简述分治法求解的基本步骤
分治法解决问题的步骤
分治法解决问题的步骤一、基础概念类题目(1 - 5题)题目1:简述分治法解决问题的基本步骤。
解析:分治法解决问题主要有三个步骤:1. 分解(Divide):将原问题分解为若干个规模较小、相互独立且与原问题形式相同的子问题。
例如,对于排序问题,可将一个大的数组分成两个较小的子数组。
2. 求解(Conquer):递归地求解这些子问题。
如果子问题规模足够小,则直接求解(通常是一些简单的基础情况)。
对于小到只有一个元素的子数组,它本身就是有序的。
3. 合并(Combine):将各个子问题的解合并为原问题的解。
在排序中,将两个已排序的子数组合并成一个大的有序数组。
题目2:在分治法中,分解原问题时需要遵循哪些原则?解析:1. 子问题规模更小:分解后的子问题规模要比原问题小,这样才能逐步简化问题。
例如在归并排序中,不断将数组对半分,子数组的长度不断减小。
2. 子问题相互独立:子问题之间应该尽量没有相互依赖关系。
以矩阵乘法的分治算法为例,划分后的子矩阵乘法之间相互独立进行计算。
3. 子问题与原问题形式相同:方便递归求解。
如二分查找中,每次查找的子区间仍然是一个有序区间,和原始的有序区间查找问题形式相同。
题目3:分治法中的“求解”步骤,如果子问题规模小到什么程度可以直接求解?解析:当子问题规模小到可以用简单的、直接的方法(如常量时间或线性时间复杂度的方法)解决时,就可以直接求解。
例如,在求数组中的最大最小值问题中,当子数组只有一个元素时,这个元素既是最大值也是最小值,可以直接得出结果。
题目4:分治法的“合并”步骤有什么重要性?解析:1. 构建完整解:它将各个子问题的解组合起来形成原问题的解。
例如在归并排序中,单独的两个子数组排序好后,只有通过合并操作才能得到整个数组的有序排列。
2. 保证算法正确性:如果合并步骤不正确,即使子问题求解正确,也无法得到原问题的正确答案。
例如在分治算法计算斐波那契数列时,合并不同子问题的结果来得到正确的斐波那契数是很关键的。
分治法的个人总结
分治法是一种算法设计策略,它将问题划分为较小的子问题,然后通过解决子问题来解决原始问题。
个人总结如下:
分解问题:分治法首先将原始问题分解为规模较小的子问题。
这可以通过递归地将问题划分为更小的部分来实现。
分解问题的关键是确保每个子问题都是原始问题的规模的一个子集。
解决子问题:每个子问题都可以通过相同的算法来解决。
递归地应用相同的算法,直到达到基本情况,也就是子问题可以直接解决的规模。
合并解决方案:一旦解决了子问题,就将它们的解合并起来,形成原始问题的解。
这通常涉及对子问题的解进行组合,以获得原始问题的最终解。
适用性:分治法适用于那些可以自然地分解为子问题的问题。
它在解决许多常见问题时非常有效,如排序、搜索、计算最大值和最小值、归并等。
时间复杂度:分治法通常在每个子问题上执行相同的操作,并且子问题的数量通常是对数级别的。
因此,分治算法的时间复杂度通常可以表示为递归深度的多项式。
常见的时间复杂度包括O(nlogn)和O(n^2)。
并行化:由于分治法的子问题通常是相互独立的,因此它很适合并行化处理。
可以同时处理多个子问题,然后将它们的解合并起来。
这使得分治法在并行计算中具有较好的可扩展性。
总的来说,分治法是一种强大的算法设计策略,它通过将问题分解为子问题并递归地解决它们,然后将子问题的解合并起来,从而解决了许多复杂的问题。
它在算法设计和并行计算中都具有广泛的应用。
用分治法实现矩阵乘法总结归纳
用分治法实现矩阵乘法总结归纳一、概述分治法是一种用来处理复杂问题的数学方法,它包括将一个难以处理的问题分解成若干个分支问题,再用这些子问题的解逐一求解原问题的过程。
分治法通常用在递归算法中,可以帮助解决一些复杂的问题。
矩阵乘法是一种基本的数学操作,在计算机科学领域中有广泛的应用。
由于基本的矩阵乘法算法的算法时间复杂度为O(n ^ 3),不支持并行的,存在计算效率较低的缺点。
因此,分治法可以有效地提高运算效率,达到O(n ^ 2.37)的地步。
二、实现步骤1、分解:矩阵A的大小为M*N,矩阵B的大小为N*P,将矩阵A 和B分解为m*n矩阵A1,A2,A3,A4,B1,B2,B3,B4,其中m=M/2,n=N/2,P=P/2。
2、计算:计算C的7个矩阵块C11、C12、C21、C22、C31、C32、C41,其中C11=A1*B1,C12=A1*B2,C21=A2*B1,C22=A2*B2,C31=A3*B3,C32=A3*B4,C41=A4*B3。
