几个重要的特殊数列讲解学习
数列知识点
数列知识点数列是数学中一个重要的概念,它在各个领域都有广泛的应用。
数列可以简单理解为一组按照一定规律排列的数值。
在数列中,每个数值被称为项,而规律则被称为递推公式。
下面我们将介绍数列的定义、常见的数列类型以及数列的性质和应用。
一、数列的定义数列是由一串按照一定规律排列的数值所组成的序列。
其中,每个数值被称为项,通常用字母 a1,a2,a3,...来表示。
数列的一般形式可以表示为:a1,a2,a3,...,an,...。
数列中的项可以是整数、小数、分数等不同类型的数。
数列中的每个项都有一个确定的位置,这个位置被称为项数,通常用 n 表示。
对于任意一个数列,我们可以根据项数 n 来确定数列中的某一个项的值。
二、常见的数列类型1. 等差数列等差数列是最常见的数列类型之一,它的每一项都比前一项多(或少)一个固定的数值,这个数值被称为公差。
等差数列的递推公式一般写作 an = a1 + (n - 1) * d,其中 an 表示第n 项,a1 表示首项,d 表示公差。
2. 等比数列等比数列是指数列中的每一项与其前一项的比值相等的数列。
等比数列的递推公式一般写作 an = a1 * r^(n - 1),其中an 表示第 n 项,a1 表示首项,r 表示公比。
3. 调和数列调和数列是一种特殊的数列,其每一项的倒数构成一个等差数列。
调和数列的递推公式一般写作 an = 1 / (a1 + (n - 1) * d),其中 an 表示第 n 项,a1 表示首项,d 表示公差。
4. 斐波那契数列斐波那契数列是一种非常著名的数列,其前两项为 1,后续项为前两项之和。
斐波那契数列的递推公式一般写作 an = an-1 + an-2,其中 an 表示第 n 项。
三、数列的性质和应用1. 数列的通项公式对于某些特殊的数列,我们可以找到一般的表达式,以便于计算数列中任意项的值。
这个一般的表达式被称为数列的通项公式。
通过求解数列的通项公式,我们可以方便地计算数列的各项。
整理几个重要的特殊数列
几个重要的特殊数列 基础知识 1.斐波那契数列 莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。
在1202年斐波那契提出了一个非常著名的数列,即: 假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。
年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子? 这就是非常著名的斐波那契数列问题。
其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第个月初时,免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。
现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。
特征根法:设二阶常系数线性齐次递推式为(),其特征方程为,其根为特征根。
(1)若特征方程有两个不相等的实根,则其通项公式为(),其中A、B由初始值确定; (2)若特征方程有两个相等的实根,则其通项公式为(),其中A、B由初始值确定。
(这个问题的证明我们将在后面的讲解中给出) 因此对于斐波那契数列,对应的特征方程为,其特征根为: ,所以可设其通项公式为,利用初始条件得,解得 所以。
这个数列就是著名的斐波那契数列的通项公式。
斐波那契数列有许多生要有趣的性质,如: 它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。
斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。
为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明) (1)斐波那契数列的前项和; (2); (3)(); (4)(); (5)(); 2.分群数列 将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列。
数列之方法归纳总结
数列之方法归纳总结数列是由一系列按照一定规律排列的数所组成的序列。
在数学中,研究数列的性质和规律,对于解决各种数学问题以及应用于实际生活中的各种情境具有重要意义。
在实际应用中,数列的归纳总结方法有助于我们找到数列中的规律,从而更好地理解和运用数列。
一、等差数列等差数列是指数列中,任意两个相邻的数之间的差等于一个常数,这个常数称为公差。
等差数列的一般形式为an=a1+(n-1)d,其中an表示第n个数,a1为第一个数,d为公差,n为项数。
等差数列的求和公式为Sn=n(a1+an)/2,其中Sn表示数列的前n项和。
等差数列的归纳总结方法:1.找到首项a1和公差d;2. 利用数列的递推关系式an=a1+(n-1)d,找到第n个数;3. 利用求和公式Sn=n(a1+an)/2,求出前n项和Sn。
二、等比数列等比数列是指数列中,任意两个相邻的数之间的比等于一个常数,这个常数称为公比。
等比数列的一般形式为an=a1*r^(n-1),其中an表示第n个数,a1为第一个数,r为公比,n为项数。
等比数列的求和公式为Sn=a1*(1-r^n)/(1-r),其中Sn表示数列的前n项和。
等比数列的归纳总结方法:1.找到首项a1和公比r;2. 利用数列的递推关系式an=a1*r^(n-1),找到第n个数;3.利用求和公式Sn=a1*(1-r^n)/(1-r),求出前n项和Sn。
三、斐波那契数列斐波那契数列是一个特殊的数列,前两项为1,后续的每一项都是前两项之和。
斐波那契数列的一般形式为an=an-1+an-2,其中an表示第n 个数,n>=3斐波那契数列的归纳总结方法:1.找到前两项a1和a2;2. 利用数列的递推关系式an=an-1+an-2,找到第n个数;3.可以使用递归法求解斐波那契数列,也可以使用循环遍历的方法求解。
四、特殊数列除了上述常见的数列,还存在一些特殊的数列,例如等差数列的等差为0的情况,即数列中的每一项都相等;等比数列的公比为1的情况,即数列中的每一项都相等;等差数列和等比数列的公差或公比为0的情况。
奥数数列知识点归纳总结
奥数数列知识点归纳总结数列是数学中一个重要的概念,也是奥数中常见的考点之一。
掌握数列的相关知识点对于解题非常有帮助。
本文将对奥数中常见的数列知识点进行归纳总结,帮助读者更好地理解和应用数列的概念。
一、数列的定义数列是一组按照一定顺序排列的数字组成的序列。
