直角三角形典型例题总结
解直角三角形.doc 例题
解直角三角形经典例题精析类型一、锐角三角函数1.(1)在△ABC中,∠C=90°.若sinA=,则tanA=______.【考点】锐角三角函数的定义与特殊角三角函数值.【解析】设∠A的对边为(也可设为1),则斜边为2,由勾股定理得邻边为,所以由tanA===(也可由sinA=得∠A=30°,则tan30°=).【答案】.(2)(2010哈尔滨)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为().(A) 7sin35°(B)(C)7cos35°(D)7tan35°【考点】锐角三角函数的定义.【答案】C2.已知:cos=,则锐角的取值范围是( )A.0°<<30°B.45°<<60°C.30°<<45°D.60°<<90°【思路点拨】cos60°=,cos45°=,因为<<所以45°<<60°.【答案】B.3.当45°<<90°时,下列各式中正确的是( )A.tan>cos>sinB.sin>cos>tanC.tan>sin>cosD.cos>sin>tan 【考点】同一锐角不同三角函数比较大小.【提示】当一锐角在45°~90°范围内,正切值>1,1>正弦值>,>余弦值>0.【答案】C.4.Rt△ABC中,如果一条直角边和斜边的长度都缩小至原来的,那么锐角A的各个三角函数值( )A.都缩小B.都不变C.都扩大5倍D.无法确定【考点】三角函数值与角的度数有关,与边的比值有关.【思路点拨】因为一条直角边和斜边的长度都缩小至原来的,但各边的比值不变.【答案】B.5.1-cos234°-cos256°=__________.【考点】(1) sin2A+cos2A=1;(2)互余两角的三角函数关系sinA=cos(90°-A)或cosA=sin(90°-A).【解析】1-cos234°-cos256°=1-(sin256°+cos256°)=1-1=0.【答案】0.6.方程有实数根,求锐角的取值范围.【考点】锐角三角函数的增减性及特殊角的三角函数值.【解析】∵方程有实数根∴△=≥0,即≤,∴0°<≤30°.总结升华:应掌握特殊角的三角函数值及各个锐角三角函数之间的联系,注意锐角三角函数概念的理解领会及运用. 举一反三:【变式1】已知为锐角,下列结论正确的有( )(1)(2)如果,那么(3)如果,那么(4)A. 1个B. 2个C. 3个D. 4个【思路点拨】利用三角函数的增减性和有界性即可求解.【解析】由于为锐角知(1)不成立当时,有,即(2)正确当时,,即(3)成立又,即正确,即(4)成立.【答案】C.【变式2】A、B、C是△ABC的三个内角,则等于( )A. B. C. D.【考点】互余两角正余弦关系.【思路点拨】===.【答案】A.【变式3】已知△ABC中,∠C=90°,若∠A、∠B的余弦值是关于的方程的两个根.且△ABC的周长为24.试求BC的长度.【考点】锐角三角函数概念的理解和运用.【解析】∵∠A、∠B的余弦值是关于的方程的两个根∴由根与系数的关系得:又∵A+B=900 ∴①平方并把②代入得:整理得:解得=3,=19当=3时,因=<1不符题意,故舍去.∴=19此时原方程为:解得=,=又设>∴设=,那么=,=∵=24 ∴=24 解得=2∴△ABC的斜边BC==10.类型二、解直角三角形7.(1)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=5,BD=3,则sinA=_____,cosA=_____,tanA=_____,tanB=_____.【考点】解直角三角形,利用已知元素求两锐角的三角函数值.【思路点拨】由∠ACB=90°,CD⊥AB可知,∠A=∠DCB,∵BC=5,BD=3 ∴由勾股定理得CD=4所以sinA=sin∠DCB==, cosA=cos∠DCB==tanA=tan∠DCB==, tanB==【答案】sinA=,cosA=,tanA=,tanB=.(2)如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为()(A) 2 (B)(C)(D)1【考点】解直角三角形、勾股定理.【思路点拨】过D作DE⊥AB于E,因为∠A=45°,设AE=DE=x, AD =x由tan∠DBA=,得BE=5x, AC=6AB=,即5x+x=,x=,AD =x=2.【答案】A8.如图,在中,AD是BC边上的高,.(1)求证:AC=BD; (2)若,求AD的长.【考点】利用锐角三角函数知识和已知条件解直角三角形.【思路点拨】由于AD是BC边上的高,则有和,这样可以充分利用锐角三角函数的概念使问题求解.【解析】(1)在中,有,中,有(2)由可设由勾股定理求得即.9.如图,沿AC方向开山修路,为了加快施工速度,要在小山的另一边同时施工.从AC上的一点B,取米,.要使A、C、E成一直线,那么开挖点E离点D的距离是( )A.米B.米C.米D.米【思路点拨】在中可用三角函数求得DE长.【解析】A、C、E成一直线在中,米,米 .【答案】B.总结升华:任何锐角都可以求三角函数值,并非只能在直角三角形中的锐角才可求三角函数值,此处易混淆.解直角三角形的关键是正确地选择公式,为了迅速准确地优选所需公式,应依题意画出图形,便于分析,并尽量利用原始数据,避免积累误差或链式错误.举一反三:【变式1】在△ABC中,∠C=30°,∠BAC=105°,AD⊥BC,垂足为D,AC=2cm,求BC的长.【思路点拨】在Rt△ADC中,利用sinC=,求出AD=1cm,cosC=,求出CD=在Rt△ABD中,利用tan∠BAD=,求出BD=1,所以BC=BD+CD=1+.【答案】(1+)cm.【变式2】如图,已知△ABC中,∠ACB=90°,根据下列条件解直角三角形.(1)∠A=60°,CD⊥AB于D,CD=;(2)a=2,CD⊥AB于D,BD=.【考点】解直角三角形中运用已知元素求未知元素,恰当选用锐角三角函数求值.【解析】(1)∵ CD⊥AB,∠A=60°,CD=∴在Rt△CDA中,AC=∴在Rt△ABC中,∠B=90°-∠A=30°,AB=2AC=4,BC=ABsinA=4×=2;(2)∵BC=a=2,CD⊥AB于D,BD=,∴cosB=,∴∠B=30°∴在Rt△ABC中,∠A=90°-∠B=60°,∴AB=, AC=AB=.总结升华:大胆正确应用,虽然方法很多,但要总结最优解法.【变式3】某片绿地形状如图,其中AB⊥BC,CD⊥AD,∠A=60°,AB=200m,CD=100m,•求AD、BC的长.【思路点拨】设法补成含60°的直角三角形再求解.【解析】延长BC,AD交于E,∠E=30°在Rt△ABE中,在Rt△CDE中,AD=AE-DE=400-100,BC=BE-CE=200-200.类型三、解直角三角形的实际应用10.(1)(2010 山东东营)如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方向走了m米,到达点C,测得∠ACB=,那么AB等于()(A) m·sin米 (B) m·tan米 (C) m·cos米(D) 米【考点】解直角三角形与实际问题.【答案】B(2)已知,如图:AB∥DC,∠D=900,BC=,AB=4,=,求梯形ABCD的面积.【考点】解直角三角形在实际中的应用.【思路点拨】过B作BE⊥CD于E,设BE=,则结合=得CE=3,又BC=,利用勾股定理求,从而可求梯形ABCD的面积.【解析】过B作BE⊥DC于E,∵tanC=,∴设BE=,则EC=在Rt△BEC中,由勾股定理得:,即解得:=1,∴BE=1,EC=3,∴==.11.如图,在湖边高出水面50m的山顶A处看见一架直升机停留在湖面上空某处,观察到飞机底部标志P处的仰角为45°,又观察到其在湖中之像的俯角为65°,试求飞机距湖面的高度h.(精确到0.01m) tan65°≈2.145【考点】利用三角形函数解实际问题.【思路点拨】通过作点P至湖面的对称点P′,根据方向角平面成像的知识解决问题.【解析】作点P至湖面的对称点P′,连接AP′,设AE=x,在Rt△AEP中∠PAE=45°,则∠P=45°,所以PE=AE=x,由平面成像知识可得OP′=OP=PE+EO=x+50,•在Rt△AP′E中,tan∠EAP′==tan65°,又EP′=OE+OP′=x+100,所以=tan65°≈2.145,解得x≈87.34,所以OP=x+50≈137.34(m),即飞机距湖面的高度h约为137.34m.12.已知:如图,山顶建有80米高的铁塔BC,为了测量山的高度,测量人员在一个小山坡的P处,测得塔的底部B点的仰角为45°,塔顶C的仰角为60°,若小山坡的坡角为30°,坡长MP=40米,请问,测量人员用这种方法能测量出山的高度吗?如果能,山的高度是多少?(精确到1米,参考数据)【思路点拨】如果能由已知数据计算出山高AB,那么该测量人员的方法可行,另外为计算方法,可将问题抽象成几何计算题【解析】这种方法可以测量出山高,理由如下:如图,作PE⊥AM的延长线于点E,设P点的水平视线与AB交于D点,由已知可得,∠C=30°,∠PBD=45°,BD=DP设BD=x米,则即又答:该测量人员用他的方法能测量出山的高度,其高度约为129米.13.如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,看旗杆顶部的仰角为45;小红的眼睛与地面的距离(CD)是1.5m,看旗杆顶部的仰角为.两人相距28米且位于旗杆两侧(点在同一条直线上).