超临界流体萃取-论文

合集下载

超临界流体萃取技术(中药制剂技术论文)

超临界流体萃取技术(中药制剂技术论文)

超临界流体萃取技术2010级制药工程赵倩201040304028 【摘要】:超临界流体萃取技术(Supercritical Fluid Extraction)是近30年发展起来的一种新型分离技术,由于其具有操作方便、能耗低、无污染、分散能力高、制品纯度高、无溶剂残留等优点,被称为“绿色分离技术”。

超临界流体萃取技术主要应用于香料、食品和医药工业,对于一些用常规方法难以提取及纯化的物质,该方法更能显示其独特的优势。

本文介绍了超临界流体萃取技术分离原理、主要特点、流程、影响因素,并以二氧化碳为例讨论超临界流体萃取的特点、流程及例说明了在天然药物成分提取中的应用。

【正文】:中药为我国传统医药,用中药防病治病在我国具有悠久的历史。

由于化学药品的毒副作用逐渐被人们所认识及合成一个新药又需巨大的投资,西医西药对威胁人类健康的常见病、疑难病的治疗药物还远远不能满足临床的需要,因此,全世界范围内掀起了中医中药热。

面对科学技术,特别是医药工业的迅猛发展,国际间医药学术交流活动的日益频繁以及药品市场竞争越来越激烈,实现中药现代化,与国际接轨,已成为中医药工作者的共识。

"丸、散、膏、丹,神仙难辨"的状况尚未根本改变。

要改变这种现状,让西方医药界接受中药,增强中药在国际市场上的竞争地位,主要途径是,以中药理论为指导,采用先进的技术,实现中药现代化。

中药产品现代化的重点可简单地用8个字来描述,即"有效、量小、安全、可控"。

实际上,它涉及范围十分广泛,要解决的问题比较复杂,但首先最关键的问题就是要提取分离工艺、制剂工艺现代化,质量控制标准化、规范化。

为此,许多医药专家多次提出要采用超临界流体技术、分子蒸馏技术、膜分离技术、冷冻干燥技术、微波辐射诱导萃取技术、缓控释制剂技术、各种先进的色谱、光谱分析等先进技术,进行中药研究开发及产业化。

接下来,本文将对超临界萃取技术进行具体介绍。

超临界流体萃取(Supercriticalfluidextraction,简称SFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。

超临界萃取原理范文

超临界萃取原理范文

超临界萃取原理范文超临界萃取技术是一种利用超临界流体作为溶剂,通过调节温度和压力来改变超临界流体的物理和化学性质,实现对物质的分离和提纯的方法。

超临界流体是介于气相和液相之间的状态,在临界点以上的温度和压力条件下存在。

这种特殊状态下的流体具有低粘度、高扩散性以及高溶解能力等特点,因此适用于分离和提取化学物质。

超临界萃取技术广泛应用于天然药物的提取和分离,特别是对于具有热敏感、易挥发的化合物具有明显的优势。

在超临界萃取中,首先选择合适的超临界流体作为溶剂,然后通过调节温度和压力来改变超临界流体的性质,实现对目标化合物的分离。

超临界流体的溶解度随着温度的增加而增加,因此可以通过调节温度来控制分离效果。

此外,超临界流体的密度也可通过压力控制,从而进一步优化提取效果。

然后,将待处理的物质与超临界流体接触,目标化合物会溶解在流体中。

最后,通过降压或改变温度等方式,将目标化合物从超临界流体中提取出来。

超临界萃取技术在天然药物的提取方面具有明显的优势。

首先,超临界萃取的工作条件相对温和,可以避免化学物质在高温和高压条件下的降解和变性。

其次,超临界流体的溶剂力强,对于不同极性的化合物都有很好的溶解能力。

此外,在超临界萃取中,溶剂能够快速在物质中扩散,因此可以大大缩短提取时间,提高提取效率。

同时,超临界流体可以通过调节温度和压力来改变其物化性质,从而实现对目标化合物的选择性提取,避免了传统萃取方法中的繁琐操作过程。

超临界萃取技术在实际应用中已经得到广泛应用。

例如,在食品工业中,超临界萃取被用于咖啡因和可可中多酚化合物的提取。

在化工工业中,超临界萃取被用于精制石油产品、聚合物的分离和废水处理。

在制药工业中,超临界萃取被用于提取天然药物中的有效成分。

在环境保护方面,超临界萃取可以高效地去除土壤和水中的有机污染物。

因此,超临界萃取技术在许多领域具有重要的应用价值。

总之,超临界萃取是一种利用超临界流体作为溶剂进行化学物质分离和提纯的技术。

超临界流体萃取技术小论文

超临界流体萃取技术小论文

超临界流体萃取技术摘要超临界流体萃取技术是一项发展很快、应用很广的新型的分离技术。

由于其具有高效、方便、安全、低温萃取、无溶剂残留、选择性好等优点,使得这项技术在天然产物活性成分的提取上得到迅速发展,应用范围和种类也不断扩大。

70年代以来超临界二氧化碳萃取技术应用日趋广泛,广发应用于香料的提取,也可萃取药用有效成分。

超临界流体萃取技术在化学反应和分离提纯领域开展了广泛深入的研究,在医药、化工、食品、轻工等成果累累。

在此主要介绍超临界CO2萃取的原理、特点、影响因素及其在天然产物研究中的应用,并对其发展前景做了展望。

关键词超临界流体萃取天然产物超临界C02 萃取技术应用超临界流体萃取(简称SFE)技术是利用临界压力和临界温度以上的流体具有特异增加的溶解能力而发展起来的一种化工分离技术。

超临界流体萃取具有高效、方便、安全、环保、选择性好等优点,在天然植物中活性成分的提取中具有独特的优势。

由于其具有工艺简单、操作温度低、无溶剂残留等特点及其他方法所不可取代的良好应用前景而得到越来越广泛应用和重视。

超临界流体技术必将成为未来从天然植物中提取活性成分的一种新型工艺之一。

一、超临界流体萃取的基本原理和特点1、超临界流体萃取的基本原理SFE分离的原理比较简单,是利用溶质在不同条件下在超临界流体中溶解度的不同而进行的溶解分离。

当气体的温度、压力高于临界温度Tc和临界压力Pc 时,便进人临界状态,此时的流体成为超临界流体。

超临界流体对物质有较强的溶解能力,兼有液体和气体的双重特性,即粘度接近气体,密度接近液体。

在超临界状态下,温度、压力的变化会引起流体密度的显著变化,通过控制压力和温度使其有选择性地把不同极性、不同沸点和相对分子质量的成分萃取出来,然后借助减压等方法使超超临界流体变成普通气体,被萃取物质则自动析出,从而达到分离提纯的目的。

超临界流体萃取的效率远远优于液-液萃取。

2、超临界流体萃取技术的特点(1)既利用了萃取剂和被萃取物质之间的分子亲和力实现分离,又利用了混合物各组分挥发度的差别,具有较好的选择性;(2)萃取效率高,过程易于控制。

