人教版七年级上册 第三章 解一元一次方程分类练习
第三章一元一次方程 知识点分类过关练习人教版七年级上册数学
人教版七年级上册数学《一元一次方程》知识点分类过关练习 知识点一:一元一次方程的定义1. 已知下列方程:①x-2=3x ;②0.3x=1;③x 2=5;④x 2-4x=3;⑤5x=0;⑥x+2y=0,其中 是一元一次方程的有( )A.2个B.3个C.4个D.5个 2. 下列等式变形错误的是 ( )A.由a=b 得a+5=b+5B.由a=b 得a-6=b-6C.由x+2=y-2得x=yD.由7+x=y+7得x=y3. 已知mx n-1-8=0是关于x 的一元一次方程,则m ,n .知识点二:解一元一次方程1.若代数式x +4的值是2,则x 等于( )A .2B .-2C .6D .-62. 将方程5(x -1)=1去括号,正确的是( )A .5x -1=1B .5x -5=5C .5x +5=1D .5x -5=13. 解方程3162x x +-=,去分母,得( ) A.133x x --= B.633x x --=C.633x x -+=D.133x x -+=4. 当x =______时,代数式-2(x +3)-5的值等于-9.5. 解下列方程:(1)10(x ﹣1)=5; (2)x -2=13x +43;(3) 232)13(52-=-y y ; (4)2x +13=1-x -15.知识点三:一元一次方程参数问题1.若x=2是关于x 的方程2x+3m-1=0的解,则m 的值为( )A.-1B.0C.1D.13 2. 如果关于x 的方程3x +2a +1=x -6(3a +2)的解是x =0,那么a 等于( )A .-1120B .-1320 C.1120 D.13203.m 为何值时,关于x 的方程4x ﹣2m=3x ﹣1的解是x=2x ﹣3m 的解的2倍.4.关于x 的方程2(x -1)=3m -1与3x +2=-2(m +1)的解互为相反数,求m 的值.1.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )A.60元B.80元C.120元D.180元2.如果三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是()A.56 B.48 C.36 D.123.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定4. 如图所示,天平右盘里放了一块砖,左盘里放了半块砖和2kg的砝码,天平两端正好平衡,那么一块砖的质量是________________.5. 七年级(1)班部分同学计划一起租车秋游,租车费人均15元;后来又有4名同学加入,总租车费不变,结果人均少花3元,设原来有x名学生,可列方程为.6.甲厂库存木材100t,每月用去15t,乙厂库存木材82t,每月用去9t,经过m个月,两厂剩余木材相等,则m的值为.7.为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1,2号线.已知修建地铁1号线24km和2号线22km共需投资265亿元.若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.(1)求1号线、2号线每千米的平均造价分别是多少亿元?(2)除1,2号线外,长沙市政府规划到2018年还要再建91.8km的地铁线网.据预算,这91.8km地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?1.如果5m+14与m+14互为相反数,那么m的值为________.2. 4x k+2y3与-7y3x8k-33为同类项,则k= .3.已知y1=-2(x+1),y2=-3(x-2),若y1-y2=3,则x= .4.本次大休期间,小玲做作业时解方程x+12-2-3x3=1的步骤如下:①去分母,得3(x+1)-2(2-3x)=1;②去括号,得3x+3-4-6x=1;③移项,得3x-6x=1-3+4;④合并同类项,得-3x=2;⑤系数化为1,得x=-2 3 .(1)聪明的你知道小玲的解答过程正确吗?答:________(填“是”或“否”),如果不正确,第________步(填序号)出现了问题;(2)请你写出这道题正确的解答过程.5.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家1﹣5月份用水量和交费情况:月份 1 2 3 4 5用水量(吨)8 10 12 15 18费用(元)16 20 26 35 44根据表格中提供的信息,回答以下问题:(1)求出规定吨数和两种收费标准;(2)若小明家6月份用水20吨,则应缴多少元?(3)若小明家7月份缴水费29元,则7月份用水多少吨?。
人教版七年级数学上册第三章一元一次方程解决问题专项练习
七年级上册第三章一元一次方程解决问题一、列方程解答(基础)1、根据下列问题,设未知数,列出方程(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?(2)甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?(3)一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底。
(4)用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元?2、某校七年级1班共有学生48人,其中女生人数比男生人数的4/5多3人,这个班有男生多少人?3、把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元。
获得一等奖的学生有多少人?4、今年上半年某镇居民人均可支配收入为5109元,比去年同期增长了8.3%,去年同期这项收入为多少元?5、一辆汽车已行驶了12000KM,计划每月再行驶800KM,几个月后这辆汽车将行驶20800KM?6、七年级1班全体学生为地震灾区共捐款428元,七年级2班每个学生捐款10元,七年级1班所捐款数比七年级2班少22元。
两班学生人数相同,每班有多少学生?7、某工厂的产值连续增长,去年是千年的1.5倍,今年是去年的2倍,这三年的总产值为550万元。
前年的产值是多少?8、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本,这个班有多少学生?9、小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄。
10、洗衣机厂今年计划生产洗衣机25500台,其中甲型、乙型、丙型三种洗衣机的数量比是1:2:14,计划生产者三种洗衣机各多少台?11、用一根长60m的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少?12、两辆汽车从相距84KM的两地同时出发相向而行,甲车的速度比乙车的速度快20km/h,半小时后两车相遇,两车的速度各是多少?13、买两种布料共135m,花了540元,其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少米?二、列式计算1、X的5倍与2的和等于X的3倍与4的差,求X。
【人教版】七年级上册数学:第三章《一元一次方程》练习题(含答案)
第3章一元一次方程练习题(一)一、选择题1. 对于非零的两个实数a 、b ,规定ab b a 11-=⊗,若1)1(1=+⊗x ,则x 的值为( ) A .23 B .31 C . 21 D . 21- 2.下列变形错误的是( )A.由x + 7= 5得x+7-7 = 5-7 ;B.由3x -2 =2x + 1得x= 3C.由4-3x = 4x -3得4+3 = 4x+3xD.由-2x= 3得x= -32 3. 解方程3x +1=5-x 时,下列移项正确的是( )A.3x +x =5+1B.3x-x=-5-1C.1-5=-3x+xD.3x+x=5-14. 将(3x +2)-2(2x -1)去括号正确的是( )A 3x +2-2x +1B 3x +2-4x +1C 3x +2-4x -2D 3x +2-4x +25.下列解方程去分母正确的是( )A .由1132x x --=,得2x -1=3-3x . B .由44153x y +-=,得12x -15=5y +4. C .由232124x x ---=-,得2(x -2)-3x -2=-4. D .由131236y y y y +-=--,得3y +3=2y -3y +1-6y . 6.当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( )A.-8B.-4C.-2D.87.在下列方程中,解是x=2的方程是( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
8.如果错误!未找到引用源。
是方程错误!未找到引用源。
的解,那么错误!未找到引用源。
的值是( )A.-8B.0C.2D.89.若x =a 是方程4x +3a =-7的解,则a 的值为( )A.7B.-7C.1D.-110.已知x =-2是方程2x -3a =2的根,那么a 的值是( )A.a =2B.a =-2C.a =23D.a =23- 11.如果错误!未找到引用源。
人教版七年级数学上册第3章 一元一次方程练习题(含答案)
人教版七年级上册第三章一元一次方程练习题一、选择题1.已知下列方程:①x+1=3x ;②5x=8;③x3=4x+1;④4x2+2x−3=0;⑤x=1;⑥3x+y=6.其中一元一次方程的个数有()A. 2个B. 3个C. 4个D. 6个2.在下列等式的变形中,正确的是()A. 若3x=a,则x=a3B. 若ax=b,则x=baC. 若ac=bc,则a=bD. 若a=b,则a−c=c−b3.在下列各式中,是方程的是()A. 2x+3y=2B. 2a+3C. 2x>5D. π−1=2.144.下列方程中,移项正确的是()A. 12−x=−5,移项,得12−5=xB. −7x+3=−13x−2,移项,得13x−7x=−3−2C. 4x+3=2x+5,移项,得4x−2x=5+3D. −5x−7=2x−11,移项,得11−7=2x−5x5.解方程3x+7=32−2x正确的时()A. x=25B. x=5C. x=39D. x=3956.代数式2x−1与4−3x的值互为相反数,则x等于()A. −3B. 3C. −1D. 17.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为().A. 2B. −2C. 1D. −18. 若3x+12的值比2x−23的值小1,则x 的值为( )A. 135B. −135C. 513D. −5139. 若3a +1的值与3(a +1)的值互为相反数,则a 的值为( )A. −23B. −13C. 23D. 13 10. 某书上有一道解方程的题:1+▫x 3+1=x ,▫处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =−2,那么▫处的数字是( )A. 7B. 5C. 2D. −2 11. 解方程x+14=x −5x−112时,去分母正确的是( )A. 3(x +1)=x −(5x −1)B. 3(x +1)=12x −5x −1C. 3(x +1)=12x −(5x −1)D. 3x +1=12x −5x +1 12. 把方程x −x−52=x−16去分母,正确的是( )A. x −3(x −5)=x −1B. 6x −3(x −5)=x −1C. x −x −5=x −1D. 6x −(x −5)=x −113. 甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x 小时两车相遇,则根据题意列方程为( )A. 75×1+(120−75)x =270B. 75×1+(120+75)x =270C. 120(x −1)+75x =270D. 120×1+(120+75)x =27014. 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,则这个商店这次( ) A. 不赔不赚 B. 赚了8元 C. 赔了8元 D. 赔了10元15. 某足球比赛计分规则:胜一场得3分,平一场得1分,负一场得0分.某足球队经过26轮激战,以42分获比赛第五名,其中负6场,那么胜场数为( )A. 9B. 10C. 11D. 12二、填空题16.写出一个一元一次方程使它同时满足下列两个条件: ①未知数的系数是2; ②方程的解为2.则这个方程为.17.如果x+17=y+6,那么x+11=y+_____,根据是___________________.18.当x的值为________时,代数式2x+3与(x−7)的差等于5.19.当x=_________ 时,代数式x−x−25的值等于−2.20.小明和他父亲的年龄之和为54,又知父亲年龄是小明年龄的3倍少2岁,则他父亲的年龄为____岁.三、解答题21.甲、乙、丙三位爱心人士向贫困山区的希望小学捐赠图书,已知甲、乙、丙三位爱心人士捐赠图书的册数之比是5:8:9,如果他们共捐了748册图书,那么甲、乙、丙三位爱心人士各捐了多少册图书?22.知关于x的方程2(x−1)=3m−1与3x+2=−2(m+1)的解互为相反数,求m的值.23.解下列方程:(1)2x+13−5x−16=1;(2)x−x−12=2−x+25.24.某商场销售的一款空调每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(2)若在这次促销活动中,商场销售了这款空调100台,则盈利多少元?25.如图,数轴上A,B两点所表示的数分别为−5,10,O为原点,点C为数轴上一动点且表示的数为x.点P以每秒2个单位长度的速度,点Q以每秒3个单位长度的速度,分别自A,B两点同时出发,相向而行,在数轴上运动.设运动时间为t秒.(1)若点P,Q在点C处相遇,求点C所表示的数x;(2)若OP=OQ,求t的值;(3)当PQ=5时,求t的值;(4)若同时一只宠物鼠以每秒4个单位长度的速度从点B出发,与点P相向而行,宠物鼠遇到点P后立即返回,又遇到点Q后立即返回,又遇到点P后立即返回⋯⋯直到点P,Q相遇为止.求宠物鼠在整个过程中所经过的路程.答案和解析1.【答案】B【解析】【分析】本题主要考查的是一元一次方程的概念的有关知识,直接利用一元一次方程的概念进行求解即可.【解答】不是一元一次方程;解:①x+1=3x②5x=8是一元一次方程;=4x+1是一元一次方程;③x3④4x2+2x−3=0不是一元一次方程;⑤x=1是一元一次方程;⑥3x+y=6不是一元一次方程.故选B.2.【答案】A【解析】【分析】此题主要考查了等式的性质,关键是注意等式两边同时除以同一个数时,必须说明除以一个不为零的数.根据等式的性质:等式两边乘同一个数或除以一个不为零的数,结果仍得等式,进行分析即可.【解答】解:A.若3x=a,则x=a,本选项正确;3B.若ax=b,则x=b,没说明a≠0,本选项错误;aC.若ac=bc,若c=0,则a=b不一定成立,本选项错误;D.若a=b,则a−c=c−b不一定成立,本选项错误;故选A.3.【答案】A【解析】【分析】此题主要考查方程的概念,根据含有未知数的等式就是方程求解【解答】解:A.2x+3y=2是方程,故A选项正确;B.2a+3不是等式,故B选项错误;C.2x>5不是等式,故C选项错误;D.π−1=2.14,不含未知数,故D选项错误.故选A.4.【答案】B【解析】【分析】本题考查了解一元一次方程,注意移项要变号.根据移项要变号对各选项分析判断即可得解.【解答】解:A、12−x=−5,移项,得12+5=x,故本选项错误;B、−7x+3=−13x−2,移项,得13x−7x=−3−2,故本选项正确;C、4x+3=2x+5,移项,得4x−2x=5−3,故本选项错误;D、−5x−7=2x−11,移项,得11−7=2x+5x,故本选项错误.故选B.5.【答案】B【解析】【分析】本题考查的是解一元一次方程有关知识,首先对该方程移项,合并同类项,系数化为1可得.【解答】解:移项可得:3x+2x=32−7,合并同类项:5x=25,系数化为1可得:x=5.故选B.6.【答案】B【解析】【分析】本题主要考查的是相反数,一元一次方程的解法的有关知识,根据相反数的定义列出方程求解即可.【解答】解:∵代数式2x−1与4−3x的值互为相反数,∴2x−1+4−3x=0,合并同类项得−x+3=0,解得x =3.故选B .7.【答案】B【解析】【分析】本题主要考查的是同解方程,一元一次方程的解法的有关知识.先求出方程x +2=2x +1的解,然后将x 的值代入3x +2m =−1进行求解即可.【解答】解: x +2=2x +1,∴x −2x =1−2,∴−x =−1,解得:x =1,∵两个方程的解相同,∴把x =1代入3x +2m =−1得3+2m =−1,解得:m =−2.故选B .8.【答案】B【解析】【试题解析】【分析】本题考查了解一元一次方程方程,其步骤为:去分母,去括号,移项合并同类项,将未知数系数化为1,求出解. 根据3x+12的值比2x−23的值小1列出方程,求出方程的解即可得到x 的值.