敏感性高分子及水凝胶

合集下载

智能高分子及水凝胶的响应性及其应用

智能高分子及水凝胶的响应性及其应用

2、挑战
2、挑战
仿生智能高分子水凝胶材料仍面临以下挑战:首先,材料的物理化学性质需 要进一步优化,以提高其生物相容性和细胞黏附性;其次,材料的机械性能需要 进一步提高,以适应更为复杂和严苛的应用环境;最后,材料的降解性能需要进 一步调控,从而实现材料的可降解性和生物相容性的平衡。
3、未来发展方向
智能高分子及水凝胶的响应 性及其应用
01 引言
03 应用领域
目录
02 响应性分析 04 参考内容
引言
引言
智能高分子和水凝胶是一类能够对外界刺激产生响应的特殊材料。它们具备 优越的适应性、敏感性和智能性,因此被广泛应用于各个领域。本次演示将重点 探讨智能高分子和水凝胶的响应性及其在组织工程、药物传输、传感器和结构改 性等方面的应用,并对未来发展进行展望。
五、结论
五、结论
仿生智能高分子水凝胶材料的设计制备及其生物应用具有重要的意义。这种 材料具有良好的生物相容性、细胞黏附性和智能响应性,可以作为药物载体、细 胞培养基质和组织工程支架等。未来,随着科学技术的不断发展和进步,仿生智 能高分子水凝胶材料将有望在生物医学领域发挥更为重要的作用。
谢谢观看
4、结构改性
2、拓展刺激种类:目前,大多数智能高分子和水凝胶主要对一种刺激产生响 应。未来可以研究能够同时对多种刺激产生响应的材料,提高其应用范围。
4、结构改性
3、实现多级响应:未来的智能高分子和水凝胶可以实现在不同层次上的响应, 例如微观结构和宏观形状的双重响应。这将有助于进一步拓展其应用领域,例如 在软机器人制造和仿生工程中发挥作用。
三、仿生智能高分子水凝胶材料 的生物应用
1、细胞培养
1、细胞培养
仿生智能高分子水凝胶材料可以作为细胞培养基质,提供细胞生长所需的营 养和环境。这种材料可以模拟生物组织的结构和功能,有利于细胞的黏附、增殖 和分化。同时,通过调节材料的物理化学性质,可以控制细胞的生长和分化,从 而应用于药物筛选和疾病治疗研究。

高分子水凝胶综述

高分子水凝胶综述

高分子水凝胶综述摘要在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。

论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。

关键词:高分子水凝胶应用性能制备产生、定义与比较高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。

对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1)图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。

吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。

当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。

也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。

此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。

从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。

在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图2)。

OOH R O H R OO H R O OH RO OH R O OHR OOH R OHH图2 凝胶保持水分子示意图图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。

温度敏感性材料基本原理及其应用

温度敏感性材料基本原理及其应用

N-异丙基丙稀酷胺(NIPAM)是温敏型凝胶PNIPAM的最主要的组成部分。

NIPAM单体分子式为C6H11N0,常温下为白色片状晶体,溶点为60℃分子量为113.18。

它含有不饱和C=C双键,在水溶液中可以打开进行自由基聚合从而得到高分子量的聚合物。

NIPAM及聚合物的结构式如图1所示。

图1 N-异丙基丙烯酰胺单体及其聚合物的结构式NIPAM单体聚合后得到聚N-异丙基丙稀醜胺(PNIPAM),聚合物大分子侧链上同时存在着亲水性的醜胺基和疏水性的异丙基两部分。

一般而言,在常温下,亲水基团与水分子之间由于强烈的氧键作用力,使PNIPAM分子链溶于水。

随着温度的升高,部分氢键作用力逐渐减弱,而PNIPAM 高分子链中的疏水作用力不断增强[4]。

当达到一定温度时,在疏水基团的相互作用下,高分子链互相聚集,发生体积相转变,并吸收热量;但当水溶液温度降低时,它又能够可逆地恢复到原来的状态而发生溶胀。

这一相变温度称为低临界溶解温度(Low Critical Solution Temperature,LCST),也称为低相变温度或池点温度。

PNIPAM不管以线型还是交联形式存在,都会在低临界溶解温度处体积收缩发生相转变,展现出温度敏感性能。

在LCST附近,PNIPAM凝胶的其他性质如折射率、介电常数、表面能等也会发生突变,同时也具有可逆性[5]。

1.2.2 PNIPAM类温敏性高分子凝胶的温敏机理大多数研究者认为,PNIPAM具有温敏性能与其物质的结构有关。

PNIPAM分子内具有一定比例的疏水性的异丙基和亲水性的酰胺基。

在温度低于LCST时,PNIPAM高分子链中酰胺基与周围水分子间存在着强烈的氢键作用力(亲水作用力),使高分子链与溶剂具有较好的亲和性,此时PNIPAM高分子链呈现出伸展状态,即在LCST以下吸水溶胀。

温度上升,当温度升高至LCST 以上时,水分子与酰胺基之间的亲水作用力减弱,PNIPAM分子链中异丙基间的疏水作用力得以加强,当温度升高至LCST以上时,PNIPAM高分子链中的疏水作用逐渐加强并起主导作用,使得高分子链通过疏水作用互相聚集,形成疏水层,导致水分子排出发生相转变,此时高分子链由疏松的线团结构转变为紧密的胶粒状,产生温敏性。

水凝胶

水凝胶

敏感性高分子及水凝胶摘要:本文介绍了几类敏感性高分子及其水凝胶。

主要包括pH敏感水凝胶、温度敏感水凝胶、温度及pH双重响应水凝胶、光响应水凝胶、磁场响应水凝胶等的性质及其研究进展。

简要介绍了敏感性高分子及其水凝胶的性质、制备方法、应用及其发展前景。

1引言近年来,随着信息,生命,环境,航空航天等领域科学技术的飞速发展,人们对材料性能的要求越来越高。

因此,一批性能特异的新功能材料相继问世,敏感性材料就是其中的一类。

对环境具有可感知,可响应,并具有功能发现能力的高分子和水凝胶被称之为环境敏感性高分子(environment sensitive polymers)和环境敏感性水凝胶(environment sensitive hydro gels)[1]。