超临界流体萃取技术

超临界流体萃取技术

超临界流体萃取技术概述超临界流体萃取技术是一种利用超临界流体作为溶剂的分离技术。

超临界流体是介于气体和液体之间的一种物质状态,在超临界状态下具有较高的溶解能力和扩散性能,因此被广泛应用于化工、制药、食品等领域的分离与提纯过程中。

本文将介绍超临界流体的基本概念、特点以及在萃取过程中的应用。

同时,还将探讨超临界流体萃取技术的优点和局限性,并结合实际案例进行分析。

超临界流体的基本概念超临界流体指的是在临界点之上的高压高温条件下,流体达到临界状态。

在超临界状态下,物质的密度和粘度等性质与传统液体和气体有明显差异,具有较高的溶解能力和扩散性能。

常用的超临界流体包括二氧化碳、水蒸汽、乙烯等。

与传统的有机溶剂相比,超临界流体作为溶剂具有以下优点:•高溶解能力:超临界流体的溶解能力比传统有机溶剂高,可以溶解更多的物质。

•可控性强:通过调节温度和压力等条件,可以控制溶解度和提取速度。

•萃取效率高:超临界流体在溶解物质后,可以通过调节温度或者减压来实现溶剂的快速脱失,从而提高萃取效率。

•环保可持续:超临界流体一般是可再生的,可以循环利用。

超临界流体萃取技术的应用超临界流体萃取技术在许多领域都得到了广泛的应用,以下是一些常见的应用场景:化工领域超临界流体萃取技术在化工领域用于分离和纯化特定化合物,常见的应用包括:•油脂提取:利用超临界流体(常用的是二氧化碳)可以高效地从植物油中提取脂肪酸、甘油等有机成分,用于制备食用油或者化妆品等产品。

相比传统的溶剂提取方法,超临界流体提取技术更加环保,不会产生有机溶剂残留。

•天然色素提取:超临界流体提取技术也可以应用于从天然植物中提取色素,用于食品、化妆品和纺织品等行业。

•聚合物分离:超临界流体还可以用于聚合物的分离和纯化,提高聚合物的纯度和质量。

制药领域在制药领域,超临界流体萃取技术被广泛应用于药物分离、纯化和微粒制备等方面,常见的应用包括:•天然药物提取:超临界流体提取技术可以高效地从天然植物中提取药物成分,用于药物生产和研发。

超临界流体萃取技术及其应用

超临界流体萃取技术及其应用

超临界流体萃取技术及其应用摘要:超临界流体萃取作为一种新型分离技术,越来越受到各行业关注和重视,并已广泛应用于医药、食品、化妆品及香料工业等领域。

本文对超临界流体萃取技术进行了评述,主要从超临界流体萃取技术原理、工业应用及其强化过程等几个方面。

介绍了国内外关于超临界流体分离技术最新研究动态,最后针对超临界萃取技术应用现状,探讨了其目前存在问题及应用前景。

关键词:超临界流体萃取;工业应用;应用前景Abstract: As a new separation technology, supercritical fluid extraction has get more and more attention from all walks of life, and it has been widely used in pharmaceutical, food, cosmetics, perfume industry and other fields. This article reviewed present application and research status of supercritical fluid extraction technology both at home and abroad, mainly in industrial applications of supercritical carbon dioxide extraction technology and strengthening processes. The latest studies on supercritical fluid extraction technology were introduced. Finally based on Chinese present situations of the technology, the existing problems and application prospects were discussed.Key words: Supercritical fluid extraction;Industrial application;Application prospect超临界流体( Supercritical Fluid 即SCF ) 即指是物体处于其临界温度和临界压力以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液体性质。

超临界流体萃取技术在中药提取中的应用

超临界流体萃取技术在中药提取中的应用

超临界流体萃取技术在中药提取中的应用随着人们对健康的重视和传统药物的流行,中药在生活中扮演更为重要的角色。

中药的提取过程中,如何更好地提取药效成为了研究的热点。

本文将会介绍一种先进的提取技术——超临界流体萃取技术,并探讨其在中药提取中的应用。

一、超临界流体萃取技术简介超临界流体萃取技术(Supercritical Fluid Extraction,简称SFE),是一种绿色化学提取工艺,其特点在于不使用有机溶剂,而是利用特定条件下物质达到临界点时产生的超临界流体进行分级萃取的一种方法。

所谓超临界,是指在某一温度和压力下,在该状态下的物质不再像气态或液态一样,而是不具有严格定义的状态,而在一定范围内流动性、扩散性、介电常数等物理性质都会变化。

这种物质既有液体的媒体性质,又具有气体的性质,可以在合适的条件下通过改变压力、温度等条件,使得不同基础物质的挥发率有不同的质量转移程度,从而实现药物成分的分离和提取。

二、超临界流体萃取技术在中药提取中的优势1. 提取效率高超临界流体可以以液态形式分子形态进入样品中,绕过其表层存于样品内部,有效提高了原本固体表面提取效率,并且因为提取速度快,效果好,所以可以节省很多的提取时间。

2. 重金属等污染物去除率高使用过的超临界流体可以被完全排放和回收,不会造成环境污染。

同时,与传统提取方法不同的是,超临界流体可以接触到样品中的大分子羟基、氧化羰基、硫醇基等化学基团,提高了提取效果,同时对中药中含有的污染物如重金属等,有较高的去除率,有效改善了中药的品质。

3. 营养价值保留度高超临界流体提取技术的提取温度一般不超过室温,可以保护一些因传统炮制、提取过程老化而改善中药营养价值和药效的核心物质,有效防止了药物成分的降解、氧化等过程,从而能够提高中药的营养价值的保留度。

4. 原材料消耗少传统提取方法中普遍需要很多有机溶剂,如乙酸乙酯、甲醇、丙酮等,而超临界流体萃取则不需要或者使用量大大减少。

超临界流体萃取进展论文[1]

超临界流体萃取进展论文[1]

临界流体萃取进展1 概述超临界流体萃取(Superitical Fluid Extraction,以下简称SFE)是一项发展很快、应用很广的实用性新技术。

它具有低温下提取,没有溶剂残留和可以选择性分离等特点,正为越来越多的科技工作者所重视,有关研究方兴未艾,新的研究成果不断问世。

超临界流体(Superitical Fluid,以下简称SCF)具有溶解其它物质的现象,早在100年前已为Hannay和Hogarth所发现,但由于技术、装备等原因,时至20世纪30年代,Pilat和Gadlewicz才有了用液化气体提取“大分子化合物”的设想。

1954年Zosol用实验的方法证实了二氧化碳超临界萃取(以下简称SFE-CO2)可以萃取油料中的油脂。

直到70年代的后期,德国的Stahl等人首先在高压实验装置的研究取得了突破性进展之后,SFE这一新的提取、分离技术的研究及应用,才有了可喜的实质性进展。

超临界流体萃取技术近30多年来引起人们的极大兴趣,这项化工新技术在化学反应和分离提纯领域开展了广泛深入的研究,取得了很大进展,在医药、化工、食品、轻工及环保领域成果累累。

