FISH技术及其临床应用

合集下载

FISH检测:助力精准医疗发展

FISH检测:助力精准医疗发展

FISH检测:助力精准医疗发展FISH检测,即荧光原位杂交技术,是一种分子生物学检测方法。

它通过使用特定的荧光探针,检测基因、染色体异常以及基因表达水平。

在精准医疗领域,FISH检测为医生提供了强大的工具,帮助他们做出更准确的诊断和治疗决策。

在肿瘤精准医疗中,FISH检测发挥着重要作用。

例如,在非小细胞肺癌中,ALK基因重排是一种常见的分子遗传学改变。

通过FISH检测,医生可以准确地判断ALK基因是否存在重排,从而选择合适的靶向药物治疗。

一项研究表明,使用FISH检测筛选出ALK阳性的非小细胞肺癌患者,接受靶向药物治疗后的无进展生存期显著延长。

另一个例子是乳腺癌患者中的HER2基因扩增。

FISH检测可以帮助医生判断HER2基因是否扩增,从而选择是否使用HER2靶向药物治疗。

研究显示,HER2阳性的乳腺癌患者使用HER2靶向药物治疗后,无进展生存期和总生存期均显著改善。

除了在肿瘤精准医疗中的应用,FISH检测还在遗传性疾病诊断中发挥重要作用。

例如,囊性纤维化是一种常见的遗传性疾病,其发病机制与CFTR基因突变有关。

通过FISH检测,医生可以准确地判断CFTR基因是否存在突变,从而为患者提供合适的治疗方案。

然而,FISH检测在精准医疗中的应用也面临一些挑战。

例如,检测成本较高、操作复杂,且需要专业的技术人员。

FISH检测的标准化和质量控制也是亟待解决的问题。

尽管如此,随着技术的不断发展,FISH检测在精准医疗中的应用将越来越广泛。

FISH检测作为一项重要的分子生物学检测技术,在精准医疗中发挥着重要作用。

通过实际案例可以看出,FISH检测为医生提供了准确的诊断和治疗信息,从而提高了患者的生存率和生活质量。

面对挑战,我们期待未来能有更多的研究和创新,以推动FISH检测在精准医疗中的应用。

重点和难点解析:FISH检测技术在精准医疗中的应用及其价值。

FISH检测作为一种分子生物学检测方法,可以提供关于基因、染色体异常以及基因表达水平的精确信息。

FISH技术在临床中应用

FISH技术在临床中应用

Abbott Molecular临床产品
三、临床应用
肺癌
少突胶质瘤
Vysis 1p36/1q25 and 19q13/19p13 FISH Probe Kit
正常
缺失
Hunan MDT Meeting
Company Confidential
36
26 Aug 2014
FISH技术在临床中的应用
一、如何正确选择探针
二、如何正确使用探针
三、临床应用 —胃癌
一、如何正确选择探针
FISH探针种类
染色体结构
染色体计数探针(CEP)
特定区域或基因
位点特异性标识分子(LSI)
端粒探针
端粒(TTAGGG)n 短臂
着丝粒
长臂端粒(TTAGGG)n
PathVysion DNA Probes
探针设计
检测遗传物质的得与失
在单个细胞核内针对某个特定靶分子检测到多于或少 于2个探针信号被认为异常
异常
正常
异常
<
<
染色体、基因重排检测
—已知断点的平衡易位
探针设计 - 双色单融探针(DC /SF )
9 22
正常
异常
• 使用指导
存在假阳性 如一个细胞中信号叠加。
探针设计 - 双色单融探针(DC /SF)
高度侵袭性, 几乎无法治愈,患者迅速死亡 高度未分化
因不可预知的化学敏感性,故具有治疗挑战性
多形性胶质母细胞瘤患者的预后非常差3
2年总生存期: 26% 4年总生存期: 12%
1. National Comprehensive Cancer Network. Available at: . 2. Central Brain Tumor Registry of the United States. . • Stupp R, et al. N Engl J Med. 2005;352:987-996.

荧光原位杂交技术(FISH)的基本原理及应用

荧光原位杂交技术(FISH)的基本原理及应用

荧光原位杂交技术(FISH)的基本原理及应⽤我接触“FISH”也是刚刚两年多的时间,作为⼀个“初学者”刚开始接触“FISH”可能跟⼤多数⼈⼀样满脑⼦的疑惑:“FISH”是做什么的?有什么临床作⽤呢?那些红红绿绿的点都是些什么意思?……今天让我们慢慢的去揭开FISH的不太神秘的⾯纱。

1.FISH的前世今⽣在FISH技术问世之前,基于20世纪60年代,放射性核素探针的原位杂交⽅法,检测间期染⾊体和分裂期染⾊体上特定DNA和RNA序列的⽅法,该⽅法存在操做⽐较⿇烦、分辨率有限、探针不稳定、放射性同位素的危害较⾼等问题,故⽬前弃之不⽤。

20世纪80年代⽤⾮放射性半抗原如⽣物素进⾏核酸标记的技术逐渐开展后,探针也开始使⽤这种⾮放射性标记⽅法。

随后FISH技术逐渐开展起来,1986年以后该技术被应⽤于分析细胞分裂期染⾊体铺⽚的DNA序列。

相对于放射性来说,FISH具有稳定性好、操作安全、结果迅速、空间定位准确、⼲扰信号少、⼀张玻⽚可以标记多种颜⾊探针等优点。

这些优点逐渐使FISH成为⼀种研究分⼦细胞遗传学很好的⽅法。

FISH即染⾊体荧光原位杂交(Flourescence in situ hybridization,FISH)是通过荧光素标记的DNA探针与样本细胞核内的DNA靶序列杂交,从⽽获得细胞核内染⾊体或基因状态的信息。

