立体几何之三视图高效还原法:拔高法,提升解题效率!
完整版三视图还原技巧
核心内容:三视图的长度特征一一“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES由正视图和侧视图中高度,确定点S的位置;如图I③将点S 与点ABCD 分别连接,隐去所有的辅助线条,便可得到还原的几何体SABCD 如图所示:o5/ VDR的(左)觇阁 匸)现图 厂1例题2: —个多面体的三视图如图所示,则该多面体的表面积为()经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm3 解答:(24)答案:21+ .. 3计算过程:S=2x2X6-y X 1X1 >x6 + y xV2 x72 X^yX2= 21+^3步骤如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点 E F、M、N处不可能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点G,G',B',D',E',F'地位置如图;第三步:由三视图中线条的虚实,将点G与点E、F分别连接,将G'与点E'、F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
论三视图还原的方法和技巧
论三视图还原的方法和技巧论三视图还原的方法和技巧摘要:高考数学试题中出现一类由已知三视图求几何体相关量的题型,其目的是考查学生的识图及空间想象能力。
而对于空间想象能力弱的学生来说,处理三视图还原的问题非常棘手。
为了帮助学生更好地掌握三视图还原成实物图,从简单几何体出发总结了一些常见几何体三视图还原的规律和方法。
关键词:三视图还原;简单几何体;组合体;外轮廓线;长方体;直三棱柱中图分类号:TH126 文献标识码:A 文章编号:1671-5551(2016)30-0124-02高考数学试题中出现一类由已知三视图求几何体相关量的题型,其目的是考查考生的识图及空间想象能力。
要求考生识别三视图所表示的几何体模型,利用斜二测画法画出直观图,并能准确地计算出几何体的相关量。
对于空间想象能力稍差的考生来说,处理这类问题非常棘手。
难点就在于三视图的还原,紧接着是三视图中给出的数量和点线位置关系与实物图中的数量和点线面位置关系如何对应。
纵观近几年的高考试题,三视图考查的主要是一些常见阿德简单几何体和简单组合体。
为了帮助学生更好地掌握三视图还原成实物图,本文从简单几何体出发总结了一些常见几何体三视图还原的规律和方法。
1 简单几何体的三视图还原规律“万变不离其宗”,要掌握组合体的三视图还原首先就要搞清楚简单第二,三视图中轮廓线内部的实线和虚线在原来的几何体中是怎样切割形成的。
下面针对上述两个问题进行论述,总结切割式组合体还原实物图的方法和技巧。
该方法的具体过程如下:2.1 首先要确定是由哪种简单几何体切割形成的“万变不离其宗”,我们仍然可以沿用简单几何体三视图还原规律来确定。
但需要注意的是,关注三视图的外轮廓线即可,其内部细节暂时不要细究。
有时可适当将切割体的三视图补成我们熟悉的简单几何体三视图形式。
2.2 对照三视图,在确定好的简单几何体上确定好切割的切入点,以及线和面这一步骤中涉及到对应的点,线,面是从哪里切,如何切得问题,我们可以通过三视图的绘制方法逆向来推理。
几何体的三视图还原
正四棱台
主
左
俯
主视图
左视图
俯视图
主 左 俯 主视图 左视图 俯视图
正六棱柱
主
左
俯
主视图
左视图
俯视图
圆台
主
左
俯
主视图
左视图
俯视图
由三视图想象实物模型
笔筒
下面是组合图形的三视图,请描述物体形状.
由三视图想象实物模型
热水瓶
由三视图还原成实物图
螺丝钉
2 下面所给的三视图表示什么几何体?
左视图
正四棱锥 例:下面的三视图表示的几何ቤተ መጻሕፍቲ ባይዱ是什么?
练习:还原实物图:
三棱柱
三棱柱
练习:还原实物图:
俯视图
左视图
六棱柱
主视图
答案:一个四棱柱和一个球组成的简单组合体。 主视图 左视图 俯视图 例1:
主视图
俯视图
左视图
例2:
答案:一个四棱柱和一个圆柱体组成的简单组合体。
长方体
主
左
俯
主视图
左视图
俯视图
空间几何体的三视图还原
基本几何体的三视图
从上面看
从左面看
从正面看
主视图
左视图
俯视图
正视图——光线从几何体的前面向后面正投影,得到的投影图(从正面看到的图)
左视图——
俯视图——
三视图之间的投影规律
长对正
高平齐
宽相等
三视图能反映物体真实的形状和长、宽、高.
正视图
俯视图
把每个视图分解为基本图形(如三角形、圆等)
结合对应部分的三视图,想象对应的基本几何体
结合虚实线,概括组合体. 如何把组合体的三视图还原成几何体的实形?