1988年在法国尼斯召开了第一届“国际超临界流体技术会议”以后,国际上每3年召开一次会议,进行国际间的学术交流。

我国超临界流体萃取研究始于20世纪80年代初,从基础数据,工艺流程和实验设备等方面逐步发展,历经20多年的努力,我国超临界流体萃取技术研究和应用已取得显著成绩。

1996年10月,我国召开了“第一届全国超临界流体技术学术及应用研讨会”。

作为新一代化工分离技术,SFE-CO2萃取已列入“八五”国家科技攻关计划。

近期国家计委和科技部联合公布的《生物及医药产业近期产业化的重点》(2001年)中将SFE-CO2列入优先发展的18个领域之一的“中药制剂先进生产工艺及成套设备”中近期产业化重点。

2002年9月18日科技部、国家经贸委和国家中医药管理局联合发布的我国《医药科学技术政策(2002~2010年)》中亦将SFE-CO2作为有利于中药生产工艺提升、技术更新、产品升级的重点推广应用的新技术之一。

超临界流体萃取技术在食品中的应用研究

超临界流体萃取技术在食品中的应用研究

超临界流体萃取技术在食品中的应用研究随着人们对健康和品质生活的追求不断提高,食品产业也在不断追求创新和提升产品品质。

超临界流体萃取技术是一种新型的生物化学分离提纯技术,它在萃取、分离和提纯方面具有很大的优势。

因此,越来越多的人开始探索超临界流体萃取技术在食品中的应用研究。

一、超临界流体概述超临界流体简单来说就是介于气态和液态之间的物质,当压力和温度达到一定的程度时,物质的状态会发生改变,从液态和气态的物质融合到一起,成为超临界流体。

此时的超临界流体具有灵活的物化性质,可以完成分离、提纯等化学作用,而且在作用过程中消耗的能量非常少,这使得超临界流体成为一种非常值得探索的化学工艺。

二、超临界流体萃取技术与应用超临界流体萃取技术已经广泛用于化学、药物、医学、环境等领域中,也已逐渐应用于食品中的提取和分离工艺。

因为超临界流体具有很好的渗透性和可控性,可以很方便的实现食品成分的分离并从中提取目标物质。

1、萃取超临界流体萃取技术在萃取和分离方面已经有了非常明显的优势。

例如生产咖啡时,超临界流体可以快速、方便地从咖啡豆中分离和提取出有机酸、咖啡因和醇等成分。

而且,从咖啡豆中提取出的这些成分不仅口感更好,而且更健康。

2、提纯超临界流体萃取技术还可以用于制作天然色素,这也是食品工业应用较多的一种方法。

超临界流体可将植物中的色素和其他成分分离开来,然后通过温度和压力调节,分离的物质可以得到进一步的提纯。

通过这种方法,提取出的色素能够用于食品中的着色和调味。

三、超临界流体萃取技术在食品中的使用现在,越来越多的食品加工业开始利用超临界流体加工技术。

其中,最常见的应用是在食品保护、提味、调色、提高营养成分、改善口感等方面。

例如,超临界流体萃取技术可以用于获得香菇的多糖成分,可以用于获得柿子椒的色素成分,也可以用于获得橘子香精成分。

总之,超临界流体萃取技术在食品加工方面具有非常广泛的应用前景。

随着人们对食品品质和健康的追求,超临界流体萃取技术将会越来越受到关注和应用。

超临界萃取在食品中的应用--食品高新技术结课论文

超临界萃取在食品中的应用--食品高新技术结课论文

摘要:综述了超临界萃取技术的原理、特点及其在食品中的研究进展,并介绍了超临界萃取技术在天然香料、色素的生产、油脂的提取分离、食品中功能成分的提取等方面的应用,并对今后的发展趋势作了预测。

关键词:超临界萃取食品工业应用超临界流体萃取(Supercritical fluid extraction,简写SCFE)是一种较新型的萃取分离技术,其起源于20世纪40年代,20世纪70年代投入工业应用,并取得成功。

过去,分离天然的有机成分一直沿用水蒸汽蒸馏法、压榨法、有机溶剂萃取法等。

水蒸汽蒸馏法需要将原料加热,不适用于化学性质不稳定成分的提取;压榨法得率低;有机溶剂萃取法在去除溶剂时会造成产品质量下降或有机溶剂残留;超临界流体萃取法则有效地克服了传统分离方法的不足,他利用在临界温度以上的高压气体作为溶剂,分离、萃取、精制有机成分。

1 超临界萃取技术的基本原理超临界流体(Supercritical Fluid,简写为SCF),是超过临界温度(Tc)和临界压力(Pc)的非凝缩性的高密度流体。

超临界流体没有明显的气液分界面,既不是气体,也不是液体,是一种气液不分的状态,性质介于气体和液体之间,具有优异的溶剂性质,粘度低,密度大,有较好的流动、传质、传热和溶解性能。

流体处于超临界状态时,其密度接近于液体密度,并且随流体压力和温度的改变发生十分明显的变化,而溶质在超临界流体中的溶解度随超临界流体密度的增大而增大。

超临界流体萃敢正是利用这种性质,在较高压力下,将溶质溶解于流体中,然后降低流体溶液的压力或升高流体溶液的温度,使溶解于超临界流体中的溶质因其密度下降溶解度降低而析出,从而实现特定溶质的萃取。

2超临界萃取技术的实验流程示意图放出C02↑冷却水→C02→低温浴槽→高压泵→预热器→萃取器→分离器→产品3超临界萃取技术的流体材料已研究过的萃取剂有多种,如:乙烯、乙烷、正戊烷、一氧化亚氮、二氧化碳、六氟化硫、甲醇、乙醇、丁醇、氨和水等。

超临界流体萃取技术

超临界流体萃取技术

1. 超临界流体萃取技术的发展
• 1966年开始用超临界CO2和超临界正戊烷来萃取多
环芳烃、染料和环氧树脂等。
• 1978年超临界流体技术被应用于从聚合物中提取各 类添加剂。
• 20世纪80年代,超临界流体的溶解能力及高扩散的 性能逐步得到认可,于是被作为一种优良的萃取溶剂 用于萃取过程。
• 现在随着人们环保意识的增强,而超临界流体正是 “绿色化学”倡导的清洁溶剂,正逐渐取代一些实验 室里常用的高毒、高污染的有机溶剂。
对压力而言,压力
溶解度 。但压力的影响不是孤立的。
因此,在具体的应用中,需要仔细考虑分析物本身特点,综合考
虑温度和压力两个影响因素。
死体积本意是指色谱柱中未被固定相占据的空隙体积,也即色谱柱内流动相 的体积。但在实际测量时,它包括了柱外死体积(色谱仪中的管路和连接头间 的空间以及进样系统和检测器的空间)。
临界点数据 理解压力/MPa
7.39
临界密度ρ/(g/cm2) 0.448