请求出旗杆的高度.(参考数据:,,结果保留整数)【解析】解法一:过点作于,过点作于,则在中,,设(不设参数也可), 5分在中,,7分答:旗杆高约为12米.解法二:过点作于,过点作于,则,在中,,设,则在中,,解得答:旗杆高约为12米.总结升华:在运用本单元内容时要运用转化思想将所求问题转化到直角三角形中,利用三角函数建立已知与结论的联系,另外,在实际问题时,要注意分类讨论.举一反三:【变式1】如图所示的燕服槽是一个等腰梯形,外口AD宽10cm,燕尾槽深10cm,AB的坡度i=1:1,求里口宽BC及燕尾槽的截面积.【考点】坡度的概念.【解析】如下图,作DF⊥BC于点F.由条件可得四边形AEFD是矩形,AD=EF=10.AB的坡角为1:1,所以=1,所以BE=10.同理可得CF=10.里口宽BC=BE+EF+FC=30(厘米).截面积为×(10+30)×10=200(平方厘米).【变式2】如图,AB是江北岸滨江路一段,长为3千米,C为南岸一渡口,•为了解决两岸交通困难,拟在渡口C处架桥.经测量得A在C北偏西30°方向,B在C的东北方向,从C处连接两岸的最短的桥长多少?(精确到0.1)【考点】方向角的应用.【解析】过点C作CD⊥AB于点D.CD就是连接两岸最短的桥.设CD=x米.在直角三角形BCD中,∠BCD=45°,所以BD=CD=x.在直角三角形ACD中,∠ACD=30°,所以AD=CD×tan∠ACD=x·tan30°=x.因为AD+DB=AB,所以x+x=3,x=≈1.9(米).【变式3】气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点)的南偏东方向的点生成,测得.台风中心从点以40km/h的速度向正北方向移动,经5h后到达海面上的点处.因受气旋影响,台风中心从点开始以30km/h的速度向北偏西方向继续移动.以为原点建立如图所示的直角坐标系.(1)台风中心生成点的坐标为,台风中心转折点的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点)位于点的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?【考点】利用三角函数解决实际问题.【解析】解:(1),;(2)过点作于点,如图,则.在中,,,..,,台风从生成到最初侵袭该城要经过11小时.相似经典例题精析类型一、图形的相似1.在比例尺1:10 000 000的地图上,量得甲、乙两个城市之间的距离是8 cm,那么甲、乙两个城市之间的实际距离应为__________km.考点:比例性质.思路点拨:地图上的比例尺是一种比例关系,即图上距离与实际距离的比.解析:1:10 000 000=8:80 000 000,即实际距离是80 000 000cm=800km.2.(1)将一个菱形放在2倍的放大镜下,则下列说法不正确的是( )A.菱形的各角扩大为原来的2倍B.菱形的边长扩大为原来的2倍C.菱形的对角线扩大为原来的2倍D.菱形的面积扩大为原来的4倍考点:相似图形的定义和性质.解析:从放大看到的菱形和原来的菱形相似,放大镜只能放大边长,而不能放大角.所以B、C正确,A不正确.D 中相似图形的面积比等于相似比的平方,所以D也正确.故选A.(2)(2010山西)在R t△ABC中,∠C=90º,若将各边长度都扩大为原来的2倍,则∠A的正弦值()A.扩大2倍B.缩小2倍C.扩大4倍D.不变考点:相似图形的性质.答案:D3.(1)在同一时刻物高与影长成比例,小华量得综合楼的影长为6 米,同一时刻她量得身高 1.6米的同学的影长为0.6 米,则可知综合楼高为__________.考点:比例线段的基本性质,同一时刻物高与影长的比相等.解析:,则楼高==16,故填16米.(2)(2010四川内江)如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距6m、与树相距15m,则树的高度为______________m.解析:答案:74.若四边形ABCD∽四边形,且AB:=1:2 ,已知BC=8,则的长是( ) A.4 B.16C.24D.64考点:相似图形的性质,相似四边形对应边的比等于相似比.解析:因为四边形ABCD∽四边形,所以AB:=BC:=1:2即=2BC=2×8=16,故选B.5.下列多边形中,一定相似的是( )A.两个矩形B.两个菱形C.两个正方形D.两个平行四边形考点:多边形相似的定义.解析:A中两个矩形只能满足对应角相等,而对应边不一定成比例;B中两个菱形只满足对应边成比例,而对应角不一定相等;D中两个平行四边形对应边不一定成比例,对应角也不一定相等;C中两个正方形满足对应角相等,对应边成比例.故选C.举一反三:【变式1】下列命题中正确的命题是( )A.相似多边形是全等多边形B.不全等的图形不是相似多边形C.全等多边形是相似多边形D.不相似的图形可能是全等图形解析:全等多边形是特殊的相似多边形,相似比为1.故选C.【变式2】证明:正六边形ABCDEF与正六边形相似.考点:边数相同的正多边形相似的判定.证明:∵正六边形的每个内角都等于120°∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∠D=∠D′,∠E=∠E′,∠F=∠F′又∵AB=BC=CD=DE=EF=FA=====∴=====∴正六边形ABCDEF∽正六边形.总结升华:边数相同的正多边形都相似.【变式3】两地的距离是500 米,而地图上的距离为10 厘米,则这张地图的比例尺为()A.1:50B.1:500 C.1:5000 D.1:50000解析:图上距离与实际距离的比等于比例尺,即比例尺为10:50000=1:5000,故选C.【变式4】如图,在一张长10cm,宽6cm的矩形纸片上,剪下一个矩形,若剩下的矩形(图中阴影部分)和原来的矩形相似,那么剩下的矩形的面积是多少cm2?思路点拨:已知两个矩形相似,则它们的长的比等于宽的比.因此只能是矩形ABCD的长AD对应矩形CDEF的长CD,矩形ABCD的宽CD对应矩形CDEF的宽DE.解析:∵矩形ABCD∽矩形CFED,∴即解得DE=3.6,∴S矩形CDEF=CD×DE=6×3.6=21.6cm2.类型二、相似三角形6.(1)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有( )(A)1对(B)2对(C)3对(D)4对考点:本题考查三角形相似的基本定理与判定定理的运用.思路点拨:有两角对应相等的两个三角形相似.解析:△ADE∽△ABC,△ACD∽△ABC,△ADE∽△ACD,△DCE∽△CBD,故选D.(2)(2010北京)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD∶AB=3∶4,AE=6,则AC 等于( )A.3 B.4 C.6 D.8解析:△ADE∽△ABC答案:D7.下列判断中,正确的是()(A)各有一个角是67°的两个等腰三角形相似(B)邻边之比都为2:1的两个等腰三角形相似(C)各有一个角是45°的两个等腰三角形相似(D)邻边之比都为2:3的两个等腰三角形相似考点:本题要求运用相似三角形的判定定理.思路点拨:设计出反例淘汰错误的选项.解析:A不成立的原因是当底角为67°时,顶角为46°,另一个三角形的顶角为67°时,底角为66.5°,这两个等腰三角形不相似.B两个等腰三角形的邻边之比都为2:1,结合三角形三边关系可知,这两邻边只能是腰和底的比为2:1,每个三角形三边之比均为腰:腰:底=2:2:1.C不成立的原因也是顶角不等.D不成立的原因是当一个等腰三角形的腰与底的比是2:3时,另一个等腰三角形的腰与底的比为3:2,它们三边之比分别为2:2:3与3:3:2.故选B.8.如图,在Rt△ABC中,CD是斜边AB上的高,则图中的相似三角形共有( )A.1对B.2对C.3对D.4对思路点拨:利用两组角对应相等的两个三角形相似判定.解析:考虑Rt△ABC与Rt△ACD和Rt△CBD相似情况.除直角外,∠A为Rt△ABC和Rt△ACD的公共角,故Rt△ABC∽Rt△ACD,又∠B为Rt△ABC和Rt△CBD的公共角,故Rt△ABC∽Rt△CBD,可得Rt△ACD∽Rt△CBD,故选C.9.如果两个相似三角形对应角平分线的比为16:25,那么它们的面积比为( )A.4:5B.16:25C.196:225 D.256:625考点:相似三角形的性质.思路点拨:相似三角形对应角平分线的比等于相似比,面积比等于相似比的平方,所以相似三角形的面积比等于对应角平分线的比的平方.答案:D.10.如图,在边长为1的正方形网格上有P、A、B、C四点.(1)求证:△PAB∽△PCA;(2)求证:∠APB+∠PBA=45°.考点:相似三角形的判定.思路点拨:判定方法:两个三角形的三组对应边的比相等,那么这两个三角形相似,或两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.解析:(1)∵PC=1,PA=,PB=5,∵∠APC=∠BPA,∴△PAB∽△PCA;(2)∵∠B=∠PAC∠ACB=45°,∴∠APB+∠PBA=∠APB+∠PAC=∠ACB=45°.11.如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED.考点:利用相似三角形的性质和判定解决实际问题.思路点拨:过A点作AH⊥ED,构造三角形,并证明△AFG∽△AEH,再利用相似三角形的对应边的比相等求出结论.