FISH是将传统的细胞遗传学同DNA技术相结合,开创了⼀门新的学科——分⼦细胞遗传学。

(如下图所⽰)2.FISH信号解读-红红绿绿是什么⽬前临床上⽤于FISH检测的探针的荧光素⼤都是绿⾊的和橙红⾊标记,可⼤致分为:染⾊体计数(着丝粒)探针(centromere-enumerationprobes,CEP),位点特异性识别探针(locus-specific identifier probes,LSI),染⾊体涂染(paint,WCP)探针。

其中CEP和LSI探针中的计数探针、融合探针及分离重排探针,在⾎液病诊断与预后分型中最为常⽤。

荧光原位杂交技术在临床病埋中的应用 ppt课件

荧光原位杂交技术在临床病埋中的应用 ppt课件

Blue单通道
荧光原位杂交技术在临床病埋中的 应用
二、常用探针种类
• 单色探针(single color probe, SC) • 双色探针(dual color probe, DC) • 三色探针(triple color probe, TC) • 双色分离探针(dual color, break apart probe. DC,BCR) • 双色单融合探针(dual color, single fusion. DC, SF
CCND1基因为重要预后因子,与多种肿瘸的转移、 复发等相关。在高凤险们GIST中扩增,在低风险和中等 风险GIST中无扩增,其表达与GIST有预后相关性。
MDM2基因扩增宣GIST患者有预后相关性。
荧光原位杂交技术在临床病埋中的 应用
前列腺癌
• 探针:PTEN/CEN10 FGFR1/CEN8 ERG
套细胞淋巴瘤
• 探针:CCND1/IGH(双色双分离探针)
CCND1基因位于11q13,IGH基因位于14q32。 CCND1/IGH融合基因导致CCND1蛋白过度表达,可促进细胞 增生。
• CCND1/IGH融合基因检测意义
CCND1基因重排和(或)高表达是MCL的特征,FISH探 针检测CCND1/IGH的阳性率可以达到96%。
• 检测意义:
PTEN基因缺失,前列腺癌患者预后差。 FGFR1基因扩增是前列腺癌患者传递激素抵抗的重 要过程。 没有ERG基因改变的前列腺癌患者8年生存期达90%。
荧光原位杂交技术在临床病埋中的 应用
神经母细胞瘤、神经胶质瘤
• 探针:1p36/1q25 19q13/19p13 NMYC/2q11
• MALT1及API2/MALTI融合基因检测意义

分子病理fish技术

分子病理fish技术

分子病理fish技术
分子病理FISH技术是一种重要的分子生物学技术,其通过荧光染色技术检测染色体的异常及其染色体上特定序列的分布情况,从而为疾病的分子诊断提供有力的支持。

FISH技术的原理是利用DNA探针与样本的靶DNA序列的高度互补性结合,形成荧光标记的探针-靶DNA杂交体,在荧光显微镜下进行检测。

根据探针的不同种类和荧光染色物的不同组合,可以检测到染色体的不同缺失、增多、重排和散在分布等染色体异常,也可以对某些特定基因的扩增、突变、融合等变异进行检测。

FISH技术的应用范围非常广泛,涉及到多种疾病的分子诊断和预后评估。

例如,在肿瘤的分子诊断中,FISH技术可以同时检测多种基因的扩增、融合或重排,如HER2、BCL2、BCL6等,在血液病学中,FISH技术可以用来检测染色体异常及其亚克隆性,如慢性髓细胞性白血病、多发性骨髓瘤等。

FISH技术还可以应用于基因组、转录组和蛋白质组的分析。

在基因组水平,FISH技术可以用来确定基因组的大小和组织结构等;在转录组水平,FISH技术可以进行定量分析和空间分布的研究;在蛋白质组水平,FISH技术可以用来研究细胞核和染色体的空间分布和相互作用。

除了以上应用,FISH技术还可以用于辅助生殖医学,如评估胚胎染色体异常和性染色体异常等。

此外,FISH技术还可以用于动植物的基因组研究,如基因定位、染色体序列组装等。

总的来说,FISH技术在现代医学和生命科学中的应用范围非常广泛,可以为疾病的分子诊断、基因组学研究和辅助生殖医学等领域提供有力的支持。

未来,随着技术的不断发展和完善,FISH技术将会在越来越多的领域得到应用,为人类的健康和生命科学的发展贡献更大的力量。

FISH的基本原理及应用

FISH的基本原理及应用

FISH的基本原理及应用1. 引言FISH(Fluorescence In Situ Hybridization)是一种基于分子生物学技术的方法,用于检测染色体或细胞核酸序列的存在和位置。