-33.4
132.3
11.28
0.24
甲烷
-160.0
-83.0
4.6
0.16

乙烷
-88.0
32.4
4.89
0.203
丙烷
-44.5
97
4.26
0.220

丁烷
-0.5
152.0
3.80
0.228

2,3-二甲基丁烷
58.0
226.0
3.14
0.241

Байду номын сангаас
乙烯
-103.7
9.5
5.07
0.20

超临界流体萃取局限性及发展前景

超临界流体萃取局限性及发展前景

超临界流体萃取局限性及发展前景超临界流体萃取是一种利用超临界流体作为溶剂进行物质萃取的方法。

超临界流体具有介于气体和液体之间的特性,有较高的扩散系数和较低的粘度,因此在物质萃取中有很大的应用潜力。

然而,超临界流体萃取技术仍然存在一些局限性,同时也面临着一些挑战。

首先,超临界流体的操作条件相对较为严苛。

超临界流体的温度和压力通常需要非常严格的控制,以保证萃取效果。

同时,一些物质在超临界条件下很难溶解,导致萃取效率较低。

因此,超临界流体的操作条件需要仔细优化,增加了工艺的复杂度和成本。

其次,超临界流体萃取技术对设备的要求相对较高。

由于超临界流体的性质,需要使用耐压、耐高温的设备,这增加了设备的成本。

同时,在大规模应用中,需要大量的超临界流体和大型设备,使得成本进一步增加。

此外,超临界流体萃取技术在一些领域的应用还比较有限。

虽然在食品、制药、化工等领域已经有一些应用案例,但在其他领域,尤其是高端应用领域,如新材料研发、环境保护等方面的应用还比较有限。

这主要是由于超临界流体的操作条件和设备要求限制了其在这些领域的推广应用。

然而,尽管存在一些局限性,超临界流体萃取技术仍然具有很大的发展前景。

首先,超临界流体萃取可以替代传统的有机溶剂萃取。

由于超临界流体具有较低的毒性和环境友好性,可以显著减少对环境的污染。

因此,超临界流体萃取在环境保护领域具有广阔的应用前景。

其次,超临界流体萃取可以提高产品的纯度和品质。

由于超临界流体的较高扩散系数和较低粘度,可以更好地控制物质的分离和提取过程,从而提高产品的纯度和品质。

这使得超临界流体萃取在食品、医药等领域的应用更加广泛。

此外,随着科学技术的不断进步,超临界流体的操作条件和设备性能也在不断改善。

新型的超临界流体、新型的设备和工艺方法的出现,为超临界流体萃取的应用扩展提供了更多的可能性。

例如,超临界流体萃取与其他技术的结合,如超声波辅助、微波辅助等,可以进一步提高萃取效率和产品品质。

超临界流体萃取分离技术研究

超临界流体萃取分离技术研究

超临界流体萃取分离技术研究超临界流体萃取分离技术是一种应用于分离浓缩化学物质的绿色技术。

它采用了高压、高温的超临界条件,使液体和气体之间的界面消失,获得了介于液态和气态之间的状态,既能使用作为极性、非极性、酸性、碱性等不同性质的溶剂提取化合物,又能消除溶剂残留。

在分离提取、纯化制备、浓缩效果和操作便捷性等方面有着明显的优势。

本文将重点介绍超临界流体萃取分离技术在化学物质的提取分离方面的研究现状。

一、什么是超临界流体萃取分离技术超临界流体萃取分离技术是指在高压、高温的条件下,将对应体系的温度或压强升高至超临界状态下,以这种介于液态和气态之间的状态提取和分离化学物质的技术。

在这种状态下,气液界面消失,体系的密度及粘度小,分子动量大,溶解力强,故具有优异的溶解性和传质性能。

同时,由于压强和温度可以在一定的范围内调节,因此萃取物、残留溶剂、杂质等可以被方便地控制。

超临界流体由于它的独特性质也已经被广泛应用在化工、医药、食品、环保等领域。

比如,它可以提取植物中的有效成分并尽量减少有害物质,获得高纯度、高价值的化合物。

另外,这种技术还可以提高催化剂的稳定性,催化剂的使用效率、转化率和产物选择性等。

二、超临界流体萃取分离技术在化学物质提取中的应用超临界流体萃取分离技术可以应用于大多数的化学物质提取中,比如草药提取、天然产物药物提取、挥发性物质的分离提取等。

以下介绍一些具体的例子。

超临界二氧化碳(SC-CO2)提取食品中的热敏性产物在食品加工中,许多的有益成分都是热敏性的,传统的提取方法往往不能保证成分的保真性。

有研究尝试使用超临界二氧化碳来提取花生油中的物质,结果表明,所得物质的质量比传统方法提取的要好。

这种方法有优异的选择性,可以缩短提取时间,扩大萃取物的范围,并可以大大提高提纯度。

超临界萃取提取草药中的有效成分草药中的有效成分大多分布在挥发性或不挥发性物质中,其中不挥发性成分往往难以提取。

采用传统的水提法或醇提法往往不但不能得到全面、高保真、高效率的药物,而且会有大量的溶液残留,会影响草药的效果。

超临界流体萃取技术在污染物处理中的应用

超临界流体萃取技术在污染物处理中的应用

超临界流体萃取技术在污染物处理中的应用随着人们生活水平的提高和工业化程度的加深,污染问题日益严重。

其中,有机污染物的处理成为一项重要的环保任务。

传统的污染物处理方法往往存在一系列的弊端,例如低效、高成本、产生二次污染等问题。

而超临界流体萃取技术的出现为这一难题提供了新的解决思路,本文将从几个方面介绍其在污染物处理中的应用。

一、超临界流体萃取技术的基本原理超临界流体是指当温度和压力达到临界点以上时,物质具有液体与气体的双重性,拥有非常好的可压缩性、扩散性和溶解性。

而使用这种物质进行萃取,可以避免传统萃取技术中需要使用大量有机溶剂的问题,更为环保。

二、超临界流体萃取技术的特点1. 高效:在超临界状态下,物质的扩散性和溶解性增加,提高了萃取效率。

2. 环保:使用超临界流体萃取技术可以避免传统萃取技术中使用大量有机溶剂带来的环境问题。

3. 节约成本:使用超临界流体可以大大降低萃取成本并提高经济效益。

三、 1. 土壤和水体中污染物的萃取目前,土壤和水体中的有机污染物依然是世界范围内存在的大问题。

传统的萃取方法往往需要使用大量的有机溶剂,不仅费钱,而且会带来二次污染。

而使用超临界流体进行萃取,则能够达到高效、环保和经济的目的。

2. 精细化工产品的合成在精细化工产品的合成过程中,往往需要使用大量的催化剂、溶剂和反应剂。

而使用超临界流体作为反应介质,则能够提高反应效率和产品纯度,并降低成本和环境风险。

3. 原油加工原油加工是现代化工生产中不可或缺的环节,而超临界流体则可以用于原油提纯和组分分离。

这一过程可以提高产品质量和纯度,降低生产成本,提高经济效益。

四、相关技术的研究与发展超临界流体萃取技术作为一种非常新颖的污染物处理技术,还需要进一步的研究和发展。

目前,一些专家学者正在对其进行深入的研究,探索其在各个领域的应用,以及进一步提高其效率和解决其存在的问题。

总之,超临界流体萃取技术的广泛应用,为我们环保事业带来了新的思路和解决方案。

超临界流体萃取技术的应用与发展

超临界流体萃取技术的应用与发展

超临界流体萃取技术的应用与发展超临界流体萃取技术的应用与发展概述超临界流体萃取技术是近年来在化工、制药、环境保护和食品工业等领域内得到广泛应用的一种新型分离技术。