特别讲座三视图复原绝技(艺体生专用)
1★高中数学特别讲座 三视图复原绝技基础知识精析1、三视图复原步骤: ⑴作长方体(或正方体);⑵在长方体的底面上画出“俯视图”;⑶再看主视图有没有直角顶点,侧视图有没有直角顶点,它们在“俯视图”的什么位置,如果有直角顶点,那么这个顶点可以向上引垂线,如果没有直角顶点,则不能向上引垂线;说明:确定俯视图直角顶点的位置是三视图复原步骤中最难掌控的一步,幸好我们有方法可以征服这一步,如图,第一个图正视图左边下方是直角,所以俯视图左边一条线上所有的顶点都可能是直角顶点,这个时候再看侧视图,如果侧视图对应的点也是直角顶点,则这个点一定向上引垂线,如果不是,则不能向上引垂线;第二个图正视图的中间有直角顶点,所以俯视图中间一条线上所有的顶点都可能是直角顶点,这个时候再看侧视图,如果侧视图对应的点也是直角顶点,则这个点一定向上引垂线,如果不是,则不能向上引垂线.⑷最后连线.说明:有些空间几体的三视图中俯视图可能是投影图,不过根本不影响这种方法的使用.⑸在把三视图的数据标在图上时,一定要标在长方体上,不要标在内部的图上,切记.正视图正视图2例1(2013·浙江·12)若某几何体的三视图所示,则此几何体的体积= cm 2.例2 [2014·重庆卷] 某几何体的三视图如图12所示,则该几何体的表面积为A .54B .60C .66D .72 ( )图12例3(2014·课标Ⅰ·12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )主视图 左视图43 32俯视图A.66B.6C.24D.431.某几何体的三视图如图所示,则该几何体的体积为( ) (A )2 (B )43(C )4 (D )5 2. 一个空间几何体的三视图如图所示,则这个几何体的体积为 ; 表面积为 .3. 某三棱锥的三视图如图所示,该三棱锥的体积是(A )183 (B )363 (C )123 (D )243 4.正三棱柱的左视图如右图所示,则该正三棱柱的侧面积为( )A .4B .12C .43D .24想 想 一6333333主视图侧视图俯视图正(主)视图 侧(左)视图5 2 1 3 2 111俯视图 11 1 第1题第2题第3题 2左视图 3 第4题45. 某几何体的三视图如图所示,则这个几何体的体积是 .6. 如右图是一几何体的三视图,则该几何体的体积为 .7.某几何体的三视图如图所示,则该几何体的体积是 (A )12 (B )36 (C )24 (D )728.一个空间几何体的三视图如图所示,该几何体的表面积为 .9.由两个四棱锥组合而成的空间几何体的三视图如图所示,其体积是 ;表面积是 .俯视图主视图侧视图侧视图 正视图俯视图 第5题第6题左视图俯视图左视图 俯视图 第7题第8题10.一个体积为16的三棱锥的三视图如图所示,其俯视图是一个等腰直角三角形,则这个三棱锥左视图的面积为.11.某四棱锥的三视图如图所示,记A为此棱锥所有棱的长度的集合,则()(A)2A,且4A(BA,且4A(C)2A,且A(DAA12.(2007·山东)下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①② B.①③ C.①④D.②④22俯视图侧视图正视图侧(左)视图①正方②圆锥③三棱④正四56E F D I A H G B C E F D A B C侧视 图1 图2 EA . EB . EC . ED . 13.(2008 广东卷理5文7)将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )14.(2008山东卷理6文6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )(A)9π (B )10π (C)11π (D) 12π15.(2008海南宁夏卷理12)某几何体的一条棱长 为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为 A. 22 B. 32 C. 4 D. 52n mk。
太原高考数学王康民老师怎样把三视图又快又准还原成几何体
高考在考查三视图方面出题有两个方向,一是给出三视图及相关数据,求几何体的体积、表面积、内切球体积或外接球体积等;二是给出几何体,确定其中一个视图的图形.由于第二点比较简单,所以高考中考查的较少.高考中对给出三视图求相关体积、面积等题型考查较多,一般以小题形式出现,分值为5分,该类型题的本质是考查三视图还原几何体,所以能快速准确的将三视图还原几何体,是解决这类问题的关键.王康民老师给大家介绍几种快速还原几何体的方法.先来复习一下三视图的相关知识:位置主在上,俯在下,左在右大小长对正,高平齐,宽相等虚实看的见的为实线,看不见的为虚线我来介绍两种快速又好用的三视图还原方法.当然,我默认大家已经掌握了基本几何体的三视图形状,这一点很重要,没有掌握的同学请麻利的自己去翻课本或者小册子.一.升点升线法1.升点法题目特征:当主视图和侧视图的顶部都是点时,采用升点法.如:还原如图所示的三视图的直观图.分析:观察三视图知主视图和侧视图的顶部都是点,则该图形可由俯视图的一个点升高形成,升的高度为主、侧视图的高2.用斜二测法画出俯视图,如下图所示:再根据其主视图为直角三角形,且直角在左侧,所以确定上升的点只能是点A,上升高度为2,三视图还原为下图所示.方法总结主、侧视图顶为点,上升点法1、俯视画图;2、主、侧找最高点;3、在俯视图上将找到的点上升(上升高度为主视图的高)2.升线法当主视图和侧视图的顶部为一点一线时,采用升线法.如:分析观察三视图知主视图和侧视图的顶部为一点一线,则该图形可由俯视图的一条线升高形成,升的高度为主、侧视图的高.用斜二测法画出俯视图,如下图所示.根据其主视图为正方形,左视图为直角三角形,且顶点在其左侧,所以确定上升的直线为线段AB,上升高度为主视图的高,如下图(左)所示.连接上顶点和下底面对应点,三视图还原为上图(右)所示.方法总结主、侧视图顶为一点一线,以点为基准升线.1、俯视画图;2、主、侧找升高线;3、升高直线(上升高度为主视图的高),连接对应点即可二.长方体中找点找面法我们所学的立体图形中,有锥、柱、台、球及组合体,像柱体和球的三视图还原就靠你自己了,简单到我都不想说.好,那就不说吧.