圆中最值问题

合集下载

有关圆的最值问题几种类型及方法

有关圆的最值问题几种类型及方法

有关圆的最值问题几种类型及方法圆形是初中数学中常见的图形,它有很多特殊的性质。

其中一项重要性质就是它具有最小和最大值。

在圆形的几何学中,有不同的最值问题类型,本文将介绍其中几种类型和解决方法。

问题类型1. 半周长最大问题描述:在一个固定的圆中,找到一个周长为定值的最大圆。

解决方法:利用相似三角形比值和性质,通过求出最大圆的半径得出周长最大的圆。

2. 面积最大问题描述:在一个固定的圆中,找到面积最大的圆。

解决方法:通过对已知条件进行约束,运用微积分的极值问题求解最大面积圆的面积。

3. 离心率最大问题描述:在一个固定的圆中,找到一点使得其到圆的距离与到圆心的距离之比最大。

解决方法:通过对于点到圆心的距离公式的推导,结合相关性质,使用数学分析方法解决问题。

4. 切线长度最短问题描述:如何从一个外圆割出一个内接圆的形状,且切线的长度最短。

解决方法:通过运用切线长度公式和勾股定理,推导出最短切线的长度公式,通过微积分求解最小值。

解决方法方法1:运用几何知识在解决这些最值问题时,通过几何知识、特殊性质、面积比和相似性质等直观的方法,可以解决一些简单的最值问题。

例如,第一类问题可以通过找到两个相似三角形的比值,解出最大圆的半径;第二类问题可以通过勾股定理求出直角三角形的面积比例。

方法2:微积分方法对于一些复杂的最值问题,采用微积分的方法计算可能更为简便。

通过设出方程,运用微积分的极值问题方法求出函数的最值点,并验证其确为最值点,就可以直接求解最大或最小值。

例如,第二类问题就是一个极大值问题,可以通过设定面积函数,求该函数的一阶和二阶导数,分析得出最大值点的位置和最大面积值。

方法3:从物理学的角度出发物理学的一些基本定理也可以用来解决圆的最值问题。

例如,第一类问题中,最大圆对应的角速度是圆心角的一半,这是由圆周运动的基本物理定律所得。

将圆周运动和相似三角形的比例性质联系起来,可以解出最大圆的半径。

圆是初中数学中比较基础的图形,但在解决圆的最值问题时,需要综合运用几何知识、微积分知识和物理学知识等多方面的知识。

(完整版)圆最值问题题型归纳

(完整版)圆最值问题题型归纳

x圆中最值问题类型一 圆上一点到直线距离的最值问题例1 已知P 为直线y=x +1上任一点,Q 为圆C :22(3)1x y -+=上任一点,则PQ 的最小值为 .变题1:已知A (0,1),B (2,3),Q 为圆C 22(3)1x y -+=上任一点,则QAB S 的最小值为 .变题2:由直线y=x +1上一点向圆C :22(3)1x y -+=引切线,则切线长的最小值为变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则当PC= 时,APB ∠最大.变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 .例2已知圆C :222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小值的点P 坐标.类型二 利用圆的参数方程求最值(或几何意义)例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值.如在上例中,改为求12y x --,22(2)(1)x y -+-,1x y --的取值范围,该怎么求解?类型三:转化成函数或不等式求最值例4已知圆O :221x y +=,PA 、PB 为该圆的两条切线,A 、B 为两切点,则PA PB ⋅的最小值为例5已知圆C :22+24x y +=(), 过点(1,0)A -做两条互相垂直的直线12l l 、,1l 交圆C 与E 、F 两点,2l 交圆C 与G 、H 两点,(1)EF +GH 的最大值.(2) 求四边形EGFH 面积的最大值.6、已知C 过点)1,1(P ,且与M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称.(Ⅰ)求C 的方程;(Ⅱ)设Q 为C 上的一个动点,求PQ MQ ⋅的最小值;(Ⅲ)过点P作两条相异直线分别与C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.7、如图,在矩形ABCD 中,3,1AB BC ==,以A 为圆心1为半径的圆与AB 交于E (圆弧DE 为圆在矩形内的部分)(Ⅰ)在圆弧DE 上确定P 点的位置,使过P 的切线l 平分矩形ABCD 的面积;(Ⅱ)若动圆M 与满足题(Ⅰ)的切线l 及边DC 都相切,试确定M 的位置,使圆M 为矩形内部面积最大的圆.l P E C M。

初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。

求MP+NP的最小值。

例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。

求PC+CD的最小值。

例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。

求PE+PF的最小值。

类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。

例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。

问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。

方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。

圆中最值的十种求法

圆中最值的十种求法
又因为∠A=∠P 所以△ACB∽△PCQ
所以 所以CQ=CP
因为CP是⊙O的动弦 最大值为⊙O的直径
所以CP的最大值为5
此时当点P运动到CP为⊙O的直径时
CQ的最大值为×5=
五、利用弧的中点到弦的距离最大求最值
5.如图:已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点,(B、C两点除外),求△ABC面积的最大值.
[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2.
解 所以PQ⊥AQ
在Rt△APQ中,PQ2=PA2-AQ2
即PQ=
又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2
所以PQ的最小值=
三、利用两点之间线段最短求最值
3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
A. B.2 C.3 D.3
1
连接PA,过O作OE⊥CD,垂足为E
在△OCD中,因为∠AOC=60° 所以∠D=∠C=30°
在Rt△ODE中 cos30°=
即DE=2×cos30°= 所以CD=2DE=2
即PA+PC的最小值为2.
二、利用垂线段最短求最值
2.如图:在直角坐标系中,点A的坐标为(-3, -2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为 .
[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.

