高分子溶液的特性
第三章 高分子的溶液性质
3、高分子溶液的混合自由能 ΔFM= ΔHM-TΔSM=RT(n1ln φ1+n2ln φ2+ χ1n1φ2) 溶液中溶剂的化学位变化和溶质的化学位变化Δμ1、 Δμ2
分别为:
Δμ1 =RT[lnφ1+(1-1/x)φ2+χ1φ22] Δμ2 = RT[lnφ2+(x-1)φ1+xχ1φ12] lnp1/p10= Δμ1/RT= ln(1-φ2)+(1-1/x)φ2+χ1φ22 注意:由高分子溶液蒸汽压p1和纯溶剂蒸汽压p10的测量
4、混合溶剂, δ混= Φ1 δ1 + Φ2 δ2,有时混合溶剂的溶
解能力强于纯溶剂。
第二节 高分子溶液的热力学性质
理想液体的概念:溶液中溶质分子间、溶剂分子 间和溶剂溶质分子间的相互作用能均相等,溶 解过程没有体积的变化,也没有焓的变化。 理想溶液实际上是不存在的,高分子溶液与 理想溶液的偏差在于两个方面:一是溶剂分子 之间、高分子重复单元之间以及溶剂与重复单 元之间的相互作用能都不相等,因此混合热不 为零;二是高分子具有一定的柔顺性,每个分 子本身可以采取许多构象,因此高分子溶液中 分子的排列方式比同样分子数目的小分子溶液 的排列方式多,即其混合熵高于理想溶液的混 合熵。
2、对于真实的高分子在溶液中的排斥体积分为两部分:外排 斥体积和内排斥体积。外排斥体积是由于溶剂与高分子链段的 作用能大于高分子链段之间的作用能,高分子被溶剂化而扩张, 使两个高分子不能相互靠近而引起的;内排斥体积是由于高分 子有一定的粗细,链的一部分不能同时停留在已为链的另一部 分所占据的空间所引起的。当溶液无限稀释时,外排斥体积可 以接近零,而内排斥体积永远不为零。如果链段比较刚性或链 段之间排斥作用比较大,则内排斥体积为正;相反,链相互接 触的两部分体积可以小于它们各自的体积之和,则内排斥体积 为负。这种内排斥体积为负的链称为坍陷线团。
第三章 高分子的溶液性质
高分子的溶液性质
大多数线形和支链形高聚物均可自发地溶于适当 的溶剂中,形成高分子溶液。同小分子溶液一样,高 分子溶液也是分子分散体系,处于热力学平衡状态, 具有可逆性,服从相平衡规律,因而高分子溶液也是 能用热力学状态函数描述的真溶液。 高分子溶液是科学研究和生产实践中经常接触的 对象,按照浓度大小,高分子溶液可以分为浓溶液和 稀溶液。
(3-16)
高分子溶液的混合熵△SM 是指体系混合前后熵的变 化,式(3-16)表示混合后溶液的熵,混合前的熵为纯 溶剂和高聚物两部分组成,因为纯溶剂只有一种微 观状态,所以S溶剂=0,而高聚物的晶态、取向态以 及解取向态的熵值都不同,在此把高聚物的解取向 态作为混合前高聚物的微观状态,则S高聚物≠0,令式 (3-16)中N1=0,可以得到,
混合过程:0.5 [1—1] + 0.5 [2—2] = [1—2]
式中符号1表示溶剂分子,符号2表示高分子的一 个链段,符号[1—1] 、[2—2] 、[1—2]分别表示相邻 的一对溶剂分子,相邻的一对链段和相邻的一个溶剂 与链段对。
生成一对[1—2]时能量的变化:
式中ε11、ε22、ε12分别表示他们的结合能 如果溶液中形成了P12 对 [1—2] 分子,混合时没有体 积的变化,则高分子溶液混合热△HM