【解答】解:由题,3x+12=2x−23−1,去分母得:3(3x +1)=2(2x −2)−6,去括号得,9x +3=4x −4−6,移项、合并得:5x =−13,系数化为1得:x =−135.故选B .9.【答案】A【解析】【分析】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.利用相反数的性质列出方程,求出方程的解即可得到a的值.【解析】解:根据题意得:3a+1+3(a+1)=0,去括号得:3a+1+3a+3=0,移项合并得:6a=−4,,解得:a=−23故选A.10.【答案】B【解析】【分析】利用方程的解的定义,求方程中另一个字母的解,此题主要考查解方程,已知方程的解x=−2,把x=−2代入未知方程,就可以求出被油墨盖住的地方了.【解答】+1=x解:把x=−2代入1+□x3+1=−2,得:1−2□3解这个方程得:□=5.故选B.11.【答案】C【解析】解:方程两边都乘以12,去分母得,3(x+1)=12x−(5x−1).故选:C.根据解一元一次方程的方法,方程两边都乘以分母的最小公倍数12即可.本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.【答案】B【解析】【分析】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.根据等式的基本性质,把方程的左右两边同时乘6,去掉分母即可.【解答】解:去分母得,6x−3(x−5)=x−1,故选B.13.【答案】B【解析】【分析】本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是了解相遇问题中的等量关系,难度不大.根据两车相遇共行驶270千米列出方程即可.【解答】解:设再经过x小时两车相遇,则根据题意列方程为75×1+(120+75)x=270,故选:B.14.【答案】C【解析】【分析】本题考查了一元一次方程的应用,需注意利润率是相对于进价说的,进价+利润=售价.已知售价,需算出这两件衣服的进价,让总售价减去总进价就算出了总的盈亏.【解答】解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得:x=48,类似地,设另一件亏损衣服的进价为y元,,列方程y−25%y=60,解得:y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.∴120−128=−8元,所以,该家商店赔了8元.故选:C.15.【答案】C【解析】【分析】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.要求胜场数,就要先设出未知数,然后根据题中的等量关系列方程求解.此题等量关系:胜场所得分数+平场所得分数=总分.【解答】解:设胜场数为x场,则平场数为(26−6−x)场,依题意得:3x+(26−6−x)=42解得:x=11,那么胜场数为11场.故选C.16.【答案】2x−4=0(答案不唯一)【解析】【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.根据一元一次方程的定义,只要含有一个未知数(元),并且未知数的指数是1(次),且系数是2,还要满足方程的解是3,这样的方程即可,答案不唯一,只要符合以上条件即可.【解答】解:答案不唯一,如2x−4=0等17.【答案】0,等式的基本性质一【解析】【分析】本题主要考查了等式的性质,熟练掌握等式的性质是解题的关键,根据等式的基本性质一解答即可.【解答】解:x+17=y+6,两边同时减去6可得x+17−6=y+6−6,即x+11=y+0,故答案为0,等式的基本性质一.18.【答案】−5【解析】【分析】本题考查一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.根据代数式2x+3与x−7的差等于5,即可列方程2x+3−(x−7)=5,解方程即可求解.【解答】解:根据题意得,2x+3−(x−7)=52x+3−x+7=5x=−5,故答案为−5.19.【答案】−3【解析】【分析】本题考查了解一元一次方程的解法,解题时牢记解方程的步骤是关键.先列出等式,再根据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1解题即可.【解答】=−2.解:x−x−25去分母得:5x−x+2=−10,移项、合并同类项得:4x=−12,系数化为1得:x=−3.故答案为−3.20.【答案】14【解析】【分析】本题考查了由实际问题抽象出一元一次方程.等量关系为:小明现在的年龄+父亲现在的年龄=54,把相关数值代入即可求解.【解答】解:设小明的年龄的为x岁,则父亲的年龄为(3x−2)岁,根据题意得:x+(3x−2)=54解得x=14.故答案为14.21.【答案】解:设甲捐书5x册,则乙捐书8x册,丙捐书为9x册,∵他们共捐了748册,∴5x+8x+9x=748解得x=34,∴甲捐书5x=170册,乙捐书8x=272册,丙捐书为9x=306册.答:甲捐了170册图书,乙捐了272册图书,丙捐了306册图书.【解析】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设甲捐书5x册,则乙捐书8x册,丙捐书为9x册,根据他们共捐了748册,即可求出这三位同学各捐书多少册.22.【答案】解:解方程2(x−1)=3m−1得:x=3m+12;解方程3x+2=−2(m+1)得:x=−2m−43;因为两个方程的解互为相反数,所以3m+12+−2m−43=0,解得m=1.【解析】本题主要考查的是相反数,一元一次方程的解,一元一次方程的解法的有关知识.分别求出两个方程的解,然后根据相反数的定义得到关于m的方程求解即可.23.【答案】(1)2x+13−5x−16=1解:去分母(方程两边乘6),得2(2x+1)−(5x−1)=6.去括号,得4x+2−5x+1=6.移项,得4x−5x=6−2−1.合并同类项,得−x=3.系数化为1,得x=−3.(2)x−x−12=2−x+25解:去分母(方程两边乘10),得10x−5(x−1)=20−2(x+2).去括号,得10x−5x+5=20−2x−4.移项,得10x−5x+2x=20−4−5.合并同类项,得7x=11.系数化为1,得x=117.【解析】本题考查的是一元一次方程的解法。
人教版七年级上册第3章《一元一次方程》应用题分类练习(三)
⼈教版七年级上册第3章《⼀元⼀次⽅程》应⽤题分类练习(三)《⼀元⼀次⽅程》应⽤题分类练习(三)⼀.销售问题1.某服装店购进A,B两种新式服装,按标价售出后可获得利润1600元,已知购进B种服装的数量是A种服装数量的2倍,这两种服装的进价、标价如表所⽰:A型B型进价(元/件)60 100标价(元/件)100 160(1)这两种服装各购进了多少件?(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店的利润⽐按标价出售少收⼊多少元?2.华联超市第⼀次⽤7000元购进甲、⼄两种商品,其中甲商品的件数是⼄商品件数的2倍,甲、⼄两种商品的进价和售价如表:(注:获利=售价﹣进价)甲⼄进价(元/件)20 30售价(元/件)25 40 (1)该超市购进甲、⼄两种商品各多少件?(2)该超市将第⼀次购进的甲、⼄两种商品全部卖完后⼀共可获得多少利润?(3)该超市第⼆次以第⼀次的进价⼜购进甲、⼄两种商品,其中甲商品的件数不变,⼄商品的件数是第⼀次的3倍:甲商品按原价销售,⼄商品打折销售,第⼆次两种商品都售完以后获得的总利润⽐第⼀次获得的总利润多800元,求第⼆次⼄商品是按原价打⼏折销售?3.列⽅程解应⽤题:某⽔果店计划购进A、B两种⽔果下表是A、B这两种⽔果的进货价格:⽔果品种A B进货价格(元/kg)10 15(1)若该⽔果店要花费600元同时购进两种⽔果共50kg,则购进A、B两种⽔果各为多少?(2)若⽔果店将A种⽔果的售价定为14元/kg,要使购进的这批⽔果在完全售出后达到50%的利润率,B种⽔果的售价应该定为多少?4.武汉⼤洋百货经销甲、⼄两种服装,甲种服装每件进价500元,售价800元;⼄种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为,⼄种服装每件进价为元;(2)若该商场同时购进甲、⼄两种服装共40件,恰好总进价⽤去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉⼤洋百货实⾏“满1000元减500元的优惠”(⽐如:某顾客购物1200元,他只需付款700元).到了晚上⼋点后,⼜推出“先打折”,再参与“满1000元减500元”的活动.张先⽣买了⼀件标价为3200元的⽻绒服,张先⽣发现竟然⽐没打折前多付了20元钱问⼤洋百货商场晚上⼋点后推出的活动是先打多少折之后再参加活动?5.⼀种商品按销售量分三部分制定销售单价,如下表:销售量单价不超过100件部分 2.6元/件超过100件不超过300件部分 2.2元/件超过300件部分2元/件(1)若买100件花元,买300件花元;买380件花元;(2)⼩明买这种商品花了568元,列⽅程求购买这种商品多少件?(3)若⼩明花了n元(n>260),恰好购买0.45n件这种商品,求n的值.⼆.配套问题6.列⽅程解应⽤题:油桶制造⼚的某车间主要负责⽣产制造油桶⽤的圆形铁⽚和长⽅形铁⽚,该车间有⼯⼈42⼈,每个⼯⼈平均每⼩时可以⽣产圆形铁⽚120⽚或者长⽅形铁⽚80⽚.如图,⼀个油桶由两个圆形铁⽚和⼀个长⽅形铁⽚相配套.⽣产圆形铁⽚和长⽅形铁⽚的⼯⼈各为多少⼈时,才能使⽣产的铁⽚恰好配套?7.星光服装⼚接受⽣产⼀些某种型号的学⽣服的订单,已知每3m长的某种布料可做上⾐2件或裤⼦3条,⼀件上⾐和⼀条裤⼦为⼀套,计划⽤750m长的这种布料⽣产学⽣服,应分别⽤多少布料⽣产上⾐和裤⼦才能恰好配套?共能⽣产多少套?8.⾜球表⾯是由若⼲个⿊⾊五边形和⽩⾊六边形⽪块围成的,⿊、⽩⽪块数⽬⽐为3:5,⼀个⾜球表⾯⼀共有32个⽪块,⿊⾊⽪块和⽩⾊⽪块各有多少个?9.包装⼚有⼯⼈42⼈,每个⼯⼈平均每⼩时可以⽣产圆形铁⽚120⽚,或长⽅形铁⽚80⽚,两张圆形铁⽚与⼀张长⽅形铁⽚可配套成⼀个密封圆桶,问每天如何安排⼯⼈⽣产圆形和长⽅形铁⽚能合理地将铁⽚配套?10.⽤铝⽚做听装易拉饮料瓶,每张铝⽚可制瓶⾝16个或瓶底43个,⼀个瓶⾝配两个瓶底.现有150张铝⽚,⽤多少张制瓶⾝,多少张制瓶底,可以正好制成成套的饮料瓶?三.相遇与追击问题11.甲、⼄两⼈同时从A地出发去25km远的B地,甲骑车,⼄步⾏,甲的速度是⼄的速度的3倍,甲到达B地停留40min,然后从B地返回A地,在途中遇见⼄,这时距他们出发的时间恰好为3h.(1)若设⼄的速度为xkm/h,则甲的速度为km/h,甲遇见⼄时,⼄⾛的路程可以表⽰为km,甲⾛的路程可以表⽰为km.(2)两⼈的速度分别是多少?(请⽤⽅程来解决问题)12.“五?⼀”长假⽇,弟弟和妈妈从家⾥出发⼀同去外婆家,他们⾛了1⼩时后,哥哥发现带给外婆的礼品忘在家⾥,便⽴刻带上礼品以每⼩时6千⽶的速度去追,如果弟弟和妈妈每⼩时⾏2千⽶,他们从家⾥到外婆家需要1⼩时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?13.甲、⼄两站相距275千⽶,⼀辆慢车以每⼩时50千⽶的速度从甲站出发开往⼄站.1⼩时后,⼀辆快车以每⼩时75千⽶的速度从⼄站开往甲站.那么快车开出后⼏⼩时与慢车相遇?14.已知甲⼄两⼈在⼀个200⽶的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4⽶,⼄平均每秒跑6⽶,若甲⼄两⼈分别从A、C两处同时相向出发(如图),则:(1)⼏秒后两⼈⾸次相遇?请说出此时他们在跑道上的具体位置;(2)⾸次相遇后,⼜经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪⼀条段跑道上?15.⼩刚和⼩强从A、B两地同时出发,⼩刚骑⾃⾏车,⼩强步⾏,沿同⼀条路线相向匀速⽽⾏,出发后2h两⼈相遇,相遇时⼩刚⽐⼩强多⾏进24km,相遇后0.5h⼩刚到达B 地,两⼈的⾏进速度分别是多少?相遇后经过多少时间⼩强到达A地?四.年龄问题16.古希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他⽣命的六分之⼀是幸福的童年;再活了他⽣命的⼗⼆分之⼀,两颊长起了细细的胡须;他结了婚,⼜度过了⼀⽣的七分之⼀;再过五年,他有了⼉⼦,感到很幸福;可是⼉⼦只活了他⽗亲全部年龄的⼀半;⼉⼦死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你算出:(1)丢番图的寿命;(2)丢番图开始当爸爸时的年龄;(3)⼉⼦死时丢番图的年龄.17.今年⼩李的年龄是他爷爷年龄的五分之⼀,⼩李发现:12年之后,他的年龄变成爷爷的年龄三分之⼀.求⼩李爷爷今年的年龄.参考答案1.解:(1)设A种服装购进x件,则B种服装购进2x件,(100﹣60)x+2x(160﹣100)=1600,解得:x=10,∴2x=20,答:A种服装购进10件,B种服装购进20件;(2)打折后利润为:10×(100×0.8﹣60)+20×(160×0.7﹣100)=200+240=440(元),少收⼊⾦额为:1600﹣440=1160(元),答:服装店的利润⽐按标价出售少收⼊1160元.2.解:(1)设第⼀次购进⼄种商品x件,则购进甲种商品2x件,根据题意得:20×2x+30x=7000,解得:x=100,∴2x=200件,答:该超市第⼀次购进甲种商品200件,⼄种商品100件.(2)(25﹣20)×200+(40﹣30)×100=2000(元)答:该超市将第⼀次购进的甲、⼄两种商品全部卖完后⼀共可获得利润2000元.(3)⽅法⼀:设第⼆次⼄种商品是按原价打y折销售根据题意得:(25﹣20)×200+(40×﹣30)×100×3=2000+800,解得:y=9答:第⼆次⼄商品是按原价打9折销售.⽅法⼆:设第⼆次⼄种商品每件售价为y元,根据题意得:(25﹣20)×200+(y﹣30)×100×3=2000+800,解得:y=36×100%=90%答:第⼆次⼄商品是按原价打9折销售.⽅法三:2000+800﹣100×3=1800元∴=6,∴×100%=90%,答:第⼆次⼄商品是按原价打9折销售.3.解:(1)设购进A⽔果x千克,则购进B⽔果(50﹣x)千克,依题意有10x+15(50﹣x)=600,解得:x=30,50﹣x=20.故购进A⽔果30千克,购进B⽔果20千克;(2)设B种⽔果的售价应该定为y元/千克,依题意有(14﹣10)×30+(y﹣15)×20=600×50%,解得:y=24.故B种⽔果的售价应该定为24元/千克.4.解:(1)∵甲种服装每件进价500元,售价800元,∴每件甲种服装利润率为=60%.∵⼄种服装商品每件售价1200元,可盈利50%.∴⼄种服装每件进价为=800(元),故答案为:60%,800;(2)设甲种服装进了x件,则⼄种服装进了(40﹣x)件,由题意得,500x+800(40﹣x)=27500,解得:x=15.商场销售完这批服装,共盈利15×(800﹣500)+25×(1200﹣800)=14500(元).答:商场销售完这批服装,共盈利14500元.(3)设打了y折之后再参加活动.①打折后价格满2000元少于3000元=3200﹣3×500+20.解得:y=8.5.②打折后价格满1000元少于2000元,解得y=6.9(不合题意,舍去).③打折后价格不满1000元3200×,解得y=5.3(不合题意,舍去).答:先打⼋五折再参加活动.5.解:(1)买100件花:2.6×100=260(元)买300件花:2.6×100+2.2×200=700(元)买380件花:2.6×100+2.2×200+2×80=860(元)故答案为:260,700,860(2)设购买这种商品x件因为花费568<700,所以购买的件数少于300件.260+2.2(x﹣100)=568解得:x=240答:购买这种商品240件(3)①当260<n≤700时260+2.2(0.45n﹣100)=n解得:n=4000(不符合题意,舍去)②当n>700时700+2(0.45n﹣300)=n解得:n=1000综上所述:n的值为10006.解:设⽣产圆形铁⽚的⼯⼈为x⼈,则⽣产长⽅形铁⽚的⼯⼈为42﹣x⼈,根据题意可列⽅程:120x=2×80(42﹣x),解得:x=24,则42﹣x=18.答:⽣产圆形铁⽚的有24⼈,⽣产长⽅形铁⽚的有18⼈.7.解:设做上⾐需要xm,则做裤⼦为(750﹣x)m,故可做上⾐×2,做裤⼦×3,由题意得,=750﹣x,解得:x=450,答:⽤450m做上⾐,300m做裤⼦恰好配套.=300(套),因此共做300套.8.解:设⿊⾊⽪块有3x个,则⽩⾊⽪块有5x 个,根据题意列⽅程:3x+5x=32,解得:x=4,则⿊⾊⽪块有:3x=12个,⽩⾊⽪块有:5x=20个.答:⿊⾊⽪块有12个,⽩⾊⽪块有20个.9.解:设安排x⼈⽣产长⽅形铁⽚,则⽣产圆形铁⽚的⼈数为(42﹣x)⼈,由题意得:120(42﹣x)=2×80x,去括号,得5040﹣120x=160x,移项、合并得280x=5040,系数化为1,得x=18,42﹣18=24(⼈);答:安排24⼈⽣产圆形铁⽚,18⼈⽣产长⽅形铁⽚能合理地将铁⽚配套.10.解:设⽤x张铝⽚做瓶⾝,则⽤(150﹣x)张铝⽚做瓶底,根据题意得:2×16x=43×(150﹣x),解得:x=86,则⽤150﹣86=64张铝⽚做瓶底.答:⽤86张铝⽚做瓶⾝,则⽤64张铝⽚做瓶底.11.解:(1)若设⼄的速度为xkm/h,则甲的速度为3xkm/h,甲遇见⼄时,⼄⾛的路程可以表⽰为3xkm,甲⾛的路程可以表⽰为(3﹣)×3x=7xkm.(2)7x+3x=25×2,10x=50,x=5,3x=15.答:甲的速度是15千⽶/⼩时,⼄的速度是5千⽶/⼩时.故答案为:3x,3x,7x.12.解:设哥哥追上弟弟需要x⼩时.由题意得:6x=2+2x,解这个⽅程得:.∴弟弟⾏⾛了=1⼩时30分<1⼩时45分,未到外婆家,答:哥哥能够追上.13.解:设快车开出后x⼩时与慢车相遇.由题意得:50(1+x)+75x=275,解得:.答:快车开出后⼩时与慢车相遇.14.解:(1)设x秒后两⼈⾸次相遇,依题意得到⽅程4x+6x=100.解得x=10.甲跑的路程=4×10=40⽶,答:10秒后两⼈⾸次相遇,此时他们在直道AB上,且离B点10⽶的位置;(2)设y秒后两⼈再次相遇,依题意得到⽅程4y+6y=200.解得y=20.答:20秒后两⼈再次相遇;(3)第1次相遇,总⽤时10秒,第2次相遇,总⽤时10+20×1,即30秒,第3次相遇,总⽤时10+20×2,即50秒,第100次相遇,总⽤时10+20×99,即1990秒,则此时甲跑的圈数为1990×4÷200=39.8,200×0.8=160⽶,此时甲在AD弯道上.15.解:设⼩刚的速度为xkm/h,则相遇时⼩刚⾛了2xkm,⼩强⾛了(2x﹣24)km,由题意得,2x﹣24=0.5x,解得:x=16,则⼩强的速度为:(2×16﹣24)÷2=4(km/h),2×16÷4=8(h).答:两⼈的⾏进速度分别是16km/h,4km/h,相遇后经过8h⼩强到达A地.16.解:设丢番图的寿命为x岁,由题意得:x+x+x+5+x+4=x,解得:x=84,⽽×84+×84+×84+5=38,即他38岁时有了⼉⼦.他⼉⼦活了x=42岁.84﹣4=80岁.答:丢番图的寿命是84岁;丢番图开始当爸爸时的年龄是38;⼉⼦死时丢番图的年龄是80岁.17.解:设爷爷今年的年龄是x岁,则今年⼩李的年龄是x岁,依题意,得:x+12=(x+12),解得:x=60.答:爷爷今年60岁.。