圆中的最值问题运动轨迹

圆中的最值问题运动轨迹

圆中的最值问题运动轨迹圆中的最值问题运动轨迹引言:圆是一种几何学中常见的形状,它具有许多独特的性质和特点。

在数学中,研究圆的最值问题既有理论意义,又有实际应用。

本文将讨论圆中的最值问题,并探索与之相关的运动轨迹。

通过对这些问题的分析和求解,可以帮助我们更深入地理解圆的性质和运动规律。

一、圆的最值问题1. 最大面积问题圆的面积公式为S=πr²,其中r为圆的半径。

那么,在给定周长的情况下,如何确定圆的半径以使其面积最大化?解法:根据周长公式C=2πr,可得r=C/(2π),将该值代入面积公式得到S=π(C/(2π))²=(C²/(4π))π=(C²π/4π)=C²π/4。

所以,当给定周长时,圆的面积最大值为C²π/4。

2. 最小周长问题如果圆的面积是固定的,如何确定圆的半径以使其周长最小化?解法:根据面积公式S=πr²,可得r=√(S/π),将该值代入周长公式得到C=2π(√(S/π))=2√(πS)。

所以,当给定面积时,圆的周长最小值为2√(πS)。

3. 最大周长问题在给定面积的情况下,如何确定圆的半径以使其周长最大化?解法:根据面积公式S=πr²,可得r=√(S/π),将该值代入周长公式得到C=2π(√(S/π))=2√(πS)。

所以,当给定面积时,圆的周长最大值为2√(πS)。

二、圆的运动轨迹1. 圆的滚动轨迹当一个圆沿着另一个圆或者直线滚动时,滚动圆上一点的轨迹称为圆的滚动轨迹。

滚动轨迹通常是一条曲线,而滚动圆上的所有点都具有相似的运动特性。

2. 圆上的运动轨迹假设一个小球在一个固定大小的圆上运动,小球在圆上的位置随时间变化而改变。

小球在圆上的运动轨迹通常是一条曲线,其形状取决于小球在圆上的起始位置、运动速度和加速度等因素。

结论:圆中的最值问题涉及到圆的面积和周长,通过合理选择圆的半径,可以确定面积最大、周长最小或周长最大的圆。

圆中最值定值问题

圆中最值定值问题

圆中的定值问题例1:已知:已知弧AB 为120度,在以AB 为弦的弓形劣弧上取一点M(不包括A 、B 两点),以M 为圆心作圆M 和AB 相切,分别过A ,B 作⊙M 的切线,两条切线相交于点C.求证:∠ACB 有定值,并求出这个定值.例2:已知:O 是如图同心圆的圆心,AB 是大圆的直径,点P 是小圆上的一动点,大小圆半径分别为R 与r ,问:PA 2+PB 2是否有定值,若有,求出定值;若没有,说明理由.(1)点P 放在直径AB 上.(2)点P 放在与直径AB 垂直的另一条直径上(3)点p 在任意位置例3. 如图,已知菱形ABCD 外切于⊙O ,MN 是与AD 、CD 分别交于M 、N 的任意一条切线。

求证:AM ·CN 为定值。

例4 如图,⊙O 的半径为R ,AB 、CD 是⊙O 的任意两条弦且AB ⊥CD 于M 。

求证:2AB +2)(DM CM -为定值。

例5.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O 的半径为R 。

求证: (1)2AK +2BK +2CK +2DK 是定值。

(2)2AB +2BC +2CD +2DA 是定值。

例6.如图,过⊙O 内定点P 作任意弦AB ,又过A 、B 作两切线,自点P 作两切线的垂线PQ 、PR ,垂足为Q 、R 。

求证:PQ 1+PR1为定值。

例7.如图,定长为1的弦ST 在一个以2为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足。

求证:不管ST 滑到什么位置,SPM ∠是一定角。

AE FD C BA 例8如图,已知等边ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,直线AC 与BM 相交于K ,直线CB 与AM 相交于N 。

证明:线段AK 与BN 的乘积与M 点的选择无关。

例9. 如图,A 为定圆O 上的一定点,在过A 的切线上任取一点B ,并过线段AB 的中点C 作任意割线CDE ,交⊙O 于D 、E ,又直线BD 、BE 与⊙O 相交于P 、Q ,求证:弦PQ 恒有定向。