3、合并:将计算结果合并成一个M*P的矩阵C,C=C11+C12+C21+C22+C31+C32+C41。
4、递归:对矩阵A1和B1重复以上步骤,直到矩阵大小不超过阈值,最后使用基本矩阵乘法求解即可。
三、优点1、分治法能够有效地提高矩阵乘法的计算效率,达到O(n ^ 2.37)的地步。
2、通过分治法并行计算,可以有效地降低矩阵乘法的计算时间。
3、分治法的算法更加简洁,容易理解,更容易实现。
四、缺点1、分治法的子问题的解并不是独立的,所以需要计算额外的开销来合并结果。
2、分治法是一种递归的方法,容易发生栈溢出的情况。
3、分治法的算法仍然依赖于基本的矩阵乘法算法,提升的效率并不明显。
分治法的基本思想
七、分治法1、分治法的基本思想任何一个可以用计算机求解的问题所需的计算时间都与其规模N有关。
问题的规模越小,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算;n=2时,只要作一次比较即可排好序;n=3时只要作3次比较即可,…。
而当n较大时,问题就不那么容易处理了。
要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
如果原问题可分割成k个子问题2、分治法的适用条件分治法所能解决的问题一般具有以下几个特征:(1)该问题的规模缩小到一定的程度就可以容易地解决;(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3)利用该问题分解出的子问题的解可以合并为该问题的解;(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
3、分治法的基本步骤分治法在每一层递归上都有三个步骤:(1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;(2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;(3)合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:Divide_and_Conquer(P)if |P|≤n0then return(ADHOC(P))将P分解为较小的子问题P1、P2、…、Pkfor i←1 to kdoyi ←Divide-and-Conquer(Pi)△递归解决PiT ←MERGE(y1,y2,…,yk)△合并子问题Return(T)其中|P| 表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。
如何应用分治算法求解问题
如何应用分治算法求解问题分治算法,英文名为Divide and Conquer Algorithm,是一种高效的算法设计策略,在计算机科学中有着广泛的应用。
该算法将一个大问题分解成多个小问题,各自独立地解决,再将结果合并起来得到最终结果。
在本文中,我们将阐述如何应用分治算法求解问题,并通过几个实例来具体说明该算法的应用。
一、分治算法的原理分治算法的核心思想是将一个大问题分解成若干个小问题来解决,然后将这些小问题的解组合起来生成大问题的解。
其具体步骤如下:1. 分解:将原问题划分成若干个规模较小的子问题。
2. 解决:递归地解决每个子问题。
如果子问题足够小,则直接求解。
3. 合并:将所有子问题的解合并成原问题的解。
分治算法的主要优点在于它可以有效地缩小问题规模,从而缩短整个算法的执行时间。
另外,该算法天然适用于并行计算,因为每个子问题都是独立求解的。
二、分治算法的应用分治算法在各种领域都有广泛应用,包括数学、自然科学、计算机科学等。
以计算机科学领域为例,分治算法常常用于解决以下类型的问题:1. 排序问题2. 查找问题3. 字符串匹配问题4. 最大子序列和问题5. 矩阵乘法问题6. 图形问题下面我们将一一讲解这些问题的分治算法实现。
1. 排序问题排序问题是在一组数据中将其按指定规律进行排列的问题。
在计算机科学中,排序算法是十分重要的一类算法。
其中,分治算法由于其高效性和可并行性被广泛应用。
常用的分治排序算法包括归并排序和快速排序。
归并排序的基本思想是将待排序元素以中心点为界分成两个序列,对每个序列进行排序,然后将两个序列合并成一个有序序列;而快速排序则利用了分割的思想,通过每次选取一个元素作为“轴点”,将数组分成小于轴点和大于轴点的两部分,对这两部分分别进行快速排序。