我们通过研究锥体和台体的三视图还原来介绍这种方法.1.锥体的三视图还原锥体的三视图的特点是三个视图中有两个三角形.也就是说,我们在看到三视图的时候,如果其中有两个是三角形,我们能确定其为锥体.并且你要去还原它的主观图,这两个三角形就是关键!如:三视图如图所示.分析:首先三视图中有三个三角形,所以可以确定该几何体是一个椎体.俯视图就是该椎体的底面,大家要知道,一个椎体,如果底面确定了,再确定了顶点,则这个锥体就确定了.这个顶点是由主视图和侧视图的上顶点确定的,确定这个点是关键.第一步,我们取三个视图的长、宽、高分别为长、宽、高做出一个长方体,本题画出的正好是一个正方体,如图1所示.图1 图2 图3第二步:把主视图放到立方体正对着我们的这个面上,如图2所示.主视图的上顶点为图2中的顶点A,但该点不一定是锥体的顶点,由于主视图是由正前方看过去的,所以锥体的顶点应该在直线AA1上;再把侧视图放到立方体的右侧面上,如图3所示(注意侧视图是从左往右看的,不要画反了哦)侧视图的上顶点为图3中的顶点B,同理,锥体的顶点应该在直线AB上.所以直线AA1与直线AB的交点A即为锥体的顶点.第三步:将俯视图画在立方体中,由确定的底面和顶点,连接顶点与底面的各个顶点,锥体就确定了,如下图所示.直观图还原完成.步骤:1.三视图中有两个视图为三角形,确定该几何体为锥体,剩下的视图为该锥体的底面.2.将主视图和侧视图画在对应的立方体中,根据各自上顶点的投影线找其交点,确定锥体的顶点.3.俯视图作为底面,连接各顶点,锥体便还原出来了.方法:两个三角形→锥体.1、确定底面;2、确定顶点(主、侧视图上顶点的投影线交点).3、各顶点连线.【变式训练】三视图如图所示,还原几何体的主观图.【提示】将侧视图作为锥体的底面,利用主视图和俯视图寻找顶点即可.【答案】如下图所示.2.台体的三视图还原台的特点是三视图中有两个梯形,剩下的视图作为台的下底面,还原时找上底面是关键。
三视图还原几何体常见类型的解题方法突破
三视图还原几何体常见类型的解题方法突破摘要:三视图作为高考中常考重点内容,其核心在于三视图还原几何体的直观图,便于学生更好的理解和突破此类型题,本文归纳和总结常见类型的三种解题方法:先猜后证,切割法和标数定点法。
其中标数定点法能够更容易让学生理解和掌握,让学生解题有法,有迹可循。
同时培养学生的空间想象力和逻辑思维能力,决胜高考。
关键词:三视图几何体切割法标数定点法空间想象力在近几年的高考中,三视图作为一个必考的考点,常见题型不外乎利用三视图求直观图的体积或表面积问题,其核心在于由三视图还原直观图(几何体),而这也恰恰是我们学生解决这类题型的困难之处。
因此,由三视图还原出几何体是我们这块内容的教学重难点,如何让学生更好的理解三视图,掌握简便易懂的还原方法和技巧,一直是我们教师致力研究的内容。
本文将对三视图还原几何体的常见方法进行归纳和总结,以便学生能够“知其型,思其法,掌其巧”,让学生在解答这类型问题时有迹可循,同时为学生培养空间想象力和逻辑思维能力打下坚实的基础。
1、由三视图还原简单组合几何体简单组合体主要是通过两种形式得到,一是由简单几何体拼接而成;二是由简单几何体截取或挖去一部分而成。
因此,简单组合体的三视图通常都是显得多样化、不规则。
其实此类三视图题型也是相对来说是比较容易还原几何体的。
常用的类型与方法:(1)三视图为多个多边形或圆(半圆)组合而成的,通常都是拼接类简单组合体。
我们可以采用先猜想,后验证的方法解决,只要熟悉生活中常见的空间几何体,例如圆柱、圆锥、正方体、长方体、球等,通过简单的空间想象力即可解决;(2)三视图为四边形内有虚实线,通常都是截取或挖去一部分的简单组合体。
这种类型题,通常采用“切割法”还原直观图。
其核心在于寻找切痕,“实线”定正面(即为前、上、左面),“虚线”定背面;关键在于确定切面,即三条相交的切痕形成的平面;最后还需检验。
例1:一个几何体的三视图如图所示,则该几何体的体积是解析:据三视图的长、宽、高画出正方体的直观图,由正视图可以得到两条切痕,实线在正面,虚线在背面(如图1所示);再由俯视图可以得到两条切痕,实线在正面,虚线在背面(如图2所示);再由侧视图可以得到两条切痕,实线在正面,虚线在背面(如图3所示),因此平面和平面就是切割面,即该几何体是由一个边长为2的正方体被切去了两个角(三棱锥)得到(如图4所示),所以该几何体的体积为.2、由三视图还原简单几何体三棱锥、四棱锥类型简单几何体的三视图还原直观图,一直都是三视图中的重难点,也是学生最难理解和掌握的题型,下面将总结出“有理可据,有法可循”的方法——标数定点法,破解此类三视图问题,借以帮助学生更好的备战高考。
三视图复原技巧
当物体某部分被其他部分遮挡时,需要在视图中进行相应的处理,如使用虚线表示被遮挡部分的轮廓。
处理遮挡关系
在复原三视图时,应注意细节部分的处理,如倒角、圆角、螺纹等。这些细节部分对于准确表达物体形状至关重要。
注意细节处理
在三视图中,各视图之间的比例关系应保持以确定长方体的宽度。
根据三个视图的信息,可以绘制出长方体的三维图。
主视图通常显示圆柱体的一个端面,呈现为一个圆。通过主视图可以确定圆的直径。
确定主视图
确定俯视图
确定左视图
绘制三维图
俯视图也显示圆柱体的上面,呈现为一个圆。这个圆应该与主视图的圆大小和位置一致。
左视图显示圆柱体的侧面,呈现为一个矩形。矩形的长度应该等于圆的直径,高度等于圆柱体的高度。
主视图
从物体的正面看去的视图,反映物体的主要形状和特征。
俯视图
从物体的上面看去的视图,反映物体的水平投影和上下位置关系。
左视图
从物体的左侧看去的视图,反映物体的左侧形状和左右位置关系。
02
CHAPTER
三视图复原步骤
仔细分析三视图中的每一个视图,理解其表达的空间形状和位置关系。
注意视图中的图线、符号等细节信息,特别是虚线和实线的含义。
根据三个视图的信息,可以绘制出圆柱体的三维图。
确定主视图
主视图通常显示圆锥体的一个侧面,呈现为一个等腰三角形。通过主视图可以确定圆锥体的高度和底面的直径。
确定俯视图
俯视图显示圆锥体的底面,呈现为一个圆。这个圆应该与主视图中三角形的底边大小和位置一致。
确定左视图
左视图也显示圆锥体的一个侧面,呈现为一个直角三角形。直角三角形的直角边应该等于圆的直径,斜边等于圆锥体的母线长。
立体几何之三视图高效还原法:拔高法,提升解题效率!