本文将介绍FISH的基本原理和其在生命科学研究、临床诊断和基因组学等领域的应用。

2. FISH的基本原理FISH的基本原理是将一系列标记有荧光染料或放射性同位素的DNA或RNA探针与待测样品中的互补序列发生靶向杂交反应,从而实现对目标序列的检测和定位。

3. FISH的步骤FISH一般包括以下步骤:•取样:从样品中获取细胞或组织。

•固定:使用适当的方法固定细胞或组织,以保持其形态和结构。

•裂解:通过使用酶解等方法,将细胞或组织中的核酸释放出来。

•杂交:将标记有荧光染料的DNA或RNA探针与待测样品中的互补序列进行杂交,形成稳定的杂交复合体。

•洗涤:通过洗涤的步骤,去除未发生杂交的探针。

•显微镜观察:使用荧光显微镜等设备观察杂交信号,并记录图像。

4. FISH的应用领域FISH在多个领域中广泛应用,下面将重点介绍其在以下几个方面的应用。

4.1 生命科学研究FISH在生命科学研究中发挥重要作用,它可以帮助科学家研究染色体的结构和功能,揭示基因组的复杂性和变异性。

通过对细胞核酸序列的定位,FISH可以帮助研究者探索基因型与表型之间的关系,从而理解基因的功能和表达调控机制。

4.2 临床诊断FISH在临床诊断中应用广泛,尤其在肿瘤诊断中具有重要意义。

通过对肿瘤细胞进行FISH检测,可以鉴定染色体异常和基因突变,帮助确定诊断和预后评估。

例如,FISH可以用于检测BCR-ABL融合基因,在慢性髓系白血病的诊断和治疗方案制定中起到重要作用。

4.3 遗传学研究FISH在遗传学研究中也被广泛应用。

通过FISH技术,可以对染色体进行直接观察,从而帮助研究者了解染色体结构异常和数目异常对个体遗传特征的影响。

此外,FISH还可以帮助研究者进行染色体定位测序,从而进一步揭示基因组的组织和结构。

FISH检测在临床上的应用

FISH检测在临床上的应用

FISH检测在临床上的应用FISH检测在临床上的应用一、简介- FISH(Fluorescence in situ hybridization)即原位荧光杂交技术,是一种用于研究基因组和染色体结构的分子生物学技术。

- FISH检测在临床应用中可以提供重要的染色体遗传学信息,用于诊断和监测某些疾病。

二、FISH检测的原理- FISH技术基于荧光标记的核酸探针与细胞或组织标本中的特定DNA序列发生互补杂交,通过荧光显微镜观察以检测特定基因组或染色体的异常。

- FISH检测可以提供高度准确的定量和定位信息,特别适用于检测具有微小或亚显性突变的染色体异常。

三、临床应用领域1、适用于癌症诊断和分型- FISH检测可以检测染色体上的特定基因重排,从而辅助癌症的诊断、分型和治疗方案的选择。

- 例如,FISH检测可以用于检测BCR-ABL融合基因以确认慢性髓性白血病的诊断。

2、适用于先天性遗传病的筛选和诊断- FISH检测可用于检测染色体异常,如唐氏综合征(21三体综合征)、爱德华氏综合征(18三体综合征)和智商障碍相关的染色体异常,用于婴儿和先天性遗传病的筛选和诊断。

3、适用于遗传性肿瘤相关基因的检测- FISH检测可以用于检测和定位遗传性肿瘤相关基因的异常,如BRCA1和BRCA2基因异常与乳腺癌和卵巢癌的遗传风险相关。

4、适用于感染性疾病的诊断和追踪- FISH检测可以用于检测和定位细菌、和寄生虫等感染性病原体的核酸序列,辅助感染性疾病的诊断和追踪。

四、技术要点和注意事项1、样本处理- 对于固定的细胞或组织标本,需要进行脱脂、脱水等预处理步骤。

- 不同类型的标本可能需要不同的处理方法,如骨髓涂片、组织切片等。

- 样本处理过程中需注意保持核酸完整性和避免污染。

2、探针设计与标记- 根据要检测的目标基因或染色体序列设计特异性的核酸探针。

- 核酸探针需要选择适当的荧光染料进行标记,以便在荧光显微镜中观察到。

- 标记的探针需要存储在适当的条件下,以保持标记稳定性和活性。

临床诊断中的FISH检测

临床诊断中的FISH检测

临床诊断中的FISH检测FISH(即荧光原位杂交)技术作为分子诊断的重要工具,在科研和临床诊断领域都有着广泛的应用。

FISH 检测是利用荧光基团标记DNA探针,再将标记的DNA探针与样本DNA进行原位杂交,最后在荧光显微镜下对荧光信号进行计数,以此作为诊断的依据。

FISH的操作简便快捷,结果直观准确,因此FISH成了许多疾病诊断的首选工具。

下面我们将从探针的设计,样本的制备,原位杂交和检测结果的观察等几个方面简单介绍FISH的操作。

探针是FISH检测灵敏度和准确性的关键。

FISH检测的准确性来源于探针的设计。

FISH能否应用于某一领域也取决于是否具有相应的探针。

用于FISH检测的探针必须具备很高的特异性,能特异性地识别特定的基因或染色体上特定的片断。

而且FISH的探针必须能经受原位杂交的处理而不变性。

荧光基团的标记也直接影响了检测的灵敏度和原位杂交结果的检测方式。

以著名的探针生产商Vysis公司的LSI系列探针为例:LSI系列探针来源于BAC大片断基因组文库,探针所覆盖的染色体片断总长可达100Kb-400Kb,保证了探针的高特异性和极强的荧光信号;荧光基团采用直接标记法标记,不同波长的荧光基团使探针在荧光显微镜下呈现多种荧光信号,借此我们可以一次检测多个染色体或基因的异常;由于探针具有极强的荧光信号因而对FISH结果的检测也采用直接检测法,即在荧光显微镜下直接观察FISH的信号,而无需抗原-抗体反应对荧光信号进行放大。