人教版七年级上册第三章《一元一次方程》应用题分类:追击与相遇类专项练(一)
第三章《一元一次方程》应用题分类:追击与相遇类专项练(一)1.A,B两地相距340千米,已知甲车的速度为60千米/小时,乙车的速度为80千米/小时.(1)如果甲车从A地向B地先开出1小时后,乙车从B地出发,两车相向而行,乙车出发多少小时后两车相遇?(2)如果(1)中两车相遇半小时后,乙车返回追赶甲车,能否在甲车到达B地前追上?2.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?3.甲乙两人骑自行车,同时从相距65千米的AB两地相向而行,甲速度为17.5千米一小时,乙速度15千米一小时,几小时后,甲乙两人相距32.5千米?4.列方程解应用题:A、B两城相距720千米,普快列车从A城出发120千米后,特快列车从B城开往A城,6小时后两车相遇,若普快列车的速度是特快列车速度的,求两车的速度.5.甲、乙两站路程为360km,一列慢车从甲站开出,每小时行48km,一列快车从乙站开出,每小时行72km.(1)两车同时开出,相向而行,多少小时相遇?(2)若慢车先开出20分钟,快车再出发,两车同向而行,快车多少时间追上慢车?6.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.7.甲、乙两汽车站相距190km,一辆汽车以30km/h的速度从甲地开往乙地,出发2h后,一辆摩托车以50km/h的速度也从甲地开往乙地,摩托车需要多长时间才能追上汽车?8.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;时间(s)0 5 7 xA点位置19 ﹣1B点位置17 27(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.9.甲车和乙车从A、B两地同时出发,沿同一线路相向匀速行驶,出发后1.5h两车相遇,相遇时甲车比乙车少走30km,相遇后1.2h乙车到达A地.(1)两车的行驶速度分别是多少?(2)相遇后,若乙车速度不变,甲车想和乙车同时到达目的地,那么甲车要比原来的行驶速度增加多少km/h?(3)相遇后,甲车到B地间的部分路段限速120km/h,部分路段限速140km/h,(2)中甲车在相应路段,既不超速又不低于限速行驶,刚好能和乙车同时到达目的地,试求限速120km/h和限速140km/h的路段各多少km?10.某校综合实践小分队成一列在野外拓展训练,在队伍中的队长数了一下他前后的人数,发现他前面人数是他后面的三倍,他往前超了5位队友后,发现他前面的人数和他后面的人数一样多.问:(1)这列队伍一共有多少名学生?(2)这列队伍要过一座240米的大桥,为拓展训练和安全需要,相邻两个学生保持相同的间距,队伍行进速度为3米/秒,从第一位学生刚上桥到全体通过大桥用了90秒时间,请问相邻两个学生间距离为多少米(不考虑学生身材的大小)?参考答案1.解:(1)乙车出发x小时后两车相遇,根据题意得:(60+80)x+60=340解得:x=2,答:乙车出发2小时后两车相遇;(2)乙车追上甲车需y小时,根据题意得:(80﹣60)y=0.5(80+60),解得:y=3.5,而甲车还需﹣3.5=小时到达B地,答:两车相遇半小时后,乙车返回追赶甲车,不能在甲车到达B地前追上.2.解:设上山的速度为v,下山的速度为(v+1),则2v+1=v+1+2,解得v=2.即上山速度是2千米/小时.则下山的速度是3千米/小时,山高为5千米.则计划上山的时间为:5÷2=2.5(小时),计划下山的时间为:1小时,则共用时间为:2.5+1+1=4.5(小时),所以出发时间为:12:00﹣4小时30分钟=7:30.答:孔明同学应该在7点30分从家出发.3.解:设经过x小时,甲、乙两人相距32.5千米.有两种情况:①两人没有相遇相距32.5千米,那么两人共同走了(65﹣32.5)千米,根据题意可以列出方程x(17.5+15)=65﹣32.5,解得x=1;②两人相遇后相距32.5千米,那么两人共同走了(65+32.5)千米,根据题意可以列出方程x(17.5+15)=65+32.5,解得x=3.答:经过1或3小时,甲、乙两人相距32.5千米.4.解:设特快列车速度为x千米/时,则普快列车的速度为x千米/时,由题意,得120+6(x+x)=720,解得:x=60,∴普快列车的速度为×60=40千米/时.答:特快列车速度为60千米/时,则普快列车的速度为40千米/时.5.解:(1)设两车同时开出相向而行,经x小时相遇,即72x+48x=360,解得:x=3.答:经过3小时两车相遇.(2)设快车行驶y小时追上慢车;根据题意有:48(y+)+360=72y,解得:y=.答:快车小时追上慢车.6.解:(1)设无风时飞机的飞行速度为x千米/小时,由题意得2(x+24)=3(x﹣24)解得:x=120答:无风时飞机的飞行速度是120千米/时;(2)2(x+24)=288千米答:两城之间的距离是288千米.7.解:设摩托车需要x小时长时间才能追上汽车,依题意有(50﹣30)x=30×2,解得x=3.故摩托车需要3小时长时间才能追上汽车.8.解:(1)填表如下:时间(s)0 5 7 xA点位置19 ﹣1 ﹣9 ﹣4x+19B点位置﹣8 17 27 5x﹣8 (2)根据题意可得:﹣4x+19=5x﹣8解得:x=3.答:相遇的时刻为3秒,在数轴上的位置为7;(3)根据题意可得:﹣4x+19﹣(5x﹣8)=18解得:x=1;根据题意可得:5x﹣8﹣(﹣4x+19)=18解得:x=5.综上所述,x=1或5时,A、B两点能否相距18个单位长度.9.(1)解:设乙车速度为vkm/h,依题意有1.2v=1.5v﹣30,解得:v=100,则甲车的速度为:,即.答:乙的速度为:100km/h,甲的速度为:80km/h;(2)设甲车的行驶速度比原来增加akm/h,则有:(80+a)×1.2=100×1.5,解得:a=45.答:甲车要比原来的行驶速度增加45km/h;(3)设限速120km/h的路段长xkm,则限速140km/h的路段长(150﹣x)km,则依题意有,解得:x=108,150﹣x=42.答:限速120km/h路段长108km,限速140km/h的路段42km.10.解:(1)设开始队长后面有x名学生,由题意得x+5=3x﹣5,解得x=5,共有学生4x+1=21(名)答:这列队伍一共有21名学生;(2)设相邻两个学生间距离为y米,由题意得20y+240=3×90,解得y=1.5答:相邻两个学生间距离为1.5米.。
人教版七年级上册数学第三章整一元一次方程应用题专题练习(word版含答案).doc
人教版七年级上册数学第三章整一元一次方程应用题专题练习1.甲、乙、丙、丁四人一共做了820个零件,如果把甲做的个数加10个,乙做的个数减去20个,丙做的个数乘以2,丁做的个数除以2,那么四人做的个数正好相等,问乙实际上做了多少个零件?2.元旦期间,某商场将甲种商品降价40%,乙种商品降价20%开展优惠促价活动.已知甲、乙两种商品的原销售单价之和为1200元,小敏的妈妈参加活动购买甲、乙两种商品各一件,共付800元.(1)甲、乙两种商品原销售单价各是多少元?(2)商场在这次促销活动中销售甲种商品800件,销售乙种商品1500件,共获利99000元,已知每件甲种商品的利润比乙种商品的利润低20元,那么甲、乙两种商品每件的进价分别是多少元?3.某公司给学校赠送了一批图书,学校决定将这批图书分发给七年级所有班级,如果每班分200本,则剩余120本,若每班分240本,则还缺120本,这个学校七年级有多少个班级?4.篮球赛单循环赛一般按积分确定名次.胜一场得2分,负一场得1分.某次篮球联赛中,太阳队目前的战绩是7胜5负,后面还要比赛13场.若太阳队的最终得分为40分,求太阳队一共胜了几场?5.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?6.某商场开展优惠活动,将甲种商品六折出售,乙种商品八折出售.已知甲、乙两种商品的原销售单价之和为1600元,某顾客参加活动购买甲、乙两种商品各一件,共付1200元.甲、乙两种商品的原销售单价各是多少元?7.某商场开展优惠促销活动,将甲种商品六折出存,乙种商品八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,问:商场销售甲、乙两种商品各一件时是盈利还是亏损了?具体金额是多少?8.某校职工周转房已经落成,有一些结构相同的房间需要粉刷墙面.已知3名一级技工去粉刷8个房间,结果有30m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间,另外又多粉刷20m2墙面.每名一级技工比二级技工一天多粉刷12m2墙面.(1)求每个房间需要粉刷的墙面面积;(列方程解决问题)(2)若粉刷1m2墙面给付一级技工6元费用,给付二级技工5.5元费用,问一级技工和二级技工每人每天各挣多少工钱?9.某医疗器械企业计划购进20台机器生产口罩,已知生产口罩面的机器每台每天的产量为12000个,生产耳挂绳的机器每台每天的产量为96000个,口罩是一个口罩面和两个耳挂绳构成,为使每天生产的口罩面和耳挂绳刚好配套,该企业应分别购进生产口罩面和生产耳挂绳的机器各多少台?10.一车队共有18辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,假定行驶时相邻两车的间隔均相等,小明同学站在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为5.01米.求:行驶时相邻两车之间的间隔为多少米?11.某人给东家做长工,一年的工钱是一头羊和12块银元,此人做了10个月后因故不能再做了,东家给他结了10个月的工钱,共是2头羊和3块银元,此人给东家做长工的工钱如果都以银元结算,一年是多少银元?12.2020年新冠疫情来袭,某市有一批医疗物资需要运送到医院,原计划租用载货量30吨的卡车若干辆,恰好可以一次性全部运完;若租用载货量20吨的卡车,则需要多租2辆,且最后-辆卡车还差10吨装满,其他卡车满载.(1)请问租用30吨卡车多少辆?这批医疗物资有多少吨?(2)若载货量20吨的卡车每辆租金为500元,载货量30吨的卡车每辆租金为800元,要使医疗物资一次性运完,怎样租车更合算?13.A、B两地相距300km,甲车80km/h的速度从A地匀速驶往B地,甲车出发30分钟后,乙车以120km/h的速度也从A地匀速驶往B地,两车相继到达终点B地,乙车行驶多长时间后,甲、乙两车恰好相距20km?14.一辆客车和一辆卡车都从A地出发沿同一条公路匀速驶向B地,客车的行驶速度为70千米/小时,卡车的行驶速度为60千米/小时,已知卡车提前1小时出发,结果两车同时到达B地.(1)求A,B两地的距离是多少?(2)客车出发多少小时后,两车第一次相距20千米?15.北京冬奥会花样滑冰双人滑比赛中,中国队隋文静、韩聪圆梦夺金,获得中国代表团本届冬奥会第九金!某商场看准商机,需订购一批冰刀鞋,现有甲、乙两个供应商,均标价每双80元.为了促销,甲说:“凡来我店进货一律九折.”乙说:“如果超出60双,则超出的部分打八折”(1)购进多少双时,去两个供应商处的进货价钱一样多?(2)第一次购进了100双,第二次购进的数量比第一次的2倍多10双,如果你是商场的经理请设计一种购买方案,使得两次总进货价最少,并计算出总进货价为多少元?16.用A型和B型机器生产同样的产品,已知3台A型机器一天的产品装满3箱后还剩5个,6台B型机器一天的产品装满8箱后还剩4个,每台A型机器比每台B型机器一天少生产1个产品,求每箱装多少个产品?17.某商场从厂家购进了A、B两种品牌篮球共120个,已知购买B品牌篮球的总价比购买A品牌篮球总价的3倍还多800元,A品牌篮球每个进价60元,B品牌篮球每个进价100元.(1)求购进A、B两种品牌篮球各多少个?(2)在销售过程中,A品牌篮球每个按进价加价30%销售,很快全部售出;B品牌篮球每个售价140元,售出50个后出现滞销,商场决定打折出售剩余的B品牌篮球,两种品牌篮球全部售出后共获利3080元,求B品牌篮球打几折出售?18.为节约用水,某市决定实行如下收费标准:如果每户每月用水不超过10立方米,则按每立方米1.8元收费;若超过10立方米且不超过30立方米,超过的部分按每立方米2.5元收费;若超过30立方米,则超过的部分按每立方米4.2元收费.(1)某户8月用水25立方米,则该户的8月实际用水的平均价格为每立方米______元?(2)某户居民9月份的水费为28元,则该用户9月用水多少立方米?(3)另一户居民9月份的水费为93.2元,则该用户9月用水多少立方米?19.抗击疫情,人人有责,某校成立教师志愿者分队,共分成测温和宣传两个小组,测温和宣传人数比为3:5,总人数为40人.(1)请问两个组各多少人?(2)现疫情有反扑的趋势,两个组都需加派人手,于是学校另外抽调20名教师支援志愿者分队,使得测温组的人数恰好等于宣传组的人数;应调进测温组和宣传组各多少人?20.学校举办“爱我中华”诗歌朗诵比赛,1班、2班准备给每位同学租一套参赛服装.已知两班共102人,其中1班人数比2班人数多,且1班不到100人.租用服装的价格表如下:如果两个班单独给每位同学租一套服装,那么一共应付5590元.(1)如果1班和2班联合起来给每位同学租一套服装,比两个班单独租可以节省多少钱?(2)1班、2班各有多少名同学?答案1.200个2.(1)甲、乙两种商品原销售单价分别是800元和400元(2)甲、乙两种商品每件的进价分别是450元和270元3.这个学校七年级有6个班4.15场5.人数为7,物价为53钱6.甲商品的原销售单价是400元,乙商品的原销售单价是1200元7.(1)甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)盈利,盈利了8元.8.(1)每个房间需要粉刷的墙面面积为392m(2)一级技工每人每天挣564元,二级技工每人每天挣451元.9.16;410.6.4611.18块银元12.(1)租用30吨卡车3辆,这批医疗物资有90吨(2)租用载货量30吨的卡车1辆,租用载货量20吨的卡车3辆最合算13.13h,h22或3h14.(1)A,B两地的距离是420千米;(2)客车出发4小时后,两车第一次相距20千米.15.(1)120双(2)第一次选择甲供应商实惠,第二次选择乙供应商实惠,总进货价为21600元.16.每箱装6个产品.17.(1)购进A品牌篮球40个,购进B品牌篮球80个(2)B品牌篮球打8折出售18.(1)2.22(2)14(3)3619.(1)测温组有15人,宣传组有25人(2)调进测温组15人,调进宣传组5人20.(1)可以节省1510元;(2)1班有53人,2班有49人。
人教版七年级上册3.4:一元一次方程应用题分类练习:销售打折与分段计费