它利用超临界流体的特殊性质,如高溶解能力、可调控的密度和粘度等,实现了高效、环保和可持续的萃取过程。

本文将介绍超临界流体萃取技术的原理、应用及其在未来的发展前景。

一、超临界流体萃取技术的原理在超临界状态下,物质的密度和粘度会发生显著变化,从而使溶质与溶剂之间的相互作用力产生变化,进而影响了物质的溶解度和传质速率。

超临界流体的密度接近液相,而粘度接近气相,具有溶剂的高扩散性和低表面张力的特点。

同时,超临界流体具有易于操作、易于回收的特点,能够实现绿色化学过程的目标。

二、超临界流体萃取技术的应用领域1. 化工工业:超临界流体萃取技术可以用于分离和回收有机催化剂、染料和高值化学品等。

与传统的有机溶剂萃取相比,超临界流体萃取具有更高的提取效率和更低的环境污染。

2. 制药工业:超临界流体萃取技术可用于提取天然药物中的有效成分,如植物提取物、中草药和藻类等。

超临界流体的温和条件和可调控的萃取效果可保持提取物的活性和药效。

3. 环境保护:超临界流体萃取技术可以用于处理工业废水、固体废物和大气污染物等。

其高效的溶质传质性能和可回收利用的特点能够有效降低废物的处理成本和环境风险。

4. 食品工业:超临界流体萃取技术可用于提取食品中的香精、色素和活性成分等。

相比传统的提取方法,超临界流体萃取具有无残留、高效率和无毒副产物等优势。

三、超临界流体萃取技术的发展前景1. 新型工艺改进:随着超临界流体萃取技术的不断发展,新型的工艺改进也将推动其应用范围的拓展。

例如,超临界萃取与其他分离和纯化技术的复合应用,将进一步提高分离效率和回收率。

2. 新型超临界流体的研究:目前,二氧化碳是超临界流体萃取的主要溶剂。

未来的研究将着重于寻找更加环保、高效和可持续的溶剂替代物,如氢气、氮气和BASF公司研发的丁烷等。

超临界流体二氧化碳萃取技术.论文doc

超临界流体二氧化碳萃取技术.论文doc

超临界流体二氧化碳萃取技术研究综述钟华丽200830600435 08营养1班摘要现代工业发展迅速,越来越多的高新技术被应用于食品加工中,食品加工过程得到更加深远的发展,超临界流体二氧化碳萃取技术就是其中一个典型例子。

本文主要介绍了超临界流体二氧化碳萃取的基本原理,发展状态以及应用情况。

关键字超临界流体萃取食品工业前言超临界流体萃取技术就是利用溶剂在超临界状态下的超群溶解物质的能力,溶解出人们希望的组分,而使得其他组分留在原物质中。

最早将超临界C O2萃取技术应用于大规模生产的是美国通用食品公司,之后法、英、德等国也很快将该技术应用于大规模生产中。

90年代初,中国开始了超临界萃取技术的产业化工作,发展速度很快。

实现了超临界流体萃取技术从理论研究、中小水平向大规模。

产业化的转变,使中国在该领域的研究、应用已同国际接轨,在某些方面达到了国际领先水平。

目前,超临界流体萃取已被广泛应用于从石油渣油中回收油品、从咖啡中提取咖啡因、从啤酒花中提取有效成分等工业中。

可以作为超临界流体萃取剂的物质很多,二氧化碳由于其无毒无害,廉价易得,萃取效果好等特点,应用最广泛。

超临界流体萃取技术简述超临界流体萃取是国际上最先进的物理萃取技术,简称S E F E。

在较低温度下,不断增加气体的压力时,气体会转化成液体,当温度增高时,液体的体积增大,对于某一特定的物质而言总存在一个临界温度(Tc)和临界压力(P c),高于临界温度和临界压力后,物质不会成为液体或气体,这一点就是临界点。

再临界点以上的范围内,物质状态处于气体和液体之间,这个范围之内的流体成为超临界流体(S F)。

超临界流体具有类似气体的较强穿透力和类似于液体的较大密度和溶解度,具有良好的溶剂特性,可作为溶剂进行萃取、分离单体。

超临界流体萃取是近代化工分离中出现的高新技术,S F E将传统的蒸馏和有机溶剂萃取结合一体,利用超临界C O2优良的溶剂力,将基质与萃取物有效分离、提取和纯化。

超临界流体萃取论文

超临界流体萃取论文

超临界流体萃取论文超临界流体萃取的探究摘要:本文就超临界流体萃取这一单元操作的基本原理、方法、应用以及发展前景等内容进行综述。

目的是通过查找相关资料文献进一步的了解超临界流体萃取这一单元操作,并得出自己的一些观点看法与设想。

关键词:超临界流体,萃取,SFE-CO2,分离纯化。

超临界流体萃取简称SCFE,是利用超临界状态的流体具有强溶解能力而对物质进行提取分离的技术。

虽然早在1879年就有人发现超临界乙醇异乎寻常的溶解特性,但真正将其应用于工业实践并引起关注,只是近20多年来的事情[1]。

由于SCFE技术具有一系列优点,20世纪80年代以来,国际上投入大量人力物力进行研究,范围涉及食品、香料、医药和化工等领域,并取得一些列进展[2]。

SCFE可操作于较低温度,能使食品中热敏成分免遭破坏。

因此,超临界流体萃取技术在食品工业中有广阔的应用前景。

本文就这一热门单元操作简要介绍了它的基本原理、方法应用以及发展前景等内容。

使我们更加简单方便的了解这一单元操作[3]。

1.超临界流体萃取概述1.1.超临界流体物质处于其临界温度(Tc)和临界压力(Pc)以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液体性质,同时还保留气体性能的流体[4]。

1.2.超临界流体特点超临界流体(SCF)是指同时处于临界温度(Tc)和临界压力(Pc)以上,其物理性质介于气体与液体之间的流体,这种流体(SCF)兼有气液两重性的特点,它既有与气体相当的高渗透能力和低的粘度,又兼有与液体相近的密度和对许多物成部分。

分离压力越低,萃取和解析的溶解度差值就越大,越有利于分离过程效率的提高。

但工业化流程都采用液化CO2,再经高压泵加压与循环的工艺。

因此,分离压力受到CO2液化压力的限制,不可能选取过低的压力,实用的CO2解析,循环压力在5.0~6.0Mpa之间。

假如要求将萃取产物按不同溶解性能分成不同产品,工艺流程中可串接多个分离釜,各级分离釜一压力自高至低的次序排列,最后一级分离压力应是循环CO2的压力。

超临界流体的萃取及其应用【精选】

超临界流体的萃取及其应用【精选】

分离分析化学期中论文班级:应化112 学号:S2013015 姓名:路平娟超临界流体的萃取及其应用摘要:本文概述了超临界流体萃取技术的基本原理、工艺设备及其在油脂萃取中的应用、在植物有效成分萃取中的应用和在废弃油基钻井液无害化处理中的应用,最后对超临界流体萃取技术未来的发展进行了一些展望。