2. 查找问题查找问题是在一组数据中寻找某个元素的问题。
分治算法在查找问题中的应用主要体现在二分查找中。
在二分查找中,我们首先将已排序的数组分成两半,在其中一半中查找目标值。
用分治法解决问题
分治法所能解决的问题具有以下几个特征: 分治法所能解决的问题具有以下几个特征:
1.该问题的规模缩小到一定的程度就可以容易地解决; 1.该问题的规模缩小到一定的程度就可以容易地解决; 该问题的规模缩小到一定的程度就可以容易地解决 2.该问题可以分解为若干个规模较小且基本相同的子问 2.该问题可以分解为若干个规模较小且基本相同的子问 题。 3.利用该问题分解出的子问题的解可以合并为该问题的 3.利用该问题分解出的子问题的解可以合并为该问题的 解;
分治策略解决问题
问题1 问题1:找出伪币
一个装有1 6枚硬币的袋子 一个装有1 6枚硬币的袋子,1 6枚硬币中有一个 枚硬币的袋子, 6枚硬币中有一个 是伪造的, 是伪造的,并且那个伪造的硬币比真的硬币要轻 一些。你的任务是找出这枚伪造的硬币。 一些。你的任务是找出这枚伪造的硬币。 为了帮助你完成这一任务, 为了帮助你完成这一任务,将提供一台可用来比 较两组硬币重量的仪器,比如天平。 较两组硬币重量的仪器,比如天平。利用这台仪 可以知道两组硬币的重量是否相同。 器,可以知道两组硬币的重量是否相同。
找金块的示例图
方法2 方法2:
n≤2,识别出最重和最轻的金块,一次比较就足够 ≤2,识别出最重和最轻的金块, 了。 n>2,第一步,把这袋金块平分成两个小袋A和B。 第一步,把这袋金块平分成两个小袋A 第二步,分别找出在A 中最重和最轻的金块。 第二步,分别找出在A和B中最重和最轻的金块。设 A中最重和最轻的金块分别为HA 与LA,以此类推, 中最重和最轻的金块分别为HA LA,以此类推, B中最重和最轻的金块分别为HB 和LB。第三步, 中最重和最轻的金块分别为HB LB。第三步, 通过比较HA HB,可以找到所有金块中最重的; 通过比较HA 和HB,可以找到所有金块中最重的; 通过比较LA LB,可以找到所有金块中最轻的。 通过比较LA 和LB,可以找到所有金块中最轻的。 在第二步中, 则递归地应用分而治之方法。 在第二步中,若n>2,则递归地应用分而治之方法。
分治法和动态规划
分治法和动态规划⼀.分治法 1.分治法的设计思路是,将⼀个难以直接解决的⼤问题,分割成⼀些规模⽐较⼩的相同的⼩问题,以便各个击破,分⽽治之。
2.分治法所能解决的问题的⼀般有以下的特征: (1)该问题的规模缩⼩到⼀定的程度就可以容易解决(绝⼤多数的问题都满⾜) (2)该问题是可以分解为若⼲个规模较⼩的相同的问题,即改问题具有最优⼦结构性质(前提,也是绝⼤多数的问题都满⾜的) (3)利⽤该问题分解出的字问题的解可以合并该问题(关键) (4)该问题分解出来的各个⼦问题是相互独⽴的(分治法的效率) (如果具备⼀⼆条,但不具备第三条,可以考虑使⽤贪⼼算法或动态规划) 3.分治法的基本步骤: (1)分解:将原问题分解为若⼲个规模较⼩、互相独⽴、与原问题形式相同的⼦问题。
(2)解决:若⼲问题规模较⼩⽽容易被解决则直接解,否则递归地解各个⼦问题 (3)合并:将各个⼦⽂题的解合并成原问题的解 (记住不是所有的分治法逗逼简单的蛮⼒法简单) 4.分治法的时间性能的与直接计算最⼩问题的时间、合并⼦⽂题解的时间以及⼦问题的个数有关: c n=1T(n)= aT(n/b)+cn^k n>1(其中a,b.c.k都是常数。
这个递推描述了⼤⼩为n的原问题分解为若⼲⼤⼩为n/b的⼦问题,其中a个⼦问题需求求解,⽽cn^k是合并各个⼦问题的解所需要的⼯作量) 当⼦问题的规模之和⼩于原问题的规模时,算法的时间复杂度可达到0(n).⼆.动态规划1.简单的说就是在解决多阶决策的过程中动态的选择最优的过程的⽅法就是动态规划。
2.与分治法的区别:⼀般来说⼦问题不是互相独⽴的,可以理解为是分治法的⼀种改进,不需要求解已有解的⼦问题(已有解的⼦问题⽤表来记录)3.适⽤条件:(1)最优化原理(最优⼦结构):⼀个最优策略的⼦策略总是最优的---->局部最优,整体最优(2)⽆后效性:每个状态都是过去历史的⼀个完整的总结(3)⼦问题的重叠性:⾼效性(最优⼦结构:当问题的最优解包含其⼦问题的最优解时,称该问题具有最有⼦结构;重叠⼦问题是⼀个递归解决⽅案⾥包含的⼦问题虽然很多,但不同⼦问题很少。
算法复习题
一、选择题1、衡量一个算法好坏的标准是( )。