解:过A点作AH⊥ED,交FC于G,交ED于H.由题意,可得:△AFG∽△AEH,∴,即,解得:EH=9.6米.∴ED=9.6+1.6=11.2米.总结升华:判断两个多边形是否相似,必须同时具备对应角相等,对应边成比例.举一反三:【变式1】在△ABC中,DE∥BC,,若,求.考点:比例的基本性质及相似三角形的面积比等于相似比的平方.思路点拨:由得出,再利用DE∥BC可得△ADE∽△ABC解:∵,∴.∵在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,即,∴.【变式2】如图,△ABC是一块直角三角形的木块,∠C=90°,AC=3cm,BC=4cm,AB=5cm,要利用它加工成一块面积最大的正方形木块,问按正方形CDEF加工还是按正方形PQRS加工?说出你的理由.思路点拨:要加工成一块面积最大的正方形木块,有两种方法,利用相似三角形的判定和性质求出两个正方形的边长,比较大小即可.解:(1)如图1,设正方形CDEF的边长为x,则有,得x=cm;(2)如图2,设正方形PQRS的边长为y,作CN⊥AB于N交RS于M,而知CN=,同样有得(cm),x-y=>0,故x>y,所以按正方形CDEF加工,可得面积最大的正方形.【变式3】已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s 的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?思路点拨:用运动的时间t和速度表示线段的长,当△PBQ与△BDC相似时,利用对应边的比相等求出时间.解析:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD= 90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即∴经过秒或2秒,△PBQ∽△BCD.类型三、位似12.下列图形中不是位似图形的是( )考点:位似图形的定义.解析:A是以圆心为位似中心的图形,B、D根据定义可判断.C是相似但不是位似的图形.故选C.13.(1)(2010广东茂名)如图,已知△与△是相似比为1:2的位似图形,点O为位似中心,若△内一点(x,y)与△内一点是一对对应点,则点的坐标是_________.考点:位似图形的性质.答案:(-2x,-2y)(2)如图,直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).请在图中画出△ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);考点:位似图形的画法思路点拨:连接位似中心P和△ABC的各顶点,并延长,使PA′=3PA,PB′=3PB,PC′=3PC连接、、,则得到所要画的图形.解:画出,如图所示.14.如图,D,E分别AB,AC上的点.(1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?(2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?考点:会利用位似图形的定义判定两个图形是位似图形,会利用位似图形的性质解决问题.思路点拨:(1)可先证明△ADE和△ABC相似,对应边在同一直线上或平行,再找出对应顶点的连线交于一点A 可判定是位似图形.(2)利用位似图形的性质,位似图形是相似图形.从而得到对应角相等,可得DE∥BC.解:(1)△ADE和△ABC是位似图形.理由是:DE∥BC,所以∠ADE和=∠B,∠AED=∠C,∴△ADE∽△ABC.又∵点A是△ADE和△ABC的公共点,点D和点B是对应点,点E和点C是对应点,直线BD与CE交于点A,∴△ADE和△ABC是位似图形.(2)DE∥BC.理由是:△ADE和△ABC是位似图形,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC.总结升华:位似图形重点考查学生理解图形变换的意义,利用数形结合的思想解决问题.举一反三:【变式1】如图,在边长均为1的小正方形网格纸中,△OAB的顶点O,A,B均在格点上,且O是直角坐标系的原点,点A在x轴上.以O为位似中心将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2:1,画出△OA1B1(所画△OA1B1与△OAB在原点两侧);考点:位似图形坐标变换规律.思路点拨:问题关键是确定位似图形各个顶点的坐标:如果位似变换是以原点为位似中心,相似比为2,那么位似图形对应点的坐标的比等于2或-2.由图形可知,A点坐标为(-2,0),B点坐标为(-1,2),要求所画△OA1B1与△OAB 在原点两侧,所以相似比为-2,即A1点坐标为(4,0),B1点坐标为(2,-4).解:如图,△OA1B1就是△OAB放大后的图象.【变式2】如图,用下面的方法可以画出△AOB的“内接等边三角形”,•阅读后证明相应的问题.画法:(1)在△AOB内画等边△CDE,使点C在OA上,点D在OB上;(2)连结OE并延长,交AB于点E′,过E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;(3)连结C′D′,则△C′D′E′是△AOB的内接三角形.请判断△C′D′E′是否是等边三角形,并说明理由.考点:重点考查阅读理解能力和知识的迁移能力.思路点拨:由画法可知,△CDE和△C′D′E′是位似图形.答:△C′D′E′是等边三角形.证明:∵C′E′∥CE,∴△OEC∽△OE′C′,∴,∠C′E′D′=∠CED=60°,∴△C′D′E′∽△CDE.∵△CDE为等边三角形,•∴△C′D′E′为等边三角形.。
有答案-直角三角形全等判定(基础)知识讲解
有答案-直角三角形全等判定(基础)知识讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )【答案】(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案与解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 与Rt △BCD 中,DC CD AC BD=⎧⎨⎩=∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形在Rt △ABD 和Rt △BAC 中AB BA BD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案与解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 与△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等2.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt △ABC 与Rt △'''A B C 中, ∠C = ∠'C = 90, A = ∠'B , AB =''A B , 那么下列结论中正确的是( ) A. AC = ''A C = ''B C C. AC = ''B C D. ∠A = ∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( )A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.8. 已知,如图,∠A =∠D =90°,BE =CF ,AC =DE ,则△ABC ≌_______.9. 如图,BA ∥DC ,∠A =90°,AB =CE ,BC =ED ,则AC =_________.10. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,EC ⊥AC ,AC =EC ,若DE =2,AB =4,则DB =______.11.有两个长度相同的滑梯,即BC =EF ,左边滑梯的高度AC 与右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B点与O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢请你说出理由.13.【解析】解:在Rt △AOB 与Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等) ∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得:∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 与Rt △EDF 中B EDF BC DF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠ 2.证明:∵AE ⊥EC ,AF ⊥BF ,∴△AEC 、△AFB 为直角三角形在Rt △AEC 与Rt △AFB 中AB AC AE AF⎧⎨⎩==∴Rt △AEC ≌Rt △AFB (HL )∴∠EAC =∠FAB∴∠EAC -∠BAC =∠FAB -∠BAC ,即∠1=∠2.【答案与解析】一、选择题1. 【答案】C ; 【解析】等腰直角三角形确定了两个锐角是45°,可由AAS 定理证明全等.2. 【答案】D ;【解析】△ABD ≌△ACD ;△ABF ≌△ACF ;△ABE ≌△ACE ;△EBF ≌△ECF ;△EBD ≌△ECD ;△FBD ≌△FCD.3. 【答案】D ;4. 【答案】C ;【解析】注意看清对应顶点,A 对应'B ,B 对应'A .5. 【答案】C ;【解析】等底等高的两个三角形面积相等.6. 【答案】C ;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL ;8. 【答案】△DFE9. 【答案】CD ;【解析】通过HL 证Rt △ABC ≌Rt △CDE.10.【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6;11.【答案】90°;【解析】通过HL 证Rt △ABC ≌Rt △DEF ,∠BCA =∠DFE.12.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.。