立体几何之三视图高效还原法:拔高法,提升解题效率!今天我们来讲一下立体几何里的三视图。
三视图主要考察点是空间想象,如果同学们的空间想象能力比较强,能快速还原出对应的立体图形,那么这道问题就马上解决。
它无非就是考察几个点:形状判断、由两个试图读出另一视图、考察综合运算——求多面体棱长最大值、求体积或者表面积。
对于这些问题,只要把立体图形还原出来,这个题目没有任何难度了。
如果同学的空间想象稍微偏弱,那种问题就不会得到快速解决。
那么怎样快速准确还原对应的三视图呢?方法有很多种,可以是凭你的空间想象直接去还原;三线交汇、或者正方体切等方法,但是这些方法都不能最高效、最准确的还原三视图。
如果所有的立体图形都用三线交汇、或者正方体切等方法,解题会比较困难。
那么我今天给大家讲一种方法叫——拔高法,它能够还原90%以上的三视图,还有10%是偏难的要用别的方法。
六字箴言——先去除再确定,就能够把所有的三视图题快速准确还原出来。
首先,我们来看一下拔高法的步骤:1、拔高法最主要的就是俯视图,是三视图的根基,首先标出俯视图的所有节点;画出俯视图所对应的直观图;2、由主、侧视图的左、中、右找出所被拔高的点。
例如,我们先将俯视图作底座。
然后由俯视图看主视图,在俯视图和主视图上都标出它们相对应的节点左、中、右。
现在,我们可以得出结论,从俯视图来看,右边被拔高有三种可能:B点被拔高,或者C点被拔高,或者BC边整条线被拔高。
接着,由俯视图来看侧视图,在俯视图和侧视图上都标出相应的节点左、中、右。
从俯视图可以看出,左侧被拔高了。
可能的情况是D点被拔高,或者C点被拔高,或者DC边整条线被拔高。
根据图中的③和④,可以确定它们公共部分C点被拔高。
因此,我们可以直接在直观图里将C点拔高,快速得出立体图形,发现它是一个四棱锥。
拔高法可以帮助同学解决90%以上的还原三视图的题目,但还有10%的偏难题型不能用拔高,需要用到终极结论一和终极结论二,需要掌握方法。
由三视图还原几何体的方法及技巧
由三视图还原几何体的方法及技巧
通过三视图来还原几何体是许多机械设计中常用的一种方式,它
主要是将物体的三个视图分别表示为侧视、正面视图和俯视图,从而
获得物体的整体结构。
还原几何体是建立任何零部件的基础,因此学
会还原几何体的方法十分重要,这里就给大家介绍一下三视图还原几
何体的方法及技巧。
首先,需要根据所提供的三视图,在平面上画出它们的几何图形,包括侧视图正面视图和俯视图。
其次,我们需要确定几何图形的轴心,将侧视图图形看作中心轴,而正面视图图形和俯视图图形则作为各轴
的切面。
再次,把几何图形的各个边长统称为参数,将其加以记录,
以备后用。
最后,以中轴为旋转轴,将正面视图和俯视图旋转,将它
们的角度根据参数的记录,按照实际角度旋转,即可获得物体的三维
图形,从而完成几何体的还原。
通过以上步骤,我们可以轻松地还原几何体,它不仅能获得物体
的三维图形,还能按照实际角度,对物体进行设计。
当然,三视图还
原几何体也有其局限性,例如,它不能精确的反映物体的真实形状,
因此在使用时,应该谨慎考虑,以免出现设计上的错误。
总之,在机械设计中,三视图还原几何体是常用的一种方式,熟
练掌握这一技术对于我们来说非常重要,希望以上介绍能为大家在机
械设计中提供一定的帮助。
高中数学:三视图还原小技巧,尖子生的方法会不会适合你们
⾼中数学:三视图还原⼩技巧,尖⼦⽣的⽅法会不会适合你们⾼中数学三视图问题⼀直都是好多同学不会的~不会就得找⽅法,然后就各种看⽹课,刷题,⾃⼰试图理解,在我看了好多⽹课之后总结了⼀个⽅法,进来看真是让你们赚到了!⾸先我觉得第⼀点就时要掌握简单⼏何体的三视图。
正⽅体、长⽅体、三棱柱、四棱柱、三棱锥、四棱锥、圆柱、圆锥、圆台和球的三视图分别是什么⼀定要熟悉掌握。
这些就相当于基础知识!第⼆点就是掌握简单组合体的组合形式。
简单组合体主要有拼接和挖去两种形式。
然后看⼀下这个三视图之间的关系。
⼏何体的长:正视图、俯视图的长;⼏何体的宽:俯视图的⾼、侧视图的长;⼏何体的⾼:正视图、侧视图的⾼。
(可以记住这个⼩⼝诀:主俯定长,俯左定宽,主左定⾼)四、清楚三视图各个线段说表⽰⼏何体位置,如上图所表⽰。
五、由三视图画出直观图的步骤和思考⽅法。
1、组合类题型,往往很简单,基本可以通过简单想象直接还原;2、有两个视⾓为三⾓形,为椎体特征。
选择底⾯还原(求体积可不⽤还原);3、凡是想不出来的,可⽤七字真⾔还原。
(不到万不得已,不⽤此法)【类型⼀】:(三线交汇得顶点,四顶相连⽆悬念)先画出⼀个正⽅体,如图(1)∶第⼀步,根据正视图,在正⽅体中画出正视图上的四个顶点的原象所在的线段,这⾥我们⽤红线表⽰ .如图(2),即正视图的四个顶点必定是由图中红线上的点投影⽽成的.连接这五个点的四棱锥,不满⾜俯视图。
最后⼀步,三种颜⾊线的公共点(只有两种颜⾊线的交点不⾏)即为原⼏何体的顶点,连接各顶点即为原⼏何体,如图(5).⾄此,易知哪条棱是最长棱,求出即可.⼤家是不是体会到了⽤这种⽅法还原三视图的妙处呢 ?这种⽅法的核⼼其实就是七个字∶'三线交汇得顶点' .这样是不是⽐我们以前那种天马⾏空的遐想接地⽓⼀些呢 ?由此,我们在三视图还原上就可以七字真⾔扫天下了.例 2:⾸先在正⽅体框架中描出主视图,并将轮廓的边界点平⾏延长,如图.类似地,将俯视图和左视图也如法炮制.这样就可以找到三个⽅向的交叉点.连接这五个点的四棱锥,不满⾜俯视图。
三视图还原几何体技巧
三视图还原几何体技巧是一门技术,通过查看三个视图,即正视图、侧视图和俯视图,以便从这三个图形中重建几何体。
