平面图形的形心有相同的坐标和。
则由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。
静矩与所选坐标轴有关,其值可能为正,负或零。
如一个平面图形是由几个简单平面图形组成,称为组合平面图形。
设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。
【解】由对称性,,。
现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。
【例I-2】确定形心位置,如图Ⅰ-3所示。
【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。
,(Ⅰ-5)量纲为长度的四次方,恒为正。
相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。
组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。
极惯性矩常用计算公式
极惯性矩常⽤计算公式极惯性矩常⽤计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三⾓形:b*h^3/36圆形对于圆⼼的惯性矩:π*d^4/64环形对于圆⼼的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形⼼平⾯图形的⼏何性质⼀般与杆件横截⾯的⼏何形状和尺⼨有关,下⾯介绍的⼏何性质表征量在杆件应⼒与变形的分析与计算中占有举⾜轻重的作⽤。
静矩:平⾯图形⾯积对某坐标轴的⼀次矩,如图Ⅰ-1所⽰。
定义式:,(Ⅰ-1)量纲为长度的三次⽅。
由此可得薄板重⼼的坐标为同理有所以形⼼坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形⼼,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某⼀轴的静矩等于零,则该轴必然通过图形的形⼼。
静矩与所选坐标轴有关,其值可能为正,负或零。
如⼀个平⾯图形是由⼏个简单平⾯图形组成,称为组合平⾯图形。
设第i块分图形的⾯积为,形⼼坐标为,则其静矩和形⼼坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所⽰半圆形的及形⼼位置。
【解】由对称性,,。
现取平⾏于轴的狭长条作为微⾯积所以读者⾃⼰也可⽤极坐标求解。
【例I-2】确定形⼼位置,如图Ⅰ-3所⽰。
【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图⽰坐标下每个矩形的⾯积及形⼼位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形⼼的坐标为§16-2 惯性矩和惯性半径惯性矩:平⾯图形对某坐标轴的⼆次矩,如图Ⅰ-4所⽰。
,(Ⅰ-5)量纲为长度的四次⽅,恒为正。
相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。
组合图形的惯性矩设,(Ⅰ-7)若以表⽰微⾯积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。
下式(Ⅰ-10)定义为图形对⼀对正交轴、轴的惯性积。
转动惯量计算折算公式
转动惯量计算折算公式
转动惯量(即转动惯性矩)是描述物体对转动运动的惯性的物理量,
它可以用公式I=mr^2来计算,其中I是转动惯量,m是物体的质量,r是
物体的转动半径。
然而,在实际问题中,物体的形状往往是复杂的,不可能直接通过上
述公式来计算转动惯量。
为了解决这个问题,我们可以通过一些折算公式
来将复杂物体的转动惯量转换为一些简单形状的转动惯量之和。
以下是一些常见的折算公式:
1.对于长方体:
-绕通过质心垂直于一条边的转动轴转动:I=(1/12)*m*(a^2+b^2),
其中m是质量,a和b是长方体的两个边长。
-绕通过质心垂直于两条平行边的转动轴转动:I=(1/3)*m*(a^2+b^2),其中m是质量,a和b是长方体的两个边长。
2.对于球体:
-绕通过质心的任意轴转动:I=(2/5)*m*r^2,其中m是质量,r是球
体的半径。
3.对于圆环:
-绕通过圆环中心的垂直于其平面的转动轴转动:I=m*r^2,其中m是
质量,r是圆环的半径。
4.对于圆盘:
-绕通过圆盘中心的垂直于其平面的转动轴转动:I=(1/2)*m*r^2,其中m是质量,r是圆盘的半径。
5.对于薄杆(在转动轴与薄杆所在直线垂直的情况下):
-绕通过薄杆中心的转动轴转动:I=(1/12)*m*L^2,其中m是质量,L 是薄杆的长度。
这些折算公式可以帮助我们将复杂物体的转动惯量转换为一些简单形状的转动惯量之和,从而简化计算过程。
在实际应用中,我们可以根据物体的形状选择合适的折算公式来计算转动惯量,从而更好地描述物体的转动运动。
偏心惯性矩计算公式
偏心惯性矩计算公式
1、惯性矩计算公式:
矩形:b×hA3/12
三角形:b×hA3/36
圆形:n×dA4/64
环形:n×DA4×(1-a八4)/64;a=d/D
A3表示3次