数列中的每个数字称为该数列的项。
通常用字母表示数列的项,如a₁、a₂、a₃等。
二、等差数列1. 定义:在等差数列中,从第二项开始,每一项与前一项之差都相等。
这个公差用d表示。
2. 常见公式:- 第n项通项公式:aₙ = a₁ + (n - 1)d- 前n项和公式:Sₙ = (a₁ + aₙ) × n ÷ 2三、等比数列1. 定义:在等比数列中,从第二项开始,每一项与前一项的比值都相等。
这个比值用q表示。
2. 常见公式:- 第n项通项公式:aₙ = a₁ × q^(n - 1)- 前n项和公式(当|q| < 1):Sₙ = a₁ × (1 - qⁿ) ÷ (1 - q)四、特殊的数列1. 斐波那契数列:斐波那契数列是一种特殊的数列,从第三项开始,每一项都等于前两项的和。
- 常见公式:aₙ = aₙ₋₂ + aₙ₋₁五、常见数列问题解析1. 求特定项的值:利用等差数列或等比数列的通项公式,可以直接计算出特定项的值。
2. 求前n项的和:利用等差数列或等比数列的前n项和公式,可以很方便地求得前n项的和。
3. 求公差或公比:已知数列的前几项,可以通过求项与项之间的差或比值,从而推断出公差或公比的值。
4. 求满足条件的项数:已知数列的某些项或数列的前n项和,可以通过代入公式,求解满足条件的项数。
六、实例分析例1:已知等差数列的公差为3,第5项为10,求该等差数列的第10项和前10项的和。
解析:根据已知信息,可得到a₁ = 10 - 4 × 3 = -2,代入通项公式可计算得到第10项的值为82,代入前n项和公式可计算得到前10项的和为202。
几个特殊的数列
几个重要的特殊数列基础知识1.斐波那契数列莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。
在1202年斐波那契提出了一个非常著名的数列,即:假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。
年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子?这就是非常著名的斐波那契数列问题。
其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第个月初时,免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。
现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。
特征根法:设二阶常系数线性齐次递推式为(),其特征方程为,其根为特征根。
(1)若特征方程有两个不相等的实根,则其通项公式为(),其中A、B由初始值确定;(2)若特征方程有两个相等的实根,则其通项公式为(),其中A、B由初始值确定。
(这个问题的证明我们将在后面的讲解中给出)因此对于斐波那契数列,对应的特征方程为,其特征根为:,所以可设其通项公式为,利用初始条件得,解得所以。
这个数列就是著名的斐波那契数列的通项公式。
斐波那契数列有许多生要有趣的性质,如:它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。
斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。
为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明)(1)斐波那契数列的前项和;(2);(3)();(4)();(5)();2.分群数列将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列。
如在上述数列中,我们将作为第一组,将作为第二组,将作为第三组,……依次类推,第组有个元素,即可得到以组为单位的序列:(),(),(),……我们通常称此数列为分群数列。
数列知识点总结
数列知识点总结数列是数学中的一个重要概念,它有着广泛的应用及运用场景。
本文将对数列的基本概念、常见数列以及数列的性质和应用进行总结和归纳。
一、基本概念数列是按特定顺序排列的数,通常用字母a、b、c等表示。
数列中的每个具体的数称作数列的项,用an表示第n项,n为项号。
数列可以是有限个数或者无穷个数。
二、等差数列等差数列是指数列的相邻两项之差固定的数列。
设a为首项,d为公差,则等差数列的通项公式为an = a + (n - 1)d。
其中,n为项号。
等差数列的性质如下:1. 公差d是等差数列的一个重要概念,它表示相邻两项之间的差值。
如果d>0,则数列递增;如果d<0,则数列递减。
2. 等差数列的前n项和Sn的计算公式为Sn = n/2 * (a + an)。
3. 若两个数列的公差相同,则称它们为等差数列。
三、等比数列等比数列是指数列的相邻两项之比固定的数列。
设a为首项,q为公比,则等比数列的通项公式为an = a * q^(n - 1)。
其中,n为项号。
等比数列的性质如下:1. 公比q是等比数列的一个重要概念,它表示相邻两项之间的比值。
如果|q|>1,则数列递增;如果|q|<1,则数列递减。
2. 等比数列的前n项和Sn的计算公式为Sn = a * (q^n - 1) / (q - 1)。
3. 若两个数列的公比相同,则称它们为等比数列。
四、等差数列与等比数列的联系与区别1. 等差数列的相邻两项之差固定,等比数列的相邻两项之比固定。
2. 等差数列的通项公式an = a + (n - 1)d,等比数列的通项公式an =a * q^(n - 1)。
3. 等差数列的前n项和Sn的计算公式为Sn = n/2 * (a + an),等比数列的前n项和Sn的计算公式为Sn = a * (q^n - 1) / (q - 1)。
五、特殊数列1. 斐波那契数列是指第一项和第二项均为1,从第三项开始,每一项都是前两项的和。
#【数学】【数论】几个特殊的数
#【数学】【数论】⼏个特殊的数素数 ⼤于1且不被其他整数(除了1和其本⾝)整除的整数。
质数定义为在⼤于1的⾃然数中,除了1和它本⾝以外不再有其他因数。
⽰例:2,3,5,7,11,13,17,19,23,29,31,37,39,41...回⽂数 “回⽂”是指正读反读都能读通的句⼦,它是古今中外都有的⼀种修辞⽅式和⽂字游戏,如“我为⼈⼈,⼈⼈为我”等。
在数学中也有这样⼀类数字有这样的特征,成为回⽂数(palindrome number)。
设n是⼀任意⾃然数。
若将n的各位数字反向排列所得⾃然数n1与n相等,则称n为⼀回⽂数。