这是一项重要的技术,可以帮助我们更加清楚地理解和
掌握几何体的特征和性质。
要用三视图还原几何体,首先要掌握这三种视图的特点:正视图是几何体的正面,侧视图是几何体的侧面,俯视图是几何体的俯视图。
在查看三视图的同时,要注意观察他们的长度、深度和宽度的比例,以及三视图之间的关系。
其次,要善于利用现有的几何体属性,如立方体的面、边和角,来判断几何体的形状。
比如,如果正视图和侧视图都是相互垂直的,而且正视图和俯视图都是正方形,可以根据这些特征判断几何体可能是立方体。
最后,要注意观察几何体的位置关系,比如几何体的每一面是否平行,是否有相互垂
直的面,边和角是否平行等。
这些特征可以帮助我们更准确地重建几何体。
总之,要想用三视图还原几何体,除了掌握这三种视图的特点外,还要善于利用几何
体的属性和位置关系,以此来判断几何体的形状。
用这种方法,可以使我们更加准确地还
原几何体。
高考中三视图还原几何体的常用方法
高考中三视图还原几何体的常用方法作者:梁艳菊来源:《学校教育研究》2018年第28期三视图在高考中占有重要地位,该知识点着重考察同学们的想象力和空间几何能力,然而对于高三有部分空间想象能力比较差的学生来说短时间内很难去培养和提高,作为高三的数学老师,如何让学生快捷的几何体的三视图还原回几何体呢?因此根据几年的高三教学经验来谈谈对三视图还原方法的一些个人见解。
高效的课堂是非常重要的,把握数学知识的解决方法,才有效的启发数学思维,提高学习的效率。
三視图的投影形成:如右图,将物体放在三面投影体系中,尽可能使物体的各个面平行或垂直于其中的一个投影面,保持物体不动,将物体分别向三个投影面作正投影,就得到物体的三视图。
第一类题型:棱锥或棱柱例1:如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各棱中,最长的棱的长度为()A. B.6 C. D.4解:以长方体为载体:第一步,先看俯视图,左下方没有角,则在长方体中用去掉两个角,如图①所示;第二步,再从正视图来看,左下方没有角,则在图①的基础上,用去掉一个角,同时正视图中右边的直角边中点上有一点,则在长方体上标上一个点A,如图②所示;第三步,最后到侧视图,三角形的顶点在视线的右边上,右上方、右下方没有角,则在图②基础上,用去掉两个角,如图③所示;第四步,把长方体剩下的顶点和标点连起来构成一个三棱锥,如图④所示。
从图中可知PA为最长边,可求得PA=6,故选B此类题型常以长方体或正方体作为载体,根据三视图逐一排除顶点,最后把剩下的点连起来构成空间几何体,再检验该几何体三视图是否符合。
第一步:从俯视图入手;第二步:再到正视图第三步:最后到侧视图.此种方法对于想象力不强的学生来说比较容易接受,主要多做练习来熟悉就可以灵活应用,但是有一点不足之处是对于一些切割体和组合体的题型就不能解决了。
第二类题型:切割体例2:某几何体的三视图如图(2)所示,则该几何体的表面积为()A.50B.56C.60D.70解:第一步,根据正视图,在长方体中切割出四棱柱ADEN-BCFM,如图(1)第二步:根据侧视图,在长方体中切割出四棱柱CDEF-ABNG,如图(2)第三步:根据俯视图,在长方体中切割出ABP-DCE,如图(3)第四步:观察图(1)(2)(3)的公共点,发现A、B、C、D、E、N为公共点,则将这些点连起来得到多面体ABCDEN如图(4),反过来检验发现该多面体的三视图满足三视图的要求,从图(4)中容易算出该多面体的表面积为60,故选C主要的方法技巧是找出正视图,侧视图,俯视图还原后的公共点,把这些点连起来可得到切割体,特别也要审视三视图中的虚线和实线.第三类题型:组合体例3:如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的体积为()A. B.C. D.解:将视图分为两部分,图(1)和图(2);按“高平齐、长对正、宽相等”的原则把图(1)和图(2)分别投影到投影面上,将其还原,可知两个简单几何体分别为三棱柱和半圆柱,再验证还原所得几何体的三视图是否与已知相符,可得如图(3),计算组合体的体积,可知答案为A。
三视图还原技巧
三视图还原技巧在进行产品设计时,三视图是非常重要的一环。
通过三视图,我们可以清晰地看到产品的外观、结构和比例,从而更好地完成设计工作。
然而,有时候在进行三视图绘制时会遇到一些困难,特别是在对称性较强或者复杂的产品。
那么,在这种情况下,我们需要掌握一些三视图还原技巧,来帮助我们更好地完成设计工作。
首先,我们可以通过建立基准线的方式来辅助进行三视图绘制。
基准线可以帮助我们确定产品的主要参考点,从而更好地控制比例和尺寸。
在绘制三视图时,我们可以先确定产品的主要轮廓,然后根据基准线的位置来进行细节的绘制,这样可以更好地确保产品的对称性和整体性。
其次,对称性是进行三视图绘制时需要特别注意的一个方面。
许多产品都具有一定的对称性,而且对称轴通常是产品的重要参考线。
因此,在进行三视图绘制时,我们可以先确定产品的对称轴,然后根据对称轴来进行细节的绘制。
这样不仅可以提高绘图效率,还可以确保产品在各个视图中的对称性和一致性。
另外,还原技巧可以通过透视图来辅助进行三视图绘制。
透视图是一种能够更好地展示产品立体感和形态的视图方式,通过透视图我们可以更好地理解产品的结构和外形。
因此,在进行三视图绘制时,我们可以先通过透视图来观察产品的整体形态,然后再根据不同视角来进行细节的绘制。