与传统的高分子和水凝胶不同,这类高分子和水凝胶的某些物理或化学性质可因环境条件的变化而发生突变。

因此,这类高分子也被称为“刺激响应性高分子(stimuli-responsive polymers)”、“灵巧性高分子(smart polymers)”或“智能性高分子(intelligent polymers)”,相应的水凝胶被称为“刺激响应性水凝胶(stimuli-responsive hydro gels)”、“灵巧性水凝胶(smart hydro gels)”和“智能性水凝胶(intelligent hydro gels)”[2]。

与高分子不同,凝胶是一类可保持一定几何外形,同时具有固体和液体某些性质的胶体分散体系。

它是软物质(soft materials)存在的一种重要形式,是介于固体和液体之间的一种物质形态。

凝胶体系由胶凝剂(gelators)所形成的三维网络结构和固定于其中的大量溶剂组成。

敏感性水凝胶[3]是一种亲水性高分子交联网络,它能够感知外界环境的微小变化(例如温度、pH、离子强度、光、电场和磁场等),并通过自身体积的膨胀和收缩来响应外界的刺激.敏感性水凝胶的上述特点使其在药物控制释放、物质分离提纯、活性酶包埋和生物材料培养等方面有广泛应用前景。

高分子水凝胶

高分子水凝胶

高分子水凝胶凝胶是指溶胀的三维网状结构高分子。

即聚合物分子间相互连结,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质。

药用的凝胶大部分是水凝胶(hydrogel),它们通过制剂的形式进入体内后吸收体液自发形成。

水凝胶是指一种在水中能显著溶胀、保持大量水分的亲水性凝胶,为三维网络结构,多数水凝胶网络中可容纳高分子本身重量的数倍至数百倍的水,它不同于疏水性的高分子网络如聚乳酸和聚乙醇酸(只有有限的吸水能力,吸水量不到10%)。

水凝胶中的水有两种存在状态。

靠近网络的水与网络有很强的作用力,这种水在极低温度下又有冻结的和不冻结之分,而离网络比较远的水与普通水性质相似称为自由水。

影响水凝胶形成的主要因素有浓度、温度和电解质。

每种高分子溶液都有一个形成凝胶的最小浓度,小于这个浓度则不能形成凝胶,大于这个浓度可加速凝胶。

对温度来说,温度低,有利于凝胶,分子形状愈不对称,可胶凝的浓度越小,但也有些高分子材料加热后胶凝,低温变成溶液。

电解质对胶凝的影响有促进作用也有阻止作用,其中阴离子起主要作用。

水凝胶从来源分类,可分为天然水凝胶和合成水凝胶;从性质来分类,可分为电中性水凝胶和离子型水凝胶,离子型水凝胶又可分为阴离子型、阳离子型和两性电解质型水凝胶。

根据水凝胶对外界刺激应答情况不同,水凝胶又可分为两类:①传统的水凝胶,这类水凝胶对环境的变化,如PH或温度变化不敏感;②环境敏感水凝胶,这类水凝胶对温度或PH 等环境因素的变化所给予的刺激有非常明确和显著的应答。

不同结构、不同化合物的水凝胶具有不同的物理化学性质如溶胀性、触变性、环境敏感性和黏附性等:(一)溶胀性:水凝胶在水中可显著溶胀。

溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小);第二阶段是液体分子的继续渗透,这时凝胶体积大大增加。

水凝胶在药用高分子材料中的应用

水凝胶在药用高分子材料中的应用

三 粘附性
在现代新型的药物制剂中为了通过粘附作用达到长效、缓释 和靶向给药的而目的额,往往使用聚合水凝胶,以达到在生 物体上粘附的母的。
1 生物粘附 指的是在两个生物体表面之间形成任何结合,或一个生物的
表面与另一外一个外来天然或材料便面黏结的总称在药剂学 中生物黏附一般是用来描述聚合物(包括合成的以及天然的 )与软组织(如胃肠道的膜、口腔、皮肤)之间的黏附作用 。
1、包衣:药物用小丸或片剂用的阻滞材料包衣 2、制成微囊:使用微囊技术制备缓控释制剂是较新的方法 3、制成不溶性骨架片:以水不溶性材料为骨架制备的片剂 4、增加粘度以减少扩散速度:主要用于注射液或其它液体制剂 5、制成植入剂 6、制成乳剂
三溶蚀与扩散、溶出结合:生物溶蚀性骨 架系统、亲水凝胶骨架系统、膨胀型控释 骨架
将制剂用于黏膜时,黏附现象存在以下几种情况: 干的或部分水化的药物制剂与大量的黏液层得表面 接触(颗粒剂用于鼻腔);已经充分水化的药物制 剂与大量的黏液层得表面接触(水性混悬制剂用于 肠道);干的或部分水化的药物制剂与薄的或不连续 的表面接触(某些局部用片剂或贴片用于口腔或阴 道);已经充分水化地剂型与薄的或不连续性的黏 膜层表面接触(水性半固体或液体微粒制剂用于口 腔或阴道。
水凝胶是以水为分散介质的凝胶。具有交 联结构的水溶性高分子中引入一部分疏水 基团而形成能遇水一定的化学交联或物理 交联,都可以形成膨胀的交联聚合物。是 一种高分子网络体系,性质柔软,能保持 一定的形状,能吸收大量的水。凡是水溶 性或亲水性的高分子,通过水凝胶。
这些高分子按其来源可分为天然和合成两大类。天然的 亲水性高分子包括多糖类(淀粉、纤维素、海藻酸、透 明质酸,壳聚糖等)和多肽类(胶原、聚L-赖氨酸、聚 L-谷胺酸等)。合成的亲水高分子包括聚乙烯醇、 丙烯 酸及其衍生物类(聚丙烯酸,聚甲基丙烯酸,聚丙烯酰 胺,聚N-聚代丙烯酰胺等)。 作为一种高吸水高保 水材料,水凝胶被广泛用于多种领域,如:干旱地区的 抗旱,在化妆品中的面膜、退热贴、镇痛贴、 农用薄膜 、建筑中的结露防止剂、调湿剂、石油化工中的堵水调 剂,原油或成品油的脱水,在矿业中的抑尘剂,食品中 的保鲜剂、增稠剂,医疗中的药物载体等等。值得注意 的是,不同的应用领域应该选用不同的高分子原料,以 满足不同的需求。

高分子水凝胶综述

高分子水凝胶综述

高分子水凝胶综述摘要在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。

论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。

关键词:高分子水凝胶应用性能制备产生、定义与比较高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。

对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1)图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。

吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。

当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。

也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。

此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。

从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。

在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图2)。

OOH R O H R OO H R O OH RO OH R O OHR OOH OHH图2 凝胶保持水分子示意图图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。

水凝胶——精选推荐

水凝胶——精选推荐

水凝胶水凝胶(Hydrogel)是一种高分子网络体系,性质柔软,能保持一定的形状,能吸收大量的水。

凡是水溶性或亲水性的高分子,通过一定的化学交联或物理交联,都可以形成水凝胶。

这些高分子按其来源可分为天然和合成两大类。

天然的亲水性高分子包括多糖类(淀粉、纤维素、海藻酸、透明质酸,壳聚糖等)和多肽类(胶原、聚L-赖氨酸、聚L-谷胺酸等)。

合成的亲水高分子包括丙烯酸及其衍生物类(聚丙烯酸,聚甲基丙烯酸,聚丙烯酰胺,聚N-聚代丙烯酰胺等)。

一、卡波姆卡波姆(c arbomer),是以季戊四醇等与丙烯酸交联得到的丙烯酸交联树脂,是一类非常重要的流变调节剂,中和后的卡波是优秀的凝胶基质,有增稠、悬浮等重要用途,工艺简单,稳定性好,广泛应用于乳液、膏霜、凝胶中。

卡波姆9401g,水45.4g,甘油53.4g,三乙醇胺1.1g。

先将树脂溶于水中,待完全溶胀后,加入甘油混匀,或过胶体磨,均匀后,加入三乙醇胺,得透明的凝胶。

加三乙醇胺时,尽量减少气泡生成。

此基质具水溶性基质的特点,外观透明美观,搽于皮肤上有特别的细腻滑爽感,与皮肤藕合效果极佳。

以卡波姆为基质的软膏应贮存于密闭避光的容器内。

本品形成的水凝胶,在pH为6~12时最为粘稠,当pH<3和>12时,粘度降低,强电解质存在也会使粘度降低,曝露于阳光下会迅速失去粘性,加入抗氧剂可使反应减慢。

胶浆在pH5~11范围内十分稳定,可高压蒸汽灭菌,不分解,粘度不变,可加入适量的防腐抑菌剂。

少量挥发油类或在基质中不溶的其它物质,可先用吐温80或增加处方中丙二醇、乙醇用量使之变得透明。

1、碱---用于中和卡波姆的碱多为三乙醇胺、氢氧化钠、乙二胺、月桂胺、碳酸氢钠等。

一般pH值在5~11之间凝胶比较稳定,在pH6~12时最为黏稠,可根据制剂需要调节碱的使用量,以获得不同的pH值。

碱的加入方法:搅拌下加入到卡波姆溶胀物中,可先加碱后加药液,也可与药液同时加入,还可最后加入。

几种加入方法因药物性质的不同而效果可能不同,应多试为准。

高分子水凝胶简介

高分子水凝胶简介
水凝胶的简介
目录
水凝胶的定义 水凝胶的基本性质 水凝胶的分类 水凝胶的制备 水凝胶的应用 研究前景
定义
水凝胶是一种能够在水中溶胀并保持一定 水分而又不溶于水的具有三维网络结构的 新型功能高分子材料,兼有固体和液体的 性质
水凝胶具有良好的生物相容性 ,自 20世纪 40 年代以来 ,有关水凝胶的合成、理化性质 以及在生物化学、医学等领域中的应用研究 十分活跃
性质
吸水溶胀是水凝胶的一个重要特征。
溶 胀 收
在溶胀过程中 ,一方面水溶剂力图渗入高聚物内使 其体积膨胀,另一方面由于交联聚合物体积膨胀 ,导 致网络分子链向三维空间伸展 ,分子网络受到应力 产生弹性收缩能而使分子网络收缩。


当这两种相反的倾向相互抗衡时 ,达到了溶胀平衡 , 可见凝胶的体积之所以溶胀或收缩是由于凝胶内部 的溶液与其周围的溶液之间存在着渗透压 。 水凝胶的溶胀收缩行为通常用凝胶溶胀前后的质量 百分比表示 ,对于膜的溶胀也常用膜面积的变化表示。
载体的接枝共聚
• 水凝胶的机械强度一般较差 , 为了改善水凝胶的机械强度 , 可以把水凝胶接枝到具有一定强度的载体上。 • 在载体表面产生自由基是最为有效的制备接枝水凝胶的技术 , 单体可以共价地连接到载体上。 • 通常在载体表面产生自由基的方法有电离辐射、紫外线照射、 等离子体激化原子或化学催化游离基等,其中电离辐射技术是 最常采用的产生载体表面自由基的一种技术。
有一些两组分或多组分 的补齿材料含有 HEMA 或其他亲水型聚合物 , 这些材料被放在颚槽或 牙根部的孔内聚合或交 联 ,在大多数情况下 , 这些反应由 UV 引发。
生物分子、细胞的固定化
水凝胶固定化的生物分子和细胞在分析、 医学诊断等方面有着广泛的应用。 生物分 子和细胞可以固定在水凝胶小球的表面或 其内部 ,然后装填柱子 ,这样的柱子可以 用于分离混合物中的特殊生物分子。 生物 传感器是表面固定了生物分子或细胞的电 化学传感器 ,生物分子一般固定在与生物 传感器物理元件相连的水凝胶表面或其内 部。 水凝胶膜是连接生物分子和物理元件 的枢纽 ,因此很重要 。

聚N-异丙基丙烯酰胺水凝胶的制备及性质研究 毕业论文

聚N-异丙基丙烯酰胺水凝胶的制备及性质研究  毕业论文

本科生毕业论文(设计)题目聚N-异丙基丙烯酰胺水凝胶的制备及性质研究学院理学院专业班级应用化学(化学生物)学生姓名指导教师撰写日期:2012 年 5 月 12日聚N-异丙基丙烯酰胺水凝胶的制备及性质研究摘要水凝胶是一种亲水但不溶于水,具有交联三维网络结构的高分子聚合物,具有一定条件下的溶胀/退溶胀行为,同时具有输送和渗透性、能量转换、吸附分离、生物相容性等功能。