关键词:超临界流体、萃取、油脂、色素、精油、中药、废弃油基钻进液Supercritical fluid extraction and its application Abstract:The technology of supercritical fluid extraction in this paper, the basic principle,process equipment and its application in oil extraction, application in the extraction of effective components in plants and in the waste oil base drilling fluid harmless treatment, finally on the development of the technology of supercritical fluid extraction in the future prospect.Key words:supercritical、extraction、oil、pigment、essential oil、traditional Chinese medicine、waste oil-based drilling fluid.【正文】1.超临界流体及其性质对于纯物质,如果该物质的温度和压力均超过该物质的临界温度(T )和临界压力(P )值,那么,它就处于超临界状态,如下图所示。

图一物质超临界状态图对于混合物,是否处于超临界状态与压力温度和组成有关。

超临界流体萃取中的分离与提纯技术研究

超临界流体萃取中的分离与提纯技术研究

超临界流体萃取中的分离与提纯技术研究超临界流体萃取是一种利用超临界流体将目标物质分离和提纯的技术。

它具有高效、环保、温和等特点,被广泛应用于食品、药物、化工等领域。

本文将从超临界流体的概念、分离机理、萃取过程和应用等方面进行探讨和分析。

一、超临界流体的概念超临界流体是指在临界点以上一定温度和压力下,物质不再呈现气态或液态,而出现类似气体和液体的物质态。

超临界流体具有介于气体和液体之间的性质,其密度、粘度、扩散系数等物理化学特性处于气态和液态之间,具有渗透性和传输性,是一种优秀的萃取剂。

二、分离机理超临界流体萃取的分离机理主要是基于物质在超临界条件下的溶解度差异。

当目标物质与超临界流体相互作用时,物质自发向流体中转移,同时流体中的某些成分也可能对物质产生亲合力。

物质在超临界流体中的溶解度受温度、压力、流体密度和极性等因素的影响,并呈现非线性变化规律。

因此,可以通过调节反应条件,如温度、压力和萃取流体组成等来实现对目标物质的高效、选择性分离。

三、萃取过程超临界流体萃取过程分为单级和多级萃取两种方式。

单级萃取是指将物质与超临界流体在萃取釜中进行反应,将产生的萃取液直接收集,然后蒸馏或其他方法进行目标物质的回收和提纯。

多级萃取是在单级萃取的基础上,通过多级色谱、溅射等方式进行进一步的分离和纯化,达到提高分离效率和纯度的目的。

四、应用超临界流体萃取技术广泛应用于食品、药物、化工等领域中,例如提取咖啡因、香料、色素、植物提取物、药物等。

与传统的萃取方式相比,超临界流体萃取具有高效、环保、温和等优点,能够在保持目标物质活性的同时对多种成分进行分离,减少操作步骤和化学污染物的排放,促进了工业生产的可持续发展。

总之,超临界流体萃取技术是一种优秀的分离和提纯方法,具有广泛的应用前景。

随着科学技术的发展和研究领域的拓宽,超临界流体萃取技术将会越来越成熟和完善,为人类的生产和生活带来更多福利。

机械论文:CO2超临界萃取工艺优化及其测控机械技术研究

机械论文:CO2超临界萃取工艺优化及其测控机械技术研究

机械论文:CO2超临界萃取工艺优化及其测控机械技术研究本文是一篇机械论文,本论文在吉林省科技厅项目“CO2 超临界萃取工艺及其测控技术研究”(项目编号:20150204071GX)的支持下,开展了CO2 超临界萃取工艺优化及其测控技术研究。

第1 章绪论1.1 超临界萃取技术及研究意义1.1.1 超临界流体超临界在热力学上指的是一种状态,当流体的温度和压力都高于物质的临界温度和临界压力时,称该流体处于超临界状态,该状态的流体为超临界流体[1](Supercritical Fluid,简称SF)。

在临界点附近,流体分子之间的作用力介于气体和液体分子之间,既具有类似液体的密度、溶解能力和良好的流动性,同时又具有类似气体的扩散系数和低黏度,会出现流体的密度、黏度、溶解度、介电常数等物性发生急剧变化的现象。