圆中最值问题

圆中最值问题

中考培优课程5圆中最值知识导航1、圆中最值基本模型(1)点与圆的最值已知点Q为⊙O上一动点,P为平面内任意一点,现在来探究PQ的最值.①当P为圆外一点时,连接PO交⊙O于Q2,PO延长线交⊙O于Q1.则PQ min=PQ2,PQ max=PQ1.②当P为圆内一点时,连接OP并延长交⊙O于Q2,连接PO并延长交⊙O于Q1.则PQ min=PQ2,PQ max=PQ1.③当P为圆上一点时,连接PO并延长交⊙O于Q1.则PQ min=PQ2=0,PQ max=PQ1=直径.(2)直线与圆的最值已知点Q为⊙O上一动点,l为平面内任意一条直线,现在探究Q到直线l的距离d的最值.①若l与⊙O相离,过点O作OP1⊥l于P1,交⊙O于Q2,延长P1O交⊙O于Q1.则d min=P1Q2,d max=P1Q1.②若l与⊙O相交,过点O作OP⊥l于P,分别交⊙O于Q1、Q2两点.则d min=0,优弧中的最大值为d max=PQ1,劣弧中的最大值为d max=PQ2.③若l与⊙O相切,则d min=0,d max=直径.2、题目一般会把“已知点Q为⊙O上一动点”这一条件进行隐藏,也就是说动点的运动轨迹需要我们去证明是一个圆,这就是接下来要给大家介绍的隐圆问题.模块一线段条件产生的隐圆例1在坐标系中,点A坐标为(4,0),点B为y轴正半轴上一点,点C是坐标系中一点,且AC=2,则∠BOC度数取值范围为.练习在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△MNC,P、Q分别是AC、MN的中点,AC=2t,连接PQ,则旋转时PQ长度的最大值是.例2(2016年江汉区九上期中第10题)如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,以C为圆心,CF的长为半径作圆,D是⊙C上一动点,E为BD的中点.当AE最大时,BD的长为()A.23B.25C.23+1 D.6练习(2016年洪山区九上期中第10题)如图,在等腰Rt△ABC中,斜边AB=8,点P在以AC为直径的半圆上,M为PB的中点,当点P沿半圆从点A运动至点C时,点M运动的路径长是()A.22πB.2πC.2πD.22模块二线段与角度条件产生隐圆题型一定边对定角(90度)例31、(2013年武汉中考第16题)如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG 于点H.若正方形的边长为2,则线段DH长度的最小值是.2、(2015年洪山区九上期中)如图,线段AB上有一动点M,分别以AM、BM为边作正方形AMFE、MBCD.正方形AMFE、MBCD的外接圆⊙O、⊙O' 交于M、N两点,则直线MN的情况是()A.定直线B.经过定点C.一定不过定点D.以上都有可能练习在平面直角坐标系中,直线y=-x+6分别与x轴、y轴交于A、B两点,点P在y轴左边,且∠APB=90°,则点P的横坐标α的取值范围是.题型二定边对定角(非90度)例41、(2016年新洲区九上期中)正方形ABCD的边长为4,E为正方形外一动点,∠AED=45°,AP=1,线段PE的最大值是.2、如图,已知在等边△ABC中,AB=AC=BC=8,点D、E分别是边AC、AB上两点,且AE=CD,BD 交CE于F,连接AF,则AF的最小值为.3、如图,等边△ABC中,BC=2,射线AM∥BC,P是射线AM上一动点(P不与A点重合),△APC的外接圆交BP于Q,则AQ长的最小值为.4、(2015年武昌区九上期中)如图,△ABC中,BC=4,∠BAC=45°,以42为半径,过B、C两点作⊙O,连OA,则线段OA的最大值为.例51、如图,⊙O的半径为2,弦AB的长为23,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的面积的最大值是.2、如图,在弓形BAC中,∠BAC=60°,BC=23,若点A在优弧BAC上由点B向点C移动,记△ABC 的内心为I,则△ABC内切圆半径的最大值为.3、如图,在扇形AOB中,OA⊥OB,D是AB上一动点,DE⊥OA于E,若OA=42,记△DEO的内心为I,则△DEO内切圆半径的最大值为.题型三定边对动角例6如图,在展览大厅中,墙壁上的展品最高处点P距离地面2.5米,最低处点Q距地面2米,观赏者的眼睛(在E点)距离地面1.6米.当视角∠PEQ最大时,站在这个位置的观赏效果最理想,求此时E到墙壁的距离为米.练习1、已知A(2,0),B(4,0)是x轴上的两点,点C是y轴上的动点,当∠ACB最大时,则点C的坐标为.2、如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=3,则弦BC的最大值为.第5讲本讲课后作业A 基础巩固1、如图,已知矩形ABCG(AB<BC)和矩形CDEF全等,点B、C、D在同一直线上,∠APE的顶点P2、如图,正方形ABCD的边长为4,∠AED=45°,P为AB的中点.当点E运动时,求PE的最大值和最小值.3、如图,P为正方形ABCD的边CD上任意一点,E为AP上一点,BE=AB,∠CBE的平分线交AP延长线于点Q.若正方形的边长为a,当点P在CD边上由C移动到D时,则点Q到CD的最大距离为.B 综合训练4、如图,△ABC中,∠BAC=60°,∠ACB=45°,AC=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF的最小值为.数学故事贝多芬的成就贝多芬的心中充满了自由、平等、博爱的理想,他是1789年法国资产阶级革命的热烈拥护者。

最值圆问题

最值圆问题

圆中的最值问题一、最长(短)(线段)问题1:如图,在半径为7的圆0中,AB为其一条炫,点C事圆上的一个动点,且∠ACB=30°,F,E分别是AC,BC的中点,直线EF与圆0交于G,H两点,则GE+FH 的最大值为HGFOEBCA2:在半径为7的圆C中,AC为其直径,点B事圆上的定点,∠ACB=30°,点D在AC弧上运动(不与AC重合),EB⊥DB交DC的延长线于点E,则BE的最大值为3:在△ABC中,叫ACB=90°,AC=BC=2,以BC为直径的半圆交AB于点D,点P是半圆上一个动点,连接AP,则AP的最小值为4:`在矩形ABCD中,AD=2,AB=3,点E是AD边长的中点,点F是射线AB上一动点,将△AEF 沿EF所在直线翻折得到△AEF,连接AC,则AC的最小值为5:如图,圆C半径为1,圆心C的坐标为(3, 4),点P(m, n),是圆C上的一个动点,则m²+n²的最大值是最小值是6:如图,正方形ABCD边长为2,以AD为边长构建等边△ADE,P为平面内一动点,且AP⊥PC,则EP的最大值为7:已知圆0的半径为5,OP长为4,则过点P的弦长的取值范围是8:平面直角坐标系XOY中,以原点O为圆心的圆过点A(13,0),直线y=kx-3k+4与圆O交于B、C两点,则炫BC的长的最小值是9:如图,定长炫CD在以AB为直径的圆O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,则PM长度的最大值是二、定角对定弦10:在三角形ABC中,AB=15,AC=12,BC=9,经过点C且边AB相切的动圆与CB,CA分别相交于点E、F则线段EF长度的最小值是11:如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为AB边上一点,过点D作CD的垂线交直线BC于点E,则线段CE长度的最小值是12:如图,在△ABC中,∠BAC=60,∠ABC=45,AB=2 ,D线段SC上的一个动点,以AD为直径作圆O分别交AB,AC于E,F两点,连接EF,则线段EF长度的最小值为13:已知△ABC中,AB=4,C是平面内的一个动点,若∠ACB=60°,则△ABC面积的最大值是14:平面直角坐标系中,过点A(0、3)的直线与过点B(根号3,0)的直线所夹锐角∠ACB=60°,则点C纵坐标的最小值是15:如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积为_______________16.如图,线段AB=4,C为线段AB上的动点,以AC,BC为边,作等边△ACD和等边△BCD,圆0外接于△CDE,则圆0半径的最小值为______________17.如图,∠BAC=60°,半径长1的圆0与∠BAC的两边相切,P为圆0上一个动点,以P为圆心,PA长为半径的圆P交射线AB,AC于D,E两点,连接DE,则线段DE的最大值为______________ .最小值为_______________18.如图,∠XOY=45°,一把直角三角尺ABC的两个顶点A,B分别在0X.OY上移动,其中AB=10,那么点0到AB的距离的最大值为_____________2,矩形ABCD内接于圆0,P在弧CD上(不19.如图,圆0的半径为3与C,D重合)且∠APB=60°,AP、BP分别交CD于M、N,则MN的最大值为________20.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),圆C 的圆心坐标为(0,-1),半径为1,D是圆C上的一个动点,射线AD与y轴交于点E ,则△ABE面积的最大值为__________。