高中数学-解三角形知识点汇总情况及典型例题1.docx
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中, C=90°,AB= c, AC= b , BC= a。
(1)三边之间的关系:a2+b2=c2。
(勾股定理)(2)锐角之间的关系:A+B= 90 °;(3)边角之间的关系:(锐角三角函数定义)sin A= cos B=a, cos A=sin=b, tan A=a。
c bc2.斜三角形中各元素间的关系:在△ABC 中, A、 B、 C 为其内角, a、b、 c 分别表示 A、 B、C 的对边。
(1)三角形内角和:A+B+C=π。
(2 )正弦定理:在一个三角形中,各边和它所对角的正弦的比相等a b c2R (R为外接圆半径)sin A sin B sin C( 3 )余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2 =b2+2- 2bccosA;b2 = 2 +a2- 2cacosB;c2= 2 +b2-2abcos。
c c a C3.三角形的面积公式:1ah a=11(1)S=bh b=ch c( h a、 h b、 h c分别表示 a、b、 c 上的高);22211bc sin A=1(2)S=ab sin C=ac sin B;222求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1 )两类正弦定理解三角形的问题:第 1、已知两角和任意一边,求其他的两边及一角.第 2、已知两角和其中一边的对角,求其他边角.(2 )两类余弦定理解三角形的问题:第 1、已知三边求三角 .第 2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
( 1)角的变换因为在△ABC 中, A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。
(完整版)解直角三角形总结
解直角三角形总结解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。
1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的。
因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础。
如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是(1)边角之间的关系:sinA=cosB=ac, cosA=sinB=bc,tanA=cotB=ab,cotA=tanB=ba。
(2)两锐角之间的关系:A+B=90°。
(3)三条边之间的关系:。
以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。
2、解直角三角形的基本类型和方法我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。
由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。
所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。
这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。
四种基本类型和解法列表如下:已知条件解法一边及一锐角直角边a及锐角A B=90°-A,b=a·tanA,c=sinaA斜边c及锐角A B=90°-A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°-A,直角边a和斜边c sinA=ac,B=90°-A,例1、如图2,若图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。
直角三角形知识点
直角三角形知识点直角三角形是一种特殊的三角形,其内部包含一个90度的直角。
本文将介绍直角三角形的定义、性质、勾股定理以及一些相关的例题。
一、直角三角形的定义直角三角形是指一个三角形内部有一个角度是90度的三角形。
在直角三角形中,较长的边称为斜边,与直角相邻的边称为直角边。
直角三角形的性质与常规三角形有着显著的不同。
二、直角三角形的性质1. 直角三角形中,直角边的长度相等。
2. 根据勾股定理,直角三角形中的斜边长度等于直角边长度的平方和的平方根。
3. 直角三角形的三个角度之和等于180度。
三、勾股定理勾股定理是直角三角形中最重要的定理之一,也是直角三角形应用最为广泛的原理。
勾股定理表述如下:直角三角形中,斜边的平方等于直角边的平方和。
公式表示为:c² = a² + b²其中,c表示斜边的长度,a和b分别表示直角三角形的两个直角边的长度。
勾股定理在日常生活中有许多应用,例如测量直角三角形的边长,计算三角形的角度等。
四、直角三角形的应用举例1. 求斜边长度:根据已知直角边的长度,可以利用勾股定理求出斜边的长度。
2. 求角度大小:已知两个直角边的长度,可以利用三角函数中的正弦、余弦和正切等函数求出各个角度的大小。
3. 判断三角形是否为直角三角形:通过测量三个角度的大小,如果发现其中一个角度为90度,则可以判断为直角三角形。
五、例题解析1. 已知一个直角三角形的直角边长为3cm和4cm,求斜边的长度。
根据勾股定理,斜边的长度c = √(3² + 4²) = √(9 + 16) = √25 = 5cm。
2. 已知一个直角三角形的斜边长为10cm,直角边的长度为6cm,求另一个直角边的长度。
根据勾股定理,直角边的长度a或b = √(c² - 直角边的长度²) = √(10² - 6²) = √(100 - 36) = √64 = 8cm。
高中数学-解三角形知识点汇总情况及典型例题1
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
初中数学直角三角形模型总结——完整全面版2018.5.28
初中数学直角三角形模型总结——完整全面版(概念研究+模型总结+精选例题+优化练习)第一部分 直角三角形研究一、直角三角形的判定条件[角] 有一个角为90度的三角形叫做直角三角形两个锐角互余的三角形[边] 如果三角形的三条边存在两边的平方和等于另外一边的平方和那么这个三角形叫做直角三角形如果三角形一边上的中线等于这条边的一半,那么这个三角形叫做直角三角形二、直角三角形的性质[角] 两个锐角互余[边] 三角形的三条边存在两边的平方和等于另外一边的平方和 直角三角形斜边的中线等于斜边的一半[高线] 三直角模型 高线与高线分得斜边的两部分的关系一直角边与斜边上的高线分得的线段之间的关系[中位线] 连接两直角边上的中点得到的中位线与斜边上的中线相等两直角边上中点与斜边中点的连线可以构成一个矩形三、特殊的直角三角形[特殊角] [30度的角 ] 30度的角所对的直角边等于斜边的一半在直角三角形中,如果有一直角边等于斜边的一半,那么这条直角边所对的角等于30度[45度的角] 两条直角边相等,斜边等于一直角边的倍 [边] → 三边关系 : 在直角三角形中,两直角边的平方等于斜边的平方,四、直角三角形分类锐角中没有30度和45度角的直角三角形等腰直角三角形有一个角等于300的直角三角形第二部分 模型总结1)斜边中线模型直角三角形ABC 中,∠ACB=90,D 点平分AB ,则CD=AD=BD ∠B= ∠BCD ,∠A= ∠ACD2)共斜边模型直角三角形BAC和直角三角形BEC ,∠BAC 和∠BEC 都为90度, D 点为BC的中点,则AD=DE3)勾股定理已知Rt 三角形ABC,如图,有a2+b2=c2即,在直角三角形中已知两边长利用勾股定理求第三边。