根据水凝胶对外界刺激的应答情况,水凝胶可分为传统凝胶和环境敏感型凝胶。

温敏性高分子水凝胶是研究最多,也是最重要的一类敏感性高分子水凝胶体系。

聚N-异丙基丙烯酰胺(PINPAm)的低临界溶解温度(LCST)约33.2℃。

PNIPAm具有良好的双亲性,且其相变温度在人的生理温度附近且略高于环境温度,且通过加入多种类单体控制其LCST,兼有易于控制、易于改性等优良特性,成为目前研究最热的一类热缩性温敏凝胶。

PNIPAm水凝胶制备分别探讨了:(1)用不同量的引发剂过硫酸铵(APS)对水凝胶形成的影响;(2)反应温度分别为低温(低于5度)、20度、30度、40度对水凝胶形成的影响。

所制备的PNIPAm水凝胶分别测定了相转变温度(LCST)和凝胶溶胀率(SR)。

结果表明引发剂量用量增多时水凝胶形成反应时间变短;反应温度升高水凝胶外观出现由无色透明凝胶----乳白半透明凝胶-----乳白色凝胶-----乳白色且无固定形态凝胶的变化。

低温生成的水凝胶相转变温度(LCST)在33度到34度之间,水凝胶体积发生不连续收缩现象;交联剂N,N-亚甲基双丙烯酞胺(BIS)使用量越多溶胀率越小。

关键词:温敏性水凝胶;PNIPAm水凝胶;制备;性质Preparation and the properties of hydrogel PINPAmAbstractThe hydrogel is a kind of hydrophilic system but insoluble in water, has a cross-linked three-dimensional network structure of the polymer, with certain conditions swelling / deswelling behavior, at the same time having a conveying and permeability, energy conversion, adsorption separation, biocompatibility and other functions. According to the outside stimuli response, hydrogel can be divided into traditional and environmentally sensitive gel. Temperature sensitive hydrogel is the most studied, is also one of the most important sensitive polymer hydrogel system. PNIPAm is a classic temperature sensitive hydrogel with lower critical solution temperature (LCST) about 33.2°C closed human body temperature, its phase transition temperature is under the human physiological temperature 2-3°C and slightly higher than the ambient temperature. PNIPAm is amphiphile polymer and easy modification by adding other monomers to control its LCST. Due to the properties easy control and modification, PNIPAm is one of the most attractive environmentally sensitive hydrogel with thermo-shrinkable temperature sensitive hydrogel.In this paper the preperation of PNIPAm hydrogel was investigated with different amounts of the initiator ammonium persulfate (APS) and the reaction temperature which were at under 5°C, 20°C, 30°C, 40°C respectively. And the properties of PNIPAm hydrogel phase transition temperature (LCST) and hydrogel swelling rate (SR) were observed. The experimental results showed that hydrogel formation reaction time becomes shorter with the incressing amounts of APS. The appearance of hydrogel obtained were very different in different reaction temperature: gel is colorless and transparent (under 5°C),shallow slightly milky and semitransparent gel (at 20°C), milky and non-transparent gel, plaster (without fixed shape and non-transparent, maybe microgel). The sample formation under 5°C showed the volume shrinkage phenomenon in the range of 33-34°C. And the amount of crosslinking agent N, N - methylene bis propylene phthalein amine ( BIS ) used in the formation of hydrogel, the hydrogel’s swelling rate was small.Key words: temperature sensitive hydrogel; PNIPAm hydrogel; preparation; properaties目录1 绪论 (1)1.1 水凝胶与智能水凝胶 (1)1.2 温敏性水凝胶 (2)1.3 水凝胶应用前景及展望 (3)2 实验 (5)2.1 实验制备与性质研究试剂 (5)2.2 实验仪器 (5)2.3 制备与性质研究 (5)2.3.1 制备 (5)(1)引发剂(APS)量不同的无孔PNIPAm水凝胶的合成 (5)(2)不同温度的无孔PNIPAm水凝胶的合成 (6)2.3.2 性质研究 (6)(1)相转变温度(LCST)的测定 (6)(2)凝胶溶胀率(SR) (6)3 实验结果与讨论 (8)3.1 制备 (8)3.1.1 不同引发剂(APS)量不同的无孔PNIPAm水凝胶的合成(温度为室温或低温) (8)3.1.2 不同温度的无孔PNIPAm水凝胶的合成 (9)3.2 性质 (10)3.2.1 胶体的温敏性 (10)(1)胶体生成时反应温度为低温(冰水浴中) (10)(2)胶体生成时反应温度为20度 (10)3.2.2 凝胶溶胀率(SR) (11)(1)胶体生成时反应温度为低温(冰水浴中) (11)(2)胶体生成时反应温度为20度 (14)(3)胶体生成时反应温度为低温和20度的对比 (17)4 结论 (20)参考文献 (21)致谢 (22)1 绪论1.1水凝胶与智能水凝胶水凝胶是一种亲水但不溶于水,具有交联三维网络结构的高分子聚合物,具有一定条件下的溶胀/退溶胀行为,同时具有输送和渗透性、能量转换、吸附分离、生物相容性等功能。

敏感性高分子及水凝胶

敏感性高分子及水凝胶

敏感性高分子及水凝胶摘要:本文介绍了几类敏感性高分子及其水凝胶。

主要包括pH 敏感水凝胶、温度敏感水凝胶、温度及pH 双重响应水凝胶、光响应水凝胶、磁场响应水凝胶等的性质及其研究进展。

简要介绍了敏感性高分子及其水凝胶的性质、制备方法、应用及其发展前景。

1 引言近年来,随着信息,生命,环境,航空航天等领域科学技术的飞速发展,人们对材料性能的要求越来越高。

因此,一批性能特异的新功能材料相继问世,敏感性材料就是其中的一类。

对环境具有可感知,可响应,并具有功能发现能力的高分子和水凝胶被称之为环境敏感性高分子(environment sensitive polymers)和环境敏感性水凝胶(environment sensitive hydro gels)[ 1]。

与传统的高分子和水凝胶不同,这类高分子和水凝胶的某些物理或化学性质可因环境条件的变化而发生突变。

因此,这类高分子也被称为“刺激响应性高分子(stimuli-responsive polymers)”、“灵巧性高分子(smart polymers)”或“智能性高分子(intelligent polymers)”,相应的水凝胶被称为“刺激响应性水凝胶(stimuli-responsive hydro gels)”、“灵巧性水凝胶(smart hydro gels)” 和“智能性水凝胶(intelligent hydro gels)”[2]。

