平抛圆周大题

合集下载

4.平抛与圆周运动组合问题

4.平抛与圆周运动组合问题

4. 平抛与圆周运动组合问题一、基础知识平抛+圆周运动往往涉及多个运动过程和功能关系,解题的关键是做好两点分析:1.临界点分析:对于物体在临界点相关的多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口.2.运动过程分析:对于物体参与的多个运动过程,要仔细分析每个运动过程做何种运动.若为圆周运动,应明确是水平面的匀速圆周运动,还是竖直平面的变速圆周运动,机械能是否守恒;若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是哪个力.二、典型例题[例1] 如图所示为竖直放置的四分之一光滑圆弧轨道,O 点是其圆心,半径R =0.8 m ,OA 水平、OB 竖直.轨道底端距水平地面的高度h =0.8 m .从轨道顶端A 由静止释放一个质量m 1=0.1 kg 小球,小球到达轨道底端B 时,恰好与静止在B 点的另一个小球m 2发生碰撞,碰后它们粘在一起水平飞出,落地点C 与B 点之间的水平距离x =0.4 m .忽略空气阻力,重力加速度g =10 m/s 2.求:(1)碰撞前瞬间入射小球的速度大小v 1;(2)两球从B 点飞出时的速度大小v 2;(3)碰后瞬间两小球对轨道压力的大小.解析 (1)从A 点运动的小球向下运动的过程中机械能守恒,得:mgR =12mv 21 代入数据得:v 1=4 m/s(2)两球做平抛运动,根据平抛运动规律得:竖直方向上有:h =12gt 2 代入数据解得:t =0.4 s水平方向上有:x =v 2t代入数据解得:v 2=1 m/s(3)两球碰撞,规定向左为正方向,根据动量守恒定律得:m 1v 1=(m 1+m 2)v 2解得:m 2=3m 1=3×0.1=0.3 kg碰撞后两个小球受到的合外力提供向心力,则:F N -(m 1+m 2)g =(m 1+m 2)v 22R代入数据得:F N =4.5 N由牛顿第三定律可知,小球对轨道的压力也是4.5 N ,方向竖直向下.答案 (1)4 m/s (2)1 m/s (3)4.5 N二、针对训练1.固定在竖直平面内的光滑圆弧轨道ABCD ,其A 点与圆心等高,D 点为轨道的最高点,DB 为竖直线,AC 为水平线,AE 为水平面,如图所示.今使小球自A 点正上方某处由静止释放,且从A 点进入圆弧轨道运动,只要适当调节释放点的高度,总能使球通过最高点D ,则小球通过D 点后( )A .一定会落到水平面AE 上B .一定会再次落到圆弧轨道上C .可能会再次落到圆弧轨道上D .不能确定解析:选A.如果小球恰能通过最高点D ,根据mg =m v 2D R,得v D =gR , 知小球在最高点的最小速度为gR .根据R =12gt 2得:t =2R g. 则平抛运动的水平位移为:x =gR ·2R g =2R .知小球一定落在水平面AE 上.故A 正确,B 、C 、D 错误.2.如图所示,从A 点以v 0=4 m/s 的水平速度抛出一质量m =1 kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入光滑圆弧轨道BC ,经圆弧轨道后滑上与C 点等高、静止在粗糙水平面的长木板上,圆弧轨道C 端切线水平,已知长木板的质量M =4 kg ,A 、B 两点距C 点的高度分别为H =0.6 m 、h =0.15 m ,R =0.75 m ,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.2,g 取10 m/s 2.求:(1)小物块运动至B 点时的速度大小和方向;(2)小物块滑动至C 点时,对圆弧轨道C 点的压力;。

高三曲线运动综合汇编(平抛运动与圆周运动训练题)

高三曲线运动综合汇编(平抛运动与圆周运动训练题)

绝密★启用前平抛运动与圆周运动训练题第I卷(选择题)一、选择题(题型注释)1.船在静水中的速度为3.0 m/s,它要渡过宽度为30 m的河,河水的流速为2.0 m/s,则下列说法中正确的是A.船不能渡过河B.船渡河的速度一定为5.0 m/sC.船不能垂直到达对岸D.船到达对岸所需的最短时间为10 s2.2013年7月7日,温网女双决赛开打,“海峡组合”彭帅、谢淑薇击败澳大利亚组合夺得职业生涯首个大满贯冠军。

如图所示是比赛场地,已知底线到网的距离为L,彭帅在网前截击,若她在球网正上方距地面H处,将球以水平速度沿垂直球网的方向击出,球刚好落在底线上。

将球的运动视作平抛运动,重力加速度为g,则下列说法不正确...的是( )A.根据题目条件能求出球的水平速度vB.根据题目条件能求出球从击出至落地所用时间tC.球从击球点至落地点的位移等于LD.球从击球点至落地点的位移与球的质量无关3.关于平抛物体的运动,下列说法中正确的是A.平抛运动不是匀变速运动B.平抛运动的水平位移只与水平速度有关C.平抛运动的飞行时间只取决于初始位置的高度D.平抛运动的速度和加速度方向不断变化4.人在距地面高h、离靶面距离L处,将质量m的飞镖以速度v0水平投出,落在靶心正下方,如图6所示。

不考虑空气阻力,只改变m、h、L、v0四个量中的一个,可使飞镖投中靶心的是A.适当减小v0B.适当减小LC.适当减小m D.适当增大m5.(双选)关于匀速圆周运动的向心加速度,下列说法正确..的是()A.向心加速度是描述线速度变化的物理量B.向心加速度只改变线速度的方向,不改变线速度的大小C.向心加速度恒定D.向心加速度的方向时刻发生变化6.如图所示,用一根轻细线将一个有孔的小球悬挂起来,使其在水平面内做匀速圆周运动而成为圆锥摆,关于摆球A的受力情况,下列说法中正确的是A.摆球A受重力、拉力和向心力的作用B.摆球A受拉力和向心力的作用C.摆球A受拉力和重力的作用D.摆球A受重力和向心力的作用7.如图所示,在匀速转动的圆筒内壁上有一个小物体圆筒一起运动,小物体所需要的向心力由以下哪个力来提供A. 重力B. 弹力C.静摩擦力D. 滑动摩擦力8.(双选)质量相同的小球A和B分别悬挂在长为L和2L的不伸长绳上。

平抛运动、圆周运动的临界问题 Word版含解析

平抛运动、圆周运动的临界问题 Word版含解析

[A组·基础题]1. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是( )A. 5 rad/s B. 3 rad/sC.1.0 rad/s D.5 rad/s2. 一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( )A.μ(M-m)gml B.μ(M-m)gMlC.μ(M+m)gMl D.μ(M+m)gml3. (2019·河南中原名校考评)如图所示,半径分别为R、2R的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m的小物块甲放置在大圆盘上距离转轴R处,质量为2m的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度转动时,两物块均相对圆盘静止,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .二者线速度大小相等B .甲受到的摩擦力大小为14mω2RC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心4. (2018·广东七校联考)如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,轮上A 、B 两点各粘有一小物体,当B 点转至最低位置时,此时O 、A 、B 、P 四点在同一竖直线上,已知:OA =AB ,P 是地面上的一点.此时A 、B 两点处的小物体同时脱落,最终落到水平地面上同一点.不计空气阻力,则OP 的距离是( )A.76RB .52RC .5RD .7R5.(多选) 水平面上有倾角为θ、质量为M 的斜面体,质量为m 的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是( )A .小物块受到斜面的最大摩擦力为F +mg sin θB .小物块受到斜面的最大摩擦力为F -mg sin θC .斜面体受到地面的最大摩擦力为FD .斜面体受到地面的最大摩擦力为F cos θ6.(多选) (2018·山西省吕梁市期中)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( )A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力7. 如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L =3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.[B组·能力题]8. (多选)如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到轴的距离为物块A到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大后保持不变C.A受到的静摩擦力先增大后减小再增大D.B受到的合外力先增大后保持不变9. (多选)(2016·浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100 m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车( )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3 m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g=10 m/s2.(1)若选手以速度v0水平跳出后,能跳在水平跑道上,求v0的最小值;(2)若选手以速度v1=4 m/s水平跳出,求该选手在空中的运动时间.11. (2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60 m的轻细绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10 m/s2)。

平抛运动、圆周运动单元测试题

平抛运动、圆周运动单元测试题

《平抛运动·圆周运动》 单元检测题一、选择题 (本题共12小题,每小题4分,每小题有四个答案,其中至少有一个是正确的,部分选对者得2分,共48分) 1.关于圆周运动,下列说法正确的是 ( ) A.匀速圆周运动是一种匀速运动 B. 匀速圆周运动是一种变加速运动 C.由于物体做圆周运动,所以才产生向心力D. 由于物体受到向心力的作用,所以物体才不断改变速度的方向而做圆周运动2.用长为L 的细绳,拴着质量为m 的小球,在竖直平面内做匀速圆周运动,下列说法中错误..的是 ( ) A. 小球在最高点所受的向心力一定是重力 B. 小球在最高点绳子的拉力可能为零 C. 小球在最低点绳子的拉力一定大于重力D .若小球恰好能在竖直平面内做匀速圆周运动,则它在最高点的速率为gL3.一个物体从某一确定的高度为v0的初速度水平抛出,已知它落地时的速度为,那么它的运动时间是 ( ) A.0t v v gB.02tv v gC.0222t v v gD.022t v v4.甲、乙两人在一幢楼房的三楼窗口掷垒球,他们都劲力沿水平抛出同样垒球,不计空气阻力。

甲掷的水平距离正好是乙的两倍。

若乙要想水平掷出相当于甲在三楼窗口掷出的距离,则乙应在哪一楼窗口水平抛出? A.5楼 B.6楼 C.9楼 D.12楼5.如图所示,从倾角为θ的足够长的斜面上的A 点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v1,球落到斜面上前一瞬间的速度方向与斜面夹角为α1,第二次初速度为v2,球落到斜面上前一瞬间的速度方向与斜面夹角为α2,,若v1>v2,则 ( ) A.12B.12C.12D.无法确定6.如图所示,枪管对准小球C ,A 、B 、C 在同一水平面上,枪管和小球距地面的高度为45m ,已知=100m ,当子弹射出枪口时,小球开始自由下落,弱子弹射出枪口时的速度为v0=50m,子弹恰好能C 下落20m 时击中C 。