一般将浓度超过5%(质量百分数)的高分子溶 液称为浓溶液。在生产实践中经常应用高分子浓 溶液,例如纺丝用的溶液(浓度超过15%)、油漆和 涂料(浓度超过60%)、粘合剂、增塑塑料、制备复 合材料用的树脂溶液等。对于高分子浓溶液的研 究主要侧重于应用,如高分子浓溶液的物理-力学 性能、高分子浓溶液的流变形为等。由于浓溶液 的复杂性,至今没有成熟的理论来描述其性质。
高分子稀溶液浓度一般在1%以下,关于高分 子稀溶液的热力学理论研究的比较深入。
高分子溶液特点
高分子溶液特点
高分子溶液是指由高分子物质(聚合物)溶解在溶剂中形成的混合物。
它具有以下特点:
1. 高分子溶液的粘度较高:高分子溶液中的聚合物分子量较大,分子间的相互作用力较强,因此溶液的粘度较高。
这也是高分子溶液在实际应用中常被用作润滑剂、黏合剂等的原因之一。
2. 高分子溶液的流变性能复杂:高分子溶液的流变性能是指其在外力作用下的变形和流动行为。
由于聚合物分子的特殊结构和形态,高分子溶液的流变性能常常呈现出非牛顿流体的特点,即其流动性随剪切速率的改变而变化。
3. 高分子溶液的溶解度有限:由于溶剂与聚合物分子之间的相互作用力,高分子溶液的溶解度有限。
当聚合物分子量较大时,其在溶剂中的溶解度会进一步降低。
这也是高分子溶液在制备过程中需要控制溶解条件的重要原因之一。
4. 高分子溶液的稳定性较低:由于高分子溶液中的聚合物分子具有较大的分子量和较强的相互作用力,所以高分子溶液的稳定性较低。
在外界条件的变化下,高分子溶液容易发生相分离、凝胶化等现象,从而影响其性能和应用。
5. 高分子溶液的性能可调控性强:高分子溶液的性能可以通过改变聚合物分子量、溶液浓度、溶剂选择等方式进行调控。
这使得高分
子溶液能够应用于各种不同的领域,如涂料、纺织品、药物传递系统等。
总结起来,高分子溶液具有粘度高、流变性能复杂、溶解度有限、稳定性较低和性能可调控性强等特点。
这些特点使得高分子溶液在材料科学、化学工程、生物医学等领域具有广泛的应用前景。
高分子的溶液性质
❖ 实际增塑剂大多数兼有以上两种效应。增塑剂不仅 降低了Tg ,从而在室温下得到柔软的制品;增塑剂 还降低了Tf ,从而改善了可加工性。
Logo
选择增塑剂主要应考虑以下几个方面:
(1)互溶性,选择原则与溶剂的选择一样。 (2)增塑效率。能显著降低玻璃化温度Tg和流
动温度Tf,提高产品弹性、耐寒性、抗冲击强 度等。 (3)耐久性。包括耐老化、耐光、耐迁移、耐 抽出等性能。 (4)其他性能(稳定性、安全。无毒。价格合 适等)。
Logo
❖利用外加增塑剂来改进聚合物成型加工及 使用性能的方法通常称为外增塑。对有些 聚合物如一些结晶性聚合物和极性较强的 聚合物,外增塑效果不好,可采用化学的 方法进行增塑,即在高分子链上引入其它 取代基或支链,使结构破坏,链间相互作 用降低,分子链变柔,易于活动,这种方 法称为内增塑。
二、纺丝溶液
2、极性增塑剂─极性聚合物体系
Logo
❖ 主要靠增塑剂的“极性替代作用”:增塑剂利用其 极性基团与聚合物分子中的极性基团的相互作用来 取代原来的聚合物-聚合物间的相互作用,从而破坏 了原极性高分子间的物理交联点,使链段运动得以 实现。因此使高聚物玻璃化温度降低值△Tg 与增塑剂 的摩尔数n成正比,与其体积无关:△Tg =βn。
Logo
➢ 干法:由喷丝头喷出液体细流,进入热空气套筒, 使细流中的溶剂遇热汽化,蒸气被热空气带走,高 聚物凝固成纤维。
第三章 高分子的溶液性质.