一元一次方程应用题分类练习:销售打折与分段计费一:销售打折类1.请用一元一次方程解决下面的问题:一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本30元;如果按标价的8折出售,将盈利60元.(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?2.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?3.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.4.某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?5.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买20盒乒乓球时,去哪家商店购买更合算?为什么?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?(3)什么情况下,去甲店购买更合算?什么情况下,去乙店购买更合算?(请直接写出答案)二:分段计费类6.某市居民使用自来水,每户每月水费按如下标准收费:月用水量不超过8立方米,按每立方米a元收取;月用水量超过8立方米但不超过14立方米的部分,按每立方米b元收取;月用水量超过14立方米的部分,按每立方米c元收取.下表是某月部分居民的用水量及缴纳水费的数据.用水量(立方米) 2.5 15 6 12 10.3 4.7 9 17 16 水费(元) 5 33.4 12 25.6 21.52 9.4 18.4 39.4 36.4 (1)①a=,b=,c=;②若小明家七月份需缴水费31元,则小明家七月份用水米3;(2)该市某用户两个月共用水30立方米,设该用户在其中一个月用水x立方米,请列式表示这两个月该用户应缴纳的水费.7.从锦江区社保局获悉,我区范围内已经实现了全员城乡居民新型社会合作医疗保险制度,享受医保的城乡居民可在规定的医院就医并按规定标准报销部分医疗费用,下表是住院费用报销的标准:住院费用x(元)0<x≤5000 5000<x≤20000 x>20000每年报销比例40% 50% 60%(说明:住院费用的报销采取分段计算方式,如:某人一年住院费用共30000元,则5000元按40%报销.15000元按50%报销,余下的10000元按60%报销:实际支付的住院费=住院费用﹣按标准报销的金额)(1)若我区居民张大哥一年住院费用为20000元,则按标准报销的金额为元,张大哥实际支付了元的住院费.(2)若我区居民王大爷一年内本人实际支付的住院费用为21000元,则王大爷当年的住院费用为多少元?8.“十一”期间,小聪跟爸爸一起去A市旅游,出发前小聪从网上了解到A市出租车收费标准如下:行程(千米)3千米以内满3千米但不超过8千米的部分8千米以上的部分收费标准(元)10元 2.4元/千米3元/千米(1)若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?(2)小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?(3)小聪的妈妈乘飞机来到A市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?9.某地区两类专车的打车方式:华夏专车神州专车里程费 1.8元/千米2元/千米时长费0.3元/分钟0.6元/分钟远途费0.8元千米(超过7千米部分)无起步价无10元华夏专车:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千加收0.8元.神州专车:车费由里程费、时长费、起步价三部分构成,其中里程费按行车的实际里程计算;时长按行车的实际时间计算;起步价与行车距离无关.解决问题:(假设行车过程没有停车等时,且平均车速为0.5千米/分钟)(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为元;(2)小强在该地区从甲地采坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.10.下表是某网约车公司的专车计价规则:计费项目起租价里程费时长费远途费单价15元 2.5元/公里 1.5元/分1元/公里注:车费由起租价、里程费、时长费、远途费四部分构成,其中起租价15元含10分钟时长费和5公里里程费,远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收1元.(1)若小李乘坐专车,行车里程为20公里,行车时间为30分,则需付车费元;(2)若小李乘坐专车,行车里程为x(7<x≤10)公里,平均时速为40km/h,则小李应付车费多少元?(用含x的代数式表示)(3)小李与小王各自乘坐专车,行车车费之和为76元,里程之和为15公里(其中小王的行车里程不超过5公里).如果行驶时间均为20分钟,那么这两辆专车此次的行驶路程各为多少公里?参考答案1.解:(1)设每件服装标价为x元.0.5x+30=0.8x﹣60,0.3x=90,解得:x=300.故每件服装标价为300元;(2)设能打x折.由(1)可知成本为:0.5×300+30≥180,由题意知:300×≥180,解得:x≥6.故最多能打6折.2.解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而增大,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.3.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当总数不足101时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)4.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000解得:x=400购进乙型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进乙型节能灯600只进货款恰好为37000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.5.解:(1)购买20盒乒乓球时,选择甲商店合算,理由:当购买20盒时:甲店需付款100×5+(20﹣5)×25=875(元),乙店需付款(100×5+20×25)×0.9=900(元).因为875<900,所以,购买20盒乒乓球时,选择甲商店合算;(2)设购买x盒乒乓球时,两种优惠办法付款一样,100×5+25(x﹣5)=(100×5+25x)×0.9解得,x=30答:当购买30盒乒乓球时,两种优惠办法付款一样;(3)由(2)可知,当购买30盒乒乓球时,两种优惠办法付款一样,故购买乒乓球少于30盒时,选择甲商店合算;购买乒乓球多于30盒时,选择乙商店合算.6.解:(1)①根据表格可知:a==2,b==2.4,c==3,②由表格可知小明家七月份用水超过14立方米,设七月份用水x立方米,3(x﹣14)+(14﹣8)×2.4+8×2=31,解得:x=14.2,(2)若0<x≤8,则22≤30﹣x<30,所缴纳的水费为:2x+30.4+3(30﹣x﹣14)=(﹣x+78.4)元,若8<x≤14,则16≤30﹣x<22,所缴纳的水费为:16+2.4(x﹣8)+30.4+3(30﹣x﹣14)=(﹣0.6x+75.2)元,若14<x<16,则14<30﹣x<16,所缴纳的水费为:30.4+3(x﹣14)+30.4+3(30﹣x﹣14)=66.8元.若16≤x<22,则8<30﹣x<14,所缴纳的水费为:30.4+3(x﹣14)+16+2.4(x﹣30﹣8)=(0.6x+57.2)元,若22≤x<30,则0<30﹣x≤8,所缴纳的水费为:30.4+3(x﹣14)+2(30﹣x)=(x+48.4)元,综上所述,若0<x≤8,所缴纳的水费为(﹣x+78.4)元,若8<x≤14,所缴纳的水费为(﹣0.6x+75.2)元,若14<x<16,所缴纳的水费为66.8元.若16≤x<22,所缴纳的水费为(0.6x+57.2)元,若22≤x<30,所缴纳的水费为(x+48.4)元,故答案为:(1)①2,2.4,3.②14.27.解:(1)由题意可得,按标准报销的金额为:5000×40%+(20000﹣5000)×50%=2000+15000×50%=2000+7500=9500(元),张大哥实际支付了:20000﹣9500=10500(元),故答案为:9500,10500;(2)设王大爷当年的住院费用为x元,5000×(1﹣40%)+(20000﹣5000)×(1﹣50%)+(x﹣20000)×(1﹣60%)=21000,解得,x=46250答:王大爷当年的住院费用为46250元.8.解:(1)10+2.4×(8﹣3)=22(元);答:乘出租车从甲地到乙地需要付款22元;(2)设火车站到旅馆的距离为x千米.∵10<17.2<22,∴3≤x≤8.10+2.4(x﹣3)=17.2∴x=6.答:从火车站到旅馆的距离有6千米;(3)设旅馆到机场的距离为x千米,∵70>22,∴x>8.10+2.4(8﹣3)+3(x﹣8)=70∴x=24.所以乘原车返回的费用为:10+2.4×(8﹣3)+3×(24×2﹣8)=142(元);换乘另外车辆的费用为:70×2=140(元)所以换乘另外出租车更便宜.9.解:(1)使用华夏专车,乘车距离为10千米,需要支付的打车费用为:1.8×10+0.8×(10﹣7)+10÷0.5×0.3=18+2.4+6=26.4(元)故答案为:26.4;(2)设甲乙两地距离是x千米,则10+2x+×0.6=42整理得:3.2x=32x=10∴甲乙两地距离是10千米.(3)设行驶x千米,打车费用为W元当0<x≤7时,华夏专车车费W1=1.8x+×0.3=2.4x当x>7时,华夏专车车费W2=1.8x+×0.3+0.8(x﹣7)﹣9=3.2x﹣14.6神州专车车费W3=(2x+×0.6+10)×0.5=1.6x+5①W1=W3时,2.4x=1.6x+5,解得:x=6.25;W2=W3时,3.2x﹣14.6=1.6x+5,解得:x=12.25.②W1>W3时,2.4x>1.6x+5,解得:x>6.25;W2>W3时,3.2x﹣14.6>1.6x+5,解得:x>12.25.③W1<W3时,2.4x<1.6x+5,解得:x<6.25;W2<W3时,3.2x﹣14.6<1.6x+5,解得:x<12.25.综上所述,当x=6.25或12.25时,两者都可选;当6.25<x<7或x>12.25时,选神州专车;当0<x<6.25或7<x<12.25时,选华夏专车.10.解:(1)15+2.5×(20﹣5)+1.5×(30﹣10)+1×(20﹣10)=92.5(元),故答案为:92.5;(2)15+2.5×(x﹣5)+1.5×(x÷﹣10)=x﹣12.5;(3)设小王的行驶路程为x公里,则小李的行驶路程为(15﹣x)公里,根据题意得,[15+1.5(20﹣10)]+[15+2.5(15﹣x﹣5)+1.5×(20﹣10)+1×(15﹣x﹣10)]=76,解得,x=4,∴15﹣x=11,答:小王的行驶路程为4公里,则小李的行驶路程为11公里.。
人教版七年级上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(三)
《一元一次方程》应用题分类:相遇与追击类问题综合练习1.某同学打算骑自行车到野生动物园去参观,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才能到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?2.小明早上赶到距家1000米的学校上学,一天,小明以60米/分的速度出发,5分钟后,小明的爸爸发现了他忘了带课文书,于是爸爸立即以110米/分的速度去追小明,并且在途中追上他.求:(1)爸爸追上小明用了多长时间?(2)爸爸追上小明时距离学校还有多远?3.列方程解应用题:武广高铁客运专线于12月26日正式通车运行,这标志着我国步入高速铁路新时代.武广铁路客运专线,是世界上一次建成最长、时速最快的高速铁路,其高速动车组“和谐号”是我国自主研发、目前世界上最先进的高速动车组.它的运行,使得旅客从广州到武汉的乘车时间缩短了7小时,平均速度达到每小时350千米,是普通客车平均时速的3倍.你知道从广州到武汉的高铁客运专线约多少千米吗?4.A,B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米,问:(1)两车同时开出,相向而行,出发后多少小时相遇?(2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?5.如图,A、B两地相距176 km,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A、B两地同时出发赶往滑坡点疏通公路.10时,甲队赶到立即开始作业,半小时后乙队赶到,并迅速投入“战斗”,与甲队共同作业.若滑坡受损公路长1 km,甲队行进的速度是乙队的倍多5 km,求甲、乙两队赶路的速度.6.小明和小亮的家以及他们所在的学校都在一条东西走向的马路旁,其中,小明家在学校西边3千米处,小亮家在学校的东边(见图).一天放学后,小亮邀小明到自己家观看自己新配置的电脑.他们约定,小亮直接从学校步行回自己家,小明先回自己家取自行车(取车时间忽略不计),然后骑车去小亮家.设小明和小亮的步行速度相同,小明骑自行车的速度是步行速度的4倍.如果小明在距离小亮家西边0.2千米处追上小亮,求小亮家到学校的距离.7.一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离.8.甲、乙两人分别从A、B两地同时相向匀速前进,第一次相遇在距A点700m处,然后继续前进,甲到B地,乙到A地后都立即返回,第二次相遇在距B点400m处,求A、B两地间的距离是多少米?9.已知正五边形ABCDE的周长为2000米,甲、乙两人分别从A、C同时出发,沿A→B→C →D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,那么出发后经过多少分钟,甲、乙两人第一次开始行走在同一条边上.10.有160名学生到离校60千米处旅游,用一辆能载40人的客车运送,设计了步行与乘车相结合的办法,使他们用最短时间到达旅游点,车速每小时50千米,步行每小时5千米,那么这个最短时间是多少小时?(列方程解)参考答案1.解:设该同学是从x点出发的,依题意得8(12﹣x)=12(10﹣x),解方程得x=6,所以,该同学家到野生动物园的距离为8(12﹣x)=48(千米),所以,该同学的行驶速度最好是48÷(11﹣6)=9.6(千米/时).答:该同学行驶的速度最好是9.6千米/时.2.解:(1)设爸爸用了x分钟追上小明,则110x=60(x+5),x=6爸爸追上小明用了6分钟.(2)1000﹣110×6=340答:爸爸追上小明用了6分钟,追上时离学校340米.3.解:设广州至武汉高铁客运专线约长x千米,由题意得:,解之得:x=1225.答:广州至武汉高铁客运专线约长1225千米.4.(1)解:设两车同时开出,相向而行,出发后x小时相遇.根据题意得,(60+80)x=448解得:x=3.2答:两车同时开出,相向而行,出发后3.2小时相遇.(2)解:设两车同时开出,同向而行,如果慢车在前,出发后x小时快车追上慢车.根据题意得,80x﹣60x=448解得:x=22.4答:两车同时开出,同向而行,如果慢车在前,出发后22.4小时快车追上慢车.5.解:设乙队的速度为xkm/h,则甲队为(x+5)km/h,由题意得:(2+0.5)x+(x+5)×2+1=176解得:x=30,∴1.5x+5=1.5×30+5=50.答:甲队赶路的速度为50km∕h,乙队赶路的速度为30km∕h.6.解:设步行速度为a,小亮家到学校的距离为x,则,解得:x=5.2答:小亮家到学校的距离是5.2千米.7.解:设甲、乙两地的距离为x千米,4小时30分钟=小时,45分钟=小时,依题可列方程:,解得:x=360.答:甲、乙两地的距离为360千米.8.解:设A、B两地间的距离是xm,x+400=3×700.解得x=1700.答:A、B两地间的路程是1700m.9.解:∵正五边形ABCDE的周长为2000米,∴边长为400米,设x分钟后,甲、乙两人2人均在五边形的顶点,第一次开始行走在同一条边上.50x﹣46x=400,解得x=100.此时甲走了5000米,5000÷400=12…200米,还有200米才到五边形的一个顶点,200÷50=4分,∵4分钟后乙还在这一边上,∴104分后,甲、乙两人第一次开始行走在同一条边上.答:104分后,甲、乙两人第一次开始行走在同一条边上.10.解:160人分成4组,每组40人,第一组先坐车至A再步行,第二组先步行至B再坐车至C再步行,第三组先步行至D再坐车至F再步行,第四组一直步行至E最后坐车,四组同时到达目的地;设每组步行t小时,则坐车=1.2﹣0.1t小时,依题意得:50(t+1.2﹣0.1t)+5t×4×2=60×(4×2﹣1),解得:t=.则最短时间=t+1.2﹣0.1t=1.2+×=5(小时).答:这个最短时间是5小时.。