4)特殊角转化模型105度=45度+60度 75度=45度+30度 75度=45度+30度 120度=90度+30度150度=90度+60度5若∠C =90度,∠A=30度 则有 a :b :c=1: 3:2若三角形ABC 为等腰直角三角形,则有 a :b :c=1:1: 26)直角边共线模型(1)DC=AB/tan a α-AB/tan β(2)AD 2-BD 2=AC 2-BC 2CD E第三部分 精选例题例1:如图三角形ABC ,CD 垂直AB 于D 点,BE 垂直AC 于E 点,连接DE ,分别取DE ,BC 的中点G 、F 两点,连接GF ,求证:GF 垂直于BC例2、已知:△ABC 中,∠A=060,CE ⊥AB,BD ⊥AC 求证:DE=12BC证明:取BC 中点M ,连结EM,DM 先证EM=DM ⇐EM=12BC=DM再证:∠2=π-∠1-∠3=π-(π-2∠ABC )-(π-2∠ACB )=060则△EDM 为等边三角形,所以有DE=DM=12BC例3、直角三角形三边的长分别为5、4、m,则此三角形斜边上的高为()A .12/5 B.2040/41 C.5/2 D. 12/5 或2041/41 分析与解题:若5为斜边,则m=3 高为12/5若m 为斜边,则m=41高为2041/41例4、某三角形的两角分别为105度,45度,且45度角所对的边长为2厘米,则该三角形的周长为多少?分析与解题:做AD 垂直DCAB=2,AD=1,DC=1,BD= 3,AC=2所以三角形ABC 周长为2+ 3+ 2+1=3+3+ 2例5、已知,如图三角形ABC 中,∠ABC=90度,D 是AB 边的中点,点F 在AC 边上,DE 与CF 平行且相等。
直角三角形边角关系基本图形归纳总结
直角三角形边角关系基本图形归纳总结图形一:C对应练习:1、如图, 海上有一灯塔P, 在它周围3海里处有暗礁. 一艘客轮以9海里/时的速度由西向东航行, 行至A 点处测得P在它的北偏东600的方向, 继续行驶20分钟后, 到达B 处又测得灯塔P 在它的北偏东450方向. 问客轮不改变方向继续前进有无触礁的危险?2、在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点 C ,测得C 在A 北偏西31°的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈53,sin31°≈21)3、如图14,某船以每小时36海里的速度向正东方向航行,在点A 测得某岛C 在北偏东60°方向上,航行半小时后到达点B ,测得该岛在DC 北偏东30°方向上,已知该岛周围16海里内有暗礁(1)试说明点B 是否在暗礁区域外?(2)若继续向东航行在无触礁危险?请说明理由。
E东4、如图,海平面上灯塔O 方圆100千米范围内有暗礁,•一艘轮船自西向东方向航行,在点A 处测量得灯塔O 在北偏东60°方向,继续航行100米后,在点B•处测量得灯塔O 在北偏东37°方向.请你作出判断,为了避免触礁,这艘轮船是否要改变航向?(参考数据:sin37°≈0.6018,cos37°≈0.7986,tan37°≈0.7536,cot37°≈1.327≈1.732)5、)又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”.下面是两位同学的一段对话:甲:我站在此处看塔顶仰角为60乙:我站在此处看塔顶仰角为30甲:我们的身高都是1.5m乙:我们相距20m请你根据两位同学的对话,计算白塔的高度(精确到1米).6、如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB 上,测量湖中两个小岛C 、D 间的距离.从山顶A 处测得湖中小岛C 的俯角为60°,测得湖中小岛D 的俯角为45°.已知小山AB 的高为180米,求小岛C 、D 间的距离.(计算过程和结果均不取近似值)7、如图6,在气象站台A 的正西方向240km 的B 处有一台风中心,该台风中心以每小时20km 的速度沿北偏东o 60的km 内的地方都要受到其影响。
(完整版)直角三角形的判定和性质
直角三角形全等的判定【知识点总结】直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)【典型例题讲解】例1:已知:如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE 求证:OB=OC.例2:已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE:例3:已知△ABC中,CD⊥AB于D,过D作DE⊥AC,F为BC中点,过F作FG⊥DC求证:DG=EG。
【随堂练习】1.选择:(1)两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,真命题的个数是()个①这两个三角形全等; ②相等的角为锐角时全等③相等的角为钝角对全等; ④相等的角为直角时全等A.0 B.1 C.2 D.3(2)在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形(3)如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC则AC:BD=()A.1:1 B.3:1 C.4:1 D.2:3(4)如图,在Rt△ABC中,∠ACB=90°,CD、CE,分别是斜边AB上的高与中线,CF 是∠ACB的平分线。
则∠1与∠2的关系是()A.∠1<∠2 B.∠1=∠2; C.∠1>∠2 D.不能确定(5)在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB 的度数是()A.30°B.60°C.120°D.150°2.解答:(1已知:如图AB⊥BD,CD⊥BD,AB=DC求证:AD//BC.(2)如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F 求证:CE=DF.B MC【课后习题】一、填空题:(每题5分,共20分)1.有________和一条________对应相等的两个直角三角形全等,简写成“斜边直角边”或用字母表示为“___________”. 2.如图,△ABC 中,∠C=90°,AM 平分∠CAB,CM= 20cm, 那么M 到AB 的距离是____cm.3.已知△ABC 和△A ′B ′C ′,∠C=∠C ′=90°,AC=A ′C ′,要判定△ABC ≌△A ′B ′C ′,必须添加条件为①________或②________或③________或④_________. 4.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F,DE ⊥BC 于E,AB=DC,BE=CF, 若要说明AB ∥CD,理由如下:∵AF ⊥BC 于F,DE ⊥BC 于E(已知)∴△ABF,△DCE 是直角三角形∵BE=CF(已知)∴BE+_____=CF+_______(等式性质) 即_______=___________(已证)∴Rt △ABF ≌Rt △DCE( )二、选择题:(每题5分,共25分) 5.两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等 6.要判定两个直角三角形全等,需要满足下列条件中的()①有两条直角边对应相等; ②有两个锐角对应相等; ③有斜边和一条直角边对应相等; ④有一条直角边和一个锐角相等; ⑤有斜边和一个锐角对应相等; ⑥有两条边相等. A.6个 B.5个 C.4个 D.3个7.如图,AB ∥EF ∥DC,∠ABC=90°,AB=DC,那么图中有全等三角形( ) A.5对; B.4对; C.3对; D.2对8.已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF9.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A.AASB.SASC.HLD.SSS三、解答题:(共55分)10.如图,△ABC 中,∠C=90°,AB=2AC,M 是AB 的中点,点N 在BC 上,MN ⊥AB.求证:AN 平分∠BAC.(7分)BA21N MCB A E FC B AEF C D11已知:如图,AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.(8分)B AE F D12知如图,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE ⊥AE于E,求证:BD=DE+CE.(8分)BAE CD13已知如图,在△ABC中,∠BAC=2∠B,AB=2AC,求证:△ABC是直角三角形?( 8分)C14已知如图,在△ABC中,以AB、AC为直角边, 分别向外作等腰直角三角形ABE、ACF,连结EF,过点A作AD⊥BC,垂足为D,反向延长DA交EF于点M.(1)用圆规比较EM与FM的大小.(2)你能说明由(1)中所得结论的道理吗?(8分)B AE MFC D直角三角形的性质【知识点精讲】直角三角形的性质定理及其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半; ②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,则这条直角边所对的角为30°.【典型例题讲解】例1:已知,Rt △ABC 中,∠ACB=90°,AB=8cm ,D 为AB 中点,DE ⊥AC 于E ,∠A=30°,求BC ,CD 和DE 的长例2:已知:△ABC 中,AB=AC=BC (△ABC 为等边三角形)D 为BC 边上的中点, DE ⊥AC 于E.求证:AC CE 41.例3:已知:如图AD ∥BC ,且BD ⊥CD ,BD=CD ,AC=BC. 求证:AB=BO.【随堂练习】1.△ABC 中,∠BAC=2∠B ,AB=2AC ,AE 平分∠CAB 。