因此,流体的超临界状态可简单地认为是一种介于液体与气体之间的中间状态。

图1-1为固-液-气三态关系和超临界区域示意图,其中斜线部分是超临界区的范围。

表1-1中把气体、液体及超临界流体的几种物理性质做了比较。

........................1.2 CO2 超临界萃取过程控制技术国内外研究现状超临界流体萃取发源于国外。

1822 年,法国医生Cagniard de la Tour 在加热封有液体的炮管时,发现了超临界现象,并在世界上首次做了有关超临界状态的报道。

1879年,学者Harmay 和Hogarth 发现了超临界流体能溶解无机盐类,然而,由于技术及装备的原因,未能深入地研究。

20 世纪30 年代,科学家Pilat 和Gadlewicz 首次提出了用液化气体提取大分子化合物的构想。

1954 年,Zosol 用实验证实了超临界CO2能够萃取油料中的油脂。

20 世纪70 年代的后期,德国在高压实验装置的研究中取得了突破进展。

1978 年联邦德国建成从咖啡豆脱除咖啡因的CO2 超临界萃取工业化装置,随后在英国与法国也先后设立了利用SC-CO2 萃取啤酒花的工厂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁夏大学硕士生考试考查卷面纸~~学年度第学期姓名学号院(所、部)年级专业研究方向课程考试方式Supercritical Fluid ExtractionAbstract:Solvent extraction is an important mass transfer unit operation. Supercritical fluid extraction (SFE), a sustainable green technology leads a wide range of applications since the past decade. Background of supercritical fluid extraction technology was introduced and overview of the technology of supercritical fluid extraction was also introduced. Focused on the method of enhanced extraction and industrial applications of supercritical fluid extraction technology.Keywords:solvent extraction,supercritical fluid extraction technology, enhance, industrial applicationSupercritical Fluid Extraction1.The background of solvent extractionExtraction techniques play a unique role in analytical chemistry. At the same time, extraction generally is relegated to a support role and it has just been within the past 15 years or so that the importance of extraction technology has been recognized for its role in the generation of quality analytical information [1].Solvent extraction is an important mass transfer unit operation. In this process, the solute is of different distributions between two immiscible or partially miscible in the liquid phases, which can achieve the purpose of separating or purifying the liquid mixtures [2]. Solvent extraction is usually operated at room temperature or low temperature. With the characteristics of low energy consumption, it is more suitable for the separation of heat-sensitive substances and easily realizing the economic countercurrent operation, which is conducive to continuous mass production. Its range of applications throughout the field of petroleum, chemical, hydrometallurgy, medicine, nuclear, biological engineering, mew materials, environmental protection, etc.. Solvent extraction method has advantages of high selectivity and efficient separation.Solvent extraction began in the 1840s. According to historical records, there were researchers extracted uranyl nitrate with diethyl ether in the analysis. During the early twentieth century, using solvent extraction to run the aromatics extraction process in the Oil Industry, it indicated the starting of industrial application. From 60 years 20th Century, solvent extraction technology has been applied in Petrochemical and Hydrometallurgical Industry on great scale. So far, the solvent extraction has developed in several aspects as supercritical fluid extraction [3], two-phase aqueous extraction, microwave extraction, membrane extraction, reversed micellar extraction, electro-extraction, ultrasonic solvent extraction, predispersed solvent extraction, nonequilibrium solvent extraction.2.The development of supercritical fluid extractionSupercritical fluid extraction (SFE), a sustainable green technology leads a wide range of applications since the past decade.It is a more developed technique which uses a supercritical fluid as extraction solvent. It derived from 1960s and developed rapidly in chemical separation techniques. SFE is an innovative, clean and environmental friendly technology with particular interest for the extraction of essential oil from plants and herbs [4]. SFE can be used on separation, purification, concentration, drying, the sterilization process, the polymerization reaction, and the actual production. Its scope of application has been included organic chemicals, petroleum, pharmaceutical, food, environmental protection, analytical chemistry, textile dyeing, pulp and paper, paint, fine ceramics, wood processing corrosion and other fields.SFE is based on the solvating properties of supercritical fluid (SF), which can be obtained by employing pressure and temperature above the critical point of a compound, mixture or element. Extraction by SF depends on some intrinsic tunable natures of supercritical fluid like temperature, pressure and some extrinsic features like the characteristics of the sample matrix, interaction with targeted analysts and many environmental factors [5,6]. By proper controlling of SFE parameters, the extractability of supercritical fluid can also be modified which enable this process to find its field from food to pesticide researches [7]. Mo r eover, a higher degree of freedom can be obtained in extraction by SFE than the conventional methods, which means the number of tunable properties goes higher in SFE. Thus, the tunable properties of SFE make this process more unique, sensitive and specific in compared with conventional extraction methods [8].It says that the main technical feature of SFE is the use of SF at the critical temperature and the critical pressure, which have the ability to dissolve many substances. The almost liquid-like density of supercritical fluids promotes solubility, and the gas-like viscosity and diffusivity make extraction and purification faster compared to extraction and purification by conventional (liquid) solvents [9]. In addition, supercritical fluids have no interfacial surface tension, because of the absence of liquid/gas phase boundary in supercritical state. High product quality can be accomplished by fine-tuning pressure and temperature conditions of the supercritical fluid. The extraction can be selective to some extent by controlling the density of the medium and the extracted material is easily recovered by simply depressurizing, allowing the supercritical fluid to return to the gas phase leaving no or little solvent residues. Temperature increases lead to the improved extraction capabilities of more traditional techniques such as Soxhlet extraction. The new generation of enhanced extraction technologies is based on the use of temperatures above the atmospheric boiling point of the extracting solvent. In SFE, pressure is applied to the extraction system so that these high temperatures (critical temperatures) can be achieved. Thus, the specific components can be isolated from a liquid or a solid. Further, supercritical extracts were often recognized of superior quality when compared with those produced by hydro-distillation or liquid-solid extraction. The common SCF are carbon dioxide (CO2), ammonia, ethylene, propylene, and water etcetera. Compared with traditional separation methods, SFE is of high speed on separation and high extraction efficiency. SCF possess dual characteristics of both gas and liquid. With a strong ability to dissolve, smooth flowing property and delivery performance, it‟s easy to adjust the extraction process. Its low power consumption making it suitable for the extraction and purification of the less volatile and heat-sensitive substances.Supercritical CO2 is selective, there is no associated waste treatment of a toxic solvent, and extraction times are moderate. SFE has traditionally focused on carbon dioxide as theextracting solvent. Due to its chemical and physical properties (low critical pressure and temperature) CO2 has become the major solvent for SFE. The extraction behavior of the 16 EPA-PAHs in CO2-SFE has been studied thoroughly and can be summarized as follows:1)Low molecular weight PAHs (LMW, molecular weights 128-178) can be extractedwith pure carbon dioxide,2)High molecular weight PAHs (HMW, molecular weights 202-278) can only beextracted efficiently using modifiers together with CO2,3) A higher extraction temperature (120℃ towards 60℃) provides a better recoveryof all PAHs although the HMW-PAHs are more affected than the LMW-PAHs,4)The addition of small amounts of water generally improves the extractability ofPAHs due to the swelling effect of the matrix [10].Based on these findings an official method was established by the US Environmental Protection Agency [11] which was used in interrelated studies with minor modifications. The method is divided into three discrete steps: In step 1, the more volatile PAHs are extracted using pure CO2 at a rather low density and temperature. In step 2, the less volatile PAHs are removed at a higher density and temperature and by adding modifiers (dichloromethane and methanol) to the CO2. A short step 3 with pure CO2 is used to purge the whole system thereby removing traces of modifier. Some research are clearly confirmed that the frequently mentioned “matrix effect”in SFE might be minimized by using this multistep extraction approach applying different extraction conditions.On the other hand, CO2 is a nonpolar solvent, so small amount of alcohols or other polar organic solvents are added in an attempt to increase the fluid polarity. With the advent of pressurized liquid extraction (PLE) and other techniques, SFE applications appear to have reverted to CO2-only extractions without the use of organic cosolvents. One area where CO2extraction has been prevalent is the isolation of essential oils and other natural products.By applying untrasound during the SFE of algal samples, extraction pressure, temperature, and time were reduced while the extraction yield was simultaneously improved.It is thought that the ultrasound aided in disrupting cell walls or the energy of interaction between the analyte and the algae matrix.During the development of SFE to date, instrument quality has varied tremendously.3.The future of supercritical fluid extractionIn most laboratories, decades-old extraction procedures are still commonplace.Yet the development of instrumental