Vysis探针的设计既确保了探针的特异性和灵敏度,同时直接的镜检也使FISH检测更简便。

FISH检测对被测样本没有特殊的要求。

可以是来自骨髓的细胞,也可以是来自羊水的细胞;可以是冰冻切片的样本,也可以是经过石蜡包埋的样本。

甚至可以利用尿液样本进行膀胱癌复发的预后。

获取的样本细胞也无需经过培养扩增,FISH检测可以显示单个细胞核内染色体的异常情况。

我们以Vysis公司的AneuVysion多色DNA探针试剂盒为例,简要介绍FISH的原位杂交过程。

FISH技术临床应用

FISH技术临床应用

特点与优势分析
高特异性
FISH技术使用特异性探针与目标DNA 序列进行杂交,因此具有很高的特异 性,能够准确识别目标序列。
广泛应用
FISH技术已广泛应用于遗传学、医学 、生物学等领域的研究和诊断中。
01 05
02
高灵敏度
FISH技术能够在单细胞水平检测目标 DNA序列,具有极高的灵敏度。
03
原位显示
优化试剂和仪器
不断优化FISH技术所需的试剂和仪 器,提高实验的灵敏度和特异性,降 低成本。
加强与其他技术的融合
探索FISH技术与其他分子诊断技术 的融合应用,提高诊断效率和准确性 。
06
FISH技术发展趋势及挑战
新一代测序技术对FISH影响和挑战
高通量测序技术
新一代测序技术具有高通量、高灵敏度、高分辨率等优势,对FISH 技术提出了更高的挑战。
表观遗传学异常检测
FISH技术可用于检测表观遗传学异常,如DNA 甲基化、组蛋白修饰等,为复杂性遗传病的发病 机制研究提供线索。
疾病相关基因表达分析
利用FISH技术,可以对疾病相关基因的表达水平 进行分析,进一步揭示疾病的发病机制和病程进 展。
03
FISH技术在肿瘤精准治疗领域应 用
肿瘤相关基因突变检测
染色体结构异常检测
FISH技术可用于检测染色体结构异常,如易位、倒位等, 帮助医生了解患者的遗传背景,为制定个性化治疗方案提 供参考。
性别染色体异常筛查
针对性别染色体异常导致的不孕不育,FISH技术可快速准 确地鉴定性别染色体,为患者提供及时的诊断和治疗建议 。
辅助生殖技术中胚胎染色体筛查
胚胎植入前遗传学筛查(PGS)
进。
结果报告规范

荧光原位杂交技术(fish)的基本原理和应用_理论说明

荧光原位杂交技术(fish)的基本原理和应用_理论说明

荧光原位杂交技术(fish)的基本原理和应用理论说明1. 引言1.1 概述荧光原位杂交技术(Fluorescence in situ Hybridization,简称FISH)是一种广泛应用于生物学研究的重要技术。

它通过在细胞或组织水平上定位和检测特定DNA或RNA序列的分布情况,可以提供关于基因组结构、功能和表达的有价值信息。

该技术最早于20世纪80年代被开发出来,并且经过不断改进与扩展,如今已成为分子生物学研究中不可或缺的工具之一。

1.2 文章结构本文将首先介绍荧光原位杂交技术的基本原理,包括DNA探针的选择与设计、杂交反应条件的优化以及检测与可视化方法。

然后,我们将深入探讨荧光原位杂交技术在生物医学研究领域、植物遗传研究领域和动物进化研究领域的应用实例。

接下来,我们将评述荧光原位杂交技术的优势与局限性,包括其高灵敏度、高分辨率等优势以及对样本处理要求高、无法确定基因功能等局限性。

最后,我们将给出结论并展望荧光原位杂交技术的未来发展方向。

1.3 目的本文的目的是系统地介绍荧光原位杂交技术的基本原理和应用领域,以帮助读者深入了解这一重要技术。

通过阅读本文,读者将能够全面了解荧光原位杂交技术在生物学研究中的作用和意义,并对该技术的优势与局限性有所了解。

此外,本文也将探讨该技术未来可能的发展方向,为读者提供展望与思考。

2. 荧光原位杂交技术基本原理:2.1 DNA探针的选择与设计:荧光原位杂交技术(FISH)是一种利用DNA或RNA分子作为探针,通过特异性互补配对识别和定位目标序列的方法。

在进行FISH实验时,首先需要选择合适的DNA探针。

DNA探针通常由由人工合成的寡聚核苷酸(oligonucleotide)或从天然来源提取得到的全长DNA片段构建而成。

选择DNA探针时,需要考虑以下因素:首先是目标序列的特异性,即该序列在待检测样品中是否具有较高的丰度,并且只存在于感兴趣的目标区域中。

其次是探针长度和两个主要互补区域之间核苷酸序列的碱基组成比例。

fish技术在病理诊断中的应用

fish技术在病理诊断中的应用

fish技术在病理诊断中的应用病理诊断是医学领域中重要的一环,通过观察和分析组织及细胞的形态、结构和功能来确定疾病的类型和特征。

近年来,一种新的分子生物学技术——fish技术(Fluorescence in situ hybridization)逐渐应用于病理诊断中,为病理医师提供了更加准确和有效的诊断手段。