高考物理一轮复习专题应用力学两大观点分析平抛运动与圆周运动组合问题练含解析

高考物理一轮复习专题应用力学两大观点分析平抛运动与圆周运动组合问题练含解析

专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)1.一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,小铁块所受向心力为铁块重力的1.5倍,则此过程中铁块损失的机械能为: ( )A .18mgRB .14mgR C .12mgR D .34mgR 【答案】B 【名师点睛】当滑到半球底部时,半圆轨道底部所受压力为铁块重力的1.5倍,根据牛顿第二定律可以求出铁块的速度;铁块下滑过程中,只有重力和摩擦力做功,重力做功不影响机械能的减小,损失的机械能等于克服摩擦力做的功,根据动能定理可以求出铁块克服摩擦力做的功。

2.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为: ( )A .mgH mv +2021B .12021mgh mv +C .2mgh mgH -D .22021mgh mv +【答案】B【解析】不计空气阻力,只有重力做功,从A 到B 过程,由动能定理可得:E kB -12021mgh mv =,故E kB =12021mgh mv +,选项B 正确。

【名师点睛】以物体为研究对象,由动能定理或机械能守恒定律可以求出在B 点的动能.3.(多选)如图所示,半径为R 的光滑圆环固定在竖直平面内,AB 、CD 是圆环相互垂直的两条直径,C 、D 两点与圆心O 等高.一个质量为m 的光滑小球套在圆环上,一根轻质弹簧一端连在小球上,另一端固定在P 点,P 点在圆心O 的正下方2R 处.小球从最高点A 由静止开始沿逆时针方向下滑,已知弹簧的原长为R ,弹簧始终处于弹性限度内,重力加速度为g .下列说法正确的有: ( )A .弹簧长度等于R 时,小球的动能最大B .小球运动到B 点时的速度大小为gR 2C .小球在A 、B 两点时对圆环的压力差为4mgD .小球从A 到C 的过程中,弹簧对小球做的功等于小球机械能的增加量【答案】CD【名师点睛】此题是对功能关系的考查;解题时要认真分析小球的受力情况及运动情况;尤其要知道在最高点和最低点弹簧的伸长量等于压缩量,故在两位置的弹力相同,弹性势能也相同;同时要知道机械能的变化量等于除重力以外的其它力做功。

平抛运动-圆周运动测试题(含答案-答题卡)

平抛运动-圆周运动测试题(含答案-答题卡)

v0 vvv圆周运动测试一、单项选择题1.关于匀速圆周运动,下列说法中不正确的是A.匀速圆周运动是匀速率圆周运动B.匀速圆周运动是向心力恒定的运动C.匀速圆周运动是加速度的方向始终指向圆心的运动D.匀速圆周运动是变加速运动2.若已知物体运动的初速度v0的方向与物体受到的恒定合外力F 的方向,则下列图中正确的是()3.一辆卡车装载着货物在丘陵地匀地匀速行驶,地形如下图所示,由于轮胎已旧,出现爆胎可能性最大的位置应是()A.a ;B.b ;C.C ;D.d ;4.如图所示,轻绳一端系一小球,另一端固定于O点,在O点正下方的P点钉一颗钉子,使悬线拉紧与竖直方向成一角度θ,然后由静止释放小球,当悬线碰到钉子时错误的是()A、小球的瞬时速度突然变大;B、小球的加速度突然变大;C、小球的所受的向心力突然变大;D、悬线所受的拉力突然变大;二、双项选择题。

5.关于物体的运动状态与受力关系,下列说法中正确的是( ) A.物体的运动状态发生变化,物体的受力情况一定变化B.物体在恒力作用下,一定做匀变速直线运动C.物体的运动状态保持不变,说明物体所受的合外力为零D.物体做曲线运动时,受到的合外力可以是恒力6.甲、乙两球做匀速圆周运动,向心加速度a随半径r变化的关系图如图所示,其中乙图是双曲线的一支,由图像可以知道()A.甲球运动时,线速度大小保持不变;B.甲球运动时,角速度大小保持不变;C.乙球运动时,线速度大小保持不变;D.乙球运动时,角速度大小保持不变;7.如图所示,一圆球绕通过球心O点的固定轴A FB FC FD FθO P转动,下列说法正确的是( )A .A 、B 两点的角速度相等; B .A 、B 两点的线速度相等;C .A 、B 两点转动半径相等;D .A 、B 两点转动周期相等;8.在倾角为30o 的斜面上有一重为10N 物体,被平行与斜面、大小为8N 的恒力推着沿斜面匀速运动,如图2所示.推力F 突然取消的瞬间,物体运动的加速度为(g 取102)A .8 2B .5 2 C. 方向沿斜面向上 D. 方向沿斜面向下 9.某物体做平抛运动时,它的速度方向与水平方向的夹角为θ,其正切值θ随时间t 变化的图像如图所示,则( )A 、 第1s 物体下落的高度为5mB 、第1s 物体下落的高度为10mC 、物体的初速度是5D 、物体的初速度是10三、实验10.(1)“验证力的平行四边形定则”的实验情况如图甲所示,其中A 为固定橡皮筋的图钉,O 为橡皮筋与细绳的结点,和为细绳。

平抛运动与圆周运动的组合问题(含答案)

平抛运动与圆周运动的组合问题(含答案)