圆中的最值问题

圆中的最值问题

例析圆中的最值问题学习《圆》,我们会遇到不少与圆有关的最值问题. 几何最值问题一般转化为代数问题处理,或结合图形的特点利用数形结合的方法处理,与圆有关的最值一般与圆的切线或圆心和半径有联系.例1.已知A(3,0),求圆x 2+y 2=4上的点与A 的最大距离和最小距离.分析:本题考查点与圆的位置关系及函数的最值问题,可列出距离的函数关系求解. 解:设P(x ,y)是圆上任意一点,∴|PA|2=(x-3)2+y 2=(x-3)2+4-x 2=13-6x.∵-2≤x ≤2,∴当x=-2时,25||2max =PA ,则|PA|max =5,当x=2时,1||2min =PA ,则|PA|min =1.即圆上的点与A 的距离的最大值为5,最小值为1.点评:列出函数式,然后由函数式的特点选择求最值的方法,这是求最值的常用解法.例 2.已知圆C :(x-3)2+(y-4)2=1,点A(0,-1),B(0,l),设P 是圆C 上的动点,令d=|PA|2+|PB|2,求d 的最大值及最小值.分析:本题考查点与圆的位置关系和数形结合的思想方法,可列出函数关系式,然后借助图形特点解决问题.解:设P 点坐标为(x 0,y 0),∴20202020)1()1(-++++=y x y x d2)(22020++=y x2||22+=PO .问题转化为求P 点到原点0的距离的最值,如图,∵O 在圆外,∴|OP|max =|CO|+1=5+1=6,|PO|min =|CO|-1=5-1=4.∴d max =2×62+2=74,Dmin=2×42+2=34.点评:将问题合理转化是解本题的关键,利用数形结合的方法是寻找突破口和切入点的好方法,并且可以简化解析几何中的运算.例 3.设}0,)3()1(|),{(},0,2|),{(22222>=-+-=>-==a a y x y x B a x a y y x A 且∅≠B A ,求a 的最大值和最小值.分析:本题考查集合知识和数形结合的方法,可画出集合A 、B 所表示的图形,从图形上寻找∅≠B A 时,a 的取值范围.解:如图,集合A 中元素构成的图形表示以点0(0,0)为圆心,半径为a 2的半圆.集合B 中元素构成的图形是以点)3,1(O '为圆心,a 为半径的圆.∵∅≠B A .∴半圆O 和O '圆有公共点,∴当半圆O 和圆O '外切时a 最小,内切时a 最大, 此时2||2='=+O O a a 小小,∴,222-=小a 又2||2='=-O O a a 大大,∴222+=大a .点评:数形结合作为一种数学思想方法,在数学中无处不在,它可以将抽象的代数问题转化为直观的几何问题,也可将几何问题转化为简单的代数运算.例4.已知实数x,y 满足x 2+y 2=1,求12++x y 的取值范围. 解析:将12++x y 看成是过(x,y)与(-l ,-2)两点的直线的斜率,即可求得. 解:如图,设P(x,y)是圆x 2+y 2=1上的点,则12++x y 表示过P(x,y)和Q(-1,-2)两点的直线PQ 的斜率.过点Q 作圆的两条切线QA, QB,由图可知QB ⊥x 轴,k QB 不存在,且k QP ≥k QA . 设切线QA 的斜率为k ,则它的方程为y+2=k(x+1),由圆心到QA 的距离为1,得11|2|2=+-k k ,解得43=k . ∴12++x y 的取值范围是),43[+∞. 点评:求关于x ,y 的代数式的范国问题,如y x b x a y +--,及(x-3)2+y 2等,常借助它们的几何意义,用数形结合法求解.。

高中数学-圆中的最值问题

高中数学-圆中的最值问题

圆中的最值问题例:平面上有两点A(-1,0),B(1,0),P为圆上的一点,试求的最大值与最小值,并求相应的P点坐标。

错解1:把已知圆的一般方程化为标准方程得,设点P的坐标为,则点P()在已知圆上,同理,,即。

的最大值为116,最小值为4。

错解2:设点P的坐标为(),则当时等号成立,把代入圆的方程化简,得,解得,取较小值得,这时。

的最小值为,而无最大值。

错因分析1:在错解1中,产生错误的原因,在于把看成相互独立的,能同时达到最大值、最小值的量。

实际上作为两个“变量”是相互联系的,它们同时受的约束,这个约束条件表示了与的最大取值区间。

但是,当、成为没有联系的独立变量后,就不一定同时满足约束条件了,离开了约束条件的变量肯定会扩大解集。

例如当取得最大值5时,只能等于4,不能取得最大值6;当取得最大值6时,只能等于3,不能取得最大值5。

同样也不能同时取得最小值。

在不等式的性质中,若“”,但反之,由“”,也就是说,的充分不必要条件。

错解用的是放缩变形,不是同解变形,故改变了解集,比如:设,,可以得到:然而,由却得不出,只能得出。

这是因为中的不是独立的,而是相互制约的,从而扩大了所求S的取值范围。

比如,,但是是不成立的,因为,这也是由于与都受条件约束,当与离开约束条件以后,的范围明显发生了改变,即扩大了取值范围。

错因分析2:在错解2中,利用不等式求最值,不等式的一边必须为定值,若乘积为定值m,则当时,平方和的最小值为;若平方和为定值n,则当时,乘积的最大值为。

但因错解2中乘积不是定值,因而不能应用这一方法求最值。

正解:把已知圆的一般方程化为标准方程得,设点P的坐标为,则点P在已知圆上,的最大值是100,这时点P的坐标是。

S的最小值是20,这时点P的坐标是()。

印象文华:不等式的性质是解题的理论基础,要深刻理解与正确应用不等式的性质,不仅要弄清每一个性质的条件和结论各是什么,还需要弄清条件和结论之间是“单向”的(如就是单向的,即条件是结论的充分不必要条件;还有,但等也是单向的)、不可逆的,还是“双向”的(如的充分必要条件,即)。