人教版七年级上册数学第3章《一元一次方程》实际问题应用题分类训练(含答案)
一.行程问题1.相遇问题1.快车以200km/h的速度由甲地开往乙地再返回甲地,慢车以75km/h的速度同时从乙地出发开往甲地.已知当快车回到甲地时,慢车距离甲地还有225km,则(1)甲乙两地相距多少千米?(2)从出发开始,经过多长时间两车相遇?(3)几小时后两车相距100千米?2.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C 两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?3.列方程解应用题:周末,小明从城里去渡假村接父母回家,为了欣赏路边的风景,小明从城里步行出发,同时父母也从渡假村步行出发,相向而行,城里距渡假村14km,小明每小时走4km,父母每小时走3km,如果小明带一只狗和他同时出发,狗以每小时8km的速度向父母方向跑去,遇到父母后又立即回头跑向小明,遇到小明后又立即回头跑向父母,这样往返直到二人相遇.(1)小明与父母经过多少小时相遇?(2)这只狗共跑了多少km呢?2.追击问题4.已知甲、乙两地相距160km,A、B两车分别从甲、乙两地同时出发,A车速度为85km/h,B车速度为65km/h.(1)A、B两车同时同向而行,A车在后,经过几小时A车追上B车?(2)A、B两车同时相向而行,经过几小时两车相距20km?5.小明每天早上7:30从家出发,到距家1000m的学校上学,一天,小明以80m/min的速度上学,5min后小明爸爸发现他发现忘带语文书,爸爸立即带上语文书去追赶小明.(1)如果爸爸以160m/min的速度追小明,爸爸追上小明时距离学校多远?(2)如果爸爸刚好能在学校门口追上小明,爸爸的速度是多少?(3)爸爸以180m/min的速度追赶小明,他把书给小明后及时原路原速返回(交书耽误的时间忽略不计),返回家的时间是多少?6.一天早晨,乐乐以80米/分的速度上学,5分钟后乐乐的爸爸发现他忘了带数学书,爸爸立即骑自行车以280米/分的速度去追乐乐,并且在途中追上了他,请解决以下问题:(1)爸爸追上乐乐用了多长时间?(2)爸爸追上乐乐后,乐乐搭爸爸的自行车回到学校,结果提前了10分钟到校,若爸爸搭上乐乐后的骑行速度为240米/分,求乐乐家离学校有多远.二.水流问题7.列方程求解:轮船沿江从A港顺流航行到B港,比从B港返回A港少用2小时,若轮船在静水中的速度为18km/h,水流的速度为2km/h,则A港和B港相距多少km?8.某船顺水航行了4h,逆水航行了3h.在静水中的速度是mkm/h,水流的速度是akm/h,则轮船共航行了多少千米?9.某人乘船从A地顺流去B地,用时3小时;从B地返回A地用时5小时.已知船在静水中速度为40km/h,求水的速度与AB间距离.三.数轴动点问题10.在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的2倍,我们就把点C叫做【A,B】的和谐点.例如:图中,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1.那么点C是【A,B】的和谐点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)当点A表示的数为﹣4,点B表示的数为8时,①若点C表示的数为4,则点C(填“是”或“不是”)【A,B】的和谐点;②若点D是【B,A】的和谐点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为﹣2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止,问点C运动多少秒时,C,A,B中恰有一个点为其余两点的和谐点?11.如图1,已知数轴上A,B两点表示的数分别为﹣9和7.(1)AB=(2)点P、点Q分别从点A、点B出发同时向右运动,点P的速度为每秒4个单位,点Q的速度为每秒2个单位,经过多少秒,点P与点Q相遇?(3)如图2,线段AC的长度为3个单位线段BD的长度为6个单位,线段AC以每秒4个单位的速度向右运动,同时线段BD以每秒2个单位的速度向左运动,设运动时间为t秒.①t为何值时,点B恰好在线段AC的中点M处.②t为何值时,AC的中点M与BD的中点N距离2个单位.12.如图,点O为原点,A、B为数轴上两点,点A表示的数a,点B表示的数是b,且|ab+32|+(b﹣4)2=0(1)a=,b=;(2)在数轴上是否存在一点P,使PA﹣PB=2OP,若有,请求出点P表示的数,若没有,请说明理由?(3)点M从点A出发,沿A→O→A的路径运动,在路径A→O的速度是每秒2个单位,在路径O→A上的速度是每秒4个单位,同时点N从点B出发以每秒3个单位长向终点A 运动,当点M第一次回到点A时整个运动停止.几秒后MN=1?四.数字表格问题13.已知一个由正奇数排成的数阵.用如图所示的四边形框去框住四个数.(1)若设框住四个数中左上角的数为n,则这四个数的和为(用n的代数式表示);(2)平行移动四边形框,若框住四个数的和为228,求出这4个数;(3)平行移动四边形框,能否使框住四个数的和为508?若能,求出这4个数;若不能,请说明理由.14.把2018个正整数1,2,3,4,…,2018按如图方式排列成一个表;(1)用如图方式框住表中任意4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是、、(请直接填写答案)(2)用(1)中方式被框住的4个数之和可能等于2019吗?如果可能,请求出x的值;如果不可能,请说明理由.15.小明是个爱动脑筋的同学,在发现教材中的用方框在日历中移动的规律后,突发奇想,将连续的得数2,4,6,8,…,排成如图形式:并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)请你选择十字框中你喜欢的任意位置的一个数,将其设为x,并用含x的代数式表示十字框中五个数的和.(2)若将十字框上下左右移动,可框住另外的五个数,试间:十字框能否框住和等于2015的五个数,如能,请求出这五个数;如不能,说明理由.五.分段收费问题16.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格.阶梯用户年用气量(单位:立方米)2018年单价(单位:元/立方米)2019年单价(单位:元/立方米)第一阶梯0﹣300(含)a 3第二阶梯300﹣600(含)a+0.5 3.5第三阶梯600以上a+1.5 5(1)甲用户家2018年用气总量为280立方米,则总费用为元(用含a的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?17.阅读材料:为落实水资源管理制度,大力促进水资源节约,本市居民用水实行阶梯水价,按年度用水量计算,将居民家庭全年用水量划分为三档,水价分档递增,实施细则如表:本市居民用水阶梯水价表:(单位:元/立方米)水价供水类型阶梯户年用水量x(立方米)自来水第一阶梯0≤x≤180 5第二阶梯180<x≤260 7第三阶梯x>260 9如某户居民去年用水量为190立方米,则其应缴纳水费为180×5+(190﹣180)×7=970元.(1)若小明家去年用水量为100立方米,则小明家应缴纳的水费为元;(2)若截止10月底,小明家今年共纳水费1145元,则小明家共用水立方米;(3)若小明家全年用水量x不超过270立方米,则应缴纳的水费为多少元?(用含x的代数式表示)六.工程问题18.一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?19.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?20.某市要对水利工程进行改造,甲队单独做这项工程需要10天完成,乙队单独需要做这项工程需要15天完成,丙队单独做这项工程需要20天完成,开始时三队共同做,中途甲队被调走另有任务,由乙、丙两队完成,从开始到工程完成共用了6天,问:甲队实际做了几天?七.比赛积分问题21.某小组6名同学参加一次知识竞赛,共答20道题,每题分值相同,答对得分,答错或不答扣分,下面是前5名同学的得分情况(如表):序号答对题数答错或不答题数得分1 182 842 17 m763 20 0 1004 19 1 925 10 10 n(1)表中的m=,n=;(2)该小组第6名同学说:“这次知识竞赛我得了0分”,请问他的说法是否正确?如果正确,请求出这位同学答对了多少题;如果不正确,请说明理由.22.2019年11月,我区组织了一次职工篮球联赛,比赛分初赛阶段和决赛阶段,在初赛阶段中,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,输一场得1分,积分超过15分才能获得决赛资格.(1)若乙队初赛获得4场胜利,问乙队是否有资格参加决赛?请说明理由.(2)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;23.某电视台组织知识竞赛,共设30道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况.参赛者答对题数答错题数得分A28 2 108B26 4 96C24 6 84 (1)每答对1题得多少分?(2)参赛者D得54分,他答对了几道题?八.销售打折问题24.成都华联商场经销甲、乙两种商品,甲种商品每件进价150元,售价200元;乙种商品每件进价350元,售价450元.(1)该商场在“十一”黄金周期间销售甲、乙两种商品共100件,销售额为35000元,求甲、乙两种商品各销售了多少件?(2)假若该商场在“十一”黄金周期间销售甲、乙两种商品进行如表优惠活动:打折前一次性购物总金额优惠措施不超过3000元不优惠超过3000元且不超过4000元总售价打九折超过4000元总售价打八折按上述优惠条件,若小王第一天只购买甲种商品一次性付款2000元,第二天只购买乙种商品打折后一次性付款3240元,那么这两天他在该商场购买甲、乙两种商品一共多少件?25.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是:买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是:购买10本以上,每本按标价的8折卖.(1)小明要买20本时,到哪个商店交省钱?(2)小明要买10本以上时,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本?26.李阿姨逛街时发现.大润发超市和永辉超市有如下促销活动(两超市相同商品标价相同):大润发:所有商品打8.8折;永辉:消费总金额不超过100元时,不打折;消费总金额超过100元,不超过300元时,打9折;消费总金额超过300元时,300元部分打9折,超出300元部分打8折.(1)李阿姨购买多少元的商品时,两个超市实际付款一样多?(2)活动期间李阿姨在永辉超市购买了两次商品,第一次实付款99元,第二次实付款286元,请问李阿姨两次购买商品的总价共为多少元?参考答案1.解:(1)设甲、乙两地相距x千米,依题意,得:=,解得:x=900.答:甲、乙两地相距900千米.(2)设经过y小时两车相遇.第一次相遇,(200+75)y=900,解得:y=;第二次相遇,200y﹣75y=900,解得:y=.答:从出发开始,经过或小时两车相遇.(3)设t小时后两车相距100千米.第一次相距100千米时,200t+75t=900﹣100,解得:t=;第二次相距100千米时,200t+75t=900+100,解得:t=;第三次相距100千米时,200t﹣75t=900﹣100,解得:t=;第四次相距100千米时,200t﹣75t=900+100,解得:t=8.答:经过,,或8小时后两车相距100千米.2.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.3.解:(1)设小明与父母经过x小时相遇,由题意得4x+3x=14,解得:x=2.答:两个人经过2小时相遇.(2)8×2=16(km).答:这只狗共跑了16千米.4.解:(1)设经过x小时A车追上B车,依题意,得:85x﹣65x=160,解得:x=8.答:经过8小时A车追上B车.(2)设经过y小时两车相距20km.两车相遇前,85y+65y=160﹣20,解得:y=;两车相遇后,85y+65y=160+20,解得:y=.答:经过或小时两车相距20km.5.解:(1)设爸爸追上小明时距离学校xm,依题意,得:﹣=5,解得:x=200.答:爸爸追上小明时距离学校200m.(2)小明到校所需时间为1000÷80=(min),爸爸的速度为1000÷(﹣5)=(m/min).答:爸爸的速度为m/min.(3)设爸爸需要ymin可追上小明,依题意,得:180y=80(y+5),解得:y=4,∴30+5+4+4=43.答:爸爸返回家的时间是7:43.6.解:(1)设爸爸追上乐乐用了x分钟,则此时乐乐出门(x+5)分钟,依题意,得:280x=80(x+5),解得:x=2.答:爸爸追上乐乐用了2分钟.(2)设爸爸搭上乐乐到学校共骑行了s米,依题意,得:﹣=10,解得:s=1200,1200+280×2=1760(米).答:乐乐家离学校共1760米.7.解:设轮船从A港顺流航行到B港用时x小时,依题意得:(18+2)x=(18﹣2)(x+2),解得x=8,则(18+2)x=160(km),答:A港和B港相距160km.8.解:4(m+a)+3(m﹣a)=(7m+a)千米.故轮船共航行了(7m+a)千米.9.解:设水速为xkm/h,则3(40+x)=5(40﹣x),∴x=10,∴AB间距离=3×(40+10)=150(km),答:水的速度为10km/h,AB间距离为150km.10.解:(1)①点C到点A的距离为4﹣(﹣4)=8,点C到点B的距离为8﹣4=4,∵8=2×4,∴点C是【A,B】的和谐点.故答案为:是.②设点D表示的数为x,则点D到点B的距离为|x﹣8|,点D到点A的距离为|x+4|,依题意,得:|x﹣8|=2|x+4|,即x﹣8=2x+8或x﹣8=﹣2x﹣8,解得:x=﹣16或x=0.故答案为:﹣16或0.(2)设运动时间为t秒,则BC=t,AC=6﹣t.当C是【A,B】的和谐点时,6﹣t=2t,解得:t=2;当C是【B,A】的和谐点时,t=2(6﹣t),解得:t=4;当A是【B,C】的和谐点时,6=2(6﹣t),解得:t=3;当B是【A,C】的和谐点时,6=2t,解得:t=3.答:点C运动2秒、3秒、4秒时,C,A,B中恰有一个点为其余两点的和谐点.11.解:(1)∵数轴上A,B两点表示的数分别为﹣9和7,∴AB=|﹣9﹣7|=16.故答案为:16.(2)设经过x秒,点P与点Q相遇,依题意,得:4x﹣2x=16,解得:x=8,答:经过8秒,点P与点Q相遇.(3)当运动时间为t秒时,点A表示的数为4t﹣9,点C表示的数为4t﹣9+3=4t﹣6,点B表示的数为﹣2t+7,点D表示的数为﹣2t+7+6=﹣2t+13,∵点M为线段AC的中点,点N为线段BD的中点,∴点M表示的数为=4t﹣,点N表示的数为=﹣2t+10.①∵点B恰好在线段AC的中点M处,∴﹣2t+7=4t﹣,∴t=.答:当t为时,点B恰好在线段AC的中点M处.②∵AC的中点M与BD的中点N距离2个单位,∴|4t﹣﹣(﹣2t+10)|=2,即6t﹣=2或6t﹣=﹣2,∴t=或t=.答:当t为或时,AC的中点M与BD的中点N距离2个单位.12.解:(1)∵|ab+32|+(b﹣4)2=0,∴,∴.故答案为:﹣8;4.(2)设点P表示的数为x.当﹣8<x≤0时,x﹣(﹣8)﹣(4﹣x)=﹣2x,解得:x=﹣1;当0<x≤4时,x﹣(﹣8)﹣(4﹣x)=2x,该方程无解;当x>4时,x﹣(﹣8)﹣(x﹣4)=2x,解得:x=6.答:在数轴上存在一点P,使PA﹣PB=2OP,点P表示的数为﹣1或6.(3)设运动时间为t秒.当0≤t≤4时,点M表示的数为2t﹣8,点N表示的数为﹣3t+4,∵MN=1,∴|2t﹣8﹣(﹣3t+4)|=1,即5t﹣12=1或5t﹣12=﹣1,解得:t=或t=;当4<t≤6时,点M表示的数为﹣4(t﹣4)=﹣4t+16,点N表示的数为﹣8,∵MN=1,∴|﹣4t+16﹣(﹣8)|=1,即24﹣4t=1,解得:t=.答:秒、秒或后MN=1.13.解:(1)设框住四个数中左上角的数为n,则其他三个为n+2,n+2+12,n+2+12+2,四个数的和为:n+2+n+2+12+n+2+12+2=4n+32,故答案为:4n+32;(2)由题意得:4n+32=228,n=49,所以这四个数分别是49、51、63、65;(3)不能框住这样的四个数,使四个数的和为508,理由:假设能,则4n+32=508,解得n=119,而119=9×12+11=(10﹣1)×12+11,这样左上角的数119在第10行第6列,所以不能框住这样的四个数,使四个数的和为508.14.解:(1)设左上角的一个数为x,由图表得:其他三个数分分别为:x+8,x+16,x+24.