第三章高分子的溶液性质高聚物以分子状态分散在溶剂中所形成的均相混合物称为高分子溶液,它是人们在生产实践和科学研究中经常碰到的对象。
高分子溶液的性质随浓度的不同有很大的变化。
就以溶液的粘性和稳定性而言,浓度在1%以下的稀溶液,粘度很小而且很稳定,在没有化学变化的条件下其性质不随时间而变。
纺丝所用的溶液一般在15%以上,属于浓溶液范畴,其粘度较大,稳定性也较差,油漆或胶浆的浓度高达60%,粘度更大。
当溶液浓度变大时高分子链相互接近甚至相互贯穿而使链与链之间产生物理交联点,使体系产生冻胶或凝胶,呈半固体状态而不能流动。
如果在高聚物中加入增塑剂,则是一种更浓的溶液,呈固体状,而且有—定的机械强度。
此外能相容的高聚物共混体系也可看作是一种高分子溶液。
高分子的溶液性质包括很多内容:热力学性质:溶解过程中体系的焓、熵、体积的变化,高分子溶液的渗透压,高分子在溶液中的分子形态与尺寸,高分子与溶剂的相互作用,高分子溶液的相分离等;流体力学性质:高分子溶液的粘度、高分子在溶液中的扩散和沉降等;光学和电学性质:高分子溶液的光散射,折光指数,透明性,偶极矩,介电常数等。
本章将着重讨论高分子溶液的热力学性质和流体力学性质。
第一节高聚物的溶解3.1.1高聚物溶解过程的特点※高聚物的溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。
对于交联的高聚,只能停留在溶胀阶段,不会溶解。
※溶解度与高聚物的分子量有关,分子量大的溶解度小,对交联高聚物来说,交联度大的溶胀度小,交联度小的溶胀度大。
※晶态高聚物的溶解比非晶态高聚物要困难得多:非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。
晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难。
3.1.2 高聚物溶解过程的热力学解释溶解过程是溶质分子和溶剂分子互相混合的过程,在恒温恒压下,这种过程能自发进行的必要条件是Gibbs自由能的变化△F<0。
高分子溶液中的流体流动特性
高分子溶液中的流体流动特性引言高分子溶液是指在溶剂中溶解的高分子物质,其具有特殊的流动特性。
高分子溶液的流动特性研究对于理解高分子溶液的性质以及应用于工业生产和科学研究中具有重要意义。
本文将介绍高分子溶液中的流体流动特性,并探讨其在不同条件下的变化规律。
高分子溶液的流动行为高分子溶液中的流动行为受到多种因素的影响,包括高分子的分子量、浓度、溶剂的性质以及温度等。
在高分子溶液中,高分子链的扩展和流动引起了流变性质的变化。
高分子链的扩展高分子溶液中的高分子链存在不同的构象,包括缠绕、拉直和伸展等。
当高分子链在流动中受到剪切力时,链的构象会发生改变,并导致高分子溶液的流动特性的变化。
流变曲线高分子溶液的流变曲线描述了溶液在外力作用下的应变和应力之间的关系。
常见的流变曲线包括剪切应力-剪切速率曲线和应力-应变曲线。
通过分析流变曲线可以获得高分子溶液的黏度、弹性模量和黏弹性等流动特性。
布洛赫方程和弗拉奇方程布洛赫方程和弗拉奇方程是描述高分子溶液流动行为的数学模型。
布洛赫方程适用于低剪切应力下的流动,其中考虑了高分子链的扩展和沙龙机制。
弗拉奇方程适用于高剪切应力下的流动,其中考虑了高分子链的断裂和再组合。
高分子溶液流动特性的影响因素高分子溶液的流动特性受到多种因素的影响,以下是几个常见的影响因素:高分子的分子量高分子的分子量是影响高分子溶液流动特性的重要因素之一。
一般来说,高分子的分子量越大,溶液的粘度越高,流动性变差。