圆的最值问题类型归纳

圆的最值问题类型归纳

圆的最值问题类型归纳与圆相关的最值问题在高中数学中,圆是最常见的一种曲线。

研究圆的相关问题时,最值问题是一个重点和热点,本文将总结常见的与圆相关的最值问题,希望能给读者一些启发。

类型一:“圆上一点到直线距离的最值”问题对于求圆上一点到直线距离的最值问题,我们总是将其转化为求圆心到定直线的距离问题来解决。

1.求圆C: (x-2)²+(y+3)²=4上的点到直线x-y+2=0的最大、最小距离。

2.求圆C: (x-1)²+(y+1)²=2上的点与直线x-y+4=0距离的最大值和最小值。

3.圆x²+y²=2上的点到直线3x+4y+25=0的距离的最小值为多少?类型二:“圆上一点到定点距离的最值”问题本质上,这是一个两点间距离的问题。

对于与圆相关的两点的距离,我们总是将其转化为圆心与定点距离问题来解决。

1.已知点P(x,y)是圆x²+y²-2x-4y+4上的一点,求P到原点的最大最小距离。

2.已知圆C:x²+y²-4x-14y+45及点Q(-2,3),若M是圆C 上任一点,求MQ的最大值和最小值。

3.已知x,y满足条件x²+y²-2x-4y+4=0,求x²+y²的范围。

4.已知x,y满足圆x²+y²-2x-4y+4=0,求(x+2)²+(y+2)²的范围。

5.已知x,y满足圆x²+y²-2x-4y+4=0,求x²+y²+2x+2y的范围。

6.已知圆C:(x-3)²+(y-4)²=1,点A(-1,-2),B(1,-2),点P 为圆上的一动点,求d=PA+PB的最大值和最小值及对应的P 点坐标。

类型三:“过定点的弦长”问题1.已知直线l:2mx-y-8m-3和圆C:x²+y²-6x+12y+20,(1)当m∈R时,证明l与C总相交。

圆中最值问题(解析版)

圆中最值问题(解析版)

圆中最值问题一、点到直线的最值问题原理:垂线段最短.1、如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为().A. B. C. 3 D. 2答案:B解答:∵PQ切⊙O于点Q,∴∠OQP=90°,∴PQ2=OP2-OQ2,而OQ=2,∴PQ2=OP2-4,即,当OP最小时,PQ最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PQ选B.2、在平面直角坐标系中,以原点O为圆心的圆过点),直线y=kx-3k+4与⊙O交于B,C两点,则弦BC 的长的最小值为().A. 5B.C.D.答案:D解答:直线y=kx-3k+4必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦.∵点D的坐标是(3,4),∴OD=5.∵以原点O为圆心的圆过点,∴圆的半径为BC的长的最小值为3、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为______.答案:3解答:当OM⊥AB时,OM最小,此时.4、如图,在Rt△AOB中,O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ (点Q为切点),切线PQ的最小值为______.解答:连接OP,OQ,如图所示,∵PQ是O的切线,∴OQ⊥PQ,根据勾股定理知:PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,,∴OA=8,∴S△AOB=12OA·OB=12AB·OP,即OP=OA OBAB⋅=4,∴5、如图,直线y=kx-3k+4与⊙O交于B、C两点,若⊙O的半径为13,求弦BC长度的最小值.答案:24.解答:y=kx-3k+4必过点D(3,4),∴最短的弦BC是过点D且与该圆直径垂直的弦,∴OD=5,OB=13,∴BD=12,∴BC的长的最小值为24.二、点到圆的最值问题原理:定点与圆上的动点之间的距离:当定点、动点和圆心三点共线时有最大或最小值.AP max=OA+r,AP min=|OA-r|.6、已知点P到圆上各点的最大距离为5,最小距离为1,则圆的的半径为().A. 2或3B. 3C. 4D. 2或4答案:A解答:当点P在圆内,则圆的直径=5+1=6,所以圆的半径=3;当点P在圆外,则圆的直径=5-1=4,所以圆的半径=2.通常构造辅助圆求点到圆的最值问题7、(2021·南平延平区模拟)如图,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延长线上取一点D,使得DC=BD,在直线AD左侧有一动点P满足∠P AD=∠PDB,连接PC,则线段CP长的最大值为______.答案:解答:如图,取AD的中点O,连接OP,OC.∵∠P AD=∠PDB,∠PDB+∠ADP=90°,∴∠P AD+∠ADP=90°,∴∠APD=90°.∵AO=OD,∴PO=OA=OD.∵AD==∴OP=∵BC=CD=4,OD=∴OC===∵PC≤OP+OC∴PC≤∴PC的最大值为8、(2021·佛山三水区校级二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是△ABC内部的一个动点,且满足∠ACD=∠CBD,则AD的最小值为______.答案:2解答:∵∠ACB=90°,∴∠BCD+∠DCA=90°.∵∠DBC=∠DCA,∴∠CBD+∠BCD=90°,∴∠BDC=90°,∴点D在以BC为直径的☉O上,连接OA交☉O于点D,此时DA最小,在Rt△CAO中,∵∠OCA=90°,AC=4,OC=3,OA==∴5∴DA=OA-OD=5-3=2.故答案为29、如图,在△ABC中,∠BCA=90°,AC=BC=2,点P是同一平面内的一个动点,且满足∠BPC=90°,连接AP,求线段AP的最小值和最大值.答案:解答:解:如图,以BC为直径作圆O,连结AO交圆于两点P1,P2,则AP 1最小,AP 2最大.∵AP 1•AP 2=AC 2,AC =2,P 1P 2=2,∴AP 1(AP 1+2)=4,解得AP 1=51±-(负值舍去),∴AP 2=51251+=++-.故线段AP 的最小值和最大值分别是51+-和51+.10、如图,在矩形ABCD 中,AB =3,BC =2,M 是AD 边的中点,N 是AB 边上的动点,将△AMN 沿MN 所在直线折叠,得到△A ′MN ,连接A ′C ,求线段A ′C 的最小值.答案:解答:解:∵四边形ABCD 是矩形∴AB =CD =3,BC =AD =2,∵M 是AD 边的中点,∴AM =MD =1∵将△AMN 沿MN 所在直线折叠,∴AM =A 'M =1∴点A '在以点M 为圆心,AM 为半径的圆上,∴如图,当点A '在线段MC 上时,A 'C 有最小值, ∵1022=+=CD MD MC ,∴A ′C 的最小值=MC -MA '=110-.11、如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A ′MN ,连接A ′C ,请求出A ′B 长度的最小值.答案:解答:解:如图,由折叠知A ′M =AM ,又M 是AD 的中点,可得MA =MA ′=MD ,故点A ′在以AD 为直径的圆上,由模型可知,当点A ′在BM 上时,A ′B 长度取得最小值,∵边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,∴BM =3122=-,故A ′B 的最小值为13-12、如图,在矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,求四边形AGCD 的面积的最小值.答案:解答:∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5,∵AB =3,AE =2,∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为,∵S 四边形AGCD =S △ACD +S △ACG =AD ×CD +AC ×=×4×3+21×5×h =25h +6, ∴要四边形AGCD 的面积最小,即h 最小,∵点G 是以点E 为圆心,BE =1为半径的圆上在矩形ABCD 内部的一部分点,h 2121h 21∴EG ⊥AC 时,h 最小,即点E ,点G ,点H 共线. 由折叠知∠EGF =∠ABC =90°,延长EG 交AC 于H ,则EH ⊥AC ,在Rt △ABC 中,sin ∠BAC =54=AC BC , 在Rt △AEH 中,AE =2,sin ∠BAC =54=AE EH , ∴EH =54AE =58, ∴h =EH -EG =58-1=53,∴S 四边形AGCD 最小=25h +6=5325⨯+6=215.。