1平抛运动与圆周运动的组合问题1、如图所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以点以v 0=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:求:(1)A 、C 两点的高度差;两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 解析 (1)小物块在C 点时的速度大小为v C =v 0cos 53°=5 m/s ,竖直分量为v Cy =4 m/s 下落高度h ==0.8 m (2)小物块由C 到D 的过程中,由动能定理得mgR (1-cos 53°cos 53°))=12m v 2D -12m v 2C解得v D =29 m/s小球在D 点时由牛顿第二定律得F N -mg =m v D 2R 代入数据解得F N =68 N由牛顿第三定律得F N ′=F N =68 N ,方向竖直向下(3)设小物块刚好滑到木板右端时与木板达到共同速度,设小物块刚好滑到木板右端时与木板达到共同速度,大小为大小为v ,小物块在木板上滑行 的过程中,小物块与长木板的加速度大小分别为 a 1=μg =3 m/s 2, a 2=μmg M=1 m/s 2 速度分别为v =v D -a 1t ,v =a 2t 对物块和木板系统,由能量守恒定律得μmgL =12m v 2D -12(m +M )v 2解得L =3.625 m ,即木板的长度至少是3.625 m 答案 (1)0.8 m (2)68 N (3)3.625 m方法点拨程序法在解题中的应用程序法在解题中的应用22cy g v所谓“程序法”是指根据题意按先后顺序分析发生的运动过程,是指根据题意按先后顺序分析发生的运动过程,并明确每一过程的受力并明确每一过程的受力情况、运动性质、满足的规律等等,还要注意前后过程的衔接点是具有相同的速度. 2、在我国南方农村地区有一种简易水轮机,如图所示,从悬崖上流出的水可看做连续做平抛运动的物体,抛运动的物体,水流轨道与下边放置的轮子边缘相切,水流轨道与下边放置的轮子边缘相切,水流轨道与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,水冲击轮子边缘上安装的挡水板,水冲击轮子边缘上安装的挡水板,可可使轮子连续转动,使轮子连续转动,输出动力.输出动力.当该系统工作稳定时,当该系统工作稳定时,可近似认为水的末速度与轮子边缘的线可近似认为水的末速度与轮子边缘的线速度相同.设水的流出点比轮轴高h =5.6 m ,轮子半径R =1 m .调整轮轴O 的位置,使水流与轮边缘切点对应的半径与水平线成θ=37°角.(已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)问:问:(1)水流的初速度v 0大小为多少?大小为多少?(2)若不计挡水板的大小,则轮子转动的角速度为多少?若不计挡水板的大小,则轮子转动的角速度为多少? 答案 (1)7.5 m/s (2)12.5 rad/s 解析 (1)水流做平抛运动,有h -R sin 37°=12gt 2解得t =2(h -R sin 37°)g=1 s所以v y =gt =10 m/s ,由图可知: v 0=v y tan 37°=7.5 m/s.(2)由图可知:v =v 0sin 37°=12.5 m/s , 根据ω=v R 可得ω=12.5 rad/s. 3、解析 (1)在C 点:mg =m Rv C 2(2分) 所以v C =5 m/s(1分) (2)由C 点到D 点过程:mg (2R -2r )=12m v 2D -12m v 2C (2分) 在D 点:mg +F N =m v D2r(2分)所以F N =333.3 N (1分) 由牛顿第三定律知小滑车对轨道的压力为333.3 N. (1分) (3)小滑车要能安全通过圆形轨道,在平台上速度至少为v 1,则12m v 2C +mg (2R )=12m v 21 (2分) 小滑车要能落到气垫上,在平台上速度至少为v 2,则 h =12gt 2 (1分) x =v 2t(1分) 解得v 2>v 1,所以只要mgH =12m v 22,即可满足题意.解得H =7.2 m(3分) 答案 (1)5 m/s (2)333.3 N (3)7.2 m技巧点拨1.对于多过程问题首先要搞清各运动过程的特点,然后选用相应规律.2.要特别注意运用有关规律建立两运动之间的联系,把转折点的速度作为分析重点. 4、水上滑梯可简化成如图所示的模型,斜槽AB 和光滑和光滑圆弧槽BC 平滑连接.斜槽AB 的竖直高度差H =6.0 m ,倾角,倾角 θ=37°;圆弧槽BC 的半径R =3.0 m ,末端C 点的切线水平;C 点与水面的距离h =0.80 m .人与AB 间的动摩擦因数μ=0.2,取 重力加速度g =10 m/s 2,cos 37°=0.8,sin 37°=0.6.一个质量m =30 kg 的小朋友从滑梯顶端A 点无初速度地自由滑下,不计空点无初速度地自由滑下,不计空 气阻力.求:气阻力.求:(1)小朋友沿斜槽AB 下滑时加速度a 的大小;的大小;(2)小朋友滑到C 点时速度v 的大小及滑到C 点时受到槽面的支持力F C 的大小;的大小; (3)在从C 点滑出至落到水面的过程中,小朋友在水平方向的位移x 的大小.的大小.答案 (1)4.4 m/s 2(2)10 m/s 1 300 N (3)4 m解析 (1)小朋友沿AB 下滑时,受力情况如图所示,根据牛 顿第二定律得:mg sin θ-F f =ma① 又F f =μF N ② F N =mg cos θ③ 联立①②③式解得:a =4.4 m/s 2④(2)小朋友从A 滑到C 的过程中,根据动能定理得:mgH -F f ·H sin θ+mgR (1-cos θ)=12m v 2-0⑤联立②③⑤式解得:v =10 m/s ⑥根据牛顿第二定律有:F C -mg =m v 2R ⑦联立⑥⑦式解得:F C =1 300 N .⑧(3)在从C 点滑出至落到水面的过程中,小朋友做平抛运动,设此过程经历的时间为t ,则:h =12gt 2 ⑨x =v t ⑩ 联立⑥⑨⑩式解得:x =4 m.5、(2012·福建理综·20)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求:求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,在竖直方向上有H =12gt 2① 在水平方向上有s =v 0t ②由①②式解得v 0=sg2H 代入数据得v 0=1 m/s(2)物块离开转台时,由最大静摩擦力提供向心力,有f m =m v 02R③ f m =μN =μmg ④ 由③④式得μ=v 02gR代入数据得μ=0.26、(2010·重庆理综·24)小明站在水平地面上,手握不可伸长的轻绳一小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面的小球,甩动手腕,使球在竖直平面 内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水 平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与,手与球之间的绳长为34d ,重力加速度为g 忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?平距离最大,绳长应为多少?最大水平距离为多少?答案 (1)2gd 52gd (2)(2)11113mg(3)d 2 2 33d解析 (1)设绳断后球飞行的时间为t ,由平抛运动规律有竖直方向:14d =12gt 2水平方向:d =v 1t 解得v 1=2gd由机械能守恒定律有12m v 32=12m v 21+mg (d -34d )解得v 2=52gd(2)设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F max -mg =m v 12R 得F max =113mg(3)设绳长为l ,绳断时球的速度大小为v 3.绳承受的最大拉力不变,有F max -mg =m v 32l ,解得v 3=83gl绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1.由平抛运动规律有d -l =12gt 21,x =v 3t 1得x =4 l (d -l )3,当l =d 2时,x 有最大值x max =233d .7、如图所示,一质量为2m 的小球套在一“”滑杆上,小球与滑杆的动摩擦因数为μ=0.5,BC 段为半径为R 的半圆,静止于A 处的小球在大小为F =2mg ,方向与水平面成37°角的拉力F 作用下沿杆运动,到达B 点时立刻撤去F ,小球沿圆弧向上冲并越过C 点后落在D 点(图中未画出),已知D 点到B 点的距离为R ,且AB 的距离为s =10R .试求:试求:(1)小球在C 点对滑杆的压力;点对滑杆的压力;(2)小球在B 点的速度大小;点的速度大小;(3)BC 过程小球克服摩擦力所做的功.过程小球克服摩擦力所做的功.答案 (1)32mg ,方向竖直向下,方向竖直向下 (2)23gR (3)31mgR4解析 (1)小球越过C 点后做平抛运动,有竖直方向:2R =12gt 2①水平方向:R =v C t ② 解①②得v C =gR 2在C 点对小球由牛顿第二定律有:2mg -F N C =2m v C 2R解得F N C =3mg2由牛顿第三定律有,小球在C 点对滑杆的压力F N C ′=F N C =3mg2,方向竖直向下(2)在A 点对小球受力分析有:F N +F sin 37°=2mg③ 小球从A 到B 由动能定理有:F cos 37°cos 37°··s -μF N ·s =12·2m v 2B ④解③④得v B =23gR(3)BC 过程对小球由动能定理有:-2mg ·2R -W f =12×2m v 2C -12×2m v 2B解得W f =31mgR48、如图所示,质量为m =1 kg 的小物块由静止轻轻放在水平匀速运动的传送带上,从A 点随传送带运动到水平部分的最右端B 点,经半圆轨道C 点沿圆弧切线进入竖直光滑的半圆轨道,恰能做圆周运动.C 点在B 点的正上方,D 点为轨道的最低点.小物块离开D 点后,做平抛运动,恰好垂直于倾斜挡板打在挡板跟水平面相交的E 点.已知半圆轨道的半径R =0.9 m ,D 点距水平面的高度h =0.75 m ,取g =10 m/s 2,试求:,试求:(1)摩擦力对小物块做的功;摩擦力对小物块做的功;(2)小物块经过D 点时对轨道压力的大小;点时对轨道压力的大小; (3)倾斜挡板与水平面间的夹角θ.答案 (1)4.5 J (2)60 N ,方向竖直向下,方向竖直向下 (3)60°解析 (1)设小物块经过C 点时的速度大小为v 1,因为经过C 点恰能做圆周运动,所以,由牛顿第二定律得:mg =m v 12R解得:v 1=3 m/s小物块由A 到B 的过程中,设摩擦力对小物块做的功为W ,由动能定理得:W =12m v 21解得:W =4.5 J(2)设小物块经过D 点时的速度大小为v 2,对从C 点运动到D 点的过程,由机械能守恒 定律得: 12m v 21+mg ·2R =12m v 22 小物块经过D 点时,设轨道对它的支持力大小为F N ,由牛顿第二定律得:F N -mg =m v 22R联立解得:F N =60 N由牛顿第三定律可知,小物块经过D 点时对轨道的压力大小为: F N ′=F N =60 N ,方向竖直向下(3)小物块离开D 点后做平抛运动,设经时间t 打在E 点,由h =12gt 2得:t =1510 s设小物块打在E 点时速度的水平、竖直分量分别为v x 、v y ,速度跟竖直方向的夹角为α, 则: v x =v 2 v y =gt tan α=v x v y解得:tan α= 3 所以:α=60°由几何关系得:θ=α=60°60°. .9、水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,相切,一小球以初速度v 0沿直轨道向右运动.沿直轨道向右运动.如图如图3所示,所示,小球进入圆小球进入圆小球进入圆 形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的点,然后小球做平抛运动落在直轨道上的 d 点,则点,则( ) A .小球到达c 点的速度为gRB .小球到达b 点时对轨道的压力为5mgC .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点所需时间为2 Rg答案 ACD解析 小球在c 点时由牛顿第二定律得:mg =m v c 2R ,v c =gR ,A 项正确; 小球由b 到c 过程中,由机械能守恒定律得:12m v 2B =2mgR +12m v 2c 小球在b 点,由牛顿第二定律得:F N -mg =m v b 2R ,联立解得 F N=6mg ,B 项错误;小球由c 点平抛,在平抛运动过程中由运动学公式得:x =v c t,2R =12gt 2.解得t =2R g ,x =2R ,C 、D 项正确.1010、如图所示,、如图所示,P 是水平面上的圆弧凹槽.从高台边B 点以某速度点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左 端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与 竖直方向的夹角,θ2是BA 与竖直方向的夹角.则与竖直方向的夹角.则( )A .tan θ2tan θ1=2B .tan θ1·tan θ2=2C .1tan θ1·tan θ2=2 D .tan θ1tan θ2=2 答案 B解析 由题意可知:tan θ1=v y v x =gtv 0,tan θ2=x y =v 0t 12gt 2=2v 0gt,所以tan θ1·tan θ2=2,故B 正确.11、如图所示,在水平匀速运动的传送带的左端(P 点),轻放一质量为m =1 kg 的物块,物块随传送带运动到A 点后水平抛出,物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑.B 、D 为圆弧的两端点,其连线水平.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ=106°,轨道最低点为C ,A 点距水平面的高度h =0.8 m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:求:(1)物块离开A 点时水平初速度的大小;点时水平初速度的大小; (2)物块经过C 点时对轨道压力的大小;点时对轨道压力的大小;(3)设物块与传送带间的动摩擦因数为0.3,传送带的速度为5 m/s ,求P A 间的距离.间的距离. 答案 (1)3 m/s (2)43 N (3)1.5 m解析 (1)物块由A 到B 在竖直方向有v 2y =2ghv y =4 m/s在B 点:tan θ2=v yv A ,v A =3 m/s(2)物块从B 到C 由功能关系得mgR (1-cos θ2)=12m v 2C -12m v 2Bv B =v A 2+v y 2=5 m/s 解得v 2C =33 m 2/s 2 在C 点:F N -mg =m v C 2R由牛顿第三定律知,物块经过C 点时对轨道压力的大小为F N ′=F N =43 N(3)因物块到达A 点时的速度为3 m/s ,小于传送带速度,故物块在传送带上一直做匀加速直线运动 μmg =ma , a =3 m/s 2 P A 间的距离x P A =v A 22a=1.5 m. 1212、如图所示,半径、如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角的连线与水平方向间的夹角θ= 37°,另一端点C 为轨道的最低点.C 点右侧的水平路面点右侧的水平路面 上紧挨C 点放置一木板,木板质量M =1 kg ,上表面与C 点 等高.质量m =1 kg 的物块(可视为质点)从空中A 点以点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,sin 37° =0.6,cos 37°=0.8,取g =10 m/s 2.试求:试求: (1)物块经过轨道上的C 点时对轨道的压力;点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下?板上滑下?答案 (1)46 N (2)6 m解析 (1)设物块经过B 点时的速度为v B ,则 v B sin 37°=v 0设物块经过C 点的速度为v C ,由机械能守恒得: 12m v 2B +mg (R +R sin 37°sin 37°))=12m v 2C 物块经过C 点时,设轨道对物块的支持力为F C ,根据牛顿第二定律得:F C -mg =m v C 2R 联立解得:F C =46 N由牛顿第三定律可知,物块经过圆轨道上的C 点时对轨道的压力为46 N(2)物块在木板上滑动时,设物块和木板的加速度大小分别为a 1、a 2,得:μ1mg =ma 1 μ1mg -μ2(M +m )g =Ma 2设物块和木板经过时间t 达到共同速度v ,其位移分别为x 1、x 2,则:对物块有: v C -a 1t =v v 2-v 2C =-2a 1x 1 对木板有:a 2t =v v 2=2a 2x 2设木板长度至少为L ,由题意得:L ≥x 1-x 2 联立解得:L ≥6 m即木板长度至少6 m 才能使物块不从木板上滑下.1313、某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图、某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,示,赛车从起点赛车从起点A 出发,出发,沿水平直线轨道运动沿水平直线轨道运动L 后,由B 点进入点进入 半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直离开竖直圆轨道后继续在光滑平直 轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg ,通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到的阻力工作,进入竖直轨道前受到的阻力 恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m , R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动.问:要使赛车完成比赛,电动 机至少工作多长时间?(取g =10 m/s 2)答案 2.53 s解析 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2解得v 1=x g2h=3 m/s设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点速度为v 3,由牛顿运动定律及机械能守恒定律得 mg =m v 22/R 12m v 23=12m v 22+mg (2R ) 解得v 3=5gR =4 m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能关系,有Pt -F f L =12m v 2min ,由此解得t =2.53 s。