这是因为高分子链的扩展和流动需要消耗更多的能量。
高分子的浓度高分子溶液中高分子的浓度也会影响流动特性。
当高分子浓度较低时,高分子链之间的相互作用较弱,溶液较为稀薄,流动性较好。
当高分子浓度较高时,高分子链之间的相互作用增强,溶液变得较为粘稠,流动性变差。
溶剂的性质溶剂的性质对高分子溶液的流动特性也有影响。
不同的溶剂对高分子链的溶解能力不同,这会影响高分子链的构象和流动行为。
例如,极性溶剂和非极性溶剂对高分子的影响不同。
第三章_高分子的溶液性质
高分子物理 第三章高分子的溶液性质
16
11
多媒体动画应用示例:溶解与溶胀
高分子物理 第三章高分子的溶液性质
17
(二)高聚物溶解过程的热力学解释
溶解过程是溶质和溶剂分子的混合过程,在恒温恒压下, 过程能自发进行的必要条件是混合自由能ΔGm<0,即:
Fm H m TSm 0
(3-1)
⑥高分子溶解过程比小分子缓慢的多。
高分子物理 第三章高分子的溶液性质 9
4. 本章学习的主要内容
一、高分子的溶解和溶胀 二、高分子稀溶液的热力学理论 三、高分子溶液的相平衡和相分离 四、高分子浓溶液的性质
高分子物理 第三章高分子的溶液性质
10
3.1 聚合物的溶解过程和溶剂选择 溶解
溶质分子通过分子扩散与溶剂分子均匀混合成为分子分散 的均相体系。
②高分子溶解—-沉淀是热力学可逆平衡;胶体则为变 相非平衡,不能用热力学平衡,只能用动力学方法进行研究。
③高分子溶液的行为与理想溶液的行为相比有很大偏离。 原因:高分子溶液的混合熵比小分子理想溶液混合熵大 很多。
高分子物理 第三章高分子的溶液性质
8
④高分子溶液的粘度比小分子纯溶液要大得多, 浓度 1%~2%的高分子溶液粘度比纯溶剂大0.25~0.5% 粘度 为纯溶剂的15~20倍。 例5%的NR+苯为冰冻状态 原因:高分子链虽然被大量溶剂包围,但运动仍有相当 大的内摩擦力。 ⑤溶液性质有在分子量依赖性,而高分子的分子量多分 散性,增加了研究的复杂性。
26
3. 广义酸碱作用原则(溶剂化原则)
溶剂化作用: 是指溶质和溶剂分子之间的作用力大于溶质分 子之间的作用力,以致使溶质分子彼此分离而 溶解于溶剂中。 一般来说,溶解度参数相近原则适用于判断非极性或 弱极性非晶态聚合物的溶解性,若溶剂与高分子之间有强 偶极作用或有生成氢键的情况则不适用。例如聚丙烯腈的 δ=31.4,二甲基甲酰胺的δ=24.7,按溶解度参数相近 原则二者似乎不相溶,但实际上聚丙烯腈在室温下就可溶 于二甲基甲酰胺,这是因为二者分子间生成强氢键的缘故。 这种情况下,要考虑广义酸碱作用原则。
简述高分子溶液与溶胶剂区别
简述高分子溶液与溶胶剂区别1 高分子溶液与溶胶剂的基本概念高分子溶液和溶胶剂都是化学中常用的概念,尤其是在高分子材料研究中更为重要。
高分子溶液是指高分子在溶剂中形成的溶液体系。
在这种体系中,高分子链与溶剂分子间发生相互作用,形成一种稳定的溶液体系。
而溶胶剂则是指一种介于晶体和溶液形态之间的体系。
在这种状态下,溶剂和溶质分子都非常稳定地存在于一定的体积内,但是它们并没有完全溶解和混合在一起。
2 高分子溶液和溶胶剂的性质与特点高分子溶液和溶胶剂都具有一些独特的性质和特点。
1. 高分子溶液的分子量较大,通常在几万到几百万之间;而溶胶剂中的溶质分子较小,通常在几百到几千之间。
2. 高分子溶液的物理性质与其分子量密切相关,比如黏度、溶解度、热力学性质等,而溶胶剂的物理性质则比较复杂,包括了介于晶体和溶液状态的一系列特征。
3. 高分子溶液的结构和性质受到其分子量、容积、分布、溶剂特性、浓度等多种因素的影响;而溶胶剂的结构和性质则主要受到其组成和制备条件的影响。