圆中最值问题10种求法(供参考)

圆中最值问题10种求法(供参考)

圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3, -2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为.[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2.解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。

所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2C.3D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C.四、利用直径是圆中最长的弦求最值4.如图:半径为2.5的⊙O中,直径AB的两侧有定点C和动点P,已知BC:CA=4:3,点P在劣弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,(1)求∠P的正切值;(2)当CP⊥AB时,求CD和CQ的长;当点P运动到什么位置时,CQ取得最大值,并求出此时CQ的长.[分析]:易证明△ACB∽△PCQ,所以,即CQ=PC. 当PC最大时,CQ最大,而PC是⊙O 的动弦,当PC是⊙O的直径时最大.五、利用弧的中点到弦的距离最大求最值5.如图:已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点,(B、C两点除外),求△ABC面积的最大值.[分析]:设BC边上的高为h因为S△ABC=BC h=×2h=h当h最大时S△ABC最大,当点A在优弧的中点时h最大.解:当点A为优弧的中点时,作AD⊥BC于D连接BO 即BD=CD=在Rt△BDO中,OD2=OB2-BD2=22-()2=1所以OD=1 所以AD=2+1=3所以S△ABC=×BC·AD=×2×3=3即△ABC面积的最大值为3六、利用周长一定时,圆的面积最大求最值6.用48米长的篱笆材料,在空地上围成一个绿化场地,现有两种方案:一种是围成正方形的场地,另一种是围成圆形场地,试问选用哪一种方案,围成的场地面积较大?并说明理由.[分析]:周长一定的几何图形,圆的面积最大.解:围成圆形场地的面积较大设S1、S2分别表示围成的正方形场地、圆形场地的面积则S1=()2=144 S2=π·()2=因为π<4 所以>所以>=144 所以S2>S1 所以应选用围成圆形场地的方案面积较大七、利用判别式求最值7.如图:在半径为1的⊙O中,AB是弦,OM⊥AB,垂足为M,求OM+AB的最大值.[分析]:可设AM=x,把OM用x的代数式表示出来,构造关于x的一元二次方程,然后利用判别式来求最值.解:设AM=x,在Rt△OAM中OM=所以OM+AB=+2x=a整理得:5x2-4ax+(a2-1)=0因为△=(-4a)2-4×5×(a2-1)≥0即a2≤5 所以a≤所以OM+AB的最大值为八、利用一条弧所对的圆周角大于圆外角求最值8.如图:海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°,为避免触礁,轮船P与A、B的张角∠APB的最大值为.[分析]:连接AC,易知∠ACB=∠AOB=40°,又因为∠ACB≥∠P,所以∠P的最大值为40°.解:如图:连接AC,根据圆周角定理可知∠ACB=∠AOB=×80°=40°又因为∠ACB≥∠P 即∠APB≤40°所以∠APB的最大值为40°九、利用经过⊙O内一定点P的所有弦中,与OP垂直的弦最短来求最值9.如图:⊙O的半径为5cm,点P为⊙O内一点,且OP=3cm,则过点P的弦AB长度的最小值为cm.[分析]:过P作AB⊥OP,交⊙O于A、B,则AB的长最小.解:在Rt△OAP中,AP=所以AB=2AP=2×4=8所以AB的最小值为8十、利用经过圆外一点与圆心的直线与⊙O的两个交点与点P的距离最大或最小求最值10.如图:点P为⊙O外一点,PQ切⊙O于点Q,⊙O的半径为3cm,切线PQ的长为4cm,则点P与⊙O上各点的连线长度的最大值为,最小值为.[分析]:过P、O两点作直线交⊙O于A、B,则PA的长度最大,PB的长度最小.解:连接OQ 因为PQ切⊙O于Q所以OQ⊥PQ在Rt△PQO中PQ2+OQ2=OP2即42+32=OP2 所以OP=5所以PB=5-3=2 PA=6+2=8所以点P与⊙O上各点连线长度的最大为8cm,最小值为2cm.。