圆周运动与平抛运动相结合的专题练习题

圆周运动与平抛运动相结合的专题练习题

1、质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时速度为v,若滑块与碗间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为()A.μmg B.μm C.μm(g+) D.μm(-g)2、质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为,当小球以2的速度经过最高点时,对轨道的压力大小是( )A.0 B.mg C.3mg D.5mg3、质量为m的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v0,则:(1)当小球以2v0的速度经过轨道最高点时,对轨道的压力为多少?4、如图所示,长度为L=的绳,系一小球在竖直面内做圆周运动,小球的质量为M=5kg,小球半径不计,小球在通过最低点的速度大小为v=20m/s,试求:(1)小球在最低点所受绳的拉力 (2)小球在最低的向心加速度5、如图所示,位于竖直平面上的圆弧轨道光滑,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达B点时的速度为,最后落在地面上C点处,不计空气阻力,求:(1)小球刚运动到B点时的加速度为多大,对轨道的压力多大;(2)小球落地点C与B点水平距离为多少。

6、质量为m的小球被一根细线系于O点,线长为L,悬点O距地面的高度为2L,当小球被拉到与O点在同一水平面上的A点时由静止释放,球做圆周运动至最低点B时,线恰好断裂,球落在地面上的C点,C点距悬点O的水平距离为S (不计空气阻力).求:(1)小球从A点运动到B点时的速度大小;(2)悬线能承受的最大拉力;7、如图,AB为竖直半圆轨道的竖直直径,轨道半径R=10m,轨道A端与水平面相切.光滑木块从水平面上以一定初速度滑上轨道,若木块经B点时,对轨道的压力恰好为零,g取10m/s2,求:(1)小球经B点时的速度大小;(2)小球落地点到A点的距离.8、如图所示,半径为R,内径很小的光滑半圆管竖直放置.两个质量均为m 的小球a、b以不同的速度进入管内,a通过最高点A时,对管壁上部的压力为3mg,b通过最高点A时,对管壁下部的压力为,求:(1)a球在最高点速度.(2)b球在最高点速度.(3)a、b两球落地点间的距离10、我校某兴趣研究小组,为探究一个娱乐项目的安全性问题,提出如下力学模型如图所示,在一个固定点O,挂一根长L=m的细绳,绳的下端挂一个质量为m=的小球,已知细绳能承受的最大拉力为4N。

(完整版)平抛大量难题

(完整版)平抛大量难题

2016-2017学年度学校11月月考卷评卷人得分 一、选择题1.如图所示,倾角α=45°的固定斜面上,在A 点以初速度v 0水平抛出质量为m 的小球,落在斜面上的B 点,所用时间为t ,末速度与水平方向夹角为θ。

若让小球带正电q ,在两种不同电场中将小球以同样的速度v 0水平抛出,第一次整个装置放在竖直向下的匀强电场中,小球在空中运动的时间为t 1,末速度与水平方向夹角为θ1,第二次放在水平向左的匀强电场中,小球在空中运动的时间为t 2,末速度与水平方向夹角为θ2,电场强度大小都为E=mg/q ,则下列说法正确的是( )A .t 2>t>t 1B .θ=θ1>θ2C .θ>θ1=θ2D .若斜面足够长,小球都能落在斜面上【答案】AB【解析】试题分析:由平抛运动及类平抛运动规律及其推论可以得到:1t t >,及1θθ=,速度与水平方向的夹角的正切值是位移与水平方向夹角正切值的2倍,当加上水平向左的匀强电场中,物体受到的合力沿斜面向下,故物体不可能落在斜面上,其2t 最大,2θ最小,故选项AB 正确,选项CD 错误。

考点:平抛运动、类平抛运动【名师点睛】本题考查平抛运动、类平抛运动,注意掌握水平方向和竖直方向的运动规律即可求解。

2.在光滑地面上将一小钢球水平弹出,小球碰到墙壁后沿原路径反向弹回,图是小球运动的位移﹣时间图象,由此图象可知( )A .小球在O ﹣t 1时间内做匀速运动B .小球在O ﹣t 2时间内做匀加速运动C .小球在t 2时刻回到了出发点D .小球在t 2时刻被墙壁反弹【答案】AC【解析】试题分析:A、小球在O﹣t1时间内位移随时间均匀变化,所以小球做匀速运动,故A 正确,B错误;C、由图象可知:小球在t2时刻的位移为0,回到了出发点,故C正确;D、由图象可知:在小球在t1时刻速度方向改变,故此时被墙壁弹回,故D错误.故选AC3.如图所示,从同一竖直线上不同高度A、B两点处,分别以速率v1、v2同向水平抛出两个小球,P为它们运动轨迹的交点.则下列说法正确的有()A.两球在P点一定具有相同的速率B.若同时抛出,两球不可能在P点相碰C.若同时抛出,落地前两球竖直方向的距离逐渐变大D.若同时抛出,落地前两球之间的距离逐渐变大【答案】BD【解析】试题分析:A、两球的初速度大小关系未知,在P点,A的竖直分速度大于B的竖直分速度,根据平行四边形定则知,两球在P点的速度大小不一定相同,故A错误.B、若同时抛出,在P点,A下落的高度大于B下落的高度,则A下落的时间大于B下落的时间,可知两球不可能在P点相碰,故B正确.C、若同时抛出,根据h=知,经过相同的时间下落的高度相同,则竖直方向上的距离保持不变,故C错误.D、若同时抛出,由图可知,下落相同的高度,B的水平位移大于A的水平位移,可知B 的初速度大于A的初速度,由于两球在竖直方向上的距离不变,水平距离逐渐增大,则两球之间的距离逐渐增大,故D正确.故选:BD.4.“套圈圈”是大人和小孩都喜爱的一种游戏.某大人和小孩直立在界外,在同一竖直线上不同高度分别水平抛出小圆环,并恰好套中前方同一物体,假设小圆环的运动可以视作平抛运动,则()A.大人抛出的圆环运动时间较短B.大人应以较小的速度抛出圆环C.小孩抛出的圆环运动发生的位移较大D.小孩抛出的圆环单位时间内速度变化量较小【答案】B【解析】试题分析:物体做平抛运动,我们可以把平抛运动可以分解为水平方向上的匀速直线运动,和竖直方向上的自由落体运动来求解,两个方向上运动的时间相同.解:设抛出的圈圈做平抛运动的初速度为v,高度为h,则下落的时间为:t=,水平方向位移x=vt=v,A、大人站在小孩同样的位置,由以上的公式可得,由于大人的高度h比较大,所以大人抛出的圆环运动时间较长,故A错误;B、大人抛出的圆环运动时间较长,如果要让大人与小孩抛出的水平位移相等,则要以小点的速度抛出圈圈.故B正确;C、大人和小孩的水平位移相同,但竖直位移大于小孩的竖直位移,根据s=可知,大人的位移大.故C错误;D、环做平抛运动,则单位时间内速度变化量△v=gt=g,所以大人、小孩抛出的圆环单位时间内速度变化量相等,故D错误.故选:B.【点评】本题就是对平抛运动规律的考查,平抛运动可以分解为在水平方向上的匀速直线运动,和竖直方向上的自由落体运动来求解.5.如图所示,半圆形容器竖直放置,在其圆心O点分别以水平初速度v1、v2抛出两个小球(可视为质点),最终它们分别落在圆弧上的A点和B点,已知OA与OB互相垂直,且OA与竖直方向成θ角,则两小球的初速度之比为()A. B.tanθ C. D.tan2θ【答案】C【解析】试题分析:对于小球1,根据,解得,则.对于小球2,根据,解得,则.则两小球的初速度之比.故C正确,A、B、D错误.故选:C.6.在高空匀速水平飞行的轰炸机,每隔1 s投放一颗炸弹,若不计空气阻力,则,①这些炸弹落地前排列在同一条竖直线上②这些炸弹都落于地面上同一点③这些炸弹落地时速度大小方向都相同④相邻炸弹在空中距离保持不变以上说法正确的是:()A、①②B、①③C、②④D、③④【答案】B【解析】试题分析:由于惯性炸弹和飞机水平方向具有相同速度,因此炸弹落地前排列在同一条竖直线上,故①正确;早投放的炸弹早落地,因此炸弹不会落在同一点,故②错误;由于水平方向速度相同,下落高度相同,因此这些炸弹落地速度大小方向都相同,故③正确;因为竖直方向上相同时刻速度不同,空中相邻的炸弹之间的距离随着时间均匀增大,故④错误.故选B.考点:平抛运动7.如图所示,a、b的质量均为m,a从倾角为45°的光滑固定斜面顶端无初速地下滑,b从斜面顶端以初速度υ0平抛,对二者从斜面顶端运动到地面的运动过程以下说法正确的是()A、都做匀变速运动B、落地时的瞬时速率相同C、加速度相同D、运动的时间相同【答案】A【解析】a球沿斜面下滑,加速度为gsin45°,b做平抛运动,加速度为g,所以二者均做匀变速运动,但加速度不同,所以A对,C错;运动过程中只有重力做功,且做功相同,a无初动能,b有初动能,所以二者末动能不同,所以落地瞬时速率不等,B错;a下落根据匀变速公式:224sin45sin45sin45oo ohs htg g g===,b下落时间由平抛运动可得:2htg=,可知b下落时间小于a下落时间,D错,故答案选A。