3 高分子溶液和溶胶剂的制备方法及应用高分子溶液的制备方法有溶液聚合法、浸润法、溶液共混法等多种。
这些方法都是通过溶剂与高分子链的相互作用来制备高分子溶液。
高分子溶液的应用广泛,包括在医药、食品、化工、环保、材料等领域。
而溶胶剂则主要通过溶胶凝胶法、溶胶膜法、微乳液法等方法制备。
通常溶胶剂的应用更多地涉及到材料科学和技术领域,比如用于制备纳米材料、催化剂、传感器等。
4 结语高分子溶液和溶胶剂在化学研究和工业应用中都有着非常重要的地位。
虽然它们具有不同的性质、制备方法和应用范围,但是它们的本质都是基于溶质和溶剂之间的相互作用来实现的。
随着科学技术的不断发展,高分子溶液和溶胶剂的研究和应用也将越来越重要。
高分子溶液的叙述
高分子溶液的叙述高分子溶液是指由高分子聚合物和溶剂组成的体系。
高分子溶液具有多种物理和化学特性,广泛应用于材料科学、生物医学、环境科学等领域。
高分子溶液的形成是由于高分子聚合物的溶解能力与溶剂相结合。
在高分子溶液中,高分子聚合物以线性、支化或交联的形式存在。
溶剂可以是水、有机溶剂或离子液体等。
高分子溶液的性质受到多种因素的影响,包括高分子聚合物的结构、分子量、溶剂选择、浓度等。
高分子溶液的浓度是指单位体积内高分子聚合物的质量。
高分子溶液的浓度可以影响其物理性质,如黏度、流变性质和溶解度。
较高的浓度通常会导致高分子溶液的黏度增加,使其流动性下降。
此外,高分子溶液的浓度也会影响其溶解度,即高分子溶液中可以溶解的高分子聚合物的最大量。
高分子溶液的黏度是指其内部阻力对剪切应力的抵抗能力。
高分子溶液的黏度与高分子聚合物的分子量和浓度有关。
较高的分子量和浓度通常会导致高分子溶液的黏度增加。
高分子溶液的黏度对于涂料、胶黏剂、液态电子材料等应用具有重要意义。
高分子溶液的流变性质是指在外力作用下的变形行为。
高分子溶液通常表现出剪切稀化或剪切增稠的特性。
剪切稀化是指在剪切应力作用下,高分子溶液的黏度随剪切速率的增加而降低。
剪切增稠则相反,即高分子溶液的黏度随剪切速率的增加而增加。
这种流变特性可以应用于润滑剂、液态电子材料等领域。
高分子溶液还可以在溶液中形成凝胶结构。
凝胶是指高分子聚合物在溶剂中形成三维网络结构的体系。
凝胶具有固体的强度和液体的流动性。
凝胶的形成可以通过多种方式实现,如温度变化、pH值变化、离子浓度变化等。
凝胶在生物医学领域的应用非常广泛,如人工皮肤、药物释放系统等。
高分子溶液是一种重要的体系,具有多种物理和化学特性。
它在材料科学、生物医学、环境科学等领域有着广泛的应用前景。
研究高分子溶液的性质和行为,对于深入理解高分子材料的性能和开发新的应用具有重要意义。
高分子溶液特点
高分子溶液特点高分子溶液是指由高分子聚合物和溶剂组成的混合物。
高分子溶液具有以下特点:1. 高分子溶液具有高粘度。
由于高分子聚合物分子量大,溶液中高分子链的数量较多,因此高分子溶液的粘度较高。
这使得高分子溶液在流动时阻力较大,流动性较差。
2. 高分子溶液具有高浓度。
高分子溶液中高分子聚合物的含量较高,溶液的浓度较大。
高浓度的高分子溶液在溶剂中形成较为稠密的网络结构,使得溶液的物理性质发生明显变化。
3. 高分子溶液具有非牛顿流动性质。
高分子溶液的流动性质不符合牛顿流体的流动规律,即剪切应力与剪切速率成正比。
高分子溶液的流动性质受到溶液浓度、分子量、分子形态等因素的影响,其流动性质随剪切速率的变化而变化。
4. 高分子溶液具有渗透压效应。
高分子溶液中高分子聚合物的存在会导致溶液的渗透压增加。
渗透压是溶液中溶质分子浓度的一种表现形式,高分子聚合物的溶液具有较高的渗透压,可以引起溶剂分子的流动,产生渗透现象。