例如,若n=1234321,则称n为⼀回⽂数。
注意: 1.偶数个的数字也有回⽂数124421 2.⼩数没有回⽂数 ⽰例: 1千以内的回⽂数 在⾃然数中,最⼩的回⽂数是0,其次是 1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131,141,151,161,171,181,191,202,212,222,232,242,252,262,272,282,292,303,313,323,333,343,353,363,373,383,393,404,414,424,434,444,45 505,515,525,535,545,555,565,575,585,595,606,616,626,636,646,656,666,676,686,696,707,717,727,737,747,757,767,777,787,797,808,818,828,838,848,858,868,878,888,898,909,919,929,939,949,959 ⼈们迄今未能找到⾃然数(除0和1)的五次⽅,以及更⾼次幂的回⽂数。
于是数学家们猜想:不存在n^k(n≥2,k≥5;n、k均是⾃然数)形式的回⽂数。
在电⼦计算器的实践中,还发现了⼀桩趣事:任何⼀个⾃然数与它的倒序数相加,所得的和再与和的倒序数相加,……如此反复进⾏下去,经过有限次步骤后,最后必定能得到⼀个回⽂数。
数列知识点归纳总结小学奥数
数列知识点归纳总结小学奥数数列是数学中重要的概念,也是小学奥数中经常涉及的内容之一。
在小学阶段,学生们开始接触数列的基本概念和性质,逐渐学习如何判断和计算数列中的各种元素。
本文将对小学奥数中的数列知识点进行归纳总结,帮助学生更好地理解和掌握数列的概念和应用。
一、数列的定义和表示方法数列由一组按照特定规律排列的数字组成,可以用一对大括号{}或者使用通项公式表示。
例如,数列{1, 3, 5, 7, 9}可以表示为an = 2n-1,其中n为自然数。
二、等差数列等差数列是最常见的数列类型之一,数列中相邻两个数之间的差值都是相等的。
等差数列的通项公式可以表示为an = a1 + (n-1)d,其中a1是首项,d是公差,n是项数。
在应用等差数列的时候,常常需要求解数列中的某一项,或者计算数列的前n项和。
对于已知首项和公差的等差数列,首先可以根据通项公式求出所需的值。
例题1:已知等差数列{2, 5, 8, 11, ...}的首项是2,公差是3,求该数列的第10项。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入已知条件,可得a10 = 2 + (10-1)3 = 2 + 27 = 29。
因此,该数列的第10项为29。
例题2:已知等差数列{2, 5, 8, 11, ...}的首项是2,公差是3,求数列的前10项的和。
解析:根据等差数列的求和公式S = (n/2)(a1+an),代入已知条件,可得S10 = (10/2)(2+29) = 5(31) = 155。
因此,该数列前10项的和为155。
三、等比数列等比数列是另一种常见的数列类型,数列中每一项与前一项的比值都是相等的。
等比数列的通项公式可以表示为an = a1 * r^(n-1),其中a1是首项,r是公比,n是项数。
在应用等比数列的时候,同样需要计算数列中的某一项或者前n项的和。
例题3:已知等比数列{3, 6, 12, 24, ...}的首项是3,公比是2,求该数列的第8项。
小学数列知识点归纳总结
小学数列知识点归纳总结一、数列的概念数列是按一定的顺序排列的一组数,其中每一个数称为数列的一个项,使用字母表示的数列一般写成a₁, a₂, a₃, ..., a_n。
数列可以是有限的,也可以是无限的。
二、等差数列1. 概念等差数列是指一个数列中,任意相邻两项的差都相等的数列,该差值称为公差,用d表示。
2. 公式通项公式:a_n = a_1 + (n-1)d前n项和公式:S_n = (a_1 + a_n) * n / 2三、等比数列1. 概念等比数列是指一个数列中,任意相邻两项的比都相等的数列,该比值称为公比,用q表示。
2. 公式通项公式:a_n = a₁ * q^(n-1)前n项和公式:S_n = a_1 * (1 - q^n) / (1 - q)四、特殊数列1. 斐波那契数列斐波那契数列是指一个数列中,每一项都是前两项之和,即F(n) = F(n-1) + F(n-2),其中F(1)=F(2)=1。
2. 调和数列调和数列是指一个数列中,每一项是其逆数的等差数列,即1, 1/2, 1/3, 1/4, ...。
五、常见数列问题求解1. 求和问题对于等差数列和等比数列,可以利用对应的前n项和公式进行求解。
2. 求通项问题对于已知数列的前几项,可以利用数列的定义进行求解。
3. 求公差/公比问题可以通过已知数列的任意两项之差或者比值得到公差或者公比的数值。
六、数列的图形表示1. 等差数列的图形在平面直角坐标系中,等差数列的图形呈线性。
2. 等比数列的图形在对数坐标系中,等比数列的图形呈指数函数。
七、数列的应用1. 数学问题数列常常用于解决一些数学问题,如寻找规律、求和等。
2. 物理问题在物理学中,数列也常常被用于描述某些物理现象的变化规律。
3. 经济问题在经济学中,数列也被广泛应用于描述经济增长、收益等方面的规律。
总结:数列是数学中的一个重要概念,了解数列的概念和性质,以及掌握常见数列的公式和应用是数学学习的基础。
常见数列知识点总结归纳
常见数列知识点总结归纳数列是数学中常见的概念,它由一系列按照一定规律排列的数所组成。
数列的研究在数学中具有广泛的应用,涉及到多个领域。
本文将对常见数列的相关知识点进行总结和归纳。
一、等差数列等差数列是最基础也是最常见的数列类型之一。
它的特点是数列中的每一项与前一项之间的差值都是相等的。
1. 通项公式等差数列的通项公式为an = a1 + (n-1)d,其中an为第n项,a1为首项,d为公差。
2. 前n项和公式等差数列的前n项和公式为Sn = n/2 * (a1 + an),其中Sn为前n项的和。
3. 性质与运算等差数列具有多个性质和运算规则,例如:任意两项之和等于其间项数乘以公差、删除相同项后,剩下的数列仍然是等差数列等。
二、等比数列等比数列是另一种常见的数列类型,它的特点是数列中的每一项与前一项之比都是相等的。
1. 通项公式等比数列的通项公式为an = a1 * r^(n-1),其中an为第n项,a1为首项,r为公比。
2. 前n项和公式等比数列的前n项和公式为Sn = a1 * (1 - r^n) / (1 - r),其中Sn为前n项的和。