03讲 力与曲线运动之平抛圆周专题强化解析版

03讲 力与曲线运动之平抛圆周专题强化解析版

03讲力与曲线运动之平抛圆周专题强化解析版一、单选题1.(2022·福建泉州·高一期末)如图甲,在水平桌面上放一张白纸,白纸上固定一条由几段弧形轨道组合而成的弯道.使表面沾有红色印泥的钢球以一定的初速度从弯道的C 端滚入,钢球从出口A 离开后会在白纸上留下一条痕迹.如图乙,拆去一段轨道,球仍从C 端滚入,则球离开B 端后留下的痕迹可能为()A.痕迹①B.痕迹②C.痕迹③D.痕迹④【答案】B【详解】物体做曲线运动时,某一点的速度方向为该点轨迹切线方向,可知钢球从B 端离开的速度方向沿着管口切线方向,故留下的痕迹可能为痕迹②,B 正确,ACD 错误。

故选B。

2.(2022·全国·高一阶段练习)如图所示,塔吊水平摆臂摆动半径为15米,某次作业将摆臂末端一个重物从某高度缓缓放到地面,在50s t =的时间里摆臂摆过60︒角,绕绳机向下匀速释放钢绳的速度为0.4m/s ,经50s 重物到达地面。

该次作业中重物相对地面的位移大小约为()A.15m B.20m C.25m D.30m【答案】C【详解】根据题意可知,经50s 重物下降的高度为0.450m 20m h vt ==⨯=在50s 的时间里摆臂摆过60︒角,根据几何关系可知重物运动的水平距离为x=15m则重物相对地面的位移大小约为22222015m 25ms h x =+=+=故选C。

3.(2022·山东青岛·高三期中)如图,均质细杆的一端A 斜靠在光滑竖直墙面上,另一端B 置于光滑水平面上,杆在外力作用下保持静止,此时细杆与墙面夹角很小。

现撤去外力,细杆开始滑落,某时刻细杆与水平面间夹角为θ,此时A 端沿墙面下滑的速度大小为v A .关于细杆的运动,下列说法正确的是()A.细杆滑落过程中,B 端的速度一直增大B.细杆滑落过程中,A 端沿墙面下滑速度总大于B 端沿水平面运动的速度C.细杆与水平面间夹角为θ时,B 端沿水平面运动的速度大小tan B A v v θ=D.滑落过程中,细杆上各个点的速度方向都不沿杆的方向【答案】C【详解】A.细杆滑落过程中,开始时B 端速度为零,当A 端滑到地面时B 端的速度也为零,可知整个过程中B 端的速度先增大后减小,选项A 错误;BC.细杆与水平面间夹角为θ时,由速度分解知识可知sin cos A B v v θθ=即B 端沿水平面运动的速度大小tan B A v v θ=则当θ角从0~45°时B A v v <;当θ角从45°~90°时B A v v >;即细杆滑落过程中,A 端沿墙面下滑速度先小于B 端沿水平面运动的速度,后大于B 端沿水平面运动的速度,选项B 错误,C 正确;D.滑落过程中,A 点的速度竖直向下,B 点的速度水平向右,则杆上其他各点的速度方向介于两者之间,则必有一点的速度方向沿杆的方向,选项D 错误。

(完整版)平抛与圆周运动相结合专项训练卷

(完整版)平抛与圆周运动相结合专项训练卷

2013—2014学年度北京师范大学万宁附属中学平抛运动与圆周运动相结合训练卷考试范围:平抛 圆周 机械能;命题人:王占国;审题人:孙炜煜学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)6.如图所示,半径为R,内径很小的光滑半圆细管竖直放置,一质量为m 的小球A 以某一速度从下端管口进入,并以速度1v 通过最高点C 时与管壁之间的弹力大小为mg 6.0,另一质量也为m 小球B 以某一速度从下端管口进入,并以速度2v 通过最高点C 时与管壁之间的弹力大小为mg 3.0,且21v v >,210s m g =。

当A 、B 两球落地时,落地点与下端管口之间的水平距离B x 、A x 之比可能为( )A.27=A B x x B 。

213=A B x x C 。

47=A B x x D 。

413=A B x x 【答案】CD 【解析】试题分析:若A 球通过最高点时,对细管是向下的压力,则B 也是向下的压力,则根据牛顿第二定律可得,'210.6v mg mg m R -=,解得:'10.4v gR =,'220.3v mg mg m R-=,解得'20.7v gR =不符合题意故对A 只能有:'210.6v mg mg m R+=解得:'1 1.6v gR =对B 有:'220.3v mg mg m R -=,解得'20.7v gR '220.3v mg mg m R+=解得'2 1.3v gR 通过C 点后,小球做平抛运动,所以水平位移x vt =,因为距离地面的高度相同,所以落地时间相同,故可得47=A B x x 或者413=A B x x 故选CD考点:考查了平抛运动点评:做本题的关键是知道小球在C 点的向心力来源,可根据21v v >判断7.如图所示,半径为R 的半圆形圆弧槽固定在水平面上,在圆弧槽的边缘A 点有一小球(可视为质点,图中未画出),今让小球对着圆弧槽的圆心O 以初速度0v 作平抛运动,从抛出到击中槽面所用时间为gR (g为重力加速度).则平抛的初速度可能是A .gRv 2320-=B .gRv 2320+=C .0332v gR+=D .gR v 2330-=【答案】AB【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.由竖直位移2122Rh gt ==,小球可能落在左半边也可能落在右半边,水平位移有两个值,由勾股定理可求出分别为00cos30,cos30R R R R -+,由水平方向匀速直线运动可求出两个水平速度分别为gRv 2320-=、gRv 2320+=AB 对。

平抛与圆周运动相结合专项训练卷

平抛与圆周运动相结合专项训练卷

2013-2014学年度北京师范大学万宁附属中学平抛运动与圆周运动相结合训练卷考试范围:平抛 圆周 机械能;命题人:王占国;审题人:孙炜煜学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)6.如图所示,半径为R ,内径很小的光滑半圆细管竖直放置,一质量为m 的小球A 以某一速度从下端管口进入,并以速度1v 通过最高点C 时与管壁之间的弹力大小为mg 6.0,另一质量也为m 小球B 以某一速度从下端管口进入,并以速度2v 通过最高点C时与管壁之间的弹力大小为mg 3.0,且21v v >,210s m g =。

当A 、B 两球落地时,落地点与下端管口之间的水平距离B x 、A x 之比可能为( )A.27=A B x x B. 213=A B x x C.47=A B x x D. 413=A B x x 【答案】CD 【解析】试题分析:若A 球通过最高点时,对细管是向下的压力,则B 也是向下的压力,则根据牛顿第二定律可得,'210.6v mg mg m R-=,解得:'10.4v gR ,'220.3v mg mg m R -=,解得'20.7v gR故对A 只能有:'210.6v mg mg m R+=解得:'1 1.6v gR =对 B 有:'220.3v mg mg m R -=,解得'20.7v gR =或者'220.3v mg mg m R+=解得'2 1.3v gR =通过C 点后,小球做平抛运动,所以水平位移x vt =,因为距离地面的高度相同,所以落地时间相同,故可得47=A B x x 或者413=A B x x 故选CD考点:考查了平抛运动点评:做本题的关键是知道小球在C 点的向心力来源,可根据21v v >判断7.如图所示,半径为R 的半圆形圆弧槽固定在水平面上,在圆弧槽的边缘A 点有一小球(可视为质点,图中未画出),今让小球对着圆弧槽的圆心O 以初速度0v 作平抛运动,从抛出到击中槽面所用时间为gR(g 为重力加速度)。

平抛运动与圆周运动的组合问题(含答案)

平抛运动与圆周运动的组合问题(含答案)