与高分子不同,凝胶是一类可保持一定几何外形,同时具有固体和液体某些性质的胶体分散体系。

它是软物质(soft materials)存在的一种重要形式,是介于固体和液体之间的一种物质形态。

凝胶体系由胶凝剂(gelators)所形成的三维网络结构和固定于其中的大量溶剂组成。

敏感性水凝胶[3] 是一种亲水性高分子交联网络,它能够感知外界环境的微小变化(例如温度、pH、离子强度、光、电场和磁场等) ,并通过自身体积的膨胀和收缩来响应外界的刺激. 敏感性水凝胶的上述特点使其在药物控制释放、物质分离提纯、活性酶包埋和生物材料培养等方面有广泛应用前景。

水凝胶在药用高分子材料中的应用

水凝胶在药用高分子材料中的应用

水凝胶在药用高分子材料中的应用水凝胶是一种具有高度吸水性的高分子材料,由于其独特的物理和化学性质,被广泛应用于药物传输、组织工程、生物诊断等领域。

首先,水凝胶在药物传输方面的应用非常广泛。

水凝胶能够吸取许多倍于自身质量的水,形成具有大量水分的凝胶结构,这使其成为一种理想的药物载体。

通过将药物溶解或包裹在水凝胶中,可以延长药物的作用时间,减缓药物的释放速度,并且可以在药物释放时提供保护作用。

通过控制水凝胶的物理和化学性质,可以调节药物在凝胶中的释放速度和方式。

例如,温度敏感的水凝胶可以在局部组织温度上升时迅速释放药物,这种特性在肿瘤治疗中非常有用。

此外,药物可以通过化学交联或物理交联的方式与水凝胶结合,这样可以更稳定地嵌入药物,并提高药物在体内的稳定性和生物利用度。

其次,水凝胶在组织工程领域也具有重要的应用价值。

组织工程是一种利用人工合成材料或细胞培养体外培养构建组织功能的方法。

水凝胶是一种可生物降解的材料,能够提供细胞黏附和生长的支持结构。

同时,水凝胶的高度可形状性和柔韧性,使其能被设计成不同形状和尺寸的骨架,以模仿不同的组织结构。

水凝胶还可以通过控制其化学性质和微观结构,提供细胞间的交流和信号传递。

例如,可以在水凝胶中添加生物活性物质,如细胞因子、生长因子和基质蛋白等,以模拟体内的生物环境,促进细胞生长和分化。

此外,水凝胶具有良好的生物相容性,能够减少异物反应和组织排斥反应,促进组织工程材料与宿主组织的良好衔接。

另外,水凝胶还在生物诊断领域具有重要的应用。

生物诊断是指通过检测生物标志物,对疾病进行早期诊断和跟踪治疗效果的方法。

水凝胶可以作为生物传感器的载体,用于固定和保护生物标志物,并提供灵敏的信号检测。

例如,将特定的抗体或DNA探针固定在水凝胶上,可以实现对特定蛋白质或DNA的高灵敏性检测。

此外,水凝胶还可用于制备具有指示性颜色变化的染料水凝胶,用于快速检测特定因素的存在和浓度。

综上所述,水凝胶在药用高分子材料中的应用广泛且多样,通过调控其物理和化学性质,可以实现药物的控释和组织工程的构建,也可以用于生物诊断等领域。

水凝胶介绍

水凝胶介绍

水凝胶(Hydrogel),以水为分散介质的凝胶。

具有交联结构的水溶性高分子中引入一部分疏水基团而形成能遇水膨胀的交联聚合物。

是一种高分子网络体系,性质柔软,能保持一定的形状,能吸收大量的水。

凡是水溶性或亲水性的高分子,通过一定的化学交联或物理交联,都可以形成水凝胶。

令狐采学一,水凝胶的分类:1,来源:1),天然水凝胶2),合成水凝胶2,性质:1),电中性水凝胶2),离子型水凝胶3,对外界刺激的反应情况:1),传统的水凝胶2),环境敏感水凝胶传统的水凝胶:这类水凝胶对环境的变化,如PH或温度的变化不敏感。

环境敏感水凝胶:这类水凝胶对温度或PH等环境因素的变化所给予的刺激有非常明确或显著地应答。

目前研究得最多的是温敏型和pH敏水凝胶。

所谓温敏是指在水或水溶液中这种凝胶的溶胀与收缩强烈的依赖于温度,凝胶体积在某一温区有突变,该温度称为临界溶液温度(lower critical solution temperature, LCST)。

pH敏感水凝胶是指聚合物溶胀与收缩随着环境的pH、离子强度的变化而变化。

二,水凝胶的性质:不同结构,不同化合物的水凝胶具有不同的物理化学性质如融变性、溶胀性、环境敏感性和粘附性。

一),溶胀性(swelling)是指凝胶吸收液体后自身体积明显增大的现象,是弹性凝胶的重要特性,凝胶的溶胀分为两个阶段:第一阶段:是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小)第二阶段:是液体分子的继续渗透,这时凝胶体积大大增加。

二),环境敏感性环境敏感水凝胶又称智能水凝胶(smart hydrogels),根据环境变化的类型不同,环境敏感水凝胶又分为如下几种类型:1,温(热)敏水凝胶2,pH敏感水凝胶3,电解质敏感水凝胶三),粘附性(adhesiveness)粘附或称粘着或粘结等。