fish技术是一种基于DNA或RNA的分子探针与细胞或组织中特定序列的互补配对而发生的荧光信号的检测技术。

fish技术可以用于检测染色体异常、基因扩增、基因融合等分子水平的变化,从而帮助病理医师确定疾病的诊断和预后。

fish技术在肿瘤病理学中具有广泛的应用。

例如,在肺癌中,fish 技术可以检测EGFR基因突变、ALK基因融合等特定基因的异常,从而为选择靶向治疗提供重要依据。

此外,fish技术还可用于乳腺癌、胃癌、卵巢癌等肿瘤的分子诊断,提高了对肿瘤类型和预后的判断准确性。

fish技术在遗传病的诊断中也有重要作用。

遗传病是由基因突变引起的疾病,fish技术可以帮助病理医师确定染色体异常和基因突变,进而诊断遗传病。

例如,在唐氏综合征的诊断中,fish技术可以检测21号染色体上的三体,确认疾病的存在。

此外,fish技术还可以用于先天性心脏病、遗传性肾病等遗传病的诊断。

fish技术还在微生物学领域有着重要应用。

传统的微生物学诊断方法需要进行细菌培养和鉴定,耗时且存在一定的假阴性结果。

而fish技术可以直接检测细菌、病毒等微生物的核酸序列,提高了微生物学诊断的准确性和迅速性。

例如,在结核病的诊断中,fish技术可以检测结核分枝杆菌的核酸序列,快速确定病原体,缩短了诊断时间。

fish技术还可用于研究染色体结构和功能。

通过fish技术,可以观察和分析染色体的形态和变异,探究染色体异常与疾病发生的关系。

fish技术作为一种新的分子生物学技术,在病理诊断中的应用前景广阔。

它可以帮助病理医师准确定位和诊断疾病的分子变化,提高了病理诊断的准确性和敏感性。

荧光原位杂交技术及其应用

荧光原位杂交技术及其应用

荧光原位杂交技术及其应用生物学研究中,了解基因表达情况是至关重要的。

荧光原位杂交技术(FISH)是一种常用的细胞学技术,能够直接观察到特定DNA序列的位置和数量,从而研究基因组结构、功能和进化。

本文将介绍FISH技术的原理、方法和应用,并探讨该技术在生物学领域中的前景。

一、FISH技术原理FISH技术是一种基于亲和原理的细胞学技术,它利用荧光标记探针与特定DNA序列的互补配对,使其在细胞核中特异性结合。

探针可以是DNA分子或RNA分子,它们被标记上荧光染料,通过显微镜观察荧光信号来确定探针的结合位置和数量。

FISH技术的主要步骤包括:样品制备、探针标记、探针杂交、洗涤和显微镜观察。

样品制备包括细胞培养、细胞固定和染色。

探针标记可以通过直接或间接标记方法实现。

直接标记方法是将荧光染料直接连接到DNA或RNA分子上,而间接标记方法是通过荧光标记的抗体来识别已标记的DNA或RNA分子。

探针杂交是将标记的探针与细胞核DNA或RNA进行互补配对,通常需要在高温下进行。

洗涤步骤可以去除未结合的探针,从而提高探针的特异性。

显微镜观察则是通过荧光显微镜观察荧光信号,确定探针的结合位置和数量。

二、FISH技术应用FISH技术在生物学研究中有广泛的应用,以下是几个常见的应用领域:1. 基因组结构研究FISH技术可以用于研究基因组的结构和变异。

例如,可以使用不同的探针标记染色体的不同区域,从而确定染色体的结构和数量。

此外,FISH技术还可以用于检测基因组的缺失、重复和重排等变异。

2. 基因表达研究FISH技术可以用于研究基因表达。

例如,可以使用探针标记mRNA 分子,从而确定mRNA在细胞中的分布和数量。

此外,FISH技术还可以用于研究基因转录和剪接等过程。

3. 染色体分析FISH技术可以用于染色体分析。

例如,可以使用探针标记人类性染色体的不同区域,从而确定性染色体的性别和结构。

此外,FISH 技术还可以用于研究染色体异常,如染色体重排、易位和缺失等。

FISH技术临床应用

FISH技术临床应用
个性化治疗
基于FISH技术的精准诊断,医生可以为患者制定个性化的 治疗方案,提高治疗效果,减少副作用。
遗传咨询
FISH技术可用于检测染色体异常和基因突变,为遗传咨询 提供科学依据,帮助家庭了解生育风险和遗传病预防。
未来发展趋势预测
技术创新
多学科融合
随着科技的不断发展,FISH技术将继续创 新和完善,提高检测精度和效率,降低成 本,使其更加普及和可及。
FISH技术操作流程及注意事项
样本制备与处理
样本类型
FISH技术可用于分析各种样本,包括组织切片、细胞涂片、染色体 悬液等。
样本固定
为确保FISH实验的成功,需要对样本进行适当固定,通常使用甲醇 /乙酸或甲醛等固定剂。
样本处理
根据实验需求,对样本进行脱水、酶消化、变性等处理,以便于探针 的渗透和杂交。
多重FISH技术研究进展
多色FISH技术
利用不同荧光颜色的探针同时检测多个目标序列,实现高通量的基因或染色体变异分析 。
多靶点FISH技术
针对同一基因或染色体的不同区域设计多个探针,提高检测的覆盖度和准确性。
多重连接依赖的探针扩增(MLPA)结合FISH技术
MLPA技术能够扩增特定序列并产生可检测的信号,与FISH技术结合可实现低丰度变异 的灵敏检测。
FISH技术与其他分子诊断方法联合应用前景
FISH技术与下一代测序(NGS)联合应用
NGS技术能够高通量、高灵敏度地检测基因组变异,与FISH技术结合可实现变异位点 的精确定位和验证。
FISH技术与数字PCR(dPCR)联合应用
dPCR技术能够实现DNA分子的绝对定量,与FISH技术结合可实现特定基因或染色体变 异的精确定量和分析。
定的DNA序列。