平抛运动与圆周运动的组合问题1、如图所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以v 0=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地 面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:(1)A 、C 两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 解析 (1)小物块在C 点时的速度大小为v C =v 0cos 53°=5 m/s ,竖直分量为v Cy =4 m/s下落高度h = =0.8 m(2)小物块由C 到D 的过程中,由动能定理得mgR (1-cos 53°)=12m v 2D -12m v 2C解得v D =29 m/s小球在D 点时由牛顿第二定律得F N -mg =m v D 2R代入数据解得F N =68 N由牛顿第三定律得F N ′=F N =68 N ,方向竖直向下(3)设小物块刚好滑到木板右端时与木板达到共同速度,大小为v ,小物块在木板上滑行 的过程中,小物块与长木板的加速度大小分别为 a 1=μg =3 m/s 2,a 2=μmg M=1 m/s 2速度分别为v =v D -a 1t ,v =a 2t 对物块和木板系统,由能量守恒定律得μmgL =12m v 2D -12(m +M )v 2解得L =3.625 m ,即木板的长度至少是3.625 m 答案 (1)0.8 m (2)68 N (3)3.625 m方法点拨程序法在解题中的应用22cy g v所谓“程序法”是指根据题意按先后顺序分析发生的运动过程,并明确每一过程的受力情况、运动性质、满足的规律等等,还要注意前后过程的衔接点是具有相同的速度.2、在我国南方农村地区有一种简易水轮机,如图所示,从悬崖上流出的水可看做连续做平抛运动的物体,水流轨道与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动,输出动力.当该系统工作稳定时,可近似认为水的末速度与轮子边缘的线速度相同.设水的流出点比轮轴高h=5.6 m,轮子半径R=1 m.调整轮轴O的位置,使水流与轮边缘切点对应的半径与水平线成θ=37°角.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)问:(1)水流的初速度v0大小为多少?(2)若不计挡水板的大小,则轮子转动的角速度为多少?答案(1)7.5 m/s(2)12.5 rad/s解析(1)水流做平抛运动,有h-R sin 37°=1 2gt2解得t=2(h-R sin 37°)g=1 s所以v y=gt=10 m/s,由图可知:v0=v y tan 37°=7.5 m/s.(2)由图可知:v=v0sin 37°=12.5 m/s,根据ω=vR可得ω=12.5 rad/s. 3、解析 (1)在C 点:mg =m RvC 2(2分)所以v C =5 m/s (1分)(2)由C 点到D 点过程:mg (2R -2r )=12m v 2D -12m v 2C (2分)在D 点:mg +F N =m v D 2r (2分)所以F N =333.3 N (1分) 由牛顿第三定律知小滑车对轨道的压力为333.3 N. (1分) (3)小滑车要能安全通过圆形轨道,在平台上速度至少为v 1,则 12m v 2C +mg (2R )=12m v 21 (2分) 小滑车要能落到气垫上,在平台上速度至少为v 2,则 h =12gt 2 (1分) x =v 2t (1分)解得v 2>v 1,所以只要mgH =12m v 22,即可满足题意.解得H =7.2 m (3分) 答案 (1)5 m/s (2)333.3 N (3)7.2 m技巧点拨1.对于多过程问题首先要搞清各运动过程的特点,然后选用相应规律.2.要特别注意运用有关规律建立两运动之间的联系,把转折点的速度作为分析重点. 4、水上滑梯可简化成如图所示的模型,斜槽AB 和光滑圆弧槽BC 平滑连接.斜槽AB 的竖直高度差H =6.0 m ,倾角 θ=37°;圆弧槽BC 的半径R =3.0 m ,末端C 点的切线水平;C 点与水面的距离h =0.80 m .人与AB 间的动摩擦因数μ=0.2,取 重力加速度g =10 m/s 2,cos 37°=0.8,sin 37°=0.6.一个质量m=30 kg 的小朋友从滑梯顶端A 点无初速度地自由滑下,不计空 气阻力.求:(1)小朋友沿斜槽AB 下滑时加速度a 的大小;(2)小朋友滑到C 点时速度v 的大小及滑到C 点时受到槽面的支持力F C 的大小; (3)在从C 点滑出至落到水面的过程中,小朋友在水平方向的位移x 的大小. 答案 (1)4.4 m/s 2 (2)10 m/s 1 300 N (3)4 m解析 (1)小朋友沿AB 下滑时,受力情况如图所示,根据牛 顿第二定律得:mg sin θ-F f =ma ① 又F f =μF N ② F N =mg cos θ ③ 联立①②③式解得:a =4.4 m/s 2 ④ (2)小朋友从A 滑到C 的过程中,根据动能定理得:mgH -F f ·H sin θ+mgR (1-cos θ)=12m v 2-0 ⑤联立②③⑤式解得:v =10 m/s ⑥根据牛顿第二定律有:F C -mg =m v 2R ⑦联立⑥⑦式解得:F C =1 300 N . ⑧(3)在从C 点滑出至落到水面的过程中,小朋友做平抛运动,设此过程经历的时间为t ,则:h =12gt 2 ⑨x =v t ⑩ 联立⑥⑨⑩式解得:x =4 m.5、(2012·福建理综·20)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,在竖直方向上有H =12gt 2 ①在水平方向上有s =v 0t ②由①②式解得v 0=s g2H代入数据得v 0=1 m/s(2)物块离开转台时,由最大静摩擦力提供向心力,有f m =m v 0 2R ③f m =μN =μmg ④由③④式得μ=v 0 2gR代入数据得μ=0.26、 (2010·重庆理综·24)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面 内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水 平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?答案 (1)2gd 52gd (2)113mg (3)d 2 2 33d 解析 (1)设绳断后球飞行的时间为t ,由平抛运动规律有竖直方向:14d =12gt 2水平方向:d =v 1t 解得v 1=2gd由机械能守恒定律有12m v 32=12m v 21+mg (d -34d )解得v 2= 52gd(2)设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F max -mg =m v 1 2R得F max =113mg(3)设绳长为l ,绳断时球的速度大小为v 3.绳承受的最大拉力不变,有F max -mg =m v 3 2l,解得v 3= 83gl绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1.由平抛运动规律有d -l =12gt 21,x =v 3t 1得x =4 l (d -l )3,当l =d 2时,x 有最大值x max =233d .7、如图所示,一质量为2m 的小球套在一“”滑杆上,小球与滑杆的动摩擦因数为μ=0.5,BC 段为半径为R 的半圆,静止于A 处的小球在大小为F =2mg ,方向与水平面成37°角的拉力F 作用下沿杆运动,到达B 点时立刻撤去F ,小球沿圆弧向上冲并越过C 点后落在D 点(图中未画出),已知D 点到B 点的距离为R ,且AB 的距离为s =10R .试求:(1)小球在C 点对滑杆的压力; (2)小球在B 点的速度大小;(3)BC 过程小球克服摩擦力所做的功. 答案 (1)32mg ,方向竖直向下 (2)23gR (3)31mgR4解析 (1)小球越过C 点后做平抛运动,有竖直方向:2R =12gt 2 ①水平方向:R =v C t ② 解①②得v C =gR 2在C 点对小球由牛顿第二定律有:2mg -F N C =2m v C 2R解得F N C =3mg2由牛顿第三定律有,小球在C 点对滑杆的压力F N C ′=F N C =3mg2,方向竖直向下(2)在A 点对小球受力分析有:F N +F sin 37°=2mg ③ 小球从A 到B 由动能定理有:F cos 37°·s -μF N ·s =12·2m v 2B ④解③④得v B =23gR(3)BC 过程对小球由动能定理有:-2mg ·2R -W f =12×2m v 2C -12×2m v 2B解得W f =31mgR48、如图所示,质量为m =1 kg 的小物块由静止轻轻放在水平匀速运动的传送带上,从A 点随传送带运动到水平部分的最右端B 点,经半圆轨道C 点沿圆弧切线进入竖直光滑的半圆轨道,恰能做圆周运动.C 点在B 点的正上方,D 点为轨道的最低点.小物块离开D 点后,做平抛运动,恰好垂直于倾斜挡板打在挡板跟水平面相交的E 点.已知半圆轨道的半径R =0.9 m ,D 点距水平面的高度h =0.75 m ,取g =10 m/s 2,试求:(1)摩擦力对小物块做的功;(2)小物块经过D 点时对轨道压力的大小; (3)倾斜挡板与水平面间的夹角θ.答案 (1)4.5 J (2)60 N ,方向竖直向下 (3)60°解析 (1)设小物块经过C 点时的速度大小为v 1,因为经过C 点恰能做圆周运动,所以,由牛顿第二定律得:mg =m v 1 2R解得:v 1=3 m/s小物块由A 到B 的过程中,设摩擦力对小物块做的功为W ,由动能定理得:W =12m v 21解得:W =4.5 J(2)设小物块经过D 点时的速度大小为v 2,对从C 点运动到D 点的过程,由机械能守恒 定律得: 12m v 21+mg ·2R =12m v 22 小物块经过D 点时,设轨道对它的支持力大小为F N ,由牛顿第二定律得:F N -mg =m v 2 2R联立解得:F N =60 N由牛顿第三定律可知,小物块经过D 点时对轨道的压力大小为: F N ′=F N =60 N ,方向竖直向下(3)小物块离开D 点后做平抛运动,设经时间t 打在E 点,由h =12gt 2得:t =1510s 设小物块打在E 点时速度的水平、竖直分量分别为v x 、v y ,速度跟竖直方向的夹角为α, 则: v x =v 2 v y =gt tan α=v x v y解得:tan α=3 所以:α=60°由几何关系得:θ=α=60°.9、 水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动.如图3所示,小球进入圆 形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的 d 点,则 ( ) A .小球到达c 点的速度为gR B .小球到达b 点时对轨道的压力为5mg C .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点所需时间为2 Rg答案 ACD解析 小球在c 点时由牛顿第二定律得:mg =m v c 2R ,v c =gR ,A 项正确;小球由b 到c 过程中,由机械能守恒定律得: 12m v 2B =2mgR +12m v 2c 小球在b 点,由牛顿第二定律得:F N -mg =m v b 2R ,联立解得F N =6mg ,B 项错误;小球由c 点平抛,在平抛运动过程中由运动学公式得:x =v c t,2R =12gt 2.解得t =2 Rg ,x =2R ,C 、D 项正确.10、 如图所示,P 是水平面上的圆弧凹槽.从高台边B 点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左 端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与 竖直方向的夹角,θ2是BA 与竖直方向的夹角.则 ( )A .tan θ2tan θ1=2 B .tan θ1·tan θ2=2C .1tan θ1·tan θ2=2D .tan θ1tan θ2=2答案 B解析 由题意可知:tan θ1=v y v x =gt v 0,tan θ2=x y =v 0t 12gt 2=2v 0gt,所以tan θ1·tan θ2=2,故B正确.11、如图所示,在水平匀速运动的传送带的左端(P 点),轻放一质量为m =1 kg 的物块,物块随传送带运动到A 点后水平抛出,物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑.B 、D 为圆弧的两端点,其连线水平.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ=106°,轨道最低点为C ,A 点距水平面的高度h =0.8 m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:(1)物块离开A 点时水平初速度的大小; (2)物块经过C 点时对轨道压力的大小;(3)设物块与传送带间的动摩擦因数为0.3,传送带的速度为5 m/s ,求P A 间的距离. 答案 (1)3 m/s (2)43 N (3)1.5 m解析 (1)物块由A 到B 在竖直方向有v 2y =2gh v y =4 m/s在B 点:tan θ2=v yv A ,v A =3 m/s(2)物块从B 到C 由功能关系得mgR (1-cos θ2)=12m v 2C -12m v 2Bv B =v A 2+v y 2=5 m/s 解得v 2C =33 m 2/s 2 在C 点:F N -mg =m v C 2R由牛顿第三定律知,物块经过C 点时对轨道压力的大小为F N ′=F N =43 N(3)因物块到达A 点时的速度为3 m/s ,小于传送带速度,故物块在传送带上一直做匀加速直线运动 μmg =ma , a =3 m/s 2P A 间的距离x P A =v A 22a=1.5 m.12、如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ= 37°,另一端点C 为轨道的最低点.C 点右侧的水平路面 上紧挨C 点放置一木板,木板质量M =1 kg ,上表面与C 点 等高.质量m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道. 已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,sin 37° =0.6,cos 37°=0.8,取g =10 m/s 2.试求: (1)物块经过轨道上的C 点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下?答案 (1)46 N (2)6 m解析 (1)设物块经过B 点时的速度为v B ,则 v B sin 37°=v 0设物块经过C 点的速度为v C ,由机械能守恒得: 12m v 2B +mg (R +R sin 37°)=12m v 2C 物块经过C 点时,设轨道对物块的支持力为F C ,根据牛顿第二定律得:F C -mg =m v C 2R联立解得:F C =46 N由牛顿第三定律可知,物块经过圆轨道上的C 点时对轨道的压力为46 N(2)物块在木板上滑动时,设物块和木板的加速度大小分别为a 1、a 2,得:μ1mg =ma 1 μ1mg -μ2(M +m )g =Ma 2设物块和木板经过时间t 达到共同速度v ,其位移分别为x 1、x 2,则:对物块有: v C -a 1t =v v 2-v 2C =-2a 1x 1 对木板有:a 2t =v v 2=2a 2x 2设木板长度至少为L ,由题意得:L ≥x 1-x 2 联立解得:L ≥6 m即木板长度至少6 m 才能使物块不从木板上滑下.13、 某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入 半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直 轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg , 通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到的阻力 恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m , R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动 机至少工作多长时间?(取g =10 m/s 2)答案 2.53 s解析 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2解得v 1=x g2h=3 m/s设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点速度为v 3,由牛顿运动定律及机械能守恒定律得mg =m v 22/R 12m v 23=12m v 22+mg (2R ) 解得v 3=5gR =4 m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能关系,有Pt -F f L =12m v 2m in ,由此解得t =2.53 s。