一般指的是同种或两种不同的物质表面相粘结的现象。

高分子水凝胶简介

高分子水凝胶简介

分为物理凝胶和化学凝 胶。物理凝胶是通过物 理作用力如静电作用、 氢键、链的缠绕等形成 的,这种凝胶是非永久 性的,通过加热凝胶可 转变为溶液,所以也被 称为假凝胶或热可逆凝 胶。化学凝胶是由化学 键交联形成的三维网络 聚合物,是永久性的, 又称为真凝胶。
制备
应用
有一些两组分或多组分 的补齿材料含有 HEMA 或其他亲水型聚合物 , 这些材料被放在颚槽或 牙根部的孔内聚合或交 联 ,在大多数情况下 , 这些反应由 UV 引发。
研究前景
传统的水凝胶对环境的变化如温ph等的变化不敏而环境敏感的水凝胶是指自身能感知外界环境如温度ph光电压力等微小的变化或刺激并能产生相应的物理结构和化学性质变化甚至突变的一类高分子凝胶
水凝胶的简介
目录
定义
性质
分类
宏观凝胶与微观 凝胶 (微球) 之 分,形状的不同 宏观凝胶又可分 为柱状、多孔海 绵状、纤维状、 膜状、球状等 , 目前制备的微球 有微米级及纳米 级之分
传统的水凝胶和环境敏 感的水凝胶 。传统的水 凝胶对环境的变化如温 度或 pH 等的变化不敏 感 ,而环境敏感的水凝 胶是指自身能感知外界 环境 (如温度、pH、光、 电、压力等) 微小的变 化或刺激 ,并能产生相 应的物理结构和化学性 质变化甚至突变的一类 高分子凝胶。
合成高分子水凝 胶和天然高分子 水凝胶。天然高 分子优点具有更 好的生物相容性、 对环境的敏感性 以及丰富的来源、 低廉的价格 , 但缺点是天然高 分子材料稳定性 较差 ,易降解
水凝胶固定化的生物分子和细胞在分析、 医学诊断等方面有着广泛的应用。 生物分 子和细胞可以Байду номын сангаас定在水凝胶小球的表面或 其内部 ,然后装填柱子 ,这样的柱子可 以用于分离混合物中的特殊生物分子。 生 物传感器是表面固定了生物分子或细胞的 电化学传感器 ,生物分子一般固定在与生 物传感器物理元件相连的水凝胶表面或其 内部。 水凝胶膜是连接生物分子和物理元 件的枢纽 ,因此很重要 。

温敏性石墨烯纳米复合水凝胶

温敏性石墨烯纳米复合水凝胶

温敏性石墨烯纳米复合水凝胶摘要:将氧化石墨烯(Graphene Oxide,GO)添加到以锂藻土Laponite为交联剂,N-异丙基丙烯酰胺(NIPAm)为单体所制备的纳米复合水凝胶(简称NC凝胶)中。

通过改变GO的含量,研究此类NC凝胶的红外响应性的变化。

关键词:氧化石墨烯;纳米复合NC凝胶;红外响应性1 前言1.1 水凝胶简介凝胶是含有大量溶剂的具有三维网络结构的高分子[1]。

吸收溶剂时会溶胀,排出溶剂时会收缩。

因为其是交联结构,故凝胶一般只能溶胀不能收缩。

凝胶的交联可以为物理交联,也可以是化学交联,物理交联是通过氢键、范德华力等物理相互作用实现的,而化学交联则是通过分子链间形成化学键实现的。

水凝胶就是以水为分散介质的凝胶,是一种能吸收大量水分并将其保留在三维网络结构的软质材料。

水凝胶的这种高吸水高保水的性能使其在多种领域中有着广泛的应用。

此外,水凝胶的固有特性与许多类型的生物组织非常地相似。

因此水凝胶是近年来也是生物医用高分子材料研究的热点之一,具有良好的应用前景。

1.2 智能水凝胶及其应用智能型水凝胶是指能够通过外界的刺激而自身产生敏感响应的水凝胶。

根据外界刺激的响应情况,我们可以把智能水凝胶分为:温度响应性水凝胶、pH响应性水凝胶、光响应性水凝胶、压力响应性水凝胶、生物分子响应性水凝胶、电场响应性水凝胶等[2]。

这类凝胶的智能性使其有可能应用在化学传感器、记忆元件开关、人造肌肉、化学存储器、分子分离体系、调光材料以及药物载体释控等方面。

1.3 高性能纳米复合水凝胶纳米复合材料(Nanocomposite)的概念最早是由Roy于1984年提出的,它是指两相或多相的混合物中至少有一相的一维尺度小于100纳米量级的复合材料[3]。

2002年,日本Haraguchi[4]等将锂藻土(Laponite)纳米粒子分散在水中,使用N-异丙基丙烯酰胺(NIPAm)作为单体,在Laponite分散液中原位自由基聚合,不添加化学交联剂,得到了聚N-异丙基丙烯酰胺-Laponite纳米复合水凝胶(Nanocomposite Hydrogel,简称NC凝胶)。

pH敏感性高分子材料汇总

pH敏感性高分子材料汇总

2004.No.5 化学与生物工程 Chemistry&Bioengineering 综述专论1pH敏感性高分子材料胡晖,范晓东(西北工业大学应用化学系,陕西西安710072)摘要:综述了pH敏感性高分子材料的概念、机理、分类、最新研究成果及应用前景,对其发展趋势进行了展望。

关键词:pH敏感性;高分子材料;高分子凝胶;高分子复合物中图分类号:TQ427126 文献标识码:A 文章编号:1672-5425(2004)05-0001-03pH敏感性高分子材料可因pH值的变化而产生体积或形态改变。

这种变化是基于分子水平及大分子水平的刺激响应性,具有可重现特性。

由于它性质特殊,并具有广泛的用途,引起了国内外许多专家、学者的重视,并致力于开发这一类材料。

211 聚酸类pH敏感性高分子21111 丙烯酸类高分子在聚酸类pH敏感性高分子材料中,最典型的例子就是丙烯酸类聚合物。

丙烯酸类高分子含有可离子化的-COOH基团,是研究人员研究得较为成熟的一类pH敏感性高分子材料。

(1)丙烯酸类共聚物以甲基丙烯酸为基础共聚的阴离子型水凝胶、阳离子型水凝胶和两性水凝胶都具有pH敏感性,两性水凝胶在整个pH范围内都有一定的溶胀比,且在pH中性时,其溶胀速度要高于相应的阴离子型和阳离子型水凝胶。

聚(丙烯酸)-co-(丙烯腈)和聚(丙烯酸)-co-(N-异丙基丙烯酰胺聚合物)两种水凝胶都具有温度及pH双重敏感特性。

这种特性对于水凝胶在药物控制释放领域中的应用具有较大的意义(2)丙烯酸类接枝物[2]1 pH敏感性高分子材料的机理探索Tanaka把诱导凝胶体系发生相转变的分子间作用归纳为四类:疏水作用、范德华力、氢键、离子间作用力[1]。

这四种作用力被公认为是引发智能凝胶敏感响应的原动力。

在pH敏感的水凝胶中四种作用力共同起作用引发pH敏感性,其中离子间作用力起主要作用,其它三种作用力起到相互影响、相互制约的作用。

一般来说,具有pH响应性的高分子中含有弱酸性(弱碱性)基团,随着介质pH值、离子强度改变,这些基团发生电离,造成高分子内外离子浓度改变,并导致大分子链段间氢键的解离,引起不连续的溶胀体积变化或溶解度的改变。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