这样可以帮助我们更好地还原产品的外观和结构。
总之,三视图还原技巧对于产品设计是非常重要的。
通过建立基准线、注重对称性和利用透视图等技巧,我们可以更好地完成三视图绘制工作,从而提高设计效率和质量。
希望以上内容能够帮助您更好地掌握三视图还原技巧,为产品设计工作提供帮助。
高考数学中三视图还原空间几何体的解题技巧
高考数学中三视图还原空间几何体的解题技巧考纲解读与命题趋势探究空间立体几何的三视图是高中数学新课程的新增内容之一,也是近几年全国各地高考的热点内容,考纲不仅要求学生掌握『画空间几何体的三视图』还要求掌握它的逆过程,前者比较容易掌握,后者对空间想象力较弱的同学来说往往无从下手,特别是复杂一点的问题更是怎么也想象不出来。
Mr.Yang总结了一个简单可行的方法,虽不能解决所有三视图还原的问题,但对高中阶段的大部分问题都可解决,这里呈现出来,以期抛砖引玉,也请同行斧正。
一、简单几何体的三视图还原规律复杂的几何体是由简单几何体组合而成的,简单几何的分类:柱体(圆柱和棱柱);椎体(圆锥和棱锥);台体(圆台和棱台);球体.要掌握复杂几何体的三视图还原,先要搞清楚简单几何体的三视图还原规律,一般情况下简单几何体的三视图还原有如下规律:1. 三视图中如果其中两个视图是矩形(不要管内部的细节,只要外轮廓线为矩形就称该视图为矩形)那么该空间几何体为柱体.当第三个试图为圆时,该空间几何体为圆柱,否则为棱柱.2. 三视图中如果其中两个视图是三角形(不要管内部的细节,只要外轮廓线为矩形就称该视图为三角形)那么该空间几何体为锥体,当第三个试图为圆时,该空间几何体为圆锥,否则为棱锥.3. 三视图中如果其中两个视图是梯形(不要管内部的细节,只要外轮廓线为矩形就称该视图为梯形)那么该空间几何体为台体.当第三个试图两个同心圆时,该空间几何体为圆台,否则为棱台.球体的三视图很简单,这里就不加论述.以上规律简单好记,按照以上规律解决简单的三视图还原都不在话下,下面举例说明.例1:(2013年全国高考陕西卷理科试题)若某空间几何体的三视图如下,求其体积 .例2:(2012年全国高考江西卷理科试题)若某空间几何体的三视图如下,求其体积()例3:(2014年全国高辽宁卷理科试题)若某空间几何体的三视图如下求其体积()二、叠加式组合体的三视图还原方法组合体的组合形式可分为三种:叠加式、切割式、综合式.切割式与综合式在高中阶段见到的不是很多,这里只对高中阶段出现较多的叠加式组合体的三视图还原方法进行论述.既然组合体是由简单几何体组合而成的,那么就可以“化整为零”,把组合体的三视图划分为一个个简单几何体的三视图,再分别根据这些简单几何体的三视图按照上面论述的简单几何体三视图的还原规律把它们还原成简单几何体,再“积零为整',把这些简单几何体组合在一起就得了组合体的三视图.这样就将复杂的三视图问题转化成最基本的简单几何体的三视图还原问题来解决了,大大降低了对空间想象能力的要求,这一方法的难点在于如何把组合体的三视图划分为一个个简单几何体的三试图,该方法的具体过程如下:1. 分线框.一般从主视图入手,将主视图划分成一个个线框(一般是封闭的线框,但有时也可不完全封闭),这些线框就是组成组合体的一个个简单几何体的主视图.2. 对投影.在俯视图和左视图上把主视图中每个线框对应的投影找出来,主要是根据“长对正,高平齐,宽相等”和'三视图所反映的组合体各部分的方位”来找.3. 识形体.根据每一部分的三视图,逐个想象出每一部分所对应的几何体4. 合起来,想整体. 每一部分的形状确定后,再根据各部分的相对位置关系组合成整个组合体的形状.下面看该方法在高考题中的运用.例4 :(2015年全国高考天津卷试题)一个几何体的三视图如图4所示,则该几何体的体积为 .解析:如图4所示,第一步:分线框. 将主视图分为上面一个直角梯形与下面一个矩形两个线框.第二步:对投影. 这里只须用长对正,高平齐就可找到相对应的投影,如图5和图6中的加粗部分相对应.第三步:识形体. 由简单几何体三视图的还原规律知图5中加粗的三个视图对应的几何体为底面为直角梯形的直四棱柱. 图6中加粗的三个视图对应的几何体为长方体.第四步:合起来,想整体.由主视图知该组合体是一个底面为直角梯形的直四棱柱叠放在一个长方体上面组合而成的,如图7所示,进一步易求几何体体积为30.如果不用此方法,此题对很多同学来说都是一道较难想象的题,但用了以上方法后就可以化整为零,化难为易,将复杂的三视图还原问题转化为基本的简单几何体的三视图还原问题,大大降低了难度.例5 :(2015年全国高考山东卷试题)一个几何体的三视图如下图所示,则该几何体的体积为 .解析:如图下所示,第一步:分线框. 将主视图分为上面一个等腰三角形,下面一个正方形两个线框.第二步:对投影. 利用高平齐知主视图中的三角形与左视图中的三角形相对应,主视图中的正方形与左视图中的正方形相对应,利用长对正知主视图中的三角形与俯视图中的圆和正方形都是对正的,那到底哪一个与它相对应呢?这还要结合三视图所反应的各部分的方位来判断. 主视图中三角形在上,正方形在下,这说明原几何体中三角形所对应的简单几何体在正方形所对应的简单几何体的上面.在俯视图中正方形在圆的里面而且是用实线画的,所以俯视图中正方形所对应的简单几何体在圆所对应的简单几何体的上面.因此主视图中的三角形与俯视图中的正方形相对应,主视图中的正方形与俯视图中的圆相对应,第三步:识形体.由简单几何体三视图的还原规律知两部分所对应的几何体分别为正四棱锥和圆柱. 第四步,合起来想整体,由主视图知该组合体是上面一个正四棱锥下面一个圆柱组合而成的.进一步易求答案为C.。