3. 性质与运算等比数列也有多个性质和运算规则,例如:相邻两项之商等于公比、删除相同项后,剩下的数列仍然是等比数列等。
三、斐波那契数列斐波那契数列是一种特殊的数列,它的前两项为1,从第三项开始,每一项都等于前两项之和。
斐波那契数列的通项公式为an = an-1 + an-2,其中an为第n项,an-1为第n-1项,an-2为第n-2项。
斐波那契数列具有独特的性质,例如:相邻两项之比逐渐接近黄金分割比、在数列中,某一项与它之后的项之商趋近于黄金分割比等。
四、几何数列几何数列是一种特殊的数列,它的前一项与后一项之比都是相等的。
几何数列的通项公式为an = a1 * r^(n-1),其中an为第n项,a1为首项,r为公比。
几何数列的前n项和公式为Sn = a1 * (1 - r^n) / (1 - r),其中Sn为前n项的和。
数列题型及解题方法
数列题型及解题方法数列是高中数学中的重要内容,也是考试中经常出现的题型之一。
掌握数列的相关知识和解题方法对于提高数学成绩至关重要。
本文将从常见的数列题型入手,结合解题方法进行详细介绍,希望能够帮助大家更好地理解和掌握数列的相关知识。
一、等差数列。
等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差都是一个常数。
这个常数就是公差,通常用d表示。
等差数列的通项公式为,$a_n = a_1 + (n-1)d$,其中$a_n$表示第n项,$a_1$表示首项,n表示项数,d表示公差。
解题方法:1. 求和公式,等差数列的前n项和公式为$S_n =\frac{n}{2}(a_1 + a_n)$,利用这个公式可以快速求得等差数列的前n项和。
2. 求首项和公差,已知等差数列的前几项或者部分信息,可以通过列方程组求得首项和公差。
3. 求项数,已知等差数列的前几项和或者部分信息,可以通过列方程求得项数。
二、等比数列。
等比数列是指一个数列中,从第二项开始,每一项与它的前一项的比值都是一个常数。
这个常数就是公比,通常用q表示。
等比数列的通项公式为,$a_n = a_1 q^{(n-1)}$,其中$a_n$表示第n 项,$a_1$表示首项,n表示项数,q表示公比。
解题方法:1. 求和公式,等比数列的前n项和公式为$S_n =\frac{a_1(1-q^n)}{1-q}$,利用这个公式可以快速求得等比数列的前n项和。
2. 求首项和公比,已知等比数列的前几项或者部分信息,可以通过列方程组求得首项和公比。
3. 求项数,已知等比数列的前几项和或者部分信息,可以通过列方程求得项数。
三、特殊数列。
除了等差数列和等比数列之外,还有一些特殊的数列,如斐波那契数列、等差-等比数列等。
这些数列在考试中也可能会出现,需要我们对其特点和解题方法有所了解。
解题方法:1. 斐波那契数列,斐波那契数列的特点是每一项都是前两项的和,即$a_n = a_{n-1} + a_{n-2}$。
数列知识点归纳总结奇偶
数列知识点归纳总结奇偶数列是高中数学中的一个重要内容,也是数学建模和高等数学中常用的工具之一。
在数列中,奇数列和偶数列是两种常见的形式。
本文将对数列的相关知识点进行归纳总结,包括奇数列和偶数列的定义、性质以及应用。
一、奇数列的定义和性质奇数列是指数列中元素的下标为奇数的数列,通常表示为{a1, a3,a5, ...}。
下标为奇数的数列元素有以下性质:1. 奇数列的通项公式奇数列的通项公式可以表示为an = f(n),其中n为正整数,f(n)为一个关于n的函数。
通常情况下,奇数列的通项公式是通过观察数列的规律而得出的。
2. 奇数列的递推关系奇数列的递推关系可以表示为an+2 = g(an),其中an和an+2分别表示数列的相邻的两个奇数项,g(x)为一个关于x的函数。
通过递推关系,可以通过已知的奇数项来确定其他奇数项的值。
3. 奇数列的性质奇数列具有以下性质:(1) 奇数列的和系,可以利用数学归纳法证明奇数列的和为一个定值。
(2) 奇数列的性质奇数列具有一些特殊性质,如递增性、递减性、周期性等。
这些性质可以根据奇数列的递推关系和通项公式来确定。
二、偶数列的定义和性质偶数列是指数列中元素的下标为偶数的数列,通常表示为{a2, a4,a6, ...}。
下标为偶数的数列元素有以下性质:1. 偶数列的通项公式偶数列的通项公式可以表示为an = f(n),其中n为正整数,f(n)为一个关于n的函数。
与奇数列类似,偶数列的通项公式也是通过观察数列的规律而得出的。
2. 偶数列的递推关系偶数列的递推关系可以表示为an+2 = g(an),其中an和an+2分别表示数列的相邻的两个偶数项,g(x)为一个关于x的函数。
通过递推关系,可以通过已知的偶数项来确定其他偶数项的值。
3. 偶数列的性质偶数列具有以下性质:(1) 偶数列的和系,可以利用数学归纳法证明偶数列的和为一个定值。
(2) 偶数列的性质偶数列也具有一些特殊性质,如递增性、递减性、周期性等,这些性质可以根据偶数列的递推关系和通项公式来确定。
初中数学数列知识点梳理
初中数学数列知识点梳理数列是初中数学课程中非常重要的一个概念,它涉及到数学建模、数学推理以及问题求解等多个方面。
通过对数列的学习,可以帮助学生培养逻辑思维和数学思维能力。
本文将对初中数学数列的知识点进行梳理和总结,以帮助学生更好地理解和掌握这一知识点。
一、数列的定义和表示方法数列是由一系列按照一定规律排列的数所组成的有序集合。
一般地,数列可以用数学表达式表示为:a1,a2,a3,…,an,其中ai(i=1,2,3…)为数列中的第i 项。
常见的数列还有等差数列和等比数列。
等差数列是指数列中相邻两项之差都相等的数列,用公式表示为:an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
等比数列是指数列中相邻两项之比都相等的数列,用公式表示为:an=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
二、等差数列的性质和应用1. 公差的性质:等差数列的公差d是常数,任意两个相邻项的差都等于d。
2. 通项公式:对于已知首项a1,公差d和项数n的等差数列,其第n项an的通项公式为an=a1+(n-1)d。
通过这个公式,可以方便地计算等差数列的任意一项。
3. 等差数列的和:等差数列的前n项和Sn可以用公式表示为Sn=(a1+an)*n/2。
这个公式的推导可以通过对称相加法或利用通项公式得到。
4. 等差数列的应用:等差数列在生活中有广泛的应用,比如财务管理、物资管理和时间管理等。