(A )运行速度快 (B )占用空间少 (C )时间复杂度低 (D )代码短2、函数n n 1032 的渐进表达式是( )。
(A )O (23n ) (B)O (3) (C )O (n 10) (D )O(2n )3、以下不可以使用分治法求解的是( )。
(A )棋盘覆盖问题 (B )选择问题 (C )归并排序 (D) 0/1背包问题4、二分搜索算法是利用( )实现的算法。
(A)分治策略 (B )动态规划法 (C)贪心法 (D )回溯法5、二分搜索算法的时间复杂性为( )。
(A )O(2n ) (B )O (n ) (C )O (n log ) (D)O (n n log )6、快速排序算法的时间复杂性为( )。
(A )O (2n ) (B)O (n ) (C )O(n log ) (D)O(n n log )7、实现大整数的乘法是利用( )的算法.(A )分治策略 (B)动态规划法 (C)贪心法 (D )回溯法8、矩阵连乘问题的算法可由( )设计实现。
(A )分支界限算法 (B)动态规划算法 (C)贪心算法 (D )回溯算法9、实现循环赛日程表利用的算法是( )。
(A )分治策略 (B )动态规划法 (C )贪心法(D )回溯法10、下列是动态规划算法基本要素的是( ).(A )定义最优解 (B )构造最优解 (C )算出最优解 (D )子问题重叠性质11、最长公共子序列算法利用的算法是( )。
(A )分治法 (B )动态规划法 (C )贪心法 (D)回溯法12、下列算法中通常以自底向上的方式求解最优解的是( )。
(A)备忘录法 (B )动态规划法 (C )贪心法 (D )回溯法13、以下不可以使用分治法求解的是( ).(A)棋盘覆盖问题 (B )选择问题 (C )归并排序 (D )0/1背包问题14、下列算法中不能解决0/1背包问题的是( )(A)贪心法 (B )动态规划 (C)回溯法 (D)分支限界法15、算法是由若干条指令组成的有穷序列,而且满足以下性质( )(A )输入:有0个或多个输入 (B)输出:至少有一个输出(C )确定性:指令清晰,无歧义 (D)有限性:指令执行次数有限,而且执行时间有限A (1)(2)(3)B (1)(2)(4)C (1)(3)(4)D (1) (2)(3)(4)16、函数32n +10nlog n 的渐进表达式是( ).A. 2n B 。
分治法求最大子段和首先将问题
分治法求最大子段和首先将问题1、基本思想:用分治法求最大子段和首先将问题划分,即将一直序列划分成长度相等的两个序列,这时会出现3种情况,即○1最大子段和在第一个序列,○2最大子段和在第二个序列和○3最大子段和在第一个序列与第二个序列之间。
然后,将3种情况的最大子段和合并,取三者之中的最大值为问题的解。
2、复杂度分析:对应划分得到的情况○1和○2,需要分别递归求解,对应情况○3,两个并列的for循环的时间复杂度是O(n),所以有递推公式为:1 n=1T(n)=2T(n/2)+n n>1所以,分治算法的时间复杂度是O(nlog2n)。
3、代码实现:#include <IOSTREAM>#include <TIME.H>#include <WINDOWS.H>#define MAX 10000using namespace std;int fzhsum(int a[],int left,int right)//分治法{int sum=0;int leftsum=0,rightsum=0;int center;int i;if(left==right){if(a[left]>0)sum=a[left];elsesum=0;}else{center=(left+right)/2;leftsum=fzhsum(a,left,center);rightsum=fzhsum(a,center+1,right);int s1=0,lefts=0;for(i=center;i>=left;i--){lefts+=a[i];if(lefts>=s1) s1=lefts;}int s2=0,rights=0;for(i=center+1;i<=right;i++){rights+=a[i];if(rights>=s2) s2=rights;}sum=s1+s2;if(sum<leftsum) sum=leftsum;if(sum<rightsum) sum=rightsum;}return sum;}void main(){int num[MAX];int i;int n;int index1,index2;LARGE_INTEGER