专题十二 平抛运动、圆周运动的临界问题

专题十二  平抛运动、圆周运动的临界问题

专题十二 平抛运动、圆周运动的临界问题1.如图1所示,在光滑水平面上,钉有两个钉子A 和B ,一根长细绳的一端系一个小球,另一端固定在钉子A 上,开始时小球与钉子A 、B 均在一条直线上(图示位置),且细绳的一大部分沿俯视顺时针方向缠绕在两钉子上,现使小球以初速度v 0在水平面上沿俯视逆时针方向做圆周运动,使两钉子之间缠绕的绳子逐渐释放,在绳子完全被释放后与释放前相比,下列说法正确的是( )A .小球的线速度变大B .小球的角速度变大C .小球的加速度变大D .细绳对小球的拉力变小2.荡秋千一直是小朋友们喜爱的运动,秋千上端吊环之间不断磨损,能承受的拉力逐渐减小。

如图2所示,一质量为m 的小朋友在吊绳长为l 的秋千上,如果小朋友从与吊环水平位置开始下落,运动到最低点时,吊绳突然断裂,小朋友最后落在地板上。

如果吊绳的长度l 可以改变,则( )A .吊绳越长,小朋友在最低点越容易断裂B .吊绳越短,小朋友在最低点越容易断裂C .吊绳越长,小朋友落地点越远D .吊绳长度是吊绳悬挂点高度的一半时,小朋友落地点最远3.(2015·湖北黄冈二模)如图3所示,在投球游戏中,某人将小球从P 点以速度v 水平抛向固定在水平地面上的塑料筐,小球恰好沿着筐的上沿入筐并打在筐的底角,若要让小球进入筐中并直接击中筐底正中间,下列说法可行的是( )A .在P 点将小球以小于v 的速度水平抛出B .在P 点将小球以大于v 的速度水平抛出C .在P 点正上方某位置将小球以小于v 的速度水平抛出D .在P 点正下方某位置将小球以小于v 的速度水平抛出4.一水平放置的圆盘可以绕中心O 点旋转,盘上放一个质量为m 的铁块(可视为质点),轻质弹簧一端连接铁块,另一端系于O 点,铁块与圆盘间的动摩擦因数为μ,如图4所示。

铁块随圆盘一起匀速转动,铁块距中心O 点的距离为r ,这时弹簧的拉力大小为F ,重力加速度为g ,已知铁块受到的最大静摩擦力等于滑动摩擦力,则圆盘的角速度可能是( )A .ω≥F +μmg mrB .ω≤F -μmg mrC.F -μmg mr <ω<F +μmg mrD.F -μmg mr ≤ω≤F +μmg mr二、多项选择题5.(2016·东城区模拟)长为L 的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内做圆周运动,关于小球在最高点的速度v ,下列说法中正确的是( )A .当v 的值为gL 时,杆对小球的弹力为零B .当v 由gL 逐渐增大时,杆对小球的拉力逐渐增大C .当v 由gL 逐渐减小时,杆对小球的支持力逐渐减小D .当v 由零逐渐增大时,向心力也逐渐增大6.质量为m 的小球由轻绳a 、b 分别系于一轻质木架上的A 和C 点,绳长分别为l a 、l b ,如图5所示,当木架绕轴BC 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a 在竖直方向,绳b 在水平方向,当小球运动到图示位置时,绳b 被烧断,同时木架停止转动,则( )A .小球仍在水平面内做匀速圆周运动B .在绳b 被烧断瞬间,绳a 中张力突然增大C .若角速度ω较小,小球可能在垂直于平面ABC 的竖直平面内摆动D .绳b 未被烧断时,绳a 的拉力大于mg ,绳b 的拉力为mω2l b7.(2016·山西吕梁模拟)如图6所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( )A .小球通过最高点时的最小速度v min =g (R +r )B .小球通过最高点时的最小速度v min =0C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力8.如图7所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m 的两个物体A 和B ,它们分居圆心两侧,与圆心距离分别为R A =r ,R B =2r ,与盘间的动摩擦因数μ相同,当圆盘转速加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是( )A .此时绳子张力为3μmgB .此时圆盘的角速度为2μg rC .此时A 所受摩擦力方向沿半径指向圆外D .此时烧断绳子,A 仍相对盘静止,B 将做离心运动三、非选择题9.为了研究过山车的原理,某物理小组提出了下列的设想:取一个与水平方向夹角为θ=60°,长为L 1=2 3 m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道D ,如图8所示。

高考物理复习专题三 平抛运动与圆周运动单元练习题(含详细答案)

高考物理复习专题三 平抛运动与圆周运动单元练习题(含详细答案)

高考物理复习专题三平抛运动与圆周运动一、单选题1.特战队员在进行素质训练时,抓住一端固定在同一水平高度的不同位置的绳索,从高度一定的平台由水平状态无初速开始下摆,如图所示,在到达竖直状态时放开绳索,特战队员水平抛出直到落地。

不计绳索质量和空气阻力,特战队员可看成质点。

下列说法正确的是()A.绳索越长,特战队员落地时的水平位移越大B.绳索越长,特战队员在到达竖直状态时绳索拉力越大C.绳索越长,特战队员落地时的水平速度越大D.绳索越长,特战队员落地时的速度越大2.如图所示是倾角为45°的斜坡,在斜坡底端P点正上方某一位置Q处以速度v0水平向左抛出一个小球A,小球恰好能垂直落在斜坡上,运动时间为t1.小球B从同一点Q处自由下落,下落至P点的时间为t2.不计空气阻力,则t1:t2=()A. 1:2B. 1:C. 1:3D. 1:3.如图,质量相同的钢球①,②分别放在A,B盘的边缘,A,B两盘的半径之比为2:1,a,b分别是与A盘,B盘同轴的轮,a,b轮半径之比为1:2。

当a,b两轮在同一皮带带动下匀速转动时,钢球①,②受到的向心力大小之比为( )A. 2:1B. 4:1C. 1:4D. 8:14.关于平抛运动,下列说法正确的是()A.不论抛出位置多高,抛出速度越大的物体,其水平位移一定越大B.不论抛出位置多高,抛出速度越大的物体,其飞行时间一定越长C.不论抛出速度多大,抛出位置越高,其飞行时间一定越长D.不论抛出速度多大,抛出位置越高,飞得一定越远5.在空中某一高度将一小球水平抛出,取抛出点为坐标原点,初速度方向为轴正方向,竖直向下为y轴正方向,得到其运动的轨迹方程为y=ax2(a为已知量),重力加速度为g。

则根据以上条件可以求得()A.物体距离地面的高度B.物体作平抛运动的初速度C.物体落地时的速度D.物体在空中运动的总时间6.某游乐场开发了一个名为“翻天滚地”的游乐项目。

原理图如图所示:一个3/4圆弧形光滑圆管轨道ABC,放置在竖直平面内,轨道半径为R,在A点与水平地面AD相接,地面与圆心O等高,MN是放在水平地面上长为3R,厚度不计的减振垫,左端M正好位于A点.让游客进入一个中空的透明弹性球,人和球的总质量为m,球的直径略小于圆管直径。

曲线运动专题二 平抛运动与圆周运动相结合的问题

曲线运动专题二   平抛运动与圆周运动相结合的问题

曲线运动专题二 平抛运动与圆周运动相结合的问题说明:1. 平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速度等于平抛运动的水平初速度;若物体平抛后进人圆轨道,圆周运动的初速度等于平抛末速度在圆切线方向的分速度。

2. 分析多解原因:匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在确定做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去. 3. 确定处理方法:(1)抓住联系点:明确两个物体参与运动的性质和求解的问题,两个物体参与的两个运动虽然独立进行,但一定有联系点,其联系点一般是时间或位移等,抓住两运动的联系点是解题关键。

(2)先特殊后一般:分析问题时可暂时不考虑周期性,表示出一个周期的情况,再根据运动的周期性,在转过的角度θ上再加上 2πr,具体π的取值应视情况而定。

练习题1.(多选)水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动.如图所示,小球进入圆形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的d 点,则( )A .小球到达c 点的速度为gRB .小球到达b 点进入圆形轨道时对轨道的压力为mgC .小球在直轨道上的落点d 与b 点距离为RD .小球从c 点落到d 点所需时间为2Rg2.如图为俯视图,利用该装置可以测子弹速度大小。