同时,在数学问题中,等差数列也可以用于计算和推理问题。
三、等比数列的性质和应用1. 公比的性质:等比数列的公比r是常数,任意两个相邻项的比都等于r。
2. 通项公式:对于已知首项a1,公比r和项数n的等比数列,其第n项an的通项公式为an=a1*r^(n-1)。
通过这个公式,可以方便地计算等比数列的任意一项。
3. 等比数列的和:等比数列的前n项和Sn可以用公式表示为Sn=a1*(1-r^n)/(1-r),其中r不等于1。
这个公式的推导可以通过乘法展开和等比级数求和公式得到。
几个重要的特殊数列
几个重要的特殊数列返回首页:三湘网络基础知识1.斐波那契数列莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。
在1202年斐波那契提出了一个非常著名的数列,即:假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。
年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子?这就是非常著名的斐波那契数列问题。
其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第个月初时,免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。
现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。
特征根法:设二阶常系数线性齐次递推式为(),其特征方程为,其根为特征根。
(1)若特征方程有两个不相等的实根,则其通项公式为(),其中A、B由初始值确定;(2)若特征方程有两个相等的实根,则其通项公式为(),其中A、B由初始值确定。
(这个问题的证明我们将在后面的讲解中给出)因此对于斐波那契数列,对应的特征方程为,其特征根为:,所以可设其通项公式为,利用初始条件得,解得所以。
这个数列就是著名的斐波那契数列的通项公式。
斐波那契数列有许多生要有趣的性质,如:它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。
斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。
为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明)(1)斐波那契数列的前项和;(2);(3)();(4)();(5)();2.分群数列将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列。
如在上述数列中,我们将作为第一组,将作为第二组,将作为第三组,……依次类推,第组有个元素,即可得到以组为单位的序列:(),(),(),……我们通常称此数列为分群数列。
几个重要的特殊数列
几个重要的特殊数列基础知识1.斐波那契数列莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。
在1202年斐波那契提出了一个非常著名的数列,即:假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。
年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子?这就是非常著名的斐波那契数列问题。
其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第个月初时,免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。
现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。
特征根法:设二阶常系数线性齐次递推式为(),其特征方程为,其根为特征根。
(1)若特征方程有两个不相等的实根,则其通项公式为(),其中A 、B 由初始值确定;(2)若特征方程有两个相等的实根,则其通项公式为nn Bn A x α)(+=(),其中A、B由初始值确定。
(这个问题的证明我们将在后面的讲解中给出)因此对于斐波那契数列,对应的特征方程为,其特征根为:,所以可设其通项公式为,利用初始条件得,解得所以。
这个数列就是著名的斐波那契数列的通项公式。
斐波那契数列有许多生要有趣的性质,如:它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。
斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。
为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明)(1)斐波那契数列的前项和;(2);(3)();(4)();(5)();2.分群数列将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列。
数列的认识初中二年级
数列的认识初中二年级数列是数学中的重要概念,它在初中二年级的学习中扮演着至关重要的角色。
通过对数列的认识与理解,学生能够培养逻辑思维、分析问题的能力,并为更高层次的数学学习打下坚实的基础。
本文将介绍数列的定义、常见类型以及解题方法,旨在帮助初中二年级的学生更好地认识和理解数列。
一、数列的定义数列是由一系列有序的数所组成的集合。
数列中的每个数称为数列的项,用通项公式的形式表示。
通项公式是指根据数列的位置确定每一项的规律,便于进行计算和推导。
二、常见类型的数列1.等差数列等差数列是指数列中相邻的两项之差都相等的数列。
在等差数列中,如果第一项为a,公差为d,则通项公式可以表示为an = a + (n-1)d,其中n表示第n项。
2.等比数列等比数列是指数列中相邻的两项之比都相等的数列。
在等比数列中,如果第一项为a,公比为r,则通项公式可以表示为an = ar^(n-1),其中n表示第n项。
3.斐波那契数列斐波那契数列是一种特殊的数列,其中每一项是前两项的和。
斐波那契数列的通项公式可以表示为an = an-1 + an-2,其中n表示第n项。
三、解题方法1.等差数列的解题方法对于已知的等差数列,有以下几种常见的解题方法:(1)计算任意一项的值:利用通项公式,根据已知条件可求出数列中任意一项的值。
(2)计算项数和总和:通过已知条件求出数列的项数和总和。
(3)判断是否为等差数列:观察数列,计算相邻两项之差是否相等,若相等则说明为等差数列。