(2)由题意,得x+x+8+x+16+x+24=2019,解得:x=492.75,因为所给的数都是正整数,所以被框住的4个数之和不可能等于2019.故答案为:x+8,x+16,x+24.15.解:(1)设十字框中中间的数为x,则另外四个数分别为x﹣10,x﹣2,x+2,x+10,∴十字框中五个数的和=(x﹣10)+(x﹣2)+x+(x+2)+(x+10)=5x.(2)不能,理由如下:依题意,得:5x=2015,解得:x=403.∵图中各数均为偶数,∴x=403不符合题意,∴十字框不能框住和等于2015的五个数.16.解:(1)甲用户家2018年用气总量为280立方米,则总费用为280a元.(2)根据题意,可得:300a+(450﹣300)(a+0.5)=1200∴300a+150a+75=1200,∴450a=1125,解得a=2.5.(3)设丙用户2019年用气x立方米,则2018年用气(1200﹣x)立方米,①2019年的用气量不超过300立方米时,则2018年用气量1200﹣x>900,3x+2.5×300+(2.5+0.5)×(600﹣300)+(2.5+1.5)×(1200﹣x﹣600)=3625,解得x=425,∵425>300,∴不符合题意.②2019年的用气量超过300立方米,但不超过600立方米时,3×300+3.5×(x﹣300)+750+900+4(600﹣x)=3625,解得x=550,符合题意,1200﹣550=650(立方米)答:该用户2018年和2019年分别用气650立方米、550立方米.故答案为:280a.17.解:(1)∵0<100<180,∴小明家应缴纳的水费为=100×5=500(元),故答案为500;(2)设小明家共用水x立方米,∵180×5<1145<180×5+80×7,∴180<x<260,根据题意得:180×5+(x﹣180)×7=1145解得:x=215,故答案为:215;(3)当0≤x≤180时,水费为5x元,当180<x≤260时,水费为180×5+7×(x﹣180)=(7x﹣360)元,当260<x≤270时,水费为180×5+7×80+9×(x﹣260)=(9x﹣880)元.18.解:设还需x天才能完成任务,根据题意得,解得x=4.5.答:甲、乙两队合作还需4.5天才能完成任务.19.解:设还需x天能完成任务,根据题意可得方程:×2+=1.解得x=10.答:还需10天能完成任务.20.解:设甲队实际做了x天,由题意得++=1,解得:x=3.答:甲队实际做了3天.21.(1)由于共有20道题,m=20﹣17=3,∴由同学3可知:答对一题可得5分,由第3位同学可知答对一题得5,设答错或不答扣x分,则从第1位同学可列方程:18×5﹣2x=84,解得:x=3,n=10×5﹣3×10=20,故答案为:(1)3,20(2)设这位同学答对y道题,则他答错或不答(20﹣y)题,则5y﹣3(20﹣y)=0,解得:y=,因为m不是整数,所以这位同学的说法不正确.22.解:(1)没有资格参加决赛.因为积分为4×2+(10﹣4)×1=14<15.(2)设甲队初赛阶段胜x场,则负了(10﹣x)场,由题意,得:2x+1×(10﹣x)=18,解得:x=8,所以,10﹣x=10﹣8=2,答:甲队初赛阶段胜8场,负2场.23.解:(1)设答对一道题得x分,答错一道题得y分,依题意,得:,解得:.答:每答对1题得4分.(2)设参赛者D答对了m道题,则答错(30﹣m)道题,依题意,得:4m﹣2(30﹣m)=54,解得:m=19.答:参赛者D答对了19道题.24.解:(1)设甲种商品销售了x件,则乙种商品销售了(100﹣x)件,依题意,得:200x+450(100﹣x)=35000,解得:x=40,∴100﹣x=60.答:甲种商品销售了40件,乙种商品销售了60件.(2)设小王在该商场购买甲种商品m件,购买乙种商品n件,依题意,得:200m=2000,450×0.9n=3240或450×0.8n=3240,解得:m=10,n=8或n=9,∴m+n=18或19.答:这两天他在该商场购买甲、乙两种商品一共18件或19件.25.解:(1)甲店:10×1+10×1×70%=17(元),乙店:20×1×80%=16(元).∵17>16,∴买20本时,到乙店较省钱.(2)设购买x本时,两个商店付的钱一样多,依题意,得:10×1+70%(x﹣10)=80%x,解得:x=30.答:当购买30本时,到两个商店付的钱一样多.(3)设最多可买y本.在甲商店购买:10+70%(y﹣10)=32,解得:y==41,∵y为整数,∴在甲商店最多可购买41本;在乙商店购买:80%y=32,解得:y=40.∵41>40,∴最多可买41本.26.解:(1)设李阿姨购买x元的商品时,两个超市实际付款一样多,依题意,得:0.88x=300×0.9+0.8(x﹣300),解得:x=375.答:李阿姨购买375元的商品时,两个超市实际付款一样多.(2)设李阿姨第一次购买商品的价格为m元,第二次购买商品的价格为n元,依题意,得:m=99或0.9m=99,300×0.9+0.8(n﹣300)=286,解得:m=99或m=110,n=320,∴m+n=419或430.。
人教版七年级上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(五)
《一元一次方程》应用题分类:相遇与追击类问题综合练习1.甲、乙两人在300米的环形跑道上练习长跑,甲的速度是6米/秒,乙的速度是7米/秒.(1)如果甲、乙两人同地背向跑,乙先跑2秒,那么再经过多少秒两人相遇?(2)如果甲、乙两人同时同地同向跑,乙跑几圈后能首次追上甲?(3)如果甲、乙两人同时同向跑,乙在甲前面6米,经过多少秒后两人第二次相遇?2.京津城际铁路开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?3.从甲地到乙地的长途汽车原行驶7小时,开通高速公路后,路程减少了30千米,而车速平均每小时增加了30千米,只需4小时即可到达.求甲、乙两地之间高速公路的路程?4.甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.(1)求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)(2)若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?5.一辆快车从A地匀速驶往B地,同时一辆慢车从B地匀速驶往A地,两车行驶2h时相遇,相遇地点距B地120km.相遇后再行驶1h,快车到达B地,休息1h后立即以原速返回,驶往A地.(1)快车的速度是km/h,慢车的速度是km/h;A、B两地的距离是km;(2)从两车出发直至慢车到达A地的过程中,经过几小时两车相距180km?6.2018年秋,为锻炼学生的意志,育英外校八年级组织学生进行了去“小桃园”徒步训练,学校距“小桃园”约3620米.学生步行速度为80米/分钟.学生出发1分钟后,体育老师以120米/分钟的速度跑步去“小桃园”送物品.(1)体育老师用多长时间追上学生队伍的排头?(2)体育老师到达“小桃园”后仅停留了20秒就按原速返回,在途中再次与学生队伍的排头相遇.体育老师从追上学生队伍的排头到再次与学生队伍的排头相遇的时间间隔是多少?7.一队学生从学校出发去博物馆参观,0.5h后,一位教师骑自行车用15min从原路赶上队伍,已知教师骑自行车的速度比学生步行的速度快10km/h,求该教师骑自行车的速度.8.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.9.甲乙两地相距900千米,一列快车从甲地出发匀速开往乙地,速度为120千米/时;快车开出30分钟时,一列慢车从乙地出发匀速开往甲地,速度为90千米/时.设慢车行驶的时间为x小时,快车到达乙地后停止行驶,根据题意解答下列问题:(1)当快车与慢车相遇时,求慢车行驶的时间;(2)请从下列(A),(B)两题中任选一题作答.我选择:.(A)当两车之间的距离为315千米时,求快车所行的路程;(B)①在慢车从乙地开往甲地的过程中,求快慢两车之间的距离;(用含x的代数式表示)②若第二列快车也从甲地出发匀速驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇后30分钟时,第二列快车与慢车相遇,直接写出第二列快车比第一列快车晚出发多少小时.10.甲乙两站相距450公里,一列慢车从甲站开出,每小时行60公里,一列快车从乙站开出,每小时行90公里.(请列一元一次方程解该题)(1)两车同时开出,相向而行,多少小时两车相遇.(2)两车同时开出,相背而行,多少小时两车相距750公里.(3)两车同向而行,慢车开出1小时后,快车在慢车后面,快车开出多少小时后追上慢车.参考答案1.解:(1)设再经过x秒甲、乙两人相遇.根据题意,得7×2+7x+6x=300解得x=22答:再经过22秒甲、乙两人相遇;(2)设经过y秒,乙能首次追上甲.根据题意,得7y﹣6y=300解得y=300因为乙跑一圈需秒,所以300秒乙跑了300÷=7圈,答:乙跑7圈后能首次追上甲;(3)设经过t秒后两人第二次相遇,根据题意,得7t=6t+(300﹣6)+300解得t=594,答:经过594秒后两人第二次相遇.2.解:设这次试车时,由北京比去天津时平均每小时行驶x千米,则返回是每小时行驶(x+40)千米.预计高速列车在北京、天津间单程直达运行时间为半小时,则北京与天津之间的距离是(x+40)千米.设北京与天津之间的距离是a千米.根据题意,得﹣=,解得:x=200.经检验:x=200是方程的解.则北京到天津的平均速度是每小时200千米.3.解:设甲、乙两地之间高速公路的路程是x千米,﹣=30x=320故甲,乙两地之间的高速公路是320千米.4.解:(1)设乙的速度是每分钟x米,则甲的速度是每分钟(x+200)米,依题意有3x+150=200×3,解得x=150,x+200=150+200=350.答:甲的速度是每分钟350米,乙的速度是每分钟150米.(2)(200×3﹣300×1.2)÷1.2=(600﹣360)÷1.2=240÷1.2=200(米),200﹣150=50(米).答:乙的速度至少要提高每分钟50米.5.解:(1)∵两车同时出发,行驶2h时相遇,相遇地点距B地120km.∴慢车的行驶速度为120÷2=60(km/h);又∵相遇后再行驶1h,快车到达B地,∴快车1h行驶了120km,∴快车的速度为120km/h.∴A、B两地的距离是:(120+60)×2=360(km)故答案为:120,60,360;(2)设从两车出发直至慢车到达A地的过程中,经过x小时两车相距180km,则有三种情况:①两车相遇前:(120+60)x=360﹣180,解得:x=1;②两车相遇后:(120+60)x=360+180,解得:x=3;③t=3时,快车行驶了120×3=360(km),∴快车到达B地,休息1h后,t=4时,此时两车已经相距:60×4=240(km),∴60x﹣120(x﹣4)=180,解得x=5.答:经过1小时或3小时或5小时两车相距180km.6.解:(1)学生出发1分钟共走了80米,设体育老师用x分追上学生队伍的排头,由题可知:120x=80x+80,∴x=2,答:体育老师用2分钟间追上学生队伍的排头;(2)体育老师从学校到达小桃园共需要时间为=,又停留了20秒,此时共用了时间为+=,由于学生先行1分钟,故体育老师到达小桃园并等候20秒,学生共行走了80×(1+)=2520米,设体育老师从小桃园出发与学生队伍排头相遇所需时间为t分钟,由题意可知:120t+80t+2520=3620,解得:t=5.5,体育老师从追上学生队伍的排头到小桃园所需时间为=分钟故体育老师从追上学生队伍的排头到再次与学生队伍的排头相遇的时间间隔是5.5++=34分钟,答:体育老师从追上学生队伍的排头到再次与学生队伍的排头相遇的时间间隔是34分钟.7.解:设该教师骑自行车的速度为xkm/h,则学生步行的速度为(x﹣10)km/h,根据题意得x=(0.5+)(x﹣10),解得x=15.答:该教师骑自行车的速度为15km/h.8.解:设甲队整治了x天,则乙队整治了(20﹣x)天,由题意,得24x+16(20﹣x)=360,解得:x=5,∴乙队整治了20﹣5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.答:甲、乙两个工程队分别整治了120m,240m.9.解:(1)设慢车行驶的时间为x小时,由题意得120(x+)+90x=900,解得x=4.答:当快车与慢车相遇时,慢车行驶了4小时;(2)(A)当两车之间的距离为315千米时,有两种情况:①两车相遇前相距315千米,此时120(x+)+90x=900﹣315,解得x=2.5.120(x+)=360(千米);②两车相遇后相距315千米,此时120(x+)+90x=900+315,解得x=5.5.120(x+)=720(千米);③当快车到达乙地时,快车行驶了7.5小时,慢车行驶了7小时,7×90=630>315,此种情况不存在.答:当两车之间的距离为315千米时,快车所行的路程为360千米或720千米;(B)①当慢车与快车相遇前,即0≤x<4时,两车的距离为900﹣120(x+)﹣90x=840﹣210x;当慢车与快车相遇后,快车到达乙地前,即4≤x<7时,两车的距离为120(x+)+90x ﹣900=210x﹣840;当快车到达乙地时,即7≤x≤10时,两车的距离为90x;②在第一列快车与慢车相遇后30分钟时,慢车行驶的时间为4+=小时,快车慢车行驶的时间为4++=5小时.设第二列快车行驶y小时与慢车相遇,由题意,得120y+×90=900,解得y=4,5﹣4=(小时).答:第二列快车比第一列快车晚出发小时.10.解:(1)设两车同时开出,相向而行,x小时两车相遇,根据题意得:60x+90x=450,解得:x=3.答:两车同时开出,相向而行,3小时两车相遇.(2)设两车同时开出,相背而行,y小时两丰相距750公里,根据题意得:60y+90y+450=750,解得:y=2.答:两车同时开出,相背而行,y小时两丰相距750公里.(3)设两车同向而行,慢车开出1小时后,快车在慢车后面,快车开出z小时后追上慢车,根据题意得:60+60z+450=90z,解得:z=17.答:两车同向而行,慢车开出1小时后,快车在慢车后面,快车开出17小时后追上慢车.。
人教版七年级上册第三章 解一元一次方程专题(含答案)
(1) 2 x - 1 10 x + 1 4 = 1 .(2) 2 x - 1 3x - 42 -2= 3x - 2(2) 3x + 1 6 = 2-人教版七年级上册第三章 解一元一次方程专题(含答案)1.解方程:2 x - 1 1 2 x - 0.3 x + 0.4- = - ; (2) - = 1 .3 64 2 0.5 0.32.解下列方程:(1) 6 - 4 (x + 2) = 3 (x - 3)3 -3.解方程:(1)2x -(x +10)=5x +2(x -1);2 x +3 10 - 5.4.解方程:(1) 4x -1.5x = -0.5x - 9 .(2) 2 x - 13x + 23 .(1)3x-7(x-1)=3-2(x+3)(2)1-x (1)x+2(5﹣3x)=15﹣3(7﹣5x)(2)x+1(3)1.7-2x-1=-(1)5(4)y﹣y-15.解方程x+2-x=3-346.解下列方程:x-2=241.2+2x3x+22x-12x+1=1-(4).0.30.62457.计算.2-y=2y﹣1(2)5(x﹣5)+2(x﹣12)=033y+2=1﹣(4)2(x﹣2)﹣(4x﹣1)=3(1﹣x)26(5)x-1(6)x+24-x0.4+0.90.03+0.02x x-5-=-=.3620.50.0328.解方程:(1)x-12x+22x-3(3x-2)=2(5-x);(2)-1=46.9.解方程:1-x x+2-x=3-.3410.解方程:(1)x-12x+1-1=46;(2)1017-20xx-=1.7311.解下列方程:(1)x﹣3=2﹣5x(2)y-3(1)4﹣x=2﹣3(2﹣x)(2)x+3(1)2(1-x)=2x(2)m+22y+1-1=23.12.解方程:1+x﹣=1.48 13.解下列方程(1)4x﹣3=2(x﹣1)(2)5+x-15=x14.解下列方程2m-3-=04615.解方程:4x﹣2(12﹣x)=116.解方程:(1)2x+3=x+5;(2)2(3y-1)-3(2-4y)=9y+10;(3)153y-15y-7x+2(x+1)=8+x(4)-1=2446.17.解方程:(1)2x-9=7x+6;(2)x+33-2x=1-.6418.解下列方程:(1)?5x - 3(5x - 7) = 6 x + 5(2)? - 1 =3 =4x - 3 7x - 25 319.解方程:(1) 5 (x - 5)+ 2 x = -4.(2) x -3 3 - x 1(1- ) =2 3 320.解下列一元一次方程:(1) 2 -(x + 3) 3- 4 (2 + x )(2) 2 -x + 5 x - 1= x -6 320.解方程:(1) x - 7 2 x - 12 0.5-0.2x x- = 1 ;(2) = 0.1 +4 3 0.2 0.53x-1(1)3(x-2)+1=x-(2x-1)(2)x22.