begin,end,frequency;QueryPerformanceFrequency(&frequency);cout<<"输入整数序列大小:";//生成随机序列cin>>n;cout<<"产生的随机序列为:";srand(time(0));for (i=0;i<n;i++){if(rand()%2==0)num[i]=rand()%1000;elsenum[i]=(-1)*rand()%1000;cout<<num[i]<<" ";}cout<<"分治法求最大子段和为:";//分治法//cout<<"最大子段和:";QueryPerformanceCounter(&begin);cout<<fzhsum(num,0,n)<<endl;QueryPerformanceCounter(&end);cout<<"最大子段:";cout<<"从"<<num[index1]<<"到"<<num[index2]<<endl;cout<<"求解时间(单位:s):"<<(double)(end.QuadPart-begin.QuadPart) /frequency.QuadPart<<endl;}。
五大常用算法
五大常用算法之一:分治算法分治算法一、基本概念在计算机科学中,分治法是一种很重要的算法。
字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。
问题的规模越小,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算。
n=2时,只要作一次比较即可排好序。
n=3时只要作3次比较即可,…。
而当n较大时,问题就不那么容易处理了。
要想直接解决一个规模较大的问题,有时是相当困难的。
二、基本思想及策略分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
这种算法设计策略叫做分治法。
如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。
由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
三、分治法适用的情况分治法所能解决的问题一般具有以下几个特征:1) 该问题的规模缩小到一定的程度就可以容易地解决2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
分治法
{ tmpa[k]=a[i]; i++; k++; }
while (j<=high)
//将第2子表余下部分复制到tmpa
{ tmpa[k]=a[j]; j++; k++; }
for (k=0,i=low;i<=high;k++,i++) //将tmpa复制回a中
a[i]=tmpa[k];
free(tmpa);
QuickSort(a,s,i-1); //对左子序列递归排序
QuickSort(a,i+1,t); //对右子序列递归排序
}
}
【算法分析】快速排序的时间主要耗费在划分操作上,对长度为n的
区间进行划分,共需n-1次关键字的比较,时间复杂度为O(n)。
对n个记录进行快速排序的过程构成一棵递归树,在这样的递归树中, 每一层至多对n个记录进行划分,所花时间为O(n)。
divide-and-conquer(P)
{ if |P|≤n0 return adhoc(P);
将P分解为较小的子问题 P1,P2,…,Pk;
for(i=1;i<=k;i++)
//循环处理k次
yi=divide-and-conquer(Pi); return merge(y1,y2,…,yk); }
2,5,1,7,10, 6,9,4,3,8 顶
2,5,1,7,10
6,9,4,3,8
分解
2,5,1 7,10 6,9,4 3,8
2,5 1 7 10 6,9 4 3 8
合并
25
7,10 6 9
底 3,8
2,5
用分治法解决问题
分治法所能解决的问题具有以下几个特征:
1.该问题的规模缩小到一定的程度就可以容易地解决;
2.该问题可以分解为若干个规模较小且基本相同的子问 题。
3.利用该问题分解出的子问题的解可以合并为该问题的 解;
基本步骤
一般分为三步递归进行 1.分解:将原问题分解为若干个规模较小,相互独
分治过程
比较过程
2 2
分析
从图例可以看出,当有8个金块的时候,方法1需要 比较15-16次,方法2只需要比较10次,那么形成比 较次数差异的根据原因在哪里?