2.等比数列的解题方法对于已知的等比数列,有以下几种常见的解题方法:(1)计算任意一项的值:利用通项公式,根据已知条件可求出数列中任意一项的值。
(2)计算项数和总和:通过已知条件求出数列的项数和总和。
(3)判断是否为等比数列:观察数列,计算相邻两项之比是否相等,若相等则说明为等比数列。
3.斐波那契数列的解题方法对于已知的斐波那契数列,有以下几种常见的解题方法:(1)计算任意一项的值:根据已知的前两项,通过递推公式an = an-1 + an-2可求出数列中任意一项的值。
数列知识点公式归纳总结
数列知识点公式归纳总结数列是数学中常见的概念,它可以通过一定的规律来表示一系列的数值。
在数学学科中,数列的研究与应用非常广泛,无论是在纯数学中的数论、代数,还是在应用数学中的物理、经济学等领域都有数列的应用。
因此,熟练掌握数列的知识点和公式对于提高数学水平以及解决实际问题都具有重要意义。
本文将针对数列的知识点进行归纳总结,旨在帮助读者更好地理解和应用数列的概念。
在总结中,将包括一些常见的数列类型、特殊数列的性质以及数列求和公式等内容,以供读者参考和学习。
一、等差数列等差数列是指数列中的相邻项之间的差等于一个常数。
在等差数列中,我们可以总结出以下几个重要的知识点和公式:1. 第n项公式:对于等差数列an,其第n项的公式可以表示为an = a1 + (n-1)d,其中a1是首项,d是公差。
2. 前n项和公式:对于等差数列an,其前n项和的公式可以表示为Sn = (n/2)(a1 + an) = (n/2)(2a1 + (n-1)d),其中Sn表示前n项和。
3. 通项公式:对于等差数列an,我们可以通过观察数列中相邻项之间的关系,进而得出其通项公式。
通项公式为an = a1 + (n-1)d,其中a1是首项,d是公差。
二、等比数列等比数列是指数列中的相邻项之间的比等于一个常数。
在等比数列中,我们可以总结出以下几个重要的知识点和公式:1. 第n项公式:对于等比数列an,其第n项的公式可以表示为an = a1 * r^(n-1),其中a1是首项,r是公比。
2. 前n项和公式:对于等比数列an,其前n项和的公式可以表示为Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。
3. 通项公式:对于等比数列an,我们可以通过观察数列中相邻项之间的关系,进而得出其通项公式。
通项公式为an = a1 * r^(n-1),其中a1是首项,r是公比。
三、斐波那契数列斐波那契数列是一个特殊的数列,其前两项为1,之后每一项都是前两项的和。
数列题型及解题方法归纳总结
数列题型及解题方法归纳总结数列在数学中是一个非常重要的概念,它在各种数学问题中都有着重要的应用。
在学习数列的过程中,我们需要了解不同的数列题型及相应的解题方法,这样才能更好地掌握数列的知识,提高解题能力。
下面,我们将对数列题型及解题方法进行归纳总结,希望能对大家的学习有所帮助。
一、等差数列。
等差数列是最基本的数列之一,它的通项公式为:$a_n = a_1 + (n-1)d$。
在解等差数列的问题时,我们需要注意以下几种情况:1. 求前n项和,$S_n = \frac{n}{2}(a_1 + a_n)$;2. 求首项、公差或项数,$a_n = a_1 + (n-1)d$;3. 已知前几项求第n项,$a_n = a_m + (n-m)d$。
二、等比数列。
等比数列也是常见的数列类型,它的通项公式为:$a_n = a_1 \cdot q^{n-1}$。
解等比数列的问题时,需要注意以下几点:1. 求前n项和,$S_n = \frac{a_1(1-q^n)}{1-q}$;2. 求首项、公比或项数,$a_n = a_1 \cdot q^{n-1}$;3. 已知前几项求第n项,$a_n = a_m \cdot q^{n-m}$。
三、特殊数列。
除了等差数列和等比数列外,还有一些特殊的数列,如斐波那契数列、等差-等比数列等。
在解题时,需要根据具体情况选择合适的方法,不能生搬硬套。
四、解题方法。
在解数列题时,我们可以采用以下几种方法:1. 找规律法,观察数列的前几项,找出它们之间的规律,从而得出通项公式或前n项和的表达式;2. 递推法,根据数列的递推关系,逐步求解出数列的各项;3. 通项公式法,如果数列是等差数列或等比数列,可以直接利用其通项公式进行求解;4. 常用公式法,对于常见的数列题型,可以直接利用其前n项和的公式进行求解。
五、总结。
通过以上的归纳总结,我们可以看出,数列题型及解题方法是一个比较系统的知识体系,需要我们掌握一定的基本原理和方法。
数学数列的知识点必看
数学数列的知识点必看每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。
下面是小编给大家整理的一些数学数列的知识点的学习资料,希望对大家有所帮助。
高中数学无穷递降等比数列求和公式无穷递减等比数列a,aq,aq^2……aq^n其中,n趋近于正无穷,q<1注意:(1)我们把|q|<1无穷等比数列称为无穷递缩等比数列,它的前n项和的极限才存在,当|q|≥1无穷等比数列它的前n项和的极限是不存在的。
(2)S是表示无穷等比数列的所有项的和,这种无限个项的和与有限个项的和从意义上来说是不一样的,S是前n项和Sn当n→∞的极限,即S=S=a/(1-q)等比数列求和公式算法想了解无穷递减等比数列求和的算法,需要先介绍一下等比数列求和公式设一个等比数列的首项是a1,公比是q,数列前n项和是Sn,当公比不为1时Sn=a1+a1q+a1q^2+...+a1q^(n-1)将这个式子两边同时乘以公比q,得qSn=a1q+a1q^2+...+a1q^(n-1)+a1q^n两式相减,得(1-q)Sn=a1-a1q^n所以,当公比不为1时,等比数列的求和公式为Sn=[a1(1-q^n)]/(1-q)对于一个无穷递减数列,数列的公比小于1,当上式得n趋向于正无穷大时,分子括号中的值趋近于1,取极限即得无穷递减数列求和公式S=a/(1-q)高中数学选择题解题方法一、直接法直接从题设的条件出发,运用有关的概念、性质、定理、法则和公式等知识,通过严密的推理和计算来得出题目的结论。
二、特例法包括选取符合题意的特殊数值、特殊位置、特殊函数、特殊数列、特殊图形等,代入或者比照选项来确定答案。
这种方法叫做特值代验法,是一种使用频率很高的方法。
三、数形结合画出图形或者图象能够使问题提供的信息更直观地呈现,降低思维难度,是解决数学问题的有力策略。