5. 高分子溶液具有胶溶性。
高分子聚合物在溶剂中可以形成胶体溶液,即高分子溶液中高分子链相互交织形成三维网络结构。
高分子溶液的胶溶性使得其具有一定的黏弹性和凝胶特性。
6. 高分子溶液的性质受溶剂的选择影响较大。
不同的溶剂对高分子溶液的物理性质和溶解度有着显著影响。
溶剂的选择可以改变高分子溶液的粘度、流动性、溶解度等性质。
7. 高分子溶液的性质可通过调控溶液中高分子聚合物的分子量、浓度和分子结构来改变。
高分子聚合物的分子量越大,溶液的粘度越高;溶液中高分子聚合物的浓度越大,溶液的黏弹性越明显;高分子聚合物的分子结构不同,溶液的流动性质和凝胶特性也会有所不同。
总结起来,高分子溶液具有高粘度、高浓度、非牛顿流动性质、渗透压效应、胶溶性等特点。
这些特点使得高分子溶液在许多领域具有广泛应用,如涂料、胶黏剂、医药、食品等。
通过合理调控高分子聚合物的性质和溶液条件,可以实现高分子溶液的特定应用需求。
高分子物理第三章要点
_
Cl
C
H
O
实际上溶剂的选择相当复杂,除以上原则外,还要考虑 溶剂的挥发性,毒性,溶液的用途,以及溶剂对制品性能的 影响和对环境的影响等。
3.2 高分子稀溶液的热力学分析
小分子的理想溶液:
符合拉乌尔定律:P1=P10x1;△HM=0;△VM=0; △SM=-k[N1lnx1+N2lnx2]=-R[n1lnx1+ n2lnx2] 其中:N1和N2分别为溶剂和溶质的分子数;n1和n2分别 为溶剂和溶质的摩尔数; x1和x2分别为溶剂和溶质的摩尔分数;K为波尔兹曼常数; R为气体常数;
SO2OH COOH C6 H 4OH CHCN
CHNO2 COHNO2 CH 2Cl CHCl
下列基团为亲核基团(按亲合力大小排序):
CH 2 NH 2 C6 H 4OH CON (CH3 )2 CONH PO4
CH 2COCH2 CH 2OCOCH2 CH 2OCH2
π/ c对c作图
渗透压法测得的分子量是数均分子量 M n ,而且是绝对 分子量。这是因为溶液的渗透压是各种不同分子量的大分 子共同贡献的。其测量的分子量上限取决于渗透压计的测 量精度,下限取决于半透膜的大孔尺寸,膜孔大,很小的 分子可能反向渗透。
理想溶液中溶剂化学位:△μ1 =RTlnx1 = - RTx2
高分子溶液中溶剂化学位由两项组成:第一项是理想
溶液的化学位,第二项相当于非理想部分,用符号
△μ1E表示,称为溶剂的超额化学位:
超额化学位△μ
△ μ 1 E = △ H 1 E + △ S1 E 引入两个参数:κ1称为热参数, ψ1称为熵参数。 κ1-ψ1 = x1-1/2 定义参数:Flory温度θ=κ1 T/ψ1;; 高分子链由于溶剂化而扩张,因而还可以用一个参数称为扩张因子(或溶胀因子) 来表示高分子链扩张的程度。 Flory-Krigbaum从理论上导出
高分子溶液剂
高分子的渗透压大小与高分子溶液 的浓度有关:
π/C = RT/M = BC
π — 渗透压; C — 高分子的浓度; R — 气体常数; T — 绝对温度; M — 分子量; B — 特定常数
高分子溶液的性质
3. 高分子溶液的粘度与分子量
高分子溶液的制备
羟丙基甲基纤维素这一类的聚合物, 在冷水中比在热水中更易溶解,则应 先用80~90℃的热水急速搅拌,使其 充分分散,然后用冷水使其溶胀、分 散及溶解。
高分子溶液的制备
淀粉遇水立即膨胀,但无限溶胀过 程必须加热至60~70℃才能完成,即 形成淀粉桨。
胃蛋白酶等高分子药物,其有限溶胀 和无限溶胀过程都很快,需将其自然 溶胀后再搅拌可形成溶液,如将之撒 在水面后立即搅拌则形成团块,给制 备过程带来困难。