(经典)高考数学三视图还原方法归纳
高考数学三视图还原方法归纳方法一:还原三步曲核心容:三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画体或长方体,在体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体。
还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图③将点S与点ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm³。
解答:(24)例题2:一个多面体的三视图如图所示,则该多面体的表面积为()答案:21+3计算过程:步骤如下:第一步:在体底面初绘制ABCDEFMN 如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E 、F 、M 、N 处不可能有垂直拉升的线条,而在点A 、B 、C 、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点''''',,,,,F E D B G G 地位置如图;第三步:由三视图中线条的虚实,将点G 与点E 、F 分别连接,将'G 与点'E 、'F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
例题3:如图所示,网格纸上小形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )答案:(6)还原图形方法一:若由主视图引发,具体步骤如下:(1)依据主视图,在长方体后侧面初绘ABCM如图:(2)依据俯视图和左视图中显示的垂直关系,判断出在节点A、B、C出不可能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由俯视图和侧视图中长度,确定点D的位置如图:(3)将点D与A、B、C分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图所示:2,解:置于棱长为4个单位的体中研究,该几何体为四面体D—ABC,且AB=BC=4,AC=24,DB=DC=5可得DA=6.故最长的棱长为6.方法2若由左视图引发,具体步骤如下:(1)依据左视图,在长方体右侧面初绘BCD如图:(2)依据正视图和俯视图中显示的垂直关系,判断出在节点C、D处不可能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确定点A的位置,如图:(3)将点A与点B、C、D分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图:方法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个体做载体还原:(1)根据正视图,在体中画出正视图上的四个顶点的原象所在的线段,用红线表示。
高中数学三视图还原几何体
高中数学三视图还原几何体作者:申奋生来源:《天津教育·下》2019年第01期解决三视图还原几何体问题,要求学生有极强空间想象能力,对于一些比较复杂的三视图问题,即便是数学思维较强的学生,也会有一些压力。
在高考紧张的环境下,如果遇见一个不常规的三视图,就会给偏爱数学的考生设下了一道门槛,要是心慌,不仅会与本题失之交臂,甚至直接影响后面的答题情况。
所以教师要特别注意这方面的教学,教授学生答题技巧,锻炼学生的空间想象能力和还原能力。
下面以三视图还原几何体相关例题,例谈如何解决此类数学问题。
将三视图还原成几何体,首先要构想出原图并画出来,在这方面的教学可以主要从两种题型入手,一是“矩形”模型,二是“三角形”模型。
一、“矩形”模型“矩形”模型是指给出的三视图中有两个或两个以上的图形是矩形,这种题型可以采用“刀切法”,就是在脑海里面先构想出一个长方体,然后再根据三视图一刀刀切出原几何体。
例如,下图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,且该几何体的顶点都在同一球面上,则该几何体的外接球的表面积为()。
A.32[π]B.48[π]C.50[π]D.64[π]解析:如图,由三视图知识可知,正视图和侧视图为两个正方形,可以用“刀切法”构想出几何原图。
首先画一个正方体,由俯视图可知,要在正方体的面对角线切一刀,留下半个长方体,再由正视图和侧视图可知,对于剩下的半个长方体,要继续切去两个角,最后剩下的几何体即为四棱锥P-ABCD,其中平面PCD⊥平面PAB,外接球球心恰好就是正方体的中心,这道题就能迎刃而解。
设外接球的球心为O,△PCD与△PAB的外心分别为H和G,则HP、GP分别为△PCD 与△PAB的外接圆的半径,OH⊥OG,在△PCD中,PC=PD=2[5],CD=4,应用正、余弦定理可得,cos∠PCD=[55],所以,sin∠PCD[55],PH=[12]×[PCsin∠PCD]=[52],所以,外接球O 的表面积为S=4πR2=4π×OP2=4π×(OH2+PH2)=50π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学:立体几何之三视图高效还原法:拔高法,提升解题效率!