直角三角形的性质C(学生版)
学科教师辅导讲义年级:科目:数学课时数:课题直角三角形的性质教学目的1.掌握直角三角形的性质定理和特殊直角三角形的性质定理;2.能运用直角三角形的有关性质解决简单的数学问题.教学内容【知识梳理】定理1:直角三角形的两个锐角互余定理2:直角三角形斜边的中线等于斜边的一半推论1:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.推论2:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.【典型例题讲解】题型一:直角三角形两锐角互余【例1】在直角三角形中,有一个锐角为520,那么另一个锐角度数为;【例2】如图,AD是Rt△ABC的斜边BC上的高.(1)写出图中与∠B互余的角;(2)图中互余的角有几对,请你一一写出来.【借题发挥】1.如图,∠B=∠C=∠AED=90°,写出图中互余的角.2.已知:如图,AD∥BC,F是AB中点,DF交CB延长线于点E,CE=CD,则图中与∠ADE相等的角有 , 与∠ADE互余角的角有 .3.已知:如图,在四边形ABCD中,M、N分别是CB、CD中点,且AM⊥BC于M,AN⊥CD于N, ∠MAN=80°,求∠B+∠D的度数是90,D、E、F分别是AB、BC、AC上的点,DE、DC、DF将△ABC分成四个全4.已知:如图,在Rt△ABC中,∠ACB=0等的三角形,△ABC的周长是1 2厘米,求由DF、CD、DE所分成的各个小三角形的周长.题型二:直角三角形斜边中线等于斜边的一半【例3】已知:如图,AD是△ABC的角平分线,BE⊥AD交AD的延长线于E,F是AB边的中点.求证:EF∥AC.【例4】如图,已知∠C =90°,∠A=38°,点D是AB的中点,CF=AD,求∠E的度数.【例5】已知:如图,△ABC中,∠B= 20°,∠C=40°,D是BC上一点,∠BAD=90°.求证:BD=2AC.【借题发挥】120,AD⊥ AC,E是CD的中点.求证:△ADE是等边三角形.1.已知:如图,在△ABC中,AB=AC,∠BAC=02.已知:如图,在△ABC中,BD⊥ AC于点D,CE⊥AB于点E,M为BC的中点.求证:∠MED= ∠MDE.3.如图,△ABC中,∠ABC=2∠C,AD⊥BC于D,E是AC的中点,ED的延长线交AB的延长线于F.求证:BD=BF.4.如图,∠ABC=∠ADC=90°,E是AC的中点,EF⊥BD,垂足为F.求证:BF=DF.AD BEFC5.如图,AB∥CD ,BC⊥CD ,AD与BC交于点E,AC =12DE.求证:∠CAD =2∠BAD.6.如图,已知AB=AC,BD⊥ CA于点D,∠ABD=45°,E是BC的中点,求∠EDC的度数.AB CED题型三:直角三角形中30°所对的直角边等于斜边的一半【例6】如图,Rt△ABC中,∠ACB=90°,∠A=30°,CD是AB边上的高.写出图中线段间存在2倍关系的等式.【例7】如图,AD∥BC,AD =12BC,CE垂直平分AB,垂足为E.求证:∠1=∠2=∠3.【例8】已知:如图,△ABC中,AB=AC,∠B=30°,AD ⊥AC.求证:BC=3BD.【借题发挥】1.已知:如图,△ABC是等边三角形,AD=12AB,,AD ⊥CD,垂足为D.求证:AD∥BC.2.如图,△ABC中,AB=AC,∠BAC = 120D°,AC边的垂直平分线交BC于E,垂足为D.求证:BE=2EC.3.如图,△ABC中,AB=AC,∠A=120°,MN是AC的垂直平分线,垂足为M,交BC于N.如果NN =2,求BC的长.4.如图,△ABC中;AB=AC,∠BAC=120°,AD j_AC,E是CD的中点.求证:AE=BD.5.如图,Rt △ABC 中,∠C= 90°,∠A =15°,D 是AC 边上的一点,BC=12BD .求证:点D 在AB 的垂直平分线上.6.(1)已知:如图,在△ABC 中,∠C=090,沿直线BE 将△ABC 折叠,点C 恰好落在AB 边的中点D ,求∠A 的度数.(2)已知,如图,在△ABC 中,∠A=060,CD ⊥AB 于点D ,BC= 2CD,求ADAB的值.(3)已知:如图,在Rt△ABC中,CE是斜边AB上的中线,CD是斜边AB上的高,如果AB=4,DB=1,求 B的度数.7.如图,△ABC中,CD、CE.分别是AB边上的高和中线,且∠l= ∠2= ∠3.求证:∠ACB= 90°.【随堂练习】填空题:1.Rt△ABC中,∠C=90°,∠A =30°,BD是角平分线,若CD=5,则AD=_________.2.△ABC中,∠BAC=90°,AD⊥BC于D,BF平分∠ABC,交AD于E,交AC于F,AF=3,∠FBC=20°,则∠C=____°,AE=___________.3.如图等边△ABC中,AD=CD,CE=CA,CD平分∠ECB,则∠E=______________°.4.已知△ABC中,AD⊥ BC于D,BE⊥AC于E,AD与BE相交于H,以HC为直径的圆必经过点_____和点_____.5.已知△ABC中,∠C=90°,AC=BC,点D在BC上,且AD=2CD.则∠DAB=_________.选择题:1.直角三角形中有一个30°的锐角,那么它所对的边就等于 ( )A.另一条直角边的一半 B.斜边上的高C.直角的平分线 D.斜边上的中线2.AD是Rt△ABC斜边上的高,∠CAD=30°,则下列关系式成立的是()A.AB=2ADB.CD =2ACC.BD =2ADD.AB=2AC3.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,AD=4,则下列各式中正确的是 ( )A.AB=8B.BC=16C.DC=4D.BD=104.如图Rt△ABC中,AC=BC,∠B=45°,AD是角平分线,DE⊥ AB于E,则下列各式中不成立的是 ( )A.AC+CD= ABB.CD=BEC.△ACD≌△AEDD.CD=BD5.锐角三角形ABC中,AB=AC,它的三条高AD、BE、CF相交于点H,那么该图形中全等三角形的对数为 ( )A.7 B.6C.5 D.4解答题:1.已知,如图在四边形ABCD中,AB∥CD,AD⊥ CD于D,∠ABC=∠ACB,AD=12AB求:∠DCB的度数2.已知:在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线分别与BC、AB相交于点M、N两点.求证:BM=2AC3.已知,如图正方形ABCD中,E、F分别是AB、BC的中点,AF和DE交于点P.求证:CP=CD4.如图,已知∠A =90,∠D=25°, CD∥AB,B. D.E在一条直线上,ED=2BC,求∠ABC的度数.DAEB C【课堂总结】【课后作业】一、基础巩固训练填空题:1.如图△ABC中,AB=AC,∠A:∠B:∠C=4:1:1,BD=DC.DE⊥ AB于E,则AE:EB=_______________________.2.在直角三角形中,两个锐角的平分线的夹角等于_________________度.3.已知,如图Rt△ABC中,∠C= 90°,AB的垂直平分线DM交AB于D,AC于E,∠1: ∠2=2:3,则∠A=____°.4.如图,Rt△ABC中,AC =BC,AE=BE,∠ADB=90°,∠ABD=30°,则∠EDC=________.5.等腰直角三角形斜边上的中线为lOcm,则此等腰直角三角形的面积为_____________2cm选择题:1.△ABC中,∠C=90°,AC=1,AB=2,点O是AB的中点,直线l是线段AO的垂直平分线,那么下列命题中,错误的是 ( )A.直线l不经过C点 B.点C在直线l上C.直线l与AC边相交 D.直线l与BC边相交2.如图,在Rt△ABC中,∠C=90°,AC=12AB ,D是AB的中点,DE ⊥BC于E,图中等于60°的角有()A.2个 B.3个 C.4个 D.5个3.在Rt△ABC中,∠C=90°,∠A=30°,CD是斜边上的高,则下列结论中,正确的是 ( )A.AD=2BD B.2AD=5BDC.AD=3BD D.AD=4BD4.在Rt△ABC中,CD是斜边AB上的高,CE是斜边AB上的中线,那么下列结论中,错误的是 ( )A.∠ACD=∠BB.∠ECB=∠DCEC.∠ACD=∠ECBD.∠B = ∠A-∠ECD5.下列定理中,没有逆定理的是 ( )A.线段垂直平分线上的点到线段两个端点的距离相等B.在直角三角形中,30°的角所对的直角边等于斜边的一半C.如果两个三角形全等,那么它们的周长相等D.有两余边相等的三角形是等腰三角形解答题:1.如图,点C在线段AB的垂直平分线上,且AC⊥ BC,CD∥AB,AB=AD,E为BD的中点.求证:AE、AD三等分∠BAC.2.如图△ABC中,BD⊥ AC,CE⊥ AB,垂足分别为D、E,BD、CE相交于H,∠A=60°.DH =2,EH=1(1)求BD和CE的长.(2)若∠ACB= 45°,求△ABC的面积.3.如图,△ABC中,∠C=90°,点D是AB边的中点,E、.F分别在CA、CB上,且∠EDF =90°.求证:DE=DF.CAEFDB 4.已知:如图19 - 122,在Rt△ABC中,∠ACB=090,CD是AB边上的高,CE是中线,CF是∠ACB的平分线.求证:∠ECF= ∠DCF.5.已知:如图,△ABC中,BD、CE分别是AC、AB边上的高,M是BC的中点,MN⊥DE,垂足为N.求证:DN=EN.AENDB CM6.已知:如图,△ABC中,AD是BC边上的高,CE是AB边上的中线,DC=BE,DG⊥CE,垂足为G.求证:(1)G是CE的中点;(2)∠B=2∠BCE.二、综合提高训练:1.如图,正方形ABCD中,BD∥AE ,BD=BE ,BE交AD于F.求证:(1)∠EBD=30°;(2)DE=DF.2.如图,AD是△ABC的角平分线,∠BAC=90°,EF垂直平分BC,垂足为F,EF交AD的延长线于E.求证:BF=EF.3.如图,AC、BD交于点E,AB = AE,DC=DE,点F、M、N分别是AD、BE、CE的中点.求证:FM=FN.ABM EFDCN4.如图,△ABC中,AD是∠BAC内的一条射线,BE⊥AD于E,CF⊥AD于F,点M是BC的中点.求证:EM=FM。
苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]
苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.求∠要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,b =【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan 60b a B ==⨯=° 由cos a B c =知,48cos cos 60a c B ===°.(2)由tan bB a==B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2c ==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【课程名称:解直角三角形及其应用 395952 :例1(1)-(3)】【变式】(1)已知∠C=90°,,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ;【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=2.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016•盐城)已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:【课程名称:解直角三角形及其应用395952:例2】【变式】(2015•河南模拟)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为i =i =铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==.(2)在Rt △DEC 中,∵ tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=55FB =+,解得5 3.66(m)FB ==. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.11.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52,CE =AC ·cos ∠ACE =5×cos 30在Rt △BCE 中,∵ ∠BCE =45°,∴ 551)22AB AE BE =+=+=≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。
直角三角形知识总结和练习
直角三角形直角三角形;直角三角形的性质1、直角三角形两锐角互余.即:︒=∠+∠⇒︒=∠9090B A C .2、直角三角形中,︒30角所对的直角边等于斜边的一半. 即:AB BC C A 219030=⇒⎭⎬⎫︒=∠︒=∠. 3、直角三角形斜边上的中线等于斜边的一半.即:AD BD AB CD AB D ACB ===⇒⎭⎬⎫︒=∠2190中点为. 4、勾股定理:直角三角形两直角边b a ,的平方和,等于斜边c 的平方.即:222c b a =+.注意:此定理揭示了直角三角形三边关系,蕴含了数形结合思想,是从图形到数量的关系,常用来求线段的长.直角三角形的判定1、有一个角是直角的三角形是直角三角形.2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 注意:它是“直角三角形斜边的中线等于斜边的一半”的逆定理.3、勾股定理逆定理:如果三角形三边长c b a ,,有下面关系:222c b a =+,那么这个三角形是直角三角形. 注意:它是利用三角形边长的数量关系判断三角形形状,体现了数形结合思想. 解直角三角形的工具:在Rt ∆ABC 中,90=∠C ,A ∠,B ∠,C ∠所对边分别为c b a ,,. 1、三边之间的关系:222c b a =+(勾股定理).2、锐角之间的关系:A ∠+B ∠=90. 解直角三角形的应用 仰角、俯角:如图1,在我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.图1 图2方向角:如图2,平面上,过观测点O 作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从O 点出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.例如,图中“北偏东30”是一个方向角,又如“西北”即指正西方向与正北方向所夹直角的平分线,此时的方向角为“北偏西45”(或“西偏北45” ).一、选择题1.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 长不可能...是( ) A .2.5 B .3 C .4 D .52.如图,ABC ∆和DCE ∆都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为(AB)C)D)3.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形4.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )(A )4 cm (B )5 cm (C )6 cm (D )10 cm5.下图中,每个小正方形的边长为1,ABC ∆的三边c b a ,,的大小关系式:(A )b c a << (B )c b a <<(C )b a c << (D )a b c <<6.下列四组线段中,可以构成直角三角形的是( ) A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6 二、填空题1.如图,在△ABC 中,AB =AC =8,AD 是底边上的高,E 为AC 中点,则DE = .EDCBA(第1题)A第4题BCDE2.已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .3.已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 .4.如图,Rt △ABC 中,∠C=090, ∠ABC=030,AB=6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA=DE ,则AD 的取值范围是.5.如图(4),在Rt △ABC 中,CD 是斜边AB 上的高,∠ACD=40°,则∠EBC=______.6.如图,90,=∠∆ACB ABC Rt 中,DE 过点C ,且DE//AB ,若50=∠ACD ,则∠A= ,∠B=.7.两块完全一样的含30︒角的三角板重叠在一起,若绕长直角边中点M 转动,使上面一块的斜边刚好过下面一块的直角顶点,如图6,∠A =30︒,AC =10,则此时两直角顶点C 、C '间的距离是 。
解三角形知识点总结及典型例题
课前复习两角和与差的正弦、余弦、正切公式1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-). 简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 默写上述公式,检查上次的作业 课本上的!解三角形知识点总结及典型例题2+=(A x c恒成立,所以其图像与x轴没有交点。
中,分别根据下列条件解三角形,其中有两解的是=30A;︒B;=30︒S=ABC题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。
直角三角形的应用题解题技巧
直角三角形的应用题解题技巧直角三角形是初中数学中的基础知识之一,它的应用广泛且重要。
在解题过程中,我们需要掌握一些解题技巧。
本文将介绍直角三角形应用题的解题技巧。
一、勾股定理直角三角形的应用问题中,勾股定理是最常见且重要的定理之一。
勾股定理表达为:直角三角形的两条直角边的平方和等于斜边的平方。
在解题中,当我们已知直角三角形的斜边和一条直角边时,可以通过勾股定理求解另一条直角边的长度。
反之,当我们已知直角三角形的两条直角边时,可以通过勾股定理求解斜边的长度。
例如,已知直角三角形的斜边长为5,一条直角边长为3,我们可以使用勾股定理计算另一条直角边的长度。