天然高分子材料
1. 醋酸纤维素(Cellulose acetate, CA) 2. 醋酸纤维素酞酸酯(cellulose acetate
phthalate,CAP) 3. 羧甲基纤维素钠(carboxymethyl
cellulose sodium, CMC-Na) 4. 甲基纤维素(methylcellulose, MC) 5. 乙基纤维素(ethylcellulose, EC) 6. 羟丙基纤维素(hydroxypropylcellulose,
第四节 高分子溶液剂
高分子溶液剂系指高分子化合物溶解于 溶剂中制成的均匀分散的液体制剂。
高分子溶液剂以水为溶剂,称为亲水性 高分子溶液剂,或胶桨剂。以非水溶剂 制备的高分子溶液剂,称为非水性高分 子溶液剂。
高分子溶液剂属于热力学稳定体系。
高分子溶液的性质
1.高分子的荷电性
高分子物理-高分子的溶液性质
• 一、高分子溶液:高聚物以分子状态分散在溶剂中所形成
的均相混合物称为高分子溶液。
• 稀溶液:浓度在1%以下的,粘度很小而且很稳定,
在没有化学变化的条件下其性质不随时间而变。
• 亚浓溶液:高分子线团互相穿插交叠,整个溶液中
的链段分布趋于均一。
• 浓溶液:纺丝溶液,浓度一般在15%以上,其粘度
• ② δ1 和δ2 越接近, △H 越小,则越能满
足 △FM <0的条件,能自发溶解
4. 非极性聚合物溶度参数的确定
• ①查表 • ②实验测定——稀溶液粘度法 • ③计算(F:基团的摩尔引力常数)
Fi Fi
2
i
V
i M0
V——重复单元的摩尔体积 M0——重复单元的分子量 ρ——密度
4. 高分子溶液与理想溶液的偏差
• ①高分子间、溶剂分子间、高分子与溶剂分
子间的作用力不可能相等,因此溶解时,有 热量变化 。
• ②由于高分子由聚集态→溶剂中去,混乱度
变大,每个分子有许多构象,则高分子溶液 的混合熵比理想溶液要大得多。
二、 Flory-Huggins高分子溶液理论
Flory和Huggins从液体的似晶格模型出发,用 统计热力学的方法,推导出了高分子溶液的 混合熵,混合热和混合自由能的关系式。
• 推导中的假设:
• ①溶液中分子的排列也象晶体一样,是晶格
排列,每个溶剂分子占一个格子,每个高分 子占有相连的x个格子。所有高分子具有相 同的聚合度
• ②高分子链是柔性的,所有构象具有相同的
能量。
• ③溶液中高分子链段是均匀分布的(即链段
占有任意一个格子的几率相等)
3.2.1. 高分子的混合熵 SM
什么是高分子化合物溶液特性
什么是高分子化合物溶液特性
高分子化合物溶液具有多种特性,主要包括以下几点:
1. 高分子化合物结构中某些基团因解离而荷电,可以带正电或负电。
2. 亲水性高分子溶液有较高的渗透压。
3. 高分子溶液的粘度与分子量有关。
4. 高分子溶液含有大量的亲水基,能与水形成牢固的水化膜,阻止分子间的凝聚,使溶液处于稳定状态。
5. 高分子化合物在形成溶液时,要经过溶胀的过程,即溶剂分子慢慢进入卷曲成团的高分子化合物分子链空隙中去,导致高分子化合物舒展开来,体积成倍甚至数十倍的增长。
如需更多信息,建议查阅相关书籍或咨询化学专业人士。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在一定温度下,离子进出半透 膜的速度分别与膜内外两侧Na+ 和CI-浓度的乘积成正比。即
V进 K 进 c(Na ) c (CI 外 外) , ,
内 内 V K c(Na ) c(CI , ,) 出 出
达膜平衡时,V 进 V 出, 且 K进 K出, 则:
例如天然橡胶单位(C H )化学式: (C5H8 )n ,又如聚糖类高分子化合 物是由许多个葡萄糖单位(C H O ) 连接而成,通式可写为 (C6H10O5 )n 高分子化合物是不同聚合度的同系 物分子组成的混和物,它的聚合度 和相对分子质量指的都是平均值。
5 8
6
10
5
各种高分子化合物分子链的长度 以及链节的连接方式并不相同,因 而有线状和分枝状等类型。不少高 聚物常交联聚合成分枝状。
果是造成膜两侧电解质离子不
均匀分布。
膜平衡是生理上常见的一种现 象。 例如: 细胞膜相当于半透膜,细胞 内的蛋白质和膜外体液中的 电解质离子就建立了膜平衡。
第四节 高分子溶液
一、高分子化合物的概念 高分子化合物(大分子化合物): 相对分子量在1万以上,甚至高达 几百万的物质。
天然高分子:蛋白质,核酸,糖原等… 生物高分子 合成高分子:聚乙烯塑科,合成纤维…
高分子化合物一般具有碳链,碳 链由大量的一种或多种小的结构单 位连接而成。 链节:每个结构单位 聚合度:链节重复的次数,以n表示。
c(Na , 外) c(CI , 外) c(Na , 内) c(CI , 内 )
膜平衡的表达式。
若将平衡浓度代入式(4.2),得:
(c1 X) (c2 X)2 c2 X c2 2 X 或 c1 2c2 c 2 c1 2c2
(2-3)
从式(4.3)可知,达膜平衡时,膜 外Na+,CI-进入膜内的浓度X,或 X 膜外Na+、CI-进入膜内的分数 c (也称扩散分数),取决于膜内高 分子电解质和膜外电解质的最初浓 度c1和 c2。
2
c2 X 0, 当c1 >c2时, c1 2c2
2
膜内高分子电解质溶液浓度很 大时,膜外电解质离子几乎不 向膜内渗透。
当 c2 c1 时,
c2 1 X c2 c1 2c2 2
2
膜外 NaCI 溶液最初浓度很大,
膜外电解质离子约有一半渗入
膜内。在膜的一侧存在有不能
透过膜的ቤተ መጻሕፍቲ ባይዱ离子 R ,其结
高分子化合物的性质与它的形态 有密切关系。高分子链具有柔顺性 容易弯曲成无规则的线团状,导致 形态不断改变。又具有一定弹性。 高分子链的柔顺性越大,它的弹性 就越强(如橡胶)。
二、高分子溶液的特性
高分子化合物能自动地分散到 适宜的分散介质中形成均匀的溶 液。属于均相、稳定休系。具有 特殊的性质。
高分子溶液的粘度受许多因素的 影响,如浓度、温度、时间等。高 分子溶液和溶胶的主要性质的异同 点归纳于表4-2中。
表4-2 高分子溶液和溶胶性质的比较
三、高分子溶液对溶胶的保护作用 保护作用:在一定量的溶胶中加 入足量的高分子溶液,可以显著地 增强溶胶的稳定性,当受到外界因 素作用时(如加入电解质),不易 发生聚沉。
(一)稳定性较大 高分子溶液比溶胶稳定,在无 菌、溶剂不蒸发的情况下,可以 长期放置不沉淀。在稳定性方面 它与真溶液相似。
高分子化合物具有许多亲水基团, 如 OH、 COOH、 NH2,当高分 子化合物溶解在水中时,在其表面上 牢固地吸引着许多分子形成一层水化 膜。
(二)粘度较大 高分子溶液的粘度比真溶液或 溶胶大得多。由于高分子化合物 具有线状或分枝状结构,加上高 分子化合物高度溶剂化,故粘度 较大。
保护作用在生理过程中很重要。 血液碳酸钙,磷酸钙等微溶性的无 机盐类,以溶胶的形式存在,含量 比在水中溶解度提高了近5倍,不聚 沉,但当发生某些疾病使血液中的 某些蛋白质减少,是形成各种结石 的原因之一。
医药上用于胃肠造影的 硫酸钡合剂,阿拉伯胶对 硫酸钡溶胶起保护作用。
四 膜平衡
膜平衡和或董南平衡(Donnan) : 因高分子电解质离子的存在,引 起的电解质离子不均匀分布在膜两 侧的平衡状态。