敏感性高分子及水凝胶敏感性高分子及水凝胶摘要:本文介绍了几类敏感性高分子及其水凝胶。

主要包括pH 敏感水凝胶、温度敏感水凝胶、温度及pH 双重响应水凝胶、光响应水凝胶、磁场响应水凝胶等的性质及其研究进展。

简要介绍了敏感性高分子及其水凝胶的性质、制备方法、应用及其发展前景。

1 引言近年来,随着信息,生命,环境,航空航天等领域科学技术的飞速发展,人们对材料性能的要求越来越高。

因此,一批性能特异的新功能材料相继问世,敏感性材料就是其中的一类。

对环境具有可感知,可响应,并具有功能发现能力的高分子和水凝胶被称之为环境敏感性高分子(environment sensitive polymers)和环境敏感性水凝胶(environment sensitive hydro gels)[ 1]。

与传统的高分子和水凝胶不同,这类高分子和水凝胶的某些物理或化学性质可因环境条件的变化而发生突变。

因此,这类高分子也被称为“刺激响应性高分子(stimuli-responsive polymers)”、“灵巧性高分子(smart polymers)”或“智能性高分子(intelligent polymers)”,相应的水凝胶被称为“刺激响应性水凝胶(stimuli-responsive hydro gels)”、“灵巧性水凝胶(smart hydro gels)” 和“智能性水凝胶(intelligent hydro gels)”[2]。

与高分子不同,凝胶是一类可保持一定几何外形,同时具有固体和液体某些性质的胶体分散体系。

它是软物质(soft materials)存在的一种重要形式,是介于固体和液体之间的一种物质形态。

凝胶体系由胶凝剂(gelators)所形成的三维网络结构和固定于其中的大量溶剂组成。

敏感性水凝胶[3] 是一种亲水性高分子交联网络,它能够感知外界环境的微小变化(例如温度、pH、离子强度、光、电场和磁场等) ,并通过自身体积的膨胀和收缩来响应外界的刺激. 敏感性水凝胶的上述特点使其在药物控制释放、物质分离提纯、活性酶包埋和生物材料培养等方面有广泛应用前景。

2 敏感性高分子及其水凝胶的种类和性质1989 年,高木俊宜[4]最先提出了智能材料(intelligent materials)概念。

随后,美国的Newnham 教授提出了与之类似的灵巧材料(smart materials)概 1 念。

敏感性高分子和敏感性水凝胶是智能材料家族中的重要成员。

凝胶有不同的分类方法。

根据溶剂的不同,凝胶分为有机凝胶(organgels)和水凝胶(hydrogels)。

以适当的方式脱除溶剂后的凝胶为干凝胶(xerogels)。

根据凝胶的大小不同,有(宏观)凝胶和微凝胶(microgels)之分。

根据凝胶对环境条件变化响应的不同,凝胶分为传统凝胶和敏感性凝胶。

根据凝胶力学性能的不同,凝胶分为弹性凝胶和刚性凝胶。

同样,根据维系凝胶三维网络结构力的本性不同,凝胶分为物理凝胶和化学凝胶。

敏感性高分子水凝胶在受到刺激时,其性质会发生突变。

根据刺激信号的不同,相应的水凝胶被称为化学物质敏感性水凝胶、pH 敏感性水凝胶、温敏性水凝胶、光敏性水凝胶等。

敏感性水凝胶的研究涉及学科众多,具有显著的多学科交叉特点,是当今最具有挑战的高技术研究前沿领域之一。

2.1 敏感性高分子及其水凝胶的种类2.1.1 温度敏感性高分子及其水凝胶温敏性高分子是研究最多,也是最重要的一类敏感性高分子。

这类水凝胶结构中具有一定比例的亲水性和疏水性基团,温度的变化可以影响这些基团的疏水作用和大分子链之间的氢键作用,从而改变水凝胶的网络结构,产生体积相变。

温敏水凝胶有高温收缩和低温收缩两种类型[5]。

聚N-异丙基丙烯酰胺(PNIPA)是典型的高温收缩型水凝胶,对其响应机理的一般解释是,当温度升高时疏水相相互作用增强,使凝胶收缩。

线型聚N-异丙基丙烯酸酰[PNIPAM]是一种典型的温敏性高分子,在水溶液中具有独特的热行为,其大分子链上同时具有亲水性的酰胺基和疏水性的异丙基,使线型PNIPAM 的水溶液呈现出温度敏感特性,即随着水溶液温度升高,其溶解性下降,到某一温度时会发生相分离而产生沉淀,但降低温度时,它又可逆地恢复到原来在低温下的状态。

这一相变温度被称为最低临界溶解温度(lowest critical solution temperature, LCST)。

对PNIPAM的研究始于1967年首次观察到了PNIPAM水溶液在31?C具有LCST的热敏现象,PNIPAM才开始受到广泛的关注。

早期的研究主要集中在LCST转变的理论分析上,20世纪90年代以后转向PNIPAM的应用。

2.1.2 PH 敏感性高分子及其水凝胶水凝胶的pH敏感性最早由Tanaka [6] 在测定陈化后的聚丙烯酰胺凝胶溶胀比时发现这类凝胶含有大量易水解和质子化的解离基团,当外界pH变化时,这些基团的解离程度相应改变,造成凝胶内外离子浓度的变化,并引起网络内氢键的生成或断裂,导致凝胶的不连续体积相变。

PH 敏感性高分子是其溶液相态能随环境pH 值、离子强度变化的高分子。

这类高分子的分子链具有可解离的酸性或碱性基团。

目前人们感兴趣的是将温敏性单体与pH 敏感性单体共聚合成具有温度和pH 双重敏感的共聚物及其水凝胶。

2.1.3 温度及pH 双重响应型高分子及其水凝胶温度及pH敏感水凝胶[7]在药物的控制释放、生物材料培养、提纯、蛋白酶的活性控制等方面应用较多,因此要求其具有较好的生物相容性。