圆中最值问题例析

圆中最值问题例析

圆中最值问题例析圆中最值问题(CentroidProblems)是一类具有重要理论意义且广泛应用于多种场景中的优化问题。

它是一种改进版的经典二次规划问题,通过把原先对称的对称约束条件变化为一般约束条件,以求解出一个具有位置最优特性的非对称的二次规划。

圆中最值问题的基本形式:$begin{align}min &f(x)=frac{1}{2}x^TAx+b^Txtext{s.t.}&g(x)=frac{1}{2}(x+alpha)^TC(x+alpha)-alpha^TCalphaleq 0&h(x)=frac{1}{2}(x-alpha)^TC(x-alpha)-alpha^TCalphaleq 0end{align}$其中,x∈Rn 为优化变量,A, C∈Rn×n 为对称矩阵,α∈Rn 为指定的圆中点。

圆中最值问题解决的问题是,如何在原有二次优化问题中加入圆中点约束,使得得到的优化结果在最小值附近具有一定的稳定性,从而得到较为合理的结论。

圆中最值问题的特殊性在于:(1)相对于经典二次规划而言,增加了圆中点约束项,这种约束使得优化变量强制必须满足原问题最小值附近;(2)该约束项是一种非线性约束,使得原先线性可解的问题变成了一种非线性规划问题;(3)有时候可能会改变问题本身的结构,使得其存在不可避免的拟合能力有限的问题。

圆中最值问题的重要性可以从以下几方面来看:(1)它在很多实际问题中都有着重要的应用,如最小二乘拟合、模式识别等;(2)它可以帮助我们解决更多的二次优化结构问题;(3)它的解的稳定性强于经典二次优化问题;(4)它在充分理解优化问题内在机制等方面也有重要的意义。

目前圆中最值问题有多种解法,最常用的解法是基于拉格朗日原理的精确求解法及其简化法,同时还有基于数值优化方法的求解法等。

(1)拉格朗日原理法使用 Lagrange理,可以把圆中最值问题转化成以下的对偶问题: $begin{align}min&L(x,lambda,mu)=frac{1}{2}x^TAx+b^Tx+lambdaleft(frac{1}{2}(x+alpha)^TC(x+alpha)-alpha^TCalpharight)+muleft(frac{1}{2}(x-alpha)^TC(x-alpha)-alpha^TCalpharight)text{s.t.} &xin mathbb{R}^nend{align}$通过解决该问题,即可得到原始圆中最值问题的最优解。

圆中最值问题

圆中最值问题

圆中最值问题与圆相关的最值问题引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是什么?引例2:在边长为1的等边三角形OAB中,以边AB为直径作圆D,以O为圆心OA长为半径作圆O。

C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交圆O 于点E,BC=a,AC=b。

求a+b的最大值。

引例3:在如图所示的情况中,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切。

P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE。

求线段DE长度的最大值。

本题考察了圆中的动点问题和最值问题,需要掌握圆的基本知识、基本技能和基本思维方法,同时注重了初、高中知识的衔接。

1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用。

2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用。

3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用。

解题策略:1.画出图形以获得直观感觉;2.比较特殊位置的结果;3.分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化。

1、在正方形ABCD的边AD上,有两个动点E、F,满足AE=DF。

连接CF交BD于点G,连接BE交AG于点H。

解题技巧专题:圆中的最值问题(含隐圆问题)

解题技巧专题:圆中的最值问题(含隐圆问题)
思路分析:
8.如图,已知⊙O的半径为m,点C为直径AB延 长线上一点,BC=m.过点C任作一直线l,若l上总 存在点P,使过P所作的⊙O的两切线互相垂直, 则∠ACP的最大值等于 45°.
解析:设PM、PN是过P所作的⊙O的两切线且互 相垂直,则∠MON=90°.∴四边形PMON是正方 形.根据勾股定理求得OP= 2m.∴P点在以O为圆 心,以 2m长为半径的大圆⊙O上.过C点作大 ⊙O的切线,切点即为P点,此时∠ACP有最大值, 如图所示.∵PC是大圆⊙O的切线, ∴OP⊥PC.∵OC=2m,OP= 2 m, ∴PC= OC2 OP2= 2m.∴OP=PC. ∴∠ACP=45°. ∴∠ACP的最大值等于45°.故答案为45°.
(2)解:∵OF⊥AC,∴AF=CF.
而OA=OB,
∴OF为△ACB的中位线. ∴OF= 1 BC=3.
2 ∴DF=OD-OF=5-3=2.
(3)若⊙O的半径为5,∠DOA=80°,点P是线段 AB上任意一点,试求出PC+PD的最小值. (3)解:作C点关于AB的对称点C′,连接C′D交AB于 P,连接OC,如图. ∵PC=PC′, ∴PD+PC=PD+PC′=DC′. ∴此时PC+PD的值最小. ∵ AD=CD,∴∠COD=∠AOD=80°.
9.如图,P是矩形ABCD内一点,AB=4,AD=2, AP⊥BP,则当线段DP最短时,CP= 2 3 .
解析:以AB为直径作半圆O,连接OD,与半圆O交 于==O2点BP2=,′,12∠当AAB点D=PO2与=.∵P∠′A重ADO合=D时2=,,∠∠DOBPDA最CD短==,4950则°°A.,∴O∴=DPOO′=DP′ OD-OP′=2 2-2.过P′作P′E⊥CD于点E,则易得 P′E=DE=2- 2.∴CE=CD- DE= 2+2.∴CP′= PE2 CE2 =2 3.故答案为2 3.