analysis techniques has grown exorbitantly, especially since the development of enabling technologies, such as the transistor and microprocessor control, and still continues to grow. This is rightly so. SFE offers several advantages, including reduced consumption of hazardous organic solvents, higher sample throughput, cleanness and safety, environmental friendliness, expeditiousness, simplicity,quantitativeness and favorable solvation capacity which approaches that of a liquid. The unique properties exhibited by supercritical fluids have already been applied for the analysis of pesticide residues in solid samples [12,13], plant materials [14,15].Extractions using “hot water” are still finding their niche in the world of analytical sample preparation. The technique is commonly referred to as subcritical water extraction, since the practitioners of this approach come from an SFE background; other terms, like hot water extraction or superheated water extraction, are found in the literature. Regardless, the approach is identical to PLE-applied pressure allows the use of the solvent at temperatures above the atmospheric boiling point. The major difference is that water loses its “effective polarity” at these high temperatures, so both nonpolar and polar solutes may potentially be extracted with a single solvent at different temperatures. Again, the initial applications were in the environmental arena, but research is branching into other areas. Ozel and Kaymaz [16] demonstrated that in the range of 100-150 °C water was able to quantitatively extract essential oils more efficiently than steam distillation or Soxhlet extraction. Kasia and Ikehara [17] used the hot water technique in the stepwise extraction of proteins and carbohydrates from soybeans. Small- and medium-sized carbohydrates and proteins were extracted, but not those with higher molar mass. While hot water extractions have the advantage of the complete elimination of organic solvents, whether this technique finds increasing use in analytical laboratories will depend on the reluctance to use temperatures in the 150-250 °C range and the more lengthy solvent (water) evaporation times.SFE is regarded as a green process because it does not use chemical solvents with drastic environmental impacts. Some applications of SFE have already been commercialized and some are emerging [18]. But still now it is considered as a ……black box design‟‟ of process, because of the complex interaction of affecting factors and lack of knowledge on the in-depth fluid dynamics of supercritical fluid in extraction [19]. Simple approximations of experimental units are possible to con struct in this ……black box design‟‟, but detail point-to-point process and extraction principle are beyond measurable.It should be noted that, on the one hand, the characteristics of the molecular structure of CO2 itself, weak Van der Waals forces and low dielectric constant make it not suitable for extraction of polar or large molecular weight substances; on the other hand, due to the supercritical CO2extraction of material mostly solid base materials and these materials accumulate in the basket in the extraction, the extraction of the material once more, and the more greater accumulation of uneven density. Making the shortcomings of supercritical CO2 extraction of low mass transfer efficiency, time-consuming and not higher yield target component present in the process.For the current limitations of supercritical CO2extraction, proposing a variety ofimprovements to improve extraction efficiency and expand its range of applications. Expanding the scope of the extraction, the common method of adding different polar co-solvent (such as methanol, ethanol, acetone, etc.) and adding special surfactant [such as bis(2-ethylhexyl) succinate sulfonate] is formed reverse microemulsion system. In terms of improving the efficiency of mass transfer, mass transfer enhancement proposed various methods of enhanced ultrasound, electric and microwave strengthening. A major advantage of these enhanced physical field will not introduce foreign substances, physical strengthening methods are all green. Wherein due to the directivity of the ultrasonic wave, high quality medium large vibration acceleration and frequency, to produce cavitation in the liquid medium, and the device is stable, inexpensive and easy to implement in combination with other devices, which is believed to strengthen the most promising one method of mass transfer.In order to extend the scope and improve the efficiency of supercritical CO2 extraction, four enhanced technologies including supercritical CO2extraction with modifier (SCE), supercritical CO2 extraction with ultrasound combined modifier (USCE), supercritical CO2 reverse microemulsion extraction (SCRME) and supercritical CO2 reverse microemulsion extraction with ultrasound (USCRME) were applied to optimize the process. Their extracting kinetic models were built based on transfer theory and principle of mass balance [20]. As matters turned out, the USCRME technology not only can improve the diffusion coefficient and the extracted maximum extraction rate is also changed between the solid phase adsorbed solute fluid phase interface-desorption. Thus, the desorption equilibrium in favor of the direction toward the movement.SC-CO2 fluid as a novel chemical reaction medium or solvent, because it has many advantages and much people of all ages, as people continued to deepen its research work, associated with the gradual improvement of the underlying data and engineering technical problems to overcome, SC-CO2 fluid extraction and chemical reactions in SC-CO2 fluid is bound to get new development.With the popular people‟s environmental awareness and sustainable development strategies, people in chemical, food, pharmaceutical and other related industries have become increasingly demanding. The pursuit of high-quality, efficient, clean and green industrial development path will become a new trend. Supercritical fluid extraction technology is called green technology. And it is environmentally friendly and can be recycled, and many other features. So there are broad prospects for development of supercritical technology and huge future market. It is bound to bring us great social, economic and environmental benefits.参考文献[1] Raynie D.E. Modern Extraction Techniques. Anal. Chem.2006, 78:3997-4003.[2] Tang Y.L. Summary of solvent extraction. Hangzhou Chemical. 2003, 33(4):9-11.[3] Mantell C, Casas L, Rodríguez M, et al. Supercritical Fluid Extraction. John Wiley & Sons, Ltd.2013, 79-100.[4] Fornari T., Vicente G., Vázquez E., et al. Isolation of essential oil from different plants and herbs bysupercritical fluid extraction. Journal of Chromatography A. 2012, 1250: 34-48.[5] Cavalcanti, R.N., Meireles, M.A.A., Fundamentals of supercritical fluid extraction. Academic Press,Oxford, 2012. 2(07):117–133.[6] Pereira, C., Meireles, M.A. Supercritical fluid extraction of bioactive compounds: fundamentals,applications and economic perspectives. Food and Bioprocess Technology. 2010, 3 (3), 340–372. [7] Azmir, J., Zaidul, I., Rahman, M., Sharif, K., Mohamed, A., Sahena, F., Jahurul, M., Ghafoor, K.,Norulaini, N., Omar, A. Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Eng.2013, 117 (4), 426–436.[8] Sharif, K. M.; Rahman, M. M.; Azmir, J.; Mohamed, A.; Jahurul, M. H. A.; Sahena, F.; Zaidul, I. S.M., Experimental design of supercritical fluid extraction – A review. Journal of Food Engineering 2014, 124 (0), 105-116.[9] Hasan, N.; Farouk, B., Mass transfer enhancement in supercritical fluid extraction by acoustic waves.The Journal of Supercritical Fluids2013, 80(0):60-70.[10] Berset J.D., Ejem M., Holzer R., et al. Comparison of different drying, extraction and detectiontechniques for the determination of priority polycyclic aromatic hydrocarbons in backgroundcontaminated soil samples. Analytica Chimica Acta.1999, 383(3): 263-275.[11] EPA method 3561, Revision 0, January 1995.[12] Asiabi H., Yamini Y., Moradi M., Determination of sulfonylurea herbicides in soil samples viasupercritical fluid extraction followed by nanostructured supramolecular solvent microextraction.The Journal of Supercritical Fluids2013, 84:20-28.[13] Asiabi H., Yamini Y., Tayyebi M., Moradi M., Vatanara A., Keshmiri K., Measurement andcorrelation of the solubility of two steroid drugs in supercritical carbon dioxide using semi empirical models, J. Supercritical Fluids 2013, 78:28–33.[14] Maksimovic S., Kesic Z., Lukic I., Milovanovic S., Ristic M., Skala D., Supercritical fluidextraction of curry flowers, sage leaves, and their mixture. The Journal of Supercritical Fluids2013, 84:1-12.[15] Wüst Zibetti A., Aydi A., Arauco Livia M., Bolzan A., Barth D., Solvent extraction and purificationof rosmarinic acid from supercritical fluid extraction fractionation waste: Economic evaluation and scale-up. The Journal of Supercritical Fluids2013, 83:133-145.[16] Ozel M.Z., Kaymaz H. Superheated water extraction, steam distillation and soxhlet extraction ofessential oils of origanum onites. Anal. Bioanal. Chem., 2004, 379:1127-1133.[17] Kasai N., Ikehara H. Stepwise extraction of proteins and carbohydrates from soybean seed. J. Agric.Food. Chem., 2005, 53(10):4245-4254.[18] Machida, H., Takesue, M., Smith, R.L., Green chemical processes with supercritical fluids:properties, materials, separations and energy. The Journal of Supercritical Fluids, 2011, 60:2–15. [19] Wang, J., Sun, Z., Dai, Y., Ma, S. Parametric optimization design for supercritical CO2 power cycleusing genetic algorithm and artificial neural network. Applied Energy, 2010, 87 (4):1317–1324. [20] Luo D.L., Xu B.C., Qiu T.Q., Liu J.X., Comparison and dynamic models of supercritical CO2extraction enhanced by different technologies, Modern Food Science and Technology, 2013,29:1921-1925.。

相关文档
最新文档