四、估值判断有些问题,属于比较大小或者确定位置的问题,对数值进行估算,或者对位置进行估计,就可以避免因为精确计算和严格推演而浪费时间。
几个重要的特殊数列
几个重要的特殊数列1.斐波那契数列莱昂纳多∙斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。
在1202年斐波那契提出了一个非常著名的数列,即: 假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。
年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子? 这就是非常著名的斐波那契数列问题。
其实这个问题的解决并不是很困难,可以用n F 表示第n 个月初时免房里的免子的对数,则有3,2,1321===F F F ,第2+n 个月初时,免房内的免子可以分为两部分:一部分是第1+n 个月初就已经在免房内的免子,共有1+n F 对;另一部分是第2+n 个月初时新出生的小免子,共有n F 对,于是有n n n F F F +=++`12。
这个数列的通项公式如何去求?特征根法:设二阶常系数线性齐次递推式为n n n qx px x +=++12(0,,1≠≥,q q p n 为常数),其特征方程为q px x+=2,其根为特征根。
因此对于斐波那契数列n n n F F F +=++`12,对应的特征方程为12+=x x ,其特征根为:251,25121-=+=x x ,所以可设其通项公式为nnn B A F ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=251251,利用初始条件2,121==F F 得⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+2251251125125122B A B A ,解得5251,5251--=+=B A 所以⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=++1125125151n n n F 。
它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。
斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几个重要的特殊数列几个重要的特殊数列基础知识1.斐波那契数列莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。
在1202年斐波那契提出了一个非常著名的数列,即:假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。
年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子?这就是非常著名的斐波那契数列问题。
其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第个月初时,免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。
现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。
特征根法:设二阶常系数线性齐次递推式为(),其特征方程为,其根为特征根。
(1)若特征方程有两个不相等的实根,则其通项公式为(),其中A、B由初始值确定;(2)若特征方程有两个相等的实根,则其通项公式为(),其中A、B由初始值确定。
(这个问题的证明我们将在后面的讲解中给出)因此对于斐波那契数列,对应的特征方程为,其特征根为:,所以可设其通项公式为,利用初始条件得,解得所以。
这个数列就是著名的斐波那契数列的通项公式。
斐波那契数列有许多生要有趣的性质,如:它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。
斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。
为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明)(1)斐波那契数列的前项和;(2);(3)();(4)();(5)();2.分群数列将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列。
如在上述数列中,我们将作为第一组,将作为第二组,将作为第三组,……依次类推,第组有个元素,即可得到以组为单位的序列:(),(),(),……我们通常称此数列为分群数列。
一般地,数列{}的分群数列用如下的形式表示:(),(),(),……,其中第1个括号称为第1群,第2个括号称为第2群,第3个括号称为第3群,……,第个括号称为第群,而数列{}称为这个分群数列的原数列。
如果某一个元素在分群数列的第个群中,且从第个括号的左端起是第个,则称这个元素为第群中的第个元素。
值得注意的是一个数列可以得到不同的分群数列。
如对数列{}分群,还可以得到下面的分群数列:第个群中有个元素的分群数列为:(),(),()…;第个群中有个元素的分群数列为:(),(),()…等等。
3.周期数列对于数列{},如果存在一个常数,使得对任意的正整数恒有成立,则称数列{}是从第项起的周期为T的周期数列。
若,则称数列{}为纯周期数列,若,则称数列{}为混周期数列,T的最小值称为最小正周期,简称周期。
周期数列主要有以下性质:(1)周期数列是无穷数列,其值域是有限集;(2)周期数列必有最小正周期(这一点与周期函数不同);(3)如果T是数列{}的周期,则对于任意的,也是数列{}的周期;(4)如果T是数列{}的最小正周期,M是数列{}的任一周期,则必有T|M,即M=();(5)已知数列{}满足(为常数),分别为{}的前项的和与积,若,则,;(6)设数列{}是整数数列,是某个取定大于1的自然数,若是除以后的余数,即,且,则称数列是{}关于的模数列,记作。
若模数列是周期的,则称{}是关于模的周期数列。
(7)任一阶齐次线性递归数列都是周期数列。
4.阶差数列对于一个给定的数列{},把它的连续两项与的差-记为,得到一个新数列,把数列称为是原数列{}的一阶差数列;如果,则称数列是数列的一阶差数列,是{}的二阶差数列;依次类推,可以得到数列{}的阶差数列,其中。
如果某一数列的阶差数列是一非零常数列,则称该数列为阶等差数列。
其实一阶等差数列就是我们通常说的等差数列;高阶等差数列是二阶或二阶以上等差数列的统称。