探索FISH检测在临床实践中的应用

探索FISH检测在临床实践中的应用

探索FISH检测在临床实践中的应用FISH检测在癌症诊断中具有重要应用价值。

癌症是一种基因突变导致的疾病,FISH检测可以通过检测肿瘤细胞中的基因异常,帮助医生准确诊断癌症类型和恶性程度。

例如,乳腺癌是一种常见的恶性肿瘤,FISH检测可以用于检测乳腺癌细胞中的HER2基因扩增情况。

HER2基因扩增是乳腺癌患者预后不良的指标,通过FISH检测,医生可以及时发现HER2基因扩增,为患者制定个体化的治疗方案。

FISH检测在肿瘤治疗监测中也起到了重要作用。

肿瘤治疗过程中,医生需要监测肿瘤对治疗的反应,以调整治疗方案。

FISH检测可以通过检测肿瘤细胞中的基因表达水平,评估治疗效果。

例如,非小细胞肺癌患者接受化疗后,医生可以通过FISH检测评估肿瘤细胞中的EGFR 基因突变情况,以判断患者对化疗的敏感性。

如果检测结果显示EGFR基因突变,说明患者对化疗较为敏感,医生可以继续使用化疗方案;反之,则需要调整治疗方案。

FISH检测在遗传性疾病诊断中也具有重要意义。

遗传性疾病是由基因突变引起的,FISH检测可以用于检测家族性遗传性疾病患者基因中的突变。

例如,家族性结肠息肉病(FAP)是一种遗传性疾病,患者携带APC基因突变。

通过FISH检测,医生可以准确地发现APC基因的突变,为患者及家族提供遗传咨询和早期干预措施。

然而,FISH检测在临床实践中也存在一定的局限性。

FISH检测需要专业的设备和技术支持,导致检测成本较高。

FISH检测过程中,探针的选择和实验室技术人员的操作经验都会影响检测结果的准确性。

因此,在实际应用中,医生需要充分了解FISH检测的优势和局限性,合理选择检测项目。

FISH检测作为一种分子细胞生物学技术,在临床实践中的应用越来越广泛。

通过实际案例,我们可以看到FISH检测在癌症诊断、治疗监测和遗传性疾病诊断中的重要作用。

然而,我们也需要认识到FISH检测的局限性,并在实际应用中不断优化检测方法,提高检测准确性。

fish临床应用意义

fish临床应用意义

fish临床应用意义摘要:一、引言二、FISH技术的原理与应用领域1.荧光原位杂交技术(FISH)的原理2.FISH技术在医学领域的应用3.FISH技术在其他领域的应用三、FISH技术的优缺点1.FISH技术的优点2.FISH技术的局限性四、我国FISH技术的发展现状与展望1.我国FISH技术的发展历程2.我国FISH技术的研究成果3.我国FISH技术的未来发展方向五、结论正文:一、引言荧光原位杂交技术(FISH)作为一种分子生物学研究手段,自20世纪80年代问世以来,已在生物科学、医学等领域取得了广泛的应用。

本文将对FISH 技术的原理、应用领域、优缺点以及我国FISH技术的发展现状与展望进行综述,以期为相关领域的研究者提供参考。

二、FISH技术的原理与应用领域1.荧光原位杂交技术(FISH)的原理FISH技术是一种以荧光标记的核酸探针与目标DNA序列相结合,通过荧光显微镜观察杂交信号,从而实现对特定基因或染色体区域定位的方法。

FISH 技术的原理主要包括核酸探针的设计、荧光标记、杂交反应和信号检测四个环节。

2.FISH技术在医学领域的应用在医学领域,FISH技术主要应用于遗传病的诊断、肿瘤基因检测、染色体核型分析等。

例如,FISH技术可以用于检测染色体非整倍体,如唐氏综合征、染色体缺失和重复等,为临床遗传咨询提供依据。

此外,FISH技术还可以用于肿瘤基因检测,如HER2基因扩增检测,以指导乳腺癌患者的个体化治疗。

3.FISH技术在其他领域的应用除了医学领域,FISH技术还在生物学、农业、环保等领域取得了广泛应用。

在生物学研究中,FISH技术可以用于基因表达谱的构建、基因敲除检测等;在农业领域,FISH技术可以用于转基因生物的安全性评价、种质资源鉴定等;在环保领域,FISH技术可以用于水生生物生态监测,为水资源管理提供科学依据。

三、FISH技术的优缺点1.FISH技术的优点FISH技术具有以下优点:(1)高灵敏度:FISH技术可以检测到极低拷贝数的靶DNA;(2)高特异性:荧光标记的核酸探针与目标序列具有很高的特异性,可排除非特异性结合;(3)快速检测:FISH技术杂交反应时间较短,一般只需几小时;(4)多重检测:FISH技术可以同时检测多个目标基因或染色体区域。

荧光原位杂交(FISH)检测

荧光原位杂交(FISH)检测
荧光原位杂交(fish)检测

CONTENCT

• 荧光原位杂交(fish)检测概述 • FISH检测的基本原理与技术流程 • FISH检测在临床诊断中的应用 • FISH检测的优势与局限性 • FISH检测的实际案例分析
01
荧光原位杂交(fish)检测概述
定义与特点
定义
荧光原位杂交(FISH)是一种基于荧光标记的DNA探针与目标DNA 结合,通过荧光显微镜观察并检测细胞内特定基因或染色体异常的 技术。
FISH技术可以应用于各种样本类型,如细胞、 组织切片、石蜡包埋组织等。
直接观察
FISH技术可以直接在细胞或组织的显微镜下观 察杂交信号,无需进行额外的染色或标记。
灵敏度高
FISH技术能够检测单个基因拷贝数的变化,灵 敏度较高。
局限性
成本高
FISH技术需要使用特殊的探针和 荧光染料,因此成本较高。
80%
基因突变
FISH技术可以检测基因突变,如 抑癌基因突变、致癌基因突变等 。
基因表达分析
基因表达水平
FISH技术可以检测基因表达水 平,了解基因在细胞中的表达 情况。
基因定位
FISH技术可以确定基因在染色 体上的位置,了解基因的染色 体定位。
基因互作
FISH技术可以检测基因间的相 互作用,了解基因间的关系。
细胞或组织的通透性处理
使用适当的试剂使细胞或组织的膜通透性增加,以便探针能 够进入。
杂交反应
探针与靶DNA的杂交
将制备好的探针与固定在样本上的靶 DNA进行杂交,形成探针-靶DNA复 合物。
去除未结合的探针
通过洗涤去除未结合的游离探针,提 高杂交信号的特异性。
信号检测与图像分析

FISH检测在临床上的应用

FISH检测在临床上的应用

FISH检测在临床上的应用FISH在乳腺癌中的应用1、检测项目:HER-2/neu基因、17号染色体数目临床意义:1)指导赫赛汀的使用;2)指导临床常规药物的应用:研究表明HER-2/neu基因扩增的病人用高剂量的蒽环类和紫杉醇类药物更有效;3)预后判断:HER-2/neu基因扩增的病人预后差,存在高复发率的危险。