其根本原因在于方法2对金块实行了分组比较。 对于N枚金块,我可以推出比较次数的公式: 假设n是2的次幂,c(n)为所需要的比较次数。 方法1: c(n)=2n-1 方法2:c(n) = 2c(n/2 ) + 2。 由c(2)=1, 使用迭代方法可知c(n) = 3n/2 - 2。
方法1
假设袋中有n 个金块。可以用函数M a x通过n-1次比较 找到最重的金块。找到最重的金块后,可以从余下的n-1 个金块中用类似的方法通过n-2次比较找出最轻的金块。 这样,比较的总次数为2n-3。
算法如下: int max=a[1],min=a[1], i; for(i=2;i<=n;i++){ if(a[i]>max){ max=a[i]; } if(a[i]<min){ min=a[i]; } }
为了帮助你完成这一任务,将提供一台可用来比 较两组硬币重量的仪器,比如天平。利用这台仪 器,可以知道两组硬币的重量是否相同。
方法1
任意取1枚硬币,与其他硬币进行比较,若发现轻 者,这那枚为伪币。最多可能有15次比较。
分治法大整数乘法 计算过程 例子
分治法大整数乘法计算过程例子题目:深入探讨分治法大整数乘法的计算过程及示例引言在计算机科学和数学领域,分治法是一种重要的算法思想,它在解决许多复杂问题时都具有很高的效率和可行性。
其中,分治法大整数乘法就是一个典型的例子。
本文将深入探讨分治法大整数乘法的计算过程,通过详细的例子和解析,帮助读者更好地理解和掌握这一算法。
一、分治法大整数乘法的基本理念分治法是一种将问题分解成小规模子问题,然后逐个解决再合并的策略。
在大整数乘法中,采用分治法可以将两个大整数分解成较小的部分,然后通过递归计算和合并得到最终结果。
这种分解和递归的思想,有效地提高了大整数乘法的效率。
1. 分治法大整数乘法的基本步骤在使用分治法进行大整数乘法时,基本步骤如下:(1)将两个大整数分别拆分成高位和低位部分;(2)递归计算高位和低位部分的乘积;(3)将各部分乘积合并,并得到最终结果。
这种分治法的思想,使得大整数乘法的计算过程更为简洁高效。
二、分治法大整数乘法的计算过程下面我们通过一个具体的例子来演示分治法大整数乘法的计算过程。
假设有两个大整数A=1234567890,B=9876543210,我们要计算它们的乘积。
1. 将两个大整数分解我们将A和B分别拆分成高位和低位部分:A = 1234 * 1000000 + 567890B = 9876 * 1000000 + 5432102. 递归计算各部分乘积我们分别对A和B的高位和低位部分进行递归计算:C0 = 1234 * 9876C1 = 1234 * 543210 + 567890 * 9876C2 = 567890 * 5432103. 合并各部分乘积我们将各部分乘积合并成最终结果:Result = C2 * 1000000000 + (C1 - C2 - C0) * 10000 + C0通过以上计算过程,我们得到了A和B的乘积,即Result=12193263111263526900。
算法总结---最常用的五大算法(算法题思路)
算法总结---最常⽤的五⼤算法(算法题思路)算法总结---最常⽤的五⼤算法(算法题思路)⼀、总结⼀句话总结:> 【明确所求:dijkstra是求点到点的距离,辅助数组就是源点到⽬标点的数组】> 【最简实例分析:⽐如思考dijkstra:假设先只有三个点】1、贪⼼算法是什么?> 当前看来最好的选择> 局部最优解> 可能得到整体最优解或是最优解的近似解贪⼼算法(⼜称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。
也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪⼼算法不是对所有问题都能得到整体最优解,但对范围相当⼴泛的许多问题他能产⽣整体最优解或者是整体最优解的近似解。
2、贪⼼算法实例?> 求最⼩⽣成树的Prim算法:【边集中依次选取那些权值最⼩的边】> 求最⼩⽣成树的Kruskal算法:【和求最短路径有点相似:不过这⾥是求两个集合之间的距离】:【⼀维中间数组记录到当前已经选择顶点的最短距离】:【⼆维表记录每个点到每个点的最短距离】> 计算强连通⼦图的Dijkstra算法:【和最⼩⽣成树Kruskal类似】【⼆维表记录每个点到每个点的最短距离】【明确所求:dijkstra是求点到点的距离,辅助数组就是源点到⽬标点的数组】【每次从辅助数组中选择最⼩的,⽤选出的点来更新辅助数组】【最简实例分析:⽐如思考dijkstra:假设先只有三个点】> 构造huffman树的算法:【每次都选取权值⼩的两个点合成⼆叉树】Kruskal算法简述在带权连通图中,不断地在边集合中找到最⼩的边,如果该边满⾜得到最⼩⽣成树的条件,就将其构造,直到最后得到⼀颗最⼩⽣成树。