解下列方程:(1)-1;(2)-=0.5. 23.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3);(2)x-1-=1. 4824.解方程:0.17-0.2x-1=0.70.0325.解方程(1)4x﹣5=3x+2(2)(3)2x﹣3(6﹣x)=3x﹣4(5﹣x)(4)1.(1)x=1试题解析:(1)2x-110x+1x=1 (2)2x-0.3x=22参考答案22;(2)x=65【解析】试题分析:(1)先去分母,再去括号,移项合并同类项,系数化为1,(2)先将分母和分子扩大10倍,然后去分母,再去括号,移项合并同类项,系数化为1.3-6=2x-11 4-2,4(2x-1)-2(10x+1)=3(2x-1)-6, 8x-4-20x-2=6x-3-6,8x-20x-6x=-3-6+4+2,-18x=-3,6,0.5-x+0.4 0.3=1.20x-310x+45-3=1,3(20x-3)-5(10x+4)=15, 60x-9-50x-20=15,10x=44,5.2.(1)x=1;(2)x=-4.【解析】( 【分析】(1)方程去括号,移项合并,把 x 系数化为 1,即可求出解; 2)方程去分母,去括号,移项合并,把 x 系数化为 1,即可求出解.【详解】(1 ) 去括号得: 6 - 4x - 8 = 3x - 9 ,移项得: -4x - 3x = -9 - 6 + 8 ,合并得: -7 x = -7 ,解得: x = 1 ;(2)去分母得: 4 (2x -1)- 3 (3x - 4) = 12 ,去括号得: 8x - 4 - 9x + 12 = 12 ,移项得: 8x - 9x = 12 + 4 -12 ,合并得: - x = 4 ,解得: x = -4 .【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程其步骤为:去分母,去括号,移项合并,把未知数系数化为 1,求解即可.3.(1) - 4 7;(2) .3 16【解析】【分析】(1)方程去括号移项合并,把 x 系数化为 1,即可求出解;(2)方程去分母,去括号,移项合并,把 x 系数化为 1,即可求出解.(1)去括号得:2x -x -10=5x + 2x -2,移项合并得:6x =-8,解得:x =- 4 .( ( .【详解】4 ,故答案为- ; 3 3(2)去分母得:15x +5-20=3x -2-4x - 6,移项合并得:16x =7,解得:x = 7 7 ,故答案为 . 16 16【点睛】本题主要考查了去括号的基本性质,解此题的要点在于去分母后移项从而计算然后得到答案4.(1) x = -3 ;(2) x =9 8 .【解析】试题分析:根据去分母,去括号,移项,合并同类项,系数化为 1 的顺序解方程即可.试题解析:(1) 4x -1.5x + 0.5x = -93x = -9x = -3(2) 2 x -1 = 12 - 2 (3x + 2)2x -1 = 12 - 6 x - 42x + 6 x = 8 + 18x = 9解得 x = 985.(1)x=5(2)x=-2.【解析】试题分析: 1)去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号; 2)去分母时,一是注意不要漏乘没有分母的项,二是去掉分母后把分子加括号(1)解:3x-7x+7=3-2x-6.3x-7x+2x=3-6-7.-2x=-10.x=5.(2)解:4(1-x)-12x=36-3(x+2).4-4x-12x=36-3x-6.-4x-12x+3x=36-6-4.-13x=26.x=-2.点睛:本题考查了一元一次方程的解法,解一元一次方程的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.6.(1)x=169;(2)x=6;(3)x=2;(4)x=﹣.1928【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】解:(1)去括号得:x+10﹣6x=15﹣21+15x,移项合并得:﹣19x=﹣16,(3)方程整理得:17-20x解得:x=16 19;(2)去分母得:2x+2﹣8=x,解得:x=6;6+10x=1-,33去分母得:17﹣20x=3﹣6﹣10x,移项合并得:﹣10x=﹣20,解得:x=2;(4)去分母得:30x+20﹣20=10x﹣5﹣8x﹣4,移项合并得:28x=﹣9,解得:x=﹣9 28.【点睛】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.7.(1)y=1(2)x=7(3)y=1123(4)x=6(5)x=4(6)x= 417【解析】分析:(1)根据一元一次方程的解法:去分母,移项,合并同类项,系数化为1,解方程即可;(2)根据一元一次方程的解法:去括号,移项,合并同类项,系数化为1,解方程即可;(3)根据一元一次方程的解法:去分母,去括号,移项,合并同类项,系数化为1,解方程即可;(4)根据一元一次方程的解法:去括号,移项,合并同类项,系数化为1,解方程即可;(5)根据一元一次方程的解法:去分母,去括号,移项,合并同类项,系数化为1,解方程即可;(6)先根据分数的基本性质化简方程,再根据一元一次方程的解法:去分母,去括号,移项,合并详解:(1)52=1﹣y+2(3)y﹣y-1y=1同类项,系数化为1,解方程即可;3-23y=2y﹣1,5﹣2y=6y﹣3,5+3=6y+2y,8y=8,y=1;(2)5(x﹣5)+2(x﹣12)=0,5x﹣25+2x﹣24=0,5x+2x=25+24,7x=49,x=7;6,6y﹣3(y﹣1)=6﹣(y+2),6y﹣3y+3=6﹣y﹣2,6y﹣3y+y=6﹣2﹣3,4y=1,4;(4)2(x﹣2)﹣(4x﹣1)=3(1﹣x),2x﹣4﹣4x+1=3﹣3x,2x﹣4x+3x=3+4﹣1,(5)x-1(6)0.4-0.9x=6;x+24-x-=,3622(x﹣1)﹣(x+2)=3(4﹣x),2x﹣2﹣x﹣2=12﹣3x,2x﹣x+3x=12+2+2,4x=16,x=4;0.03+0.02x x-5-=0.50.032133+2x x-5-=53278﹣10(3+2x)=15(x﹣5),78﹣30﹣2x=15x﹣75,78﹣30+75=15x+2x,123=17x,x=123 17.点睛:此题主要考查了一元一次方程的解法,利用一元一次方程得到解法:去分母,去括号,移项,合并同类项,系数化为1解方程即可,注意解题过程中不要漏乘,注意符号的变化.8.(1)x=6(2x=0【解析】试题分析:根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1,即可求解.(2)x+2试题解析:(1)x-12(3x-2)=2(5-x);2x-3x+2=20-4x2x-3x+4x=20-23x=18x=62x-3-1=463(x+2)-12=2(2x-3)3x+6-12=4x-63x-4x=-6-6+12-x=0x=09.x=﹣2.【解析】试题分析:根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可求解.试题解析:去分母得:4(1-x)﹣12x=36-3(x+2),去括号得:4-4x-12x=36-3x-6,移项、合并同类项得:﹣13x=26,系数化为1得:x=﹣2.点睛:此题主要考查了一元一次方程的解法,解题关键是要注意去分母时不要漏乘,注意符号变化,比较容易出错..10.(1)x=-17;(2)x= 14 17.【解析】试题分析:利用一元一次方程的解法步骤:去分母,去括号,移项,合并同类项,系数化为1,解方程即可.试题解析:(1)去分母,得 3(x-1)-12=2(2x+1),去括号,得 3x-3-12=4x+2,移项、合并同类项,得-x=17,两边同除以-1,得 x=-17.(2)去分母,得 30x-7(17-20x)=21,去括号,得 30x-119+140x=21,移项、合并同类项,得 170x=140,两边同除以 170,得 x=14 17 .点睛:此题主要考查了一元一次方程的解法,解题时利用一元一次方程的解法:去分母,去括号,移项,合并同类项,系数化为 1,解方程即可,注意解题去分母不要漏乘,去括号时的符号变化11.(1)x= 5 6(2)y=-17【解析】试题分析:根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为 1,即可求解.试题解析:(1)x ﹣3=2﹣5x ,移项合并得:6x=5,解得:x= ;(2)x+3(2).去分母得:3(y﹣3)﹣6=2(2y+1),去括号得:3y﹣9﹣6=4y+2移项合并得:﹣y═17,解得:y=﹣17.12.(1)x=2;(2)x=3【解析】试题分析:根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1,即可求解.试题解析:(1)4﹣x=2﹣3(2﹣x)4-x=2-6+3x-x-3x=2-6-4-4x=-8x=21+x﹣=1.482(x+3)-(1+x)=82x+6-1-x=82x-x=8-6+1x=313.(1)x=12(2)x=6【解析】试题分析:根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1,解方程即可.试题解析:(1)4x﹣3=2(x﹣1)4x-3=2x-24x-2x=3-2X=1 2(2)5+x1 5=x25+x-1=5xx-5x=1-25-4x=-24x=6点睛:此题主要考查了一元一次方程的解法,利用一元一次方程的解法步骤:去分母,去括号,移项,合并同类项,系数化为1,求解方程即可.14.(1)x=12;(2)m=12【解析】(1)2(1-x)=2x 2-2x=2x-2x-2x=-2-4x=-2x=1 2(2)m+22m-3-=0 463(m+2)-2(2m-3)=0 3m-6-4m+6=0-m=-12m=1215.x=1 3【解析】试题分析:根据一元一次方程的解法,先去括号,再移项合并同类项,最后系数化为1即可.试题解析:去括号得:4x﹣1+2x=1,移项合并得:6x=2,解得:x=;16.(1)x=2(2)y=2(3)x=3(4)y=-1【解析】【分析】(1)移项、合并同类项即可得解;(2)去括号、移项、合并同类项、系数化为1即可得解;(3)去括号、去分母、移项、合并同类项、系数化为1即可得解;(4)去分母、去括号、移项、合并同类项、系数化为1即可得解;【详解】(3)去括号,得 1 . (1)移项,得 2x -x =5-3,合并同类项,得 x =2;(2)去括号,得 6y -2-6+12y =9y +10,移项,得 6y +12y -9y =10+2+6,合并同类项,得 9y =18,系数化为 1,得 y =2;5 x + x +2=8+x , 2 2去分母,得 x +5x +4=16+2x ,移项,得 x +5x -2x =16-4,合并同类项,得 4x =12,系数化为 1,得 x =3;(4)去分母,得 3(3y -1)-12=2(5y -7),去括号,得 9y -3-12=10y -14,移项,得 9y -10y =3+12-14,合并同类项,得-y =1,系数化为 1,得 y =-1.【点睛】此题考查了一元一次方程的解法,熟练掌握解一元一次方程的步骤是解题的关键17.(1)x=﹣3;(2)x=【解析】3 4.(2) x + 3 . 1 【分析】(1)按移项、合并同类项、系数化为 1 的步骤进行求解即可;(2)按去分母、去括号、移项、合并同类项、系数化为 1 的步骤进行求解即可.【详解】(1)2x ﹣9=7x+6,移项,得 2x-7x=6+9,合并同类项,得 ﹣5x=15,系数化为 1,得 x=﹣3;3 - 2x = 1 - 6 4去分母,得 2(x+3)=12﹣3(3﹣2x ),去括号,得 2x+6=12-9+6x ,移项,得 2x-6x=12-9-6,合并同类项,得 -4x=-3,系数化为 1,得 x=3 4 .【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键18.(1)x=1;(2)x=- 14 23.【解析】【分析】(1)先将括号外的因数乘到括号的里面,然后再去括号,最后再移项、合并同类项、系数化为 等. 步骤进行求解即可;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,系数化为1,即可得出结论.【详解】(1)原式去括号得:5x-15x+21=6x+5,移项得:5x-15x-6x=5-21,合并同类项得:-16x=-16,系数化为 1 得:x=1;(2)原式去分母得:3(4x-3)-15=5(7x-2),去括号得:12x-9-15=35x-10,移项合并得:-23x=14,系数化为 1 得:x=- 14 23.【点睛】本题考查了解一元一次方程,解题的关键是熟练的掌握解一元一次方程的方法19.⑴ x = 3 ; ⑵x = 2 3【解析】试题分析:(1)方程去括号,移项合并,把 x 系数化为 1,即可求出解;(2)方程去括号,去分母,移项合并,把 x 系数化为 1,即可求出解.试题解析:(1)去括号得:5x-25+2x=-4,移项合并得:7x=21,解得:x=3;3 - x 1 (2)去括号得:x- 3 + = , 2 2 3去分母得:6x-9+9-3x=2,移项合并得:3x=2,解得:x= 2 3 .点睛:解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为 1,求出解.20.(1) x = 2 ;(2) x=1【解析】【分析】根据解一元一次方程的一般步骤进行:去分母,去括号,移项,合并同类项,系数化为 1.【详解】解:(1)去括号,得: 2 - 3x - 9 = 3 - 8 - 4 x移 项,得: 4x - 3x = 3 - 8 + 9 - 2合并同类项,得: x = 2(2)去分母,得:12 - (x + 5) = 6 x - 2 (x - 1)去括号,得:12 - x - 5 = 6x - 2x + 2移项,得: - x - 6x + 2x = 2 -12 + 5合并同类项,得:-5x=-5系数化为 1,得:x=1【点睛】本题考核知识点:解一元一次方程. 解题关键点:掌握解方程的一般步骤.21.(1)x=3;(2)x=0.8【解析】试题分析:按照一元一次方程的解题步骤进行解方程即可.试题解析:(1)去分母,得3(x-7)-4(2x-12)=12,去括号,得3x-21-8x+48=12,移项,得3x-8x=12+21-48,合并同类项,得-5x=-15,把系数化为1,x=3.(1)方程整理得5-2x=2110+2x,去分母,得5(5-2x)=1+20x,去括号,得25-10x=1+20x,移项,得-10x-20x=1-25,合并同类项,得-30x=-24,把系数化为1,x=0.8.点睛:一元一次方程的解题步骤:去分母,去括号,移项,合并同类项,把系数化为1. 22.(1)x=;(2)x=.【解析】【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;即 =0.5.(2)方程去分母,去括号,移项合并,把 x 系数化为 1,即可求出解.【详解】(1)去分母,得4(2x-1)-2(10x-1)=3(2x+1)-12.去括号,得 8x-4-20x+2=6x+3-12,移项、合并同类项,得-18x=-7.系数化为 1,得 x= .(2)原方程可化为 - =0.5,-去分母,得 5x-(1.5-x)=1,去括号,得 5x-1.5+x=1,移项,合并同类项,得 6x=2.5,系数化为 1,得 x= .【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为 1,求出解.23.(1):x =5;(2)x =﹣9.【解析】【分析】(1)方程去括号,移项合并,把 x 系数化为 1,即可求出解;(2)方程去分母,去括号,移项合并,把 x 系数化为 1,即可求出解.【详解】(1)去括号得:3x﹣7x+7=3﹣2x﹣6,移项得:3x﹣7x+2x=3﹣6﹣7,合并同类项得:﹣2x=﹣10,系数化为1得:x=5,(2)去分母得:2(x﹣1)﹣(3x﹣1)=8,去括号得:2x﹣2﹣3x+1=8,移项得:2x﹣3x=8+2﹣1,合并同类项得:﹣x=9,系数化为1得:x=﹣9.【点睛】本题考查了解一元一次方程,解方程去分母时注意各项都要乘以各分母的最小公倍数.24.(1)x=314;(2)x= 217.【解析】【分析】(1)这是一个带括号的方程,所以要先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【详解】(1)去括号得:3x-6+1=x-2x+1移项得:3x﹣x+2x=1-1+6(2)整理得:10x合并同类项得:4x=6系数化为1得:x=32.17-20x -1=73去分母得:30x﹣21=7(17﹣20x)去括号得:30x﹣21=119﹣140x移项合并得:170x=140系数化为1得:x=14 17.【点睛】本题考查了解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.解答此题的关键是正确去括号,在去括号时不要漏乘括号里的每一项.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.25.(1)x=7;(2)x=12;(3)x=1;(4)x=6.4.【解析】【分析】(1)根据移项、合并同类项,可得方程的解.(2)根据去分母、去括号、移项、合并同类项、化系数为1,可得方程的解.(3)根据去括号、移项、合并同类项、化系数为1,可得方程的解.(4)根据去分母、去括号、移项、合并同类项、化系数为1,可得方程的解.【详解】解:(1)移项,得:4x﹣3x=2+5,合并同类项,得:x=7;(2)去分母,得:3(x+2)=2(2x+3)﹣12,去括号,得:3x+6=4x+6﹣12,移项,得:3x﹣4x=6﹣12﹣6,合并同类项,得:﹣x=﹣12,系数化为1,得:x=12;(3)去括号,得:2x﹣18+3x=3x﹣20+4x,移项,得:2x+3x﹣3x﹣4x=﹣20+18,合并同类项,得:﹣2x=﹣2,系数化为1,得:x=1;(4)去分母,得:5(x﹣1)﹣3(x+2)=1.8,去括号,得:5x﹣5﹣3x﹣6=1.8,移项,得:5x﹣3x=1.8+5+6,合并同类项,得:2x=12.8,系数化为1,得:x=6.4.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.。