聚乙烯基吡咯烷酮P(NVP)具有较好的生物相容性,作为血浆增溶剂、药物辅科在世界范围内得到广泛应用。

P(NVP)能与许多物质,特别是含羟基、羧基、氨基及其他活性氢原子的化合物生成固态络合物。

P(NVP)水溶液可与多元酸形成不溶性络合物,质谱研究指出它们是氢键络合物,与蛋白质的络合性质相似。

金曼蓉等[8]研制成功5种聚N2烷基丙烯酰胺类温度敏感水凝胶,陆大年等[ 9] 较系统地探讨了丙烯酸水凝胶的pH敏感特性,Hoffman 等[10]通过接枝共聚得到同时具有温度和pH双重敏感特性的水凝胶。

由于互穿聚合物网络中各聚合物网络具有相对的独立性,因此我们以pH敏感的聚合物网络为基础,利用IPN技术引入另一具有温度敏感的聚合物网络,制得具有温度及pH双重敏感的IPN型水凝胶。

同时,由于各聚合物网络之间的交织互穿必然会产生相互影响,相互作用,使各聚合物网络之间又具有一定的依赖性。

这种既相互独立又相互依赖的特性将最终决定IPN水凝胶的溶胀性能[11]。

2.1.4 光响应型高分子及其水凝胶目前,这类水凝胶的合成主要是在温度或pH响应水凝胶中引入对光敏感的基团[12]。

导致光敏水凝胶的响应机理有两种:一种是特殊感光分子,当有光照射时,这类水凝胶将光能转化成热能,使材料局部温度升高,当凝胶内部温度达到热敏材料的相变温度时,发生体积相转变现象。

另一种是利用光敏分子遇光分解产生的离子来改变凝胶内外的离子浓度差,造成凝胶渗透压突变,从而实现响应性。

2.1.5 电场响应型高分子及其水凝胶[13]电场响应性高分子(或水凝胶)一般是由分子链上带有可离子化基团的高分3 子(或交联高分子网络)组成。

在此类高分子中,荷电基团的抗衡离子在电场中迁移,使高分子链(或凝胶网络内外)离子浓度发生变化,导致高分子发生相转变。

例如聚乙烯醇/聚丙烯酸钠,聚[环氧乙烷-co-环氧丙烷]-星形嵌段-聚丙稀酰胺]/交联聚丙烯酸互穿网络凝胶,在NaOH 或Na2CO3 溶液中,经非接触电极施加直流电场,试样弯向负极,其运动机理仍可用Flory 的渗透压力方程解释。

2.1.6 磁场响应型高分子及其水凝胶磁场响应性水凝胶是将磁性“种子”预埋在凝胶中,当凝胶置于磁场时,由于磁性材料的作用而使凝胶局部温度上升,导致凝胶膨胀或收缩。

2.1.7 压力敏感性水凝胶[14]水凝胶的压力敏感性最早是由Marchetti 通过理论计算提出来的,其计算结果表明,凝胶在低压下出现塌陷,在高压下出现膨胀。

Lee 等用12%的Bis 作交联剂制备出的聚N 一异丙基丙烯酞胺(PNIPA)凝胶,证实了上述预测。

他们认为,凝胶体积随压力的变化是由于压力对该体系自由能有贡献所致。

2.1.8 生化响应性水凝胶[15]目前此类水凝胶主要用于研究开发自动调控胰岛素释放系统,研究较多的是葡萄糖敏感水凝胶。

这种凝胶实质为pH或温度响应性材料,但可以通过感知由生化反应造成溶液组分的变化,而产生如体积相变这样的响应。

2.1.9 盐敏感性水凝胶盐敏指在外加盐的作用下,凝胶的膨胀比或吸水性发生突跃性变化。

盐对凝胶膨胀的影响与其结构有关。

这类水凝胶的正负带电基团位于分子链的同一侧基上,并以共价键结合在一起,二者可发生分子内和分子间的缔合作用。

小分子盐的加人可屏蔽、破坏大分子链中正负基团的缔合作用,导致分子链舒展,因而,凝胶的膨胀行为得到改善。

众多的刺激响应性高分子(或水凝胶)中,温度/pH 双重敏感的高分子和水凝胶是较重要的一类。

2.2 影响水凝胶敏感性的因素水凝胶敏感性条件受许多因素的影响,单体组成、交联剂、聚合工艺条件、溶剂等都是重要的影响因素,但本质上是水凝胶的溶胀行为及其性能与网络结构之间的关系。

水凝胶的体积相转变是由聚合物网络中的疏水-亲水结构共同控制的。

如果两聚合物具有相同的疏水-亲水基团,它们应该表现出相同或相近的相转变行为。

但研究表明,水凝胶的相转变行为还强烈地依赖于疏水基团在侧链中的位置; 即使具有完全相同组成的水凝胶,其相转变行为也强烈地依赖于疏水基团在侧链中的位置。

3 敏感性高分子及其水凝胶的合成敏感性水凝胶材料的制备方法主要有单体的交联聚合、接枝共聚、其它水溶性高分子的交联或转化等,其中单体的交联聚合是目前制备高分子材料的最主要方法之一。

3.1 单体的交联聚合[16]在交联剂存在的情况下,由化学引发剂或辐射技术引发的单体经自由基均聚或共聚而制得高分子水凝胶材料的方法。

在聚合反应过程中可以通过加人或改变引发剂、鳌合剂、链转移剂等来控制聚合动力学,以及所得高分子水凝胶材料的性质。

制备高分子水凝胶材料的单体主要有丙烯酸系列、丙烯酸酯系列、丙烯酰胺系列、乙烯衍生物系列等。

常用交联剂的类别有:①二醇(脂肪族的聚醚或聚酯)的双丙烯酸酯和双甲基丙烯酸酯;②双丙烯酰胺;③活性甲基丙烯酸缩水甘油酯和活性烯丙基甲基丙烯酸酯;④双烯丙基的碳酸酯和丁二酸酯。

最主要的交联剂是双乙烯基交联剂,如N, N-亚甲基双丙烯酰胺(MBA)、双丙烯酸乙二醇酯等。

高分子水凝胶材料所具有的低交联网络结构,对其凝胶膨胀能力和凝胶弹性模量两个最关键的性能起决定作用。

但是高分子水凝胶的综合性能则依据聚合方法(水溶液聚合法或反向悬浮聚合法)、单体种类和组成(丙烯酸、丙烯酰胺及其比例)、交联结构和类型(水溶型或油溶型)等的变化。

相关文档
最新文档