假设 WN=(V,{E}) 是⼀个含有 n 个顶点的连通⽹,则按照克鲁斯卡尔算法构造的过程为:先构造⼀个只含 n 个顶点,⽽边集为空的⼦图,若将该⼦图中各个顶点看成是各棵树上的根结点,则它是⼀个含有 n 棵树的⼀个森林。
三阶魔方还原分层法
三阶魔方还原分层法,也被称为“分治法”。
这种方法的步骤如下:
顶层十字:对于新手来说,最花时间的一个阶段是顶层十字的还原,但这也是最简单的一个步骤。
首先,要熟悉魔方的转动轨迹。
在确定底部白色以后,顶部的黄色自然就确定了,只剩下红绿橙蓝需要记住顺序。
红色为正面时背面为橙色,左边是蓝色,它的对面就是绿色。
记住这个颜色顺序后,就可以完成顶层十字。
第二层公式:完成顶层十字后,接下来是第二层的还原。
使用公式“上顺—右顺—上逆—右逆—上逆—前逆—上顺—前顺”,就可以完成第二层的还原。
第三层公式:第三层的还原涉及到起十字和四角块的还原。
首先是起十字,公式为“右逆—上逆—前逆—上顺—前顺—右顺”,接着是四角块的还原,公式为“右顺—上顺—右逆—上顺—上顺180°—右顺—右逆”。
以上就是三阶魔方还原分层法的基本步骤。
还原魔方需要耐心和练习,不断地熟悉魔方的转动轨迹和记忆公式,才能更快更好地还原魔方。
算法 分治法
13
27
38 50
55
65 49
i
j
i
j
13 27 38 49 50 55 65
2021/8/1
分治法
20
算法4.6——快速排序
void QuickSort(int r[ ], int first, int end)
{ if (first<end) { pivot=Partition(r, first, end); //问题分解,pivot是轴值在序列中的位置 QuickSort(r, first, pivot-1); //递归地对左侧子序列进行快速排序 QuickSort(r, pivot+1, end); //递归地对右侧子序列进行快速排序
66的旋转方阵
2021/8/1
分治法
8/56
4.2 排序问题中的分治法
4.2.1 归并排序 4.2.2 快速排序
2021/8/1
分治法
9
4.3.1 归并排序
二路归并排序的分治策略是: (1)划分:将待排序序列r1, r2, …, rn划分为两个 长度相等的子序列r1, …, rn/2和rn/2+1, …, rn; (2)求解子问题:分别对这两个子序列进行排 序,得到两个有序子序列; (3)合并:将这两个有序子序列合并成一个有 序序列。
//对应情况①,递归求解 rightsum=MaxSum(a, center+1, right);
//对应情况②,递归求解
2021/8/1
分治法
30
s1=0; lefts=0;
//以下对应情况③,先求解s1
for (i=center; i>=left; i--)
{
分治算法简介及习题选讲
方法一
• • • • • • • • • • • 枚举:枚举i和j,再计算Ai+Ai+1+...+Aj。程序如下: max:=a[1]; for i:=1 to n-1 do begin for j:=i to n do begin s:=0; for k:=i to j do inc(s,a[k]); if s>max then max:=s end; end; writeln(max); 时间复杂度为O(n3),当n较大时会超时。
方法四
• 跟方法三一样,首先把n个数从小到大排序,跟方法三处理方法不同的是分 别求出两个下标: 1.low(a)表示>=a的最小下标;2.high(b)表示<=b的最大下标 答案就是high(b)-low(a)+1。其中high(b)跟方法三中的num(b)求法一样。 • 计算low[a]也是采用二分法,会因要求不同程序有所变动,程序如下,其中left 或right+1最终值就是low(a): left:=1;right:=n; while left<=right do begin mid:=(left+right)shr 1; if x[mid]<a then left:=mid+1 else right:=mid-1; end实际情况,只要分析 好right=left+1和left=right的情况就能保证不出错。 • 方法四时间复杂度为O((n+m)lgn)。
方法一
• 枚举法 • 设f[x]=ax3+bx2+cx+d,从-100.00到100.00以 0.01的步长逐一枚举x并代入f[x],找出最接近0 的三个f[x],其对应的x就是答案。
分治法,动态规划及贪心算法区别
分治法,动态规划及贪心算法区别转自:/blog/1055478分治法,动态规划法,贪心算法这三者之间有类似之处,比如都需要将问题划分为一个个子问题,然后通过解决这些子问题来解决最终问题。
但其实这三者之间的区别还是蛮大的。
1.分治法分治法(divide-and-conquer):将原问题划分成n个规模较小而结构与原问题相似的子问题;递归地解决这些子问题,然后再合并其结果,就得到原问题的解。