高阶等差数列具有以下性质:(1)如果数列{}是阶等差数列,则它的一阶等差数列是阶差数列;(2)数列{}是阶等差数列的充要条件是:数列{}的通项是关于的次多项式;(3)如果数列{}是阶等差数列,则其前项之和是关于的次多项式。
高阶等差数列中最常见的问题是求通项公式以及前项和,更深层次的问题2是差分方程的求解。
解决问题的基本方法有:(1)逐差法:其出发点是;(2)待定系数法:在已知阶数的等差数列中,其通项与前n项和S n是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得(3)裂项相消法:其出发点是an能写成=f(n+1)-f(n)(4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的设数列{}不是等比数列:若它的一阶等差数列是公比不为1的等比数列,则称它是一阶等比数列;若它的一阶差数列不是等比数列,而二阶差数列是公比不为1的等比数列,则称这为二阶等比数列。
一般地说,如果某一个数列它的阶等差数列不是等比数列,而阶差数列是公比不为1的等比数列,则称这个数列为阶等比数列,其中。
0阶等比数列就是我们通常所说的等比数列,一阶及二阶以上的等比数列,统称为高阶等比数列。
典例分析例1.数列的通项公式为,.记,求所有的正整数,使得能被8整除.(2005年上海竞赛试题)解:记注意到,可得因此,Sn+2除以8的余数,完全由Sn+1、Sn除以8的余数确定,故由(*)式可以算出各项除以8的余数依次是1,3,0,5,7,0,1,3,……,它是一个以6为周期的数列,从而故当且仅当例2.设是下述自然数N的个数,N的各位数字之和为,且每位数字只能取1、3或4,求证:是完全平方数,这里分析:这道题目的证法很多,下面我们给出借助于斐波那契数列证明的两种方法。
方法一:利用斐波那契数列作过渡证明。
设,其中且。
假设,删去时,则当依次取1,3,4时,分别等于,故当时,(1)作数列:且,现用数学归纳法证明下述两式成立:(2)(3)因为故当时(2)(3)两式成立。
假设当()时,(2)(3)两式成立,由当时,由(1)式、的定义以及归纳假设,知这样(2)(3)两式对于成立。
故(2)(3)两式对于一切自然数成立。
,由(2)即可知是完全平方数。
方法二:由的递推关系式寻求的递推关系式,从这个递推关系式对求与斐波那契数列的关系。
设,其中且。
假设,删去时,则当依次取1,3,4时,分别等于,故当时,所以令,则当时,有因为,下用数学归纳法证明,其中是斐波那契数列:且,当时结论显然;设时结论成立,于是即当时命题成立。
从上述证明可知,对一切正整数,是完全平方数,从而也是完全平方数。
例3.将等差数列{}:中所有能被3或5整除的数删去后,剩下的数自小到大排成一个数列{},求的值.(2006年江西省竞赛试题)解:由于,故若是3或5的倍数,当且仅当是3或5的倍数.现将数轴正向分成一系列长为60的区间段:(0,+ )=(0,60]∪(60,120]∪(120,180]∪…,注意第一个区间段中含有{}的项15个,即3,7,11,15,19,23,27,31,35,39,43,47,51,55,59.其中属于{}的项8个,为:,,,,,,,,于是每个区间段中恰有15个{}的项,8个{}的项, 且有,k∈N,1≤r≤8.由于2006=8×250+6,而,所以.例4.将正奇数集合从小到大按第组有个奇数进行分组:{1},{3,5,7},{9,11,13,15,17},……问1991位于第几组?解:需要写出第n组的第1个数与最后一个数,1991介于其中,而第n组的最后一个数为。
第n组的第一个数即第n-1组的最后一个数后面的奇数,为[2(n-1)2-1]+2=2(n-1)2+1。
由题意知2(n-1)2+1,解得(n-1)2且,从而且,故,即1991位于第32级中。
例5.设等差数列的首项是,公差为,将按第组有个数的法则分组如下:,,,……,试问是第几组的第几个数?并求出所在那组的各项的和。
解:设位于第组,则前组共有3+6+9+…+3(k-1)=项,所以即解此方程组得:,因为且-(,所以。
因此,是第组的第个数,其中。
因为第组是以为首项,为公差的等差数列,所以其所有项的和等于,其中。
例6.设奇数数列:1,3,5,7,9……(1)按2,3,2,3……的个数分群如下:(1,3),(5,7,9),(11,13),(15,17,19), (2)(I)试问数列(1)中的2007是分群数列(2)中的第几群中的第几个元素?(II)求第个群中的所有的元素之和。
解:(I)将数列(1)重新分群,按每个群含5个元素的方式分群:(1,3,5,7,9),(11,13,15,17,19), (3)由于2007排在(1)中的第1004个,因此2007是分群数列(3)中的第201群中的第4个元素。
对照分群数列(2)与(3),容易知道(3)中的第201个群的第4个元素是数列(2)中的第402个群中的第2个元素,所以2007是分群数列(2)中第402群中的第2个元素。
(II)对分偶数和奇数两种情况进行讨论。
若为偶数,则,则数列(2)的第群的元素是数列(3)的第群的第3,4,5个元素,由于数列(3)的第群的5个元素之和是,所以数列(2)中的第群的元素之和为;若为奇数,设,则数列(2)的第群的元素是数列(3)的第群的第1,2个元素。
由于数列(3)的第群的5个元素之和是,所以数列(2)中的第群的元素之和为。
例7.数列:1,9,8,5,……,其中是的个位数字(),试证明:是4的倍数。
证明:数列中为奇或偶数时,分别记为1,0,则得数列:1,1,0,1,0,1,1,0,0,1,0,0,0,1,1,1;1,1,0,1,0,1,1,0,0,1,0,0,0,1,1,1;…且与的奇偶性相同。
由于数列,的定义及前面得到的新数列的一些项,可见是以15为周期的周期数列,即得,而,,……,,于是……即在1985到2000的这16项中,奇数、偶数各有8项,由于偶数的平方能被4整除,奇数的平方被4除余1,由此命题得证。
例8.已知,,,试证:对于一切,所有的项都不是4的倍数。
证明:方法一:由题设中的递推关系,知的奇偶性只有三种情况:奇,偶,奇;偶,奇,奇;奇,奇,偶。
均不是4的倍数。
下面证明中的所有项都不是4的倍数。
假设存在是4的倍数的最小下标,则,且均为奇数,为偶数。
由于和,得所以是4的倍数,与所设的矛盾!因此命题得证。
方法二:由于该数列不是周期数列,但模4后得到的数列是周期数列,从开头的几项1,2,7,29,22,23,49,26,-17,……模4后得1,2,3,1,2,3,1,2,3,……发现这是一个周期为3的周期数列。