根据勾股定理:$$3^2 + x^2 = 5^2$$解方程得到$x$的值,即可求得另一条直角边的长度。
二、相似三角形定理在一些应用问题中,我们会遇到两个直角三角形的边长比例相等或相似的情况。
此时可以使用相似三角形定理来解题。
相似三角形定理指出,两个直角三角形的角相等并且对应边的比例相等,则这两个三角形相似。
在解题时,如果我们已知一个直角三角形的边长比例,并且已知一个边长的具体值,可以通过相似三角形定理计算其他边长的值。
例如,已知直角三角形ABC与直角三角形DEF相似,且已知直角三角形ABC的斜边长为5,三角形DEF的斜边长为10。
我们可以通过相似三角形定理计算出直角三角形DEF的另一条直角边的长度。
三、特殊直角三角形在应用题中,有时会碰到特殊的直角三角形,如45-45-90三角形和30-60-90三角形。
这些特殊直角三角形有一些固定的边长比例关系,在解题时可以直接使用这些关系进行计算。
例如,已知一个直角三角形的两条直角边相等,我们可以判断这是一个45-45-90三角形。
在这种三角形中,两条直角边的长度相等,斜边的长度等于直角边的长度乘以$\sqrt{2}$。
同样地,已知一个直角三角形的两条直角边的长度比为1:$\sqrt{3}$,我们可以判断这是一个30-60-90三角形。
八年级直角三角形知识点归纳总结
八年级直角三角形知识点归纳总结直角三角形是中学数学中重要的几何概念之一,是指一个角度为90度的三角形。
在八年级数学学习中,直角三角形是一个重要的知识点,掌握了直角三角形的相关知识,可以帮助我们解决诸如三角函数、勾股定理等各种问题。
接下来,我将针对八年级直角三角形的知识点进行归纳总结。
一、直角三角形的定义和特点直角三角形是指一个角度为90度的三角形,我们可以根据直角三角形的定义和特点来判断一个三角形是否为直角三角形。
直角三角形的定义条件为:三角形中有一个角度为90度;直角三角形的特点是:直角三角形的两条直角边相互垂直,直角三角形的两个锐角和为90度。
二、直角三角形的元素及关系在直角三角形中,有一些重要的元素,它们之间存在一定的关系,我们需要了解并掌握:1. 斜边:直角三角形的斜边是与直角不相邻的一边,通常我们用小写字母“c”表示。
2. 直角边:直角三角形的直角边是与直角相邻的两边,我们用小写字母“a”和“b”表示。
3. 高:直角三角形的高是指从直角顶点到斜边的垂直线段,我们用小写字母“h”表示。
4. 直角三角形的边关系:根据勾股定理,直角三角形的两个直角边和斜边之间存在以下关系:a^2 + b^2 = c^2。
三、直角三角形的三角函数在直角三角形中,我们可以定义三个三角函数:正弦、余弦和正切,它们分别用于描述直角三角形中的角度与边之间的关系。
1. 正弦函数:正弦函数描述的是一个角度与直角边的比值。
在一个直角三角形中,角度A的正弦值等于直角边a与斜边c的比值,即sinA = a/c。
2. 余弦函数:余弦函数描述的是一个角度与直角边的比值。
在一个直角三角形中,角度A的余弦值等于直角边b与斜边c的比值,即cosA = b/c。
3. 正切函数:正切函数描述的是一个角度与直角边的比值。
在一个直角三角形中,角度A的正切值等于直角边a与直角边b的比值,即tanA = a/b。
四、利用直角三角形解决实际问题直角三角形的应用非常广泛,我们可以利用直角三角形的性质和三角函数来解决各类实际问题,例如测量高度、距离、角度等。
初中解直角三角形题型归纳总结
稿子一:嘿,小伙伴们!今天咱们来聊聊初中解直角三角形那些好玩的题型。
先来说说那种告诉你一个直角三角形的两条边,让你求第三条边的题。
这可简单啦,记住勾股定理就好,“a² + b² = c²”,然后往里代数字,算出答案。
还有一种是给你一个锐角的度数和一条边的长度,让求其他边或者角的。
这时候就得用到三角函数啦,比如正弦、余弦、正切。
要记住它们的定义哦,像正弦是对边比斜边,余弦是邻边比斜边,正切是对边比邻边。
有时候会碰到实际应用题,比如测楼高、算河宽啥的。
别害怕,画出直角三角形,找到对应的边和角,再用咱们学的知识去算。
再说说那种让你判断两个直角三角形是否相似的题。
这就得看对应边的比例是不是相等啦,如果相等,那它们就相似。
还有一种是让你在多个直角三角形中找关系的。
这时候要仔细观察,利用公共边或者相等的角来找到联系。
解直角三角形的题型虽然多,但只要咱们掌握了方法,多练习,就都能搞定!加油哦!稿子二:亲爱的小伙伴们,咱们一起来瞅瞅初中解直角三角形的题型哈!有一种题呢,会直接给出直角三角形的两条直角边,让咱们求斜边。
这时候就大胆地用勾股定理,一下子就能算出来。
还有哦,给一个锐角的三角函数值和一条边,求其他边。
这就把三角函数的公式拿出来,轻松解决。
碰到那种在三角形里有多个直角的情况,别慌,一个一个地分析,把能用到的条件都找出来。
实际问题里也常常有解直角三角形,像测量山高、树高,算距离。
咱们得把题目里的信息转化成三角形的边和角,然后算一算。
另外,判断两个直角三角形全等的题也不少。
咱们就看看是不是符合那些全等的条件,比如 SSS、SAS、ASA 啥的。
有时候还会让咱们根据已知条件去构造直角三角形,这就需要开动小脑筋,找到合适的边和角。
解直角三角形的题型呀,就像一个个小挑战,只要咱们勇敢面对,细心计算,就都能战胜它们!小伙伴们,冲呀!。
高中数学-解三角形知识点汇总及典型例题
解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
直角三角形题型归纳总结
直角三角形题型归纳总结在数学学科中,直角三角形是一种特殊的三角形。
它的一个内角为90度,而其他两个内角为锐角或钝角。
直角三角形的性质和计算方法,是我们在学习三角函数、解三角形问题等内容时经常遇到的重点。
本文将对直角三角形的常见题型进行归纳总结,供同学们学习参考。
一、勾股定理勾股定理是直角三角形最重要的定理之一,在解决直角三角形问题时被广泛应用。
勾股定理可以表述为:在一个直角三角形中,直角边的平方等于两个直角边平方之和。
即a² + b² = c²,其中c为斜边,a和b为两个直角边。
根据勾股定理,我们可以解决很多与直角三角形有关的问题。
例如,如果已知两个直角边的长度,我们可以通过勾股定理计算出斜边的长度。
同样地,如果已知斜边和一条直角边的长度,我们也可以利用勾股定理求解另一条直角边的长度。
二、三角函数三角函数也是解决直角三角形问题时常用的工具之一。
在直角三角形中,我们定义了三个基本的三角函数:正弦(sin)、余弦(cos)和正切(tan)。
1. 正弦(sin):在一个直角三角形中,正弦的定义为直角边与斜边的比值。
即sinA = a / c,其中A为直角边对应的角,a为A的对边长度,c为斜边长度。
2. 余弦(cos):在一个直角三角形中,余弦的定义为直角边与斜边的比值。
即cosA = b / c,其中A为直角边对应的角,b为A的邻边长度,c为斜边长度。
3. 正切(tan):在一个直角三角形中,正切的定义为直角边之间的比值。
即tanA = a / b,其中A为直角边对应的角,a为A的对边长度,b为A的邻边长度。
通过三角函数的定义,我们可以在已知直角三角形任意两边长度的情况下,求解出任意角的值。
同时,我们也可以通过已知角的值,求解出直角三角形的两边长度。
三、特殊直角三角形除了一般的直角三角形外,还存在两种特殊的直角三角形:45-45-90三角形和30-60-90三角形。
1. 45-45-90三角形:在一个45-45-90三角形中,两个直角边的长度相等,而斜边的长度等于直角边长度的平方根的2倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理与勾股定理逆定理典型例题
类型一、勾股定理的构造应用
例1、如图,已知:在中,,,. 求:BC 的长.
思路点拨:由条件,想到构造含角的直角三角形
总结反思:
举一反三【变式1】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
【变式2】
类型二:方程的思想方法
例1、如图所示,已知△ABC 中,∠C=90°,∠A=60°,
,求、、的值。
思路点拨:由,再找出、的关系即可求出和的值
总结升华:
举一反三:
【变式1】如图,四边形ABCD 中,∠ACB=90O ,CD ⊥AB 于点D ,若AD=8,BD=2, 求CD 的长度。
【变式2
】C
A
类型三:转化的思想方法
我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决. 例1.如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长。
思路点拨:现已知BE 、CF ,要求EF ,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD .
总结升华: 【变式1】如图,已知:,,于P . 求证:.
【变式2】如图,ADC ∆和BCE ∆都是等边三角形, 30=∠ABC ,
求证:2
22BC AB BD +=
3.
类型五:利用勾理作长为
的线段 例1. 作长为、、的线段。
思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于
,直角边为和1的直角三角形斜边长就是,类似地可作D C B
A。
作法:如图所示
【变式1】在数轴上表示3-的点。
(注:可编辑下载,若有不当之处,请指正,谢谢!)。