分治模式在每一层递归上都有三个步骤:•分解(Divide):将原问题分解成一系列子问题;•解决(conquer):递归地解各个子问题。
若子问题足够小,则直接求解;•合并(Combine):将子问题的结果合并成原问题的解。
合并排序(merge sort)是一个典型分治法的例子。
其对应的直观的操作如下:•分解:将n个元素分成各含n/2个元素的子序列;•解决:用合并排序法对两个子序列递归地排序;•合并:合并两个已排序的子序列以得到排序结果。
2. 动态规划法动态规划算法的设计可以分为如下4个步骤:•描述最优解的结构•递归定义最优解的值•按自底向上的方式计算最优解的值•由计算出的结果构造一个最优解分治法是指将问题划分成一些独立地子问题,递归地求解各子问题,然后合并子问题的解而得到原问题的解。
与此不同,动态规划适用于子问题独立且重叠的情况,也就是各子问题包含公共的子子问题。
在这种情况下,若用分治法则会做许多不必要的工作,即重复地求解公共的子问题。
动态规划算法对每个子子问题只求解一次,将其结果保存在一张表中,从而避免每次遇到各个子问题时重新计算答案。
适合采用动态规划方法的最优化问题中的两个要素:最优子结构和重叠子问题。
最优子结构:如果问题的一个最优解中包含了子问题的最优解,则该问题具有最优子结构。
重叠子问题:适用于动态规划求解的最优化问题必须具有的第二个要素是子问题的空间要很小,也就是用来求解原问题的递归算法课反复地解同样的子问题,而不是总在产生新的子问题。
分治法解决集合划分问题分析
由此可见:要想直接解决一个规模 较大的问题,有时是相当困难的。
2、 分治法就是为解决大规模问题而提出的
将要求解的大规模的问题分解为k个较 小规模的问题,对这k个子问题分别求解。
T(n)
T(n/2)
T(n/2)
如果子问题的规模仍然不够小,则再划分 为k个子问题,如此递归的进行下去,直到 问题规模足够小,很容易求出其解为止。
T(n)
T(n/2)
T(n/2)
T(n/4)
T(n/4)
T(n/4)
T(n/4)
分治法的主要思路是,将一个难以直接解 决的大问题,分割成一些规模较小的相同 问题,以便各个击破,分而治之。
T(n)
T(n/2)
T(n/2)
T(n/4)
T(n/4)
T(n/4)
T(n/4)
3、 递归的概念
▪ 直接或间接地调用自身的算法称为递归算 法。用函数自身给出定义的函数称为递归 函数。
▪
cin >> m >> n;
▪
if(m<n)
▪
{
▪
cout << ("error!输入的子集个数多于元素个数,请重新考虑要输入的数据!") << endl;
▪
return 0;
▪
}
▪
else
▪
cout << "total_number " << f(m, n) << endl;
▪ ▪}
return 0;
}
▪ //================== ▪ //集合划分问题 ▪ //================== ▪ # include <iostream>
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述分治法求解的基本步骤
分治法是一种基本的求解算法,它可以帮助我们解决复杂问题并实现高效的解决方案。
简言之,分治法是一个非常强大的算法,可以帮助我们解决很多规模较大的复杂问题。
分治法是由三个基本步骤组成:分解、解决和结合。
首先,分解步骤是分治法的核心步骤,即将原问题划分为若干规模较小的子问题,以便进行求解。
这些子问题往往容易解决,而且与原问题有联系。
比如,在解决一个最大的问题的时候,可以分解为N 个子问题,每个子问题都可以轻松解决。
其次,解决步骤则是对这些已经分解的子问题求解。
决定求解哪种子问题,则取决于实际情况,最常用的也有暴力解法、递归法、动态规划法等。
如果每个子问题都可以得到一个最优解,那么分治法也可以求出原问题的最优解。
最后,结合步骤是将分解出来的子问题的解合并成原问题的解。
一般来说,如果子问题的解是一个最优解的集合,则可以将这些最优解合并成原问题的最优解。
有时候,我们也可以从子问题的最优解中构造出一个更优解用于满足原问题。
总结起来,分治法求解的基本步骤由分解、解决和结合三个基本步骤组成,其中,分解步骤是分治法的核心步骤,解决步骤是求解已经分解的子问题,结合步骤是将子问题的解合并成原问题的解。
在解决复杂问题的时候,分治法可以极大的提高算法的效率,并且简单易行,非常实用。
分治法在计算机科学中被广泛使用,它可以解决多种不同的问题,包括排序、搜索、图论、博弈、动态规划、最大流量问题等。
分治法可以大大提高算法的运行效率,使得解决复杂问题更加便捷。
因此,分治法是一种非常有效的算法,近年来得到了越来越多的应用。
综上所述,分治法是一种有效的算法,它可以帮助我们解决复杂的问题并得到最优解,它由三个基本步骤组成:分解、解决和结合。
在解决复杂问题的时候,应用分治法可以大大提高算法的效率,已较好地解决问题。