2、与常规的免疫组化检测项目相比的优势:1)免疫组化结果评判存在主观性,对于1+、2+结果存在不明确的可能;IHC存在10%-20%的假阳性;5%-10%的假阴性;2)免疫组化无法判断是因为HER-2/neu基因扩增还是由于17号染色体的非整倍性造成的蛋白表达,而17号染色体的非整倍性扩增的患者对于赫赛汀治疗效果不明显;FISH可以解决这一问题。

3)CISH的优点是在普通光镜下即可检查,但对低倍扩增及染色体非整倍扩增检测灵敏度下降3、乳腺癌患者TOP2A基因的检测临床意义:1)指导用药:TOP2A基因异常的乳腺癌患者对于含蒽环类药物的治疗方案更为敏感。

TOP2A扩增的病人使用CEF方案进行治疗可以降低61%的复发风险和51%的死亡风险,而没有TOP2A扩增的患者使用CEF方案只能降低6%的复发风险和10%的死亡风险;2)判断预后:TOP2A基因异常的乳腺癌患者预后差,且TOP2A缺失的病人预后更差。

4、与常规的免疫组化检测项目相比的优势:1)敏感性和特异性高;2)免疫组化法不能检测TOP2A基因的缺失,而FISH技术可以精确的判断基因的扩增或缺失。

FISH在宫颈癌中的应用1、检测项目:TERC基因临床意义:1.)辅助病理分级:如果有TERC基因的扩增,则有90%的可能病理分级在CIN2以上;若无TERC基因的扩增,则有90%的可能病理分级在CIN1以下。

风险预测:伴有hTERC基因扩增的癌前病变的病人有52%-96%的恶变可能。

运用FISH技术进行hTERC基因扩增的检测极有助于宫颈癌的筛查及早期诊断。

fish技术在临床上应用

fish技术在临床上应用

fish技术在临床上应用近年来,随着科技的不断发展,人们在医疗领域也开始尝试运用各种先进的技术手段来提高诊疗水平。

其中,fish技术作为一种新型的遗传学技术,正在逐渐在临床上得到应用。

本文将对fish技术在临床上的应用进行探讨。

fish技术全称为荧光原位杂交技术(Fluorescence In Situ Hybridization),是一种能够在细胞或组织中定位、检测和鉴定染色体的技术手段。

通过与含有荧光标记的特定DNA或RNA序列杂交,可以使得这些序列在显微镜下呈现出荧光信号,从而达到检测目的。

在临床上,fish技术主要用于以下几个方面:一、染色体异常的检测fish技术在染色体异常的检测中具有独特的优势。

通过对染色体进行特定序列的染色体间的“配对”检测,可以帮助医生及时准确地发现遗传病变,包括染色体缺失、易位、重复等问题。

这对于患者的疾病诊断、治疗和预后都有着重要的指导意义。

二、肿瘤诊断fish技术在肿瘤的诊断和分析中也有着广泛的应用。

通过检测肿瘤细胞中的染色体异常或基因突变,可以帮助医生确认肿瘤的类型、分级和预后,并指导后续治疗方案的制定。

而且,fish技术对于微小残存病灶的检测也非常敏感,能够在临床上提供更精准的诊断信息。

三、遗传病的筛查fish技术在遗传病的筛查中有着重要的应用。

通过对胎儿细胞或新生儿细胞进行fish检测,可以帮助医生早期发现患有遗传病风险的个体,从而及时进行干预和治疗,减少患病的可能性,保障健康。

四、肿瘤治疗监测除了用于诊断外,fish技术还可用于肿瘤治疗的监测。

通过检测肿瘤细胞的染色体异常和基因变异,可以及时了解肿瘤细胞的发展演化情况,判断治疗效果及肿瘤的耐药机制,为调整治疗方案提供依据。

总的来说,fish技术在临床上的应用前景广阔,不仅可以帮助医生更准确、更快速地进行疾病诊断,提高治疗的精准性和有效性,还可以为个体化医疗、精准医学的发展提供技术支持。