截面抵抗矩(W)就是截面对其形心轴惯性矩与截面上最远点至形心轴距离的比值。
(1)找出达到极限弯矩时截面的中和轴。
它是与弯矩主轴平行的截面面积平行线,该中和轴两边的面积相等。
在双轴对称截面中,这条轴是主轴。
(2)分别求两侧面积对中和轴的面积矩,面积矩之和即为望性截面模量,矩形截面抵抗矩W=bhA2/6;圆形截面的抵抗矩
W=3.14dA3/32;圆环截面抵抗矩W=t(R4-r4)/(32R)。
2、截面惯性矩计算公式:
(1)矩形:Ix=b×h^3/12; ly=h×b^3/12;
(2)圆形:I=Pi/64 (D1^4-D2^4);
(3)椭圆形:Ix=pi/4×a×b3;ly=pi/4×b×a^3;
3、区域惯性矩—典型截面I:
区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩。
面积惯性矩或面积惯性矩—也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和应力的形状特性。
面积惯性矩—英制单位:inches4;
面积惯性矩—公制单位:mm4;cm4;m4。
矩形惯性矩计算公式
一.矩形惯性矩计算公式
1、矩形:I=b*h^3/12。
2、三角形:I=b*h^3/36。
3、圆形:I=π*d^4/64。
4、环形:I=π*D^4*(1-α^4)/64;α=d/D。
惯性矩通常被用作描述截面抵抗弯曲的性质。
惯性矩的国际单位为(m4)。
即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念。
惯性矩应用
结构设计和计算过程中,构件惯性矩Ix为截面各微元面积与各微元至与X 轴线平行或重合的中和轴距离二次方乘积的积分。
主要用来计算弯矩作用下绕X 轴的截面抗弯刚度。
结构设计和计算过程中,构件惯性矩Iy为截面各微元面积与各微元至与Y 轴线平行或重合的中和轴距离二次方乘积的积分。
主要用来计算弯矩作用下绕Y 轴的截面抗弯刚度。
惯性矩计算公式推导
惯性矩计算公式推导
惯性矩是动力学中描述物体角动量的重要参数,它的概念可以借鉴转动的视觉形象来说明。
一般来讲,惯性矩是指物体距其旋转面中心的距离与惯性力的乘积。
计算惯性矩公式提出
计算惯性矩必须考虑物体的质量和形状,以及其在根据外力作用而产生的角动量。
具体而言,惯性矩的计算一般有三大类:椭圆类型的矩、多轴截面的矩以及长管棒类型的矩。
其中,椭圆类型的矩是用于描述椭圆体状物体惯性力学行为的,椭圆类型惯性矩表达式如
下所示:I=2/5II2I2,其中ρ为物体的流动率,a、b分别为椭圆物体的长轴/短轴半径。
多轴截面的矩可以用来描述各种多轴截面形状的物体,多轴横截面惯性矩计算公式可表示为:I= ∑II=1I11(I(I)/I)I(I),其中n为几何组成部件的总数,f1为这些部件的外径,A(θ)为部件的平台面积。
最后,长管棒类型的矩可以用来描述长管棒形状的物体,长管棒类型惯性矩表达式如下:
I=1/2II2ℓ2,其中ρ为物体的流动率,f2为管棒直径,l表示管棒的长度。
总结以上,惯性矩的计算依赖于物体的质量、形状和外力的作用,有三种不同的方法来计
算一个物体的惯性矩:椭圆类型的矩,多轴截面的矩以及长管棒类型的矩。
根据物体的不同,应用不同的计算方法,即可计算出该物体的惯性矩值。
极惯性矩常用计算公式
极惯性矩常用计算公式极惯性矩常用计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。
静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。
定义式:,(Ⅰ-1)量纲为长度的三次方。
由于均质薄板的重心与平面图形的形心有相同的坐标和。
则由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。
静矩与所选坐标轴有关,其值可能为正,负或零。
如一个平面图形是由几个简单平面图形组成,称为组合平面图形。
设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。
【解】由对称性,,。
现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。
【例I-2】确定形心位置,如图Ⅰ-3所示。
【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。
,(Ⅰ-5)量纲为长度的四次方,恒为正。
相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。
组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。
极惯性矩常用计算公式[精华]
极惯性矩常用计算公式[精华]极惯性矩常用计算公式:Ip=?Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D?16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。
静矩:平面图形面积对某坐标轴的一次矩,如图?-1所示。
定义式:, (?-1)量纲为长度的三次方。