直径为d 的小纸筒,以恒定角速度ω绕O 轴逆时针转动,一颗子弹沿直径水平快速穿过圆纸筒,先后留下a 、b 两个弹孔,且Oa 、Ob 间的夹角为α.不计空气阻力,则子弹的速度为多少?3.(单选)如图所示,一位同学做飞镖游戏,已知圆盘的直径为d ,飞镖距圆盘为L ,且对准圆盘上边缘的A 点水平抛出,初速度为v 0,飞镖抛出的同时,圆盘以垂直圆盘过盘心O 的水平轴匀速运动,角速度为ω.若飞镖恰好击中A 点,则下列关系正确的是( )A .02dv ω=B .ωL =π(1+2n )v 0,(n =0,1,2,3,…)C.2dv02=L2gD.dω2=gπ2(1+2n)2,(n=0,1,2, 3,…)4.一半径为R、边缘距地高h的雨伞绕伞柄以角速度ω匀速旋转时(如图所示),雨滴沿伞边缘的切线方向飞出.则:⑴雨滴离开伞时的速度v多大?⑵甩出的雨滴在落地过程中发生的水平位移多大?⑶甩出的雨滴在地面上形成一个圆,求此圆的半径r为多少?5.如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.5m,离水平地面的高度H=0.8m,物块平抛落地过程水平位移的大小s=0.4m.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2求:(1)物块做平抛运动的初速度大小v0;(2)物块与转台间的动摩擦因数μ.6.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示.已d,重力加速度为g.忽略手的运动半径和空气阻力.知握绳的手离地面高度为d,手与球之间的绳长为34(1)求绳断开时球的速度大小v1(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?7.如图为一个简易的冲击式水轮机的模型,水流自水平的水管流出,水流轨迹与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动.当该装置工作稳定时,可近似认为水到达轮子边缘时的速度与轮子边缘的线速度相同.调整轮轴O的位置,使水流与轮边缘切点对应的半径与水平方向成θ=37°角.测得水从管口流出速度v0=3 m/s,轮子半径R=0.1 m.不计挡水板的大小,不计空气阻力.取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)轮子转动角速度ω;(2)水管出水口距轮轴O的水平距离l和竖直距离h.题目点评:1、抓住刚好能通过c 点(无支撑)得条件,到达b 点进入圆形轨道时,有竖直向上的向心加速度,超重状态,对轨道的压力大于mg 。

高二学考专题11平抛运动与圆周运动组合问题

高二学考专题11平抛运动与圆周运动组合问题

高二学考专题11平抛运动与圆周运动组合问题考点一平抛运动与直线运动的组合问题1.平抛运动可以分为水平方向的匀速直线运动和竖直方向的自由落体运动,两分运动具有等时性.2.当物体做直线运动时,分析物体受力是解题的关键.正确分析物体受力,求出物体的加速度,然后运用运动学公式确定物体的运动规律.3.平抛运动与直线运动的衔接点的速度是联系两个运动的桥梁,因此解题时要正确分析衔接点速度的大小和方向.★典型例题★如图甲所示,在高h =0.8m的平台上放置一质量为M=1kg的小木块(视为质点),小木块距平台右边缘d =2m。

现给小木块一水平向右的初速度v0,其在平台上运动的v2-x关系如图乙所示。

小木块最终从平台边缘滑出落在距平台右侧水平距离s =0.8m的地面上,g取10m/s2,求:(1)小木块滑出时的速度v;(2)小木块在水平面滑动的时间t;(3)小木块在滑动过程中产生的热量Q。

★针对练习1★如图所示,滑板运动员以速度v0从离地高度为h的平台末端水平飞出,落在水平地面上。

忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是:()A.v0越大,运动员在空中运动时间越长B.B.v0越大,运动员落地时重力的瞬时功率越大C.v0越大,运动员落地时机械能越大D.v0越大,运动员落地时偏离水平水平方向的夹角越大考点二平抛运动与圆周运动的组合问题1.物体的圆周运动主要是竖直面内的圆周运动,通常应用动能定理和牛顿第二定律进行分析,有的题目需要注意物体能否通过圆周的最高点.2.平抛运动与圆周运动的衔接点的速度是解题的关键.★典型例题★如图所示为圆弧形固定光滑轨道,a点切线方向与水平方向夹角53o,b点切线方向水平。

一小球以水平初速度6m/s做平抛运动刚好能沿轨道切线方向进入轨道,已知轨道半径1m ,小球质量1kg 。

(sin53o =0.8,cos53o =0.6,g =10m/s 2)求 (1)小球做平抛运动的飞行时间。

平抛运动和圆周运动典型例题

平抛运动和圆周运动典型例题

平抛运动、圆周运动一、 平抛运动1、定义:平抛运动是指物体只在重力作用下,从水平初速度开场的运动。

2、条件:a 、只受重力;b 、初速度与重力垂直.3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。

g a =4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向〔垂直于恒力方向〕的匀速直线运动,一个是竖直方向〔沿着恒力方向〕的匀加速直线运动。

水平方向和竖直方向的两个分运动既具有独立性,又具有等时性.5、平抛运动的规律①水平速度:v x =v 0,竖直速度:v y =gt 合速度〔实际速度〕的大小:22y x v v v +=物体的合速度v 与x 轴之间的夹角为:tan v gt v v xy ==α ②水平位移:t v x 0=,竖直位移221gt y = 合位移〔实际位移〕的大小:22y x s +=物体的总位移s 与x 轴之间的夹角为:2tan v gt x y ==θ 可见,平抛运动的速度方向与位移方向不一样。

而且θαtan 2tan =而θα2≠轨迹方程:由t v x 0=和221gt y =消去t 得到:222x v g y =。

可见平抛运动的轨迹为抛物线。

6、平抛运动的几个结论①落地时间由竖直方向分运动决定: 由221gt h =得:gh t 2=②水平飞行射程由高度和水平初速度共同决定:ghv t v x 200== ③平抛物体任意时刻瞬时速度v 与平抛初速度v 0夹角θa 的正切值为位移s 与水平位移x 夹角θ正切值的两倍。

④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。

证明:221tan 20x s s gt v gt =⇒==α ⑤平抛运动中,任意一段时间内速度的变化量Δv =gΔt ,方向恒为竖直向下〔与g 同向〕。

任意一样时间内的Δv 都一样〔包括大小、方向〕,如右图。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图所示,一根长L=0.5m的细绳悬于天花板上O点,绳的另一端挂一个质
量为m=1kg的小球,已知绳能承受的最大拉力为12.5N,小球在水平面内做圆周运动,当速度逐渐增大,绳断裂后,小球将平抛后掉在地上。

(g=10m/s2)(1)绳刚断裂时小球的角速度为多大?
(2)若小球做圆周运动的平面离地高为h=0.6m,则小球经多长时间落地。

(3)在第(2)问中小球落点离悬点在地面上的垂直投影的距离为多少?
2、如图,一个质量为0.6kg的小球以某一初速度从P点水平抛出,恰好从光滑圆弧ABC的A点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失).已知圆弧的半径R=0.3m,θ=60°,小球到达A点时的速度为v=4m/s.(取g=10m/s2)试求:
(1)小球做平抛运动的初速度v0;
(2)P点与A点的水平距离和竖直高度;
(3)小球到达圆弧最高点C时,对轨道的压力.
3、滑板运动是青少年喜爱的一项活动.如图所示,滑板运动员以某一初速度从
A点水平离开h=0.8m高的平台,运动员(连同滑板)恰好能无碰撞的从B点沿圆弧切线进入竖直光滑圆弧轨道,然后经C点沿固定斜面向上运动至最高点D.圆弧轨道的半径为1m,B、C为圆弧的两端点,其连线水平,圆弧对应圆心
角θ=106°,斜面与圆弧相切于C点.已知滑板与斜面问的动摩擦因数为μ= 1
3
,g=10m/s2,sin37°=0.6,cos37°=0.8,不计空气阻力,运动员(连同滑板)质量为50kg,可视为质点.试求:
(1)运动员(连同滑板)离开平台时的初速度v0;
(2)运动员(连同滑板)通过圆弧轨道最底点对轨道的压力;
(3)运动员(连同滑板)在斜面上滑行的最大距离.
4、如图所示,质量为 m=0.1kg的小球置于平台末端A点,平台的右下方有一个表面光滑的斜面体,在斜面体的右边固定一竖直挡板,轻质弹簧拴接在挡板上,弹簧的自然长度为x0=0.3m,斜面体底端 C 距挡板的水平距离为 d2=1m,斜面体的倾角为θ=45°,斜面体的高度 h=0.5m.现给小球一大小为 v0=2m/s的初速度,使之在空中运动一段时间后,恰好从斜面体的顶端 B 无碰撞地进入斜面,并沿斜面运动,经过 C 点后再沿粗糙水平面运动,过一段时间开始压缩轻质弹簧.小球速度减为零时,弹簧被压缩了△x=0.1m.已知小球与水平面间的动摩擦因数μ=0.5,设小球经过 C 点时无能量损失,重力加速度 g=10m/s2,求:
(1)平台与斜面体间的水平距离 d1;
(2)小球在斜面上的运动时间 t;
(3)弹簧压缩过程中的最大弹性势能 E p.
5、如图所示,小球从光滑的圆弧轨道下滑至水平轨道末端时,光电装置被触动,控制电路会使转筒立刻以某一角速度匀速连续转动起来.转筒的底面半径为R,已知轨道末端与转筒上部相平,与转筒的转轴距离为L,且与转筒侧壁上的小孔的高度差为h;开始时转筒静止,且小孔正对着轨道方向.现让一小球从圆弧轨道上的某处无初速滑下,若正好能钻入转筒的小孔(小孔比小球略大,小球视为质点,不计空气阻力,重力加速度为g),求:
(1)小球从圆弧轨道上释放时的高度为H;
(2)转筒转动的角速度ω.
第二题答案:
第四题答案:。

相关文档
最新文档