然而,需要指出的是,fish技术虽然在临床上有诸多优势,但也存在着检测范围有限、操作流程复杂、成本较高等问题,需要不断进行技术改进和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荧光原位杂交技术及其在医学中的应 用 FISH methods and its medical application
1
一、荧光原位杂交
(fluorescence in situ hybridization,FISH)
60年代 Pardue Gall 建立 (一)方法与原理:
﹢ 制备DNA探针(用生物素或荧光素标记)(下图)→变性
often used during M phase but is now used on interphase as well
32
四、FISH在医学中的应用举例 1、用已知探针检测未知CS畸变
33
2、用显微切割方法检测未知CS畸变 显微切割→PCR →CS特异探针 池(黄色荧光) →与正常人CS杂交 (例:2号染色体某段发黄色荧光) 结果?
5
6
FISH Procedure
Denature the chromosomes Denature the probe Hybridization Fluorescence staining Examine slides or store in the
dark
7
(三)探针种类 1)探针池探针(cs涂抹探针):可结合在整条CS上每一部位。 24色(常CS22条+XY)
15.2 15.1
D11S935
D11S4045
14
D112
D11S1330 B344A5
11.22 11.21
D11S4205
11.1 11
IB3011
12
D11S4172
13.1
D11S1362
13.2 13.3
AFM337TC5
13.4
D11S4143
13.5 14.1
34
3、产前诊断 例:检测间期细胞 内DNA分子数 例:21三体 例:18三体
35
4、植入前诊断
Preimplantation Genetic Diagnosis (PGD)
36
图示1例13/14罗式易位携带 者的胚胎植入前FISH诊断
资料:一对6年不育,女,32岁,cs正常,男 34岁,核型:45,XY,t(13;14)(q10;q10),并 伴少、弱精。 采用单精子卵泡浆(intracytoplasmicsperm injection,ICSI)辅助授精,胚胎发育到3天 6-8细胞期取出一个细胞进行双色FISH检测。 参图:用13q和14q探针,见核中2个13号(绿 色)和2个14号(红色)信号细胞,表明?
图示:在DMD 患者母亲2/3 淋巴细胞中 在2条Xcs上 有DMDExon46 杂交信号。 A和B结果表 明?
51
7.遗传病诊断 (图)
例3:
图示1复杂易位患者FISH 结果(该患者致妻流产3 次)
核型:46,XY,t(5; 20;16)(q35;p13;q21)
三色FISH(5q绿色;16q 橙色;20p蓝色)结果参 图:a:5号;b:衍生5 号;c:16号;d:衍生16号;e: 20号;f:衍生20号.
37
移植后 18周做 羊水细 胞CS检 查
38
PGD
39
5、肿瘤诊断
肿瘤诊断探针 检测间期细胞内DNA分子数 肿瘤细胞内有癌基因扩增
40
肿瘤诊断
41
慢性粒细胞白血病
42
慢性粒细胞白血病
43
慢性粒细胞白血病
44
6.微小染色体畸变检测
45
Microdeletion
46
7.遗传病诊断 (图)
D11S1886
14.2
D11S1343
14.3 21
D11S4078
22.1
D11S1793
22.2 22.3
D11S4129
23.1 23.2
D11S4107
23.3
D11S4089 D11S4402
24
D11S4094
25
D11S4399
B1005B3
58
28
M-FISH with chromosome banding specific probes
29
8.间期FISH
30
三、 FISH优点( Advantage): less labor-intensive method for
confirming the presence of a DNA segment within an entire genome than other conventional methods
48
7.遗传病诊断 (图)
图示:DMD 男患者妹妹 只有1条Xcs 上有DMD Exon46信号。 表明?
49
7.遗传病诊断 (图)
例2: 家系2FISH结果 在DMD患者母亲 1/3淋巴细胞中 仅有1条Xcs上 有DMD Exon46 杂交信号,另 一条上无。
50
7.遗传病诊断 (图)
31
FISH - a process which vividly paints chromosomes or portions of chromosomes with fluorescent molecules
identify the presence and location of a region of DNA within morphologically preserved chromosome preparations, then can identifies chromosomal abnormalities
16
17
位 点 特 异 性 探 针
18
5)染色体臂涂抹探针:结合于cs的q或p上。
19
(四)探针标记方法
间接标记(前述) 时间长
直接标记
时间短
信号明显 信号弱
20
二、FISH种类:

以FISH过程中探针结合部位或探针颜色的不同,将
FISH分为多种。
21
1.Centromere Single Color FISH
56
8、基因定位(略)(参下页图)
附:FISH试剂盒例子(参资料)
57
The Visible Genetic Map of Human Chromosome 11
IB665
B376B12
11
IB568 D11S4170
D11S1348
15.5 15.4
D11S921
15.3
D11S1322
8
Whole chromosome probes
9
Whole chromosome probes
10
11
2)着丝粒探针:结合于着丝粒处,检测间期核内DNA 数(CS数)
12
13
Repetitive sequence probes
14
3)端粒探针:结合于端粒处
15
4) 特异位置探针 :cs某一具体位置探针 例:Yq12 repetitive probe
52
例4 FISH技术 从母血中检测 胎儿有核红细 胞
图示:孕早期 母血中胎儿有 核红细胞,可 见YCS特异杂交 信号。
53
例5 13q部分三体 致斜颈、不对称脸、 右脸小,用13q探 针检测(黄色信 号)。
图示:2条13号CS, 另一13号接到1号 短臂上。
54
图示:该患者G带核型
55
例6 白血病患者骨髓细胞双色FISH
制备CS或间期细胞标本→变性处理→探针与待测DNA杂交→ 洗脱→用荧光素标记的生物素亲和蛋白使杂交区发荧光(信 号放大)(下图) → 荧光显微镜检测
2
(二)探针制备方法
B
1.缺口平移法(Nick translatrion)
dUTP
用生物素(biotin)标记dUTP DNA酶Ⅰ切口 DNApolymerase Ⅰ 5`→3`外切酶活性 DNApolymerase Ⅰ 5`→3`聚合酶活性
3
5`
3` ↓
DNAseⅠ
5`
OH p
3`
↓ ﹢DNA聚合酶Ⅰ ﹢标记核苷酸
5` OOH p
GH
3`
C

3` 5`
5` 3`
5`
3`
3` 5`
BB
3` GUU
C AA 5`
4
分子杂交与信号放大
荧光素
待测基因
抗体 探针
B B
B 亲和蛋白
GGCUCCGA CCGAGGCT
(略)2.随机引物法(random primer):6聚核苷酸 klenow酶
22
2.Single Color FISH (Telomeres)
23
3.Dual color FISH
24
4
多 色 荧 光 原 位 杂 交
25
5.Spectral Karyotyping (SKY)(光谱核型分析)
26
6. 24 colors FISH
27
7.M-FISH with telomeres and centromeres
例1: 家系1 FISH结果 用Xcs着丝粒探针 (绿色)和DMD exon46探针(红色) 杂交。 图示DMD男患者FISH 结果:只有Xcs着丝 粒绿色信号,无DMD exon46红色信号, 说明?
47
7.遗传病诊断 (图)
图示:DMD男 患者姐姐2条 Xcs均有DMD Exon46信号 (红色)。 表明?
相关文档
最新文档