由于均质薄板的重心与平面图形的形心有相同的坐标和。
则由此可得薄板重心的坐标为同理有所以形心坐标, (?-2) 或,由式(?-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。
静矩与所选坐标轴有关,其值可能为正,负或零。
如一个平面图形是由几个简单平面图形组成,称为组合平面图形。
设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为, (?-3), (?-4)【例I-1】求图?-2所示半圆形的及形心位置。
【解】由对称性,,。
现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。
【例I-2】确定形心位置,如图?-3所示。
【解】将图形看作由两个矩形?和?组成,在图示坐标下每个矩形的面积及形心位置分别为矩形?:mm2mm,mm矩形?:mm2mm,mm 整个图形形心的坐标为?16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图?-4所示。
, (?-5)量纲为长度的四次方,恒为正。
相应定义, (?-6)为图形对轴和对轴的惯性半径。
组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为, (?-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(?-8) 因为所以极惯性矩与(轴)惯性矩有关系(?-9) 式(?-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。
极惯性矩常用计算公式
极惯性矩常用计算公式极惯性矩常用计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。
静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。
定义式:,(Ⅰ-1)量纲为长度的三次方。
由于均质薄板的重心与平面图形的形心有相同的坐标和。
则由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。
静矩与所选坐标轴有关,其值可能为正,负或零。
如一个平面图形是由几个简单平面图形组成,称为组合平面图形。
设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。
【解】由对称性,,。
现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。
【例I-2】确定形心位置,如图Ⅰ-3所示。
【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。
,(Ⅰ-5)量纲为长度的四次方,恒为正。
相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。
组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。
惯性矩计算方法及常用截面惯性矩计算公式
惯性矩计算方法及常用截面惯性矩计算公式惯性矩(也称为惯性矩、二阶矩)是描述物体抵抗绕轴旋转的特性的物理量。
在工程中,惯性矩常用于计算和设计梁、轴等结构的强度和稳定性。
本文将介绍惯性矩的计算方法以及常用的截面惯性矩计算公式。
惯性矩的计算方法主要有几何法、积分法和转动倾斜坐标等方法。
1.几何法:几何法是一种通用的计算惯性矩的方法,适用于简单的几何形状,如矩形、圆形等。
几何法的思想是将复杂的截面分解为简单的几何形状,并使用其相关的公式计算每个部分的惯性矩,然后将它们相加。
2.积分法:积分法是一种基于微积分的方法,适用于复杂的截面形状。
该方法基于将截面分割为无穷小的面积元,然后使用积分计算每个面积元的惯性矩,并将它们相加得到整个截面的惯性矩。
3.转动倾斜坐标:转动倾斜坐标是一种特殊的坐标系选择方法,适用于具有对称轴的截面。
在该方法中,坐标轴被选择为与截面的对称轴对齐,这样会使得部分惯性矩相消,从而简化惯性矩的计算。
下面介绍几个常见截面形状的惯性矩计算公式:1.矩形截面:- 矩形的惯性矩计算公式:I = (bh^3)/12,其中b为矩形的宽度,h为矩形的高度。
2.圆形截面:-圆形的惯性矩计算公式:I=πr^4/4,其中r为圆的半径。
3.圆环截面:-圆环的惯性矩计算公式:I=π(R^4-r^4)/4,其中R为外圆半径,r 为内圆半径。
4.T形截面:-T形的惯性矩计算公式:I=(b1h1^3)/12+b1h1(y1-y)^2+(b2h2^3)/12,其中b1和b2为宽度,h1和h2为高度,y为距离底边的垂直距离。
这些是一些常见的截面形状的惯性矩计算公式,对于其他复杂的截面形状,可以使用几何法、积分法或转动倾斜坐标方法来计算惯性矩。
总结起来,惯性矩是描述物体抵抗绕轴旋转的特性的物理量。
惯性矩的计算方法主要有几何法、积分法和转动倾斜坐标等方法。
常见截面的惯性矩计算公式包括矩形截面、圆形截面、圆环截面和T形截面。
这些公式在结构工程中广泛应用,可以帮助工程师设计和计算各种结构的强度和稳定性。