同学们,今天我们来讲一下立体几何里面的三视图,其实三视图主要考察点是空间想象,如果同学们的空间想象能力比较强,如果你能快速还原出对应的立体图形,那么这道问题就马上解决,它无非就是考察几个点:
1、让你判断其形状;
2、由两个试图读出另一视图;
3、考察的综合运算——让你去求多面体棱长最大值、求体积或者表面积。
对于这些问题,你只要把立体图形还原出来,这个题目没有任何难度了。
那么有的同学空间想象稍微偏弱,那种问题就不会得到快速解决,那么怎样快速准确还原对应的三视图呢?方法有很多种,可以是凭你的空间想象直接去还原;三线交汇、或者正方体切等方法,但是我给同学们讲,这些方法都不能最高效、最准确的还原三视图,如果你所有的立体图形都用三线交汇、或者正方体切等方法,我告诉大家就想小题大做了,你会发现解题会比较困难。
那么我今天给大家讲一种方法叫——拔高法,它能够还原90%以上的三视图,还有10%是偏难的要用别的方法:六字箴言——先去除再确定,就能够把所有的三视图题快速准确还原出来,这个方法我以后再给大家讲。
首先,我们来看一下拔高法的步骤:
1、拔高法最主要的就是俯视图,是三视图的根基,首先标出俯视图的所有节点;画出俯视图所对应的直观图;
2、由主、侧视图的左、中、右找出所被拔高的点。
什么意思?那我们先来看一道题,大家要好好理解,好好掌握,只要理解透彻以后,再解题可能就10来秒一道题,是非常快速,而且非常准确。
好,我们先将俯视图作底座,这个最重要:
(请注意:我们先只画俯视图外轮廓的直观图,至于哪个虚线那个实线,我们先不管它,先都画成虚线。
最终哪个需要是实线,到后面再看)。
③然后由俯视图看主视图,我们在俯视图和主视图上都标出它们相对应的节点左、中、右。
现在大家看,不难发现,主视图的左边是没有被拔高的,中间虽然高了,但没有节点,我们可以认为他没有高或者不用管它,那么由俯看主就只有右边被拔高了。
那好,我们就可以得出结论,从俯视图来看,右边被拔高有三种可能:
B点被拔高,或者C点被拔高,或者BC边整条线被拔高。
④然后由俯视图来看侧视图:那们同样在俯视图和侧视图上标出相应的节点左、中、右。
好,我们由俯看侧可以看出,右侧没有被拔高,中间虽然也高了,由于没有节点,我们也可以认为它没有被拔高或者不用管它,那可以看到左侧被拔高了。
那么,从俯视来看,左侧高了有哪些可能?
D点被拔高,或者C点被拔高,或者DC边整条线被拔高。
那么我们由③和④来看,那我们就可以确定它们公共部分C点被拔高,然后我们就可以直接在直观图里将C点拔高,直接就可以迅速将立体图形给画出来了!
看到没?它就是一个四棱锥!非常快速!同学,你只要理解透彻,用得熟练,我告诉大家,拔高法够帮同学做掉90%以上的还原三视图的题目,还有10%的偏
难题型不能用拔高,拔高法还有终极结论一和终极结论二,什么时候能用,什么时候不能用,我后面会告诉大家方法,一眼能看得出来的。
还有些题型不能用拔高法,只能用六字真言:先去除,再确定。
好了,我们就来看这道题,求多面体最长棱长是多少?这道题的难度就是在于三视图的还原,我们只要确实四棱锥的立体图形,再解这个长度就非常简单了!
好了,同学们,我再次强调,不可能一个技巧通用所有题型,我们的技巧学习要建立在系统基础知识完善上面,如果一味追求技巧就偏离了我们学习的目的,也
没有意义。
我们的技巧课程体系是非常严谨和系统的,一环扣一环。
哪些用拔高法,那些不能用,那些要用终极结论一,那些用终极结论二,那些用六字真言。
只要你彻底掌握了这几种技巧,后面的题型你解起来特别容易。
好了,由于篇幅原因,我不一一讲了,接下来的题就当留给大家的作业了,一个方法学到后,一定要去验证,去做各种题加以巩固,达到彻底理解,熟练掌握的目的。
同时这篇文章,有相应视频教程,后面的题都解详细讲解。
文章没看懂的同学可以私信我,获取视频教程。