专题3:圆中最值问题(垂线段最短;将军饮马;将动点;动线段转化成定点;定线段)

专题3:圆中最值问题(垂线段最短;将军饮马;将动点;动线段转化成定点;定线段)

24.24专题3:.圆中最值问题一.【知识要点】1.垂线段最短;将军饮马;将动点;动线段转化成定点;定线段二.【经典例题】1.如图,AB、CD是半径为5的O的两条弦,8AB=,6⊥CD=,MN是直径,AB MN 于点E,CD MN+的最小值为多少?⊥于点F,P为EF上的任意一点,则PA PC2. 如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为_______.3.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm.母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm.(1)求纸杯的侧面积;(2)一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,求此蚂蚁爬行的最短距离.三.【题库】【A】1.如图,在△AOB中,∠AOB=90°,OB=3,半径为1的⊙O与OB交于点C,且AB与⊙O相切,过点C作CD⊥OB交AB于点D,点M是边OA上动点.则△MCD周长最小值为()A.2 B. C.+D.2.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作圆O交AO于点F.(1)求证:AC是⊙O的切线;(2)若∠AOE=60°,OE=3,在BC边上是否存在一点P使PF+PE有最小值,如果存在,请求出PF+PE的最小值.【B】2,点C为☉O上一点,∠ACB=600,点1.如图,PA、PB是☉O的两条切线,A、B为切点,PA=3M、N分别是PA、PB.上的动点,则△OMN周长的最小值是_________.2.如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP=1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作PCED,当C,D点在圆周上运动时,线段PE长的最大值与最小值的积等于.【C】1.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.求在圆锥的侧面上从B点到P点的最短路线的长.【D】1.如图,MN是半径为1的O的直径,点A在O上,30∠=︒,点B为劣弧AN的AMN中点.点P是直径MN上一动点,求PA PB+的最小值.2.如图,正方形ABCD 内接于⊙O ,线段MN 在对角线BD 上运动,若⊙O 的面积为2π,MN =1,则△AMN周长的最小值为 .【E 】1.如图,在平面直角坐标系xOy 中,点A ,B 分别在x ,y 轴正半轴上,以OB 为直径的⊙C 交AB 于点D ,DE 切⊙C 于点D ,交x 轴于点E ,且OA =123cm,⊙OAB =30°.(1)求直线AB 的解析式;(2)求EA 的长度;(3)若线段EA 在x 轴上运动,⊙CEA 的周长是否存在最小值?若存在,分别求出点E 、A 的坐标;若不存在,请说明理由.yx O E DCBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B yC x A OD B O C A与圆有关的最值(取值范围)问题引例1:在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan ∠BOC=m ,则m 的取值范围是_________.引例2:如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作⊙O ,C 为半圆弧AB 上的一个动点(不与A 、B 两点重合),射线AC 交⊙O 于点E ,BC=a ,AC=b ,求a b 的最大值.引例3:如图,∠BAC=60°,半径长为1的圆O 与∠BAC 的两边相切,P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ).A .3B .6C 332D .33一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C 与两个定点O 、A 构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C 与两个定点A 、B 构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D 、E 与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE 、直径所在的直角三角形,从而转化为弦DE 与半径AP 之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形; 2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.1、如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连接BE 交AG 于点H ,若正方形的边长为2,则线段DH 长度的最小值是A M DDO C BACBOPA2、如图,P 为的⊙O 内的一个定点,A 为⊙O 上的一个动点,射线AP 、AO 分别与⊙O 交于B 、C 两点.若⊙O 的半径长为3,OP = 3 ,则弦BC 的最大值为A .2 3 .B .3.C . 6 .D .3 2 .3、如图,扇形AOD 中,∠AOD =90°,OA =6,点P 为弧AD 上任意一点(不与点A 和D 重合),PQ ⊥OD 于Q ,点I 为△OPQ 的内心,过O ,I 和D 三点的圆的半径为r . 则当点P 在弧AD 上运动时,r 的值满足( )A .30<<rB .3=rC .233<<rD .23=r三、中考展望与题型训练方法一、找出与圆的最近点、最远点(极端位置)1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD交PB 的延长线于D 点.在点P 的运动过程中,线段CD 长度的取值范围为 ;方法二、正弦定理如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=22D 是线段BC 上的一个动点,以AD 为直径作⊙O分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .方法三、柯西不等式IDPl Q PNM O A DBCE F C A D BQPO D CEAB在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 . 方法四、利用函数求最值如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD •CD 的值最大,且最大值是为 .方法五、借助对称求最值如图,已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P 为直径CD 上一动点,求BP+AP 的最小值【题型训练】1.如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA=5,OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C ,若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,则⊙O 的半径r 的取值范围为 .2.如图,⊙M ,⊙N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为⊙M 上的任意一点,Q 为⊙N 上的任意一点,直线PQ 与连心线l 所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α∠的最大值为( ). (A)6 (B)43 (C)3 (D)34(1题) (2题)3.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ). A .194B .245C .5D .424.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为 .(3题)(4题)(5题)5.如图,线段AB=4,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则⊙O半径的最小值为( ).A.4B.23C.32D. 26.如图,A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心的坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是( ).A.2 B.1 C.222- D.22-(6题)(7题)(8题)7.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B.113C.103D.48.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .9、如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,求∠OAP的最大值。

10、如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,求GE+FH的最大值。

11、如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ (点Q为切点),求PQ的最小值12、在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx ﹣3k+4与⊙O交于B、C两点,求弦BC的长的最小值。

13、设AB是⊙O的动切线,与通过圆心O而互相垂直的两直线相交于A 、B,⊙O的半径为r,求OA+OB的最小值。

14、如图,圆O与正方形ABCD的两边AB、AD相切, E与圆O上一点.若圆O的半径为4,且AB=7,求DE的最大值15、如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O 半径为,tan∠ABC=,求CQ的最大值16、在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.AC,BC,当点C在⊙O上运动时,求出△ABC的面积的最大值.yBPrO A x17、如图所示,已知11(,)2A y,2(2,)B y为反比例函数1yx图像上的两点,动点(,0)P x在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.1(,0)2B. (1,0)C.3(,0)2D.5(,0)218、、如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,求PM长度的最大值19、如图,已知直角△AOB中,直角顶点O在半径为1的圆心上,斜边与圆相切,延长AO,BO 分别与圆交于C,D.试求四边形ABCD面积的最小值.综合点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!.yxOABP。

相关文档
最新文档