人教版七年级上册数学第三章一元一次方程应用题专练及答案
人教版七年级上册数学第三章一元一次方程应用题专练及答案1.一家商店开业,所有商品均按八折优惠出售。
已知一种皮鞋进价为60元一双,商家以八折出售后获得40%的利润率。
问这种皮鞋的原价和优惠价各是多少元?2.一家商店将某种服装按进价提高40%后标价,再以八折优惠出售。
结果每件商品的利润为15元。
问每件服装的进价是多少元?3.一家商店将一种自行车按进价提高45%后标价,再以八折优惠出售。
结果每辆自行车的利润为50元。
问每辆自行车的进价是多少元?设进价为x元,则所列方程为:A。
45%×(1+80%)x-x=50B。
80%×(1+45%)x-x=50C。
x-80%×(1+45%)x=50D。
80%×(1-45%)x-x=504.某商品的进价为800元,出售时标价为1200元。
由于商品积压,商店准备打折出售,但要保持利润率不低于5%。
问最多可以打几折?5.一家商店将某种型号的彩电按原售价提高40%,然后以八折优惠出售。
经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。
求每台彩电的原售价。
6.某蔬菜公司有一种绿色蔬菜,直接销售每吨利润为1000元,粗加工后销售每吨利润为4500元,精加工后销售每吨利润为7500元。
当地一家公司收购了140吨这种蔬菜,加工生产能力为每天16吨的精加工或每天6吨的粗加工。
由于季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕。
公司制定了三种方案:方案一为全部粗加工,方案二为尽可能多地粗加工,剩余蔬菜直接销售,方案三为部分精加工,其余粗加工。
问哪种方案可以获得最高利润?为什么?7.XXX提供两种通讯业务,其中“全球通”需要先缴纳50元的月基础费用,然后每分钟通话需要支付0.2元的电话费用;“神州行”则不需要缴纳月基础费用,但每分钟通话需要支付0.4元的电话费用(仅限市内电话)。
如果一个月内通话时间为x分钟,那么两种通话方式的费用分别为y1元和y2元。
人教版数学七年级上册第三章《一元一次方程实际应用》专项练习
⼈教版数学七年级上册第三章《⼀元⼀次⽅程实际应⽤》专项练习《⼀元⼀次⽅程实际应⽤》专项练习1.某校七年级A班有x⼈,B班⽐A班⼈数的2倍少8⼈,如果从B班调出6⼈到A班.(1)⽤代数式表⽰两个班共有多少⼈?(2)⽤代数式表⽰调动后,B班⼈数⽐A班⼈数多⼏⼈?(3)x等于多少时,调动后两班⼈数⼀样多?2.列⽅程解应⽤题举世瞩⽬的2019年中国北京世界园艺博览会在长城脚下的北京延庆开园,它给⼈们提供了看⼭、看⽔、看风景的机会.⼀天⼩龙和朋友⼏家去延庆世园会游玩,他们购买普通票⽐购买优惠票的数量少5张,买票共花费了1400元,符合他们购票的条件如下表,请问他们买了多少张优惠票?平⽇普通票?适⽤所有⼈除指定⽇外任⼀平⽇参观120优惠票?适⽤残疾⼈⼠、60周岁以上⽼年⼈、学⽣、中国现役军⼈(具体⼈群规则同指定⽇优惠票)购票及⼊园时需出⽰相关有效证件除指定⽇外任⼀平⽇参观803.(⽤列⽅程或⽅程组解答本题)元旦期间某商店进⾏促销活动,活动⽅式有如下两种:⽅式⼀:购物每满200元减60元;⽅式⼆:标价不超过400元的商品,打8折:标价超过400元的商品,不超过400元的部分打8折,超出400元的部分打5折.设某⼀商品的标价为x元.(1)当x=300元,则按⽅式⼀应该付的钱为元;则按⽅式⼆应该付的钱为元;(2)当400<x<600时,x取何值两种⽅式的实际⽀出的费⽤相同?4.【新知理解】如图①,点C在线段AB上,图中有三条线段AB、AC和BC.若其中⼀条线段的长度是另外⼀条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”);【问题解决】(2)如图②,点A和B在数轴上表⽰的数分别是﹣20和40,点C是线段AB的巧点,求点C在数轴上表⽰的数.【应⽤拓展】(3)在(2)的条件下,动点P从点A发,以每秒2个单位的速度沿AB向点B匀速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中⼀点到达终点时,两个点运动同时停⽌.当A、P、Q三点中,其中⼀点恰好是另外两点为端点的线段的巧点时,直接写出运动时间t(s)的所有可能取值.5.⼩明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数⽐原数的2倍少1478,求⼩明的考场座位号.6.为了丰富⽼年⼈的晚年⽣活,甲、⼄两单位准备组织退休职⼯到某风景区游玩.甲、⼄两单位退休职⼯共102⼈,其中⼄单位⼈数少于50⼈,且甲单位⼈数不够100⼈.经了解,该风景区的门票价格如表:数量(张)1~50 51~100 101张及以上单价(元/张)60 50 40 如果两单位分别单独购买门票,⼀共应付5500元.(1)甲、⼄两单位各有多少名退休职⼯准备参加游玩?(2)如果甲单位有12名退休职⼯因⾝体原因不能外出游玩,那么你有⼏种购买⽅案,通过⽐较,你该如何购买门票才能最省钱?7.现有120台⼤⼩两种型号的挖掘机同时⼯作,⼤型挖掘机每⼩时可挖掘⼟⽅360⽴⽅⽶,⼩型挖掘机每⼩时可挖掘⼟⽅200⽴⽅⽶,20⼩时共挖掘⼟⽅704000⽴⽅⽶,求⼤⼩型号的挖掘机各多少台?8.重庆育才中学需要为⽼校友们订制80周年纪念吉祥物“陶娃”,原计划订750份,每份50元,订制公司表⽰:如果多订,可以优惠.根据校庆当天前来的校友数量,学校最终订了1000份,并按原价⼋折购买,但订制公司获得了同样的利润.(1)求订制公司⽣产每套“陶娃”的成本;(2)求订制公司获得的利润.9.元旦期间,某超市对出售A、B两种商品开展元旦促销活动,活动⽅案有如下两种:(同⼀种商品不可同时参与两种活动)商品A B标价(单位:元)200 300 ⽅案⼀每件商品出售价格按标价降价20% 按标价降价a%⽅案⼆若所购商品超过100件(不同商品可累计)时,每件商品按标价降价18%后出售(1)某单位购买A商品40件,B商品30件,共花费14050元,试求a的值;(2)在(1)求出的a值的条件下,若某单位购买A商品x件(x为正整数),购买B 商品的件数⽐A商品件数的2倍还多⼀件,请问该单位选择哪种⽅案才能获得最⼤优惠?请说明理由.10.蔬菜商店40元/箱的价格从哈达批发市场购进8箱西红柿,若以每箱西红柿净重25千克为标准,超过千克数记为正数,不⾜千克数记为负数,称重后记录如下:+1,﹣3.5,+2,﹣2.5,﹣3,+2,﹣2,﹣2(1)这8箱西红柿⼀共重多少千克?(2)若把这些西红柿全部以零售的形式卖掉,商店计划共获利160元,那么在销售过程中西红柿的单价应定为每千克多少元?11.我们知道,有理数包括整数、有限⼩数和⽆限循环⼩数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么⽆限循环⼩数如何表⽰为分数形式呢?请看以下⽰例:例:将0.化为分数形式,由于0.=0.777…,设x=0.777…,①得10x=7.777…,②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=.根据以上阅读,回答下列问题:(以下计算结果均⽤最简分数表⽰)【类⽐应⽤】(1)4.=;(2)将0.化为分数形式,写出推导过程;【迁移提升】(3)0.2=,2.0…18=;(注0.2=0.225225…,2.0…18=2.01818…)【拓展发现】(4)若已知0.1428=,则2.8571=.12.某班原分成两个⼩组进⾏课外体育活动,第⼀组28⼈,第⼆组20⼈,根据学校活动器材的数量,要将第⼀组的⼈数调整为第⼆组的⼀半,应从第⼀组调多少⼈到第⼆组去?13.如图,数轴上A,B,C三点对应的数分别是a,b,14,满⾜BC=6,AC=3BC.动点P 从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.(1)则a=,b=.(2)当P点运动到数2的位置时,Q点对应的数是多少?(3)是否存在t的值使CP=CQ,若存在求出t值,若不存在说明理由.14.百姓商场以每件80元的价格购进某品牌衬衫共500件,加价50%后标价销售,在“庆元旦,迎新春”期间,商场计划降价销售.请根据商场的盈利需求,解答下列问题:(1)如果商场按降价后的价格售完这批衬衫,仍可盈利20%,求应按⼏折销售;(2)请从A,B两题中任选⼀题作答.A.如果商场先按标价售出400件后再降价,那么剩余的衬衫按⼏折销售,才能使售完这批衬衫后盈利35%;B.如果商场先按标价的九折销售300件,但为了尽快销售完,将剩余数量衬衫在九折的基础上每购买⼀件再送打车费.求购买⼀件送多少元打车费,售完这批衬衫后可盈利25%.15.巴南区认真落实“精准扶贫”.某“建卡贫困户”在党和政府的关怀和帮助下投资了⼀个鱼塘,经过⼀年多的精⼼养殖,今年10⽉份从鱼塘⾥捕捞了草鱼和花鲢共2500千克,在市场上草鱼以每千克16元的价格出售,花鲢以每千克24元的价格出售,这样该贫困户10⽉份收⼊52000元,(1)今年10⽉份从鱼塘⾥捕捞草鱼和花鲢各多少千克?(2)该贫困户今年12⽉份再次从鱼塘⾥捕捞.捕捞数量和销售价格上,草鱼数量⽐10⽉份减少了2a千克,销售价格不变;花鲢数量⽐10⽉份减少了a%,销售价格⽐10⽉份减少了,该贫困户在10⽉份和12⽉份两次捕捞中共收⼊了94040元,真正达到了脱贫致富,求a的值.16.研学基地⾼明盈⾹⽣态园的团体票价格如表:数量(张)30~50 51~100 101及以上单价(元/张)80 60 50 某校七年级(1)、(2)班共102⼈去研学,其中(1)班⼈数较少,不⾜50⼈,两个班相差不超过20⼈.经估算,如果两个班都以班为单位购票,则⼀共应付7080元,问:(1)两个班各有多少学⽣?(2)如果两个班联合起来,作为⼀个团体购票,可省多少钱?17.某超市第⼀次⽤3600元购进了甲、⼄两种商品,其中甲种商品80件,⼄种商品120件.已知⼄种商品每件进价⽐甲种商品每件进价贵5元.甲种商品售价为20元/件,⼄种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第⼀次购进甲、⼄两种商品每件各多少元?(2)该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得多少利润?(3)该超市第⼆次⼜购进同样数量的甲、⼄两种商品.其中甲种商品每件的进价不变,⼄种商品进价每件少3元;甲种商品按原售价提价a%销售,⼄种商品按原售价降价a%销售,如果第⼆次两种商品都销售完以后获得的总利润⽐第⼀次获得的总利润多260元,那么a的值是多少?18.为了打造“书⾹校园”,明德华兴中学计划购买20张书柜和⼀批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张200元,书架每只80元,A超市的优惠政策为每买⼀张书柜赠送⼀只书架,B超市的优惠政策为所有商品⼋折,设购买书架x只(x≥20).(1)若规定只能到其中⼀个超市购买所有物品,当购买书架多少只时,到两家超市购买所需费⽤⼀样;(2)若学校想购买20张书柜和100只书架,且可到两家超市⾃由选购,你认为⾄少要准备多少货款,请⽤计算的结果来验证你的说法.19.青⽵湖湘⼀外国语学校初2019级全体学⽣从学校统⼀乘车去市科技馆参观学习,然后⼜统⼀乘车原路返回,需租⽤客车若⼲辆.现有甲、⼄两种座位数相同的客车可以租⽤,甲种客车每辆的租⾦为300元,另按实际⾏程每千⽶加收8元;⼄种客车每辆按每千⽶14元收费.(1)当⾏程为多少千⽶时,租⽤两种客车的费⽤相同?(2)青⽵湖湘⼀外国语学校距市科技馆约30公⾥,如果你是年级组杨组长,为节省费⽤,你会选择哪种客车?20.某超市计划购进甲、⼄两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30⼄型45 60 (1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进⾏⼤促销活动,决定对⼄型节能灯进⾏打折销售,要求全部售完后,⼄型节能灯的利润率为20%,请问⼄型节能灯需打⼏折?参考答案1.解:(1)∵七年级A班有x⼈,B班⽐A班⼈数的2倍少8⼈,∴B班有(2x﹣8)⼈,则x+2x﹣8=3x﹣8,答:两个班共有(3x﹣8)⼈;(2)调动后A班⼈数:(x+6)⼈;调动后B班⼈数:2x﹣8﹣6=(2x﹣14)⼈,∴(2x﹣14)﹣(x+6)=x﹣20(⼈).答:调动后B班⼈数⽐A班⼈数多(x﹣20)⼈;(3)根据题意得:x+6=2x﹣14,解得:x=20.答:x等于20时,调动后两班⼈数⼀样多.2.解:设⼩龙和⼏个朋友购买了x张优惠票,根据题意列⽅程,得:80x+120(x﹣5)=1400,80 x+120x﹣600=1400,200x=2000,x=10.答:⼩龙和⼏个朋友购买了10张优惠票.3.解:(1)当x=300元,按⽅式⼀应该付的钱为:300﹣60=240(元),按⽅式⼆应该付的钱为:300×0.8=240(元).故答案为:240;240;(2)当400<x<600时,400×0.8+0.5(x﹣400)=x﹣120,故当400<x<600时,x取480时,两种⽅式的优惠相同.4.解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,故答案为:是;(2)设C点表⽰的数为x,则AC=x+20,BC=40﹣x,AB=40+20=60,根据“巧点”的定义可知:①当AB=2AC时,有60=2(x+20),解得,x=10;②当BC=2AC时,有40﹣x=2(x+20),解得,x=0;③当AC=2BC时,有x+20=2(40﹣x),解得,x=20.综上,C点表⽰的数为10或0或20;(3)由题意得,AP=2t,AQ=60﹣4t,PQ=,i)若0≤t≤10时,点P为AQ的“巧点”,有①当AQ=2AP时,60﹣4t=2×2t,解得,t=;②当PQ=2AP时,60﹣6t=2×2t,解得,t=6;③当AP=2PQ时,2t=2(60﹣6t),解得,t=;ii)若10<t≤15时,点Q为AP的“巧点”,有①当AP=2AQ时,2t=2×(60﹣4t),解得,t=12;②当PQ=2AQ时,6t﹣60=2×(60﹣4t),解得,t=;③当AQ=2PQ时,60﹣4t=2(6t﹣60),解得,t=.综上,所求运动时间t(s)的所有可能取值为,6,,12,,.5.解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:⼩明的考场号是2315.6.解:(1)设甲单位有x名退休职⼯准备参加游玩,则⼄单位有(102﹣x)名退休职⼯准备参加游玩,依题意,得:50x+60(102﹣x)=5500,解得:x=62,答:甲单位有62名退休职⼯准备参加游玩,⼄单位有40名退休职⼯准备参加游玩.(2)∵62﹣12=50(名),50+40=90(名),∴有4种购买⽅案,⽅案1:甲、⼄两单位分开购票,甲单位购买50张门票、⼄单位购买40张门票;⽅案2:甲、⼄两单位分开购票,甲单位购买51张门票、⼄单位购买40张门票;⽅案3:甲、⼄两单位联合购票,购买90张门票;⽅案4:甲、⼄两单位联合购票,购买101张门票.⽅案1所需费⽤为60×50+60×40=5400(元);⽅案2所需费⽤为50×51+60×40=4950(元);⽅案3所需费⽤为50×90=4500(元);⽅案4所需费⽤为40×101=4040(元).∵5400>4950>4500>4040,∴甲、⼄两单位联合购票,购买101张门票最省钱.7.解:设⼤型挖掘机x台,则⼩型挖掘机(120﹣x)台.根据题意得:20[360x+200(120﹣x)]=704000,解得x=70,则120﹣x=50,答:⼤型挖掘机70台,⼩型挖掘机50台.8.解:(1)设订制公司⽣产每套“陶娃”的成本是x元,由题意,可得(50﹣x)×750=(50×0.8﹣x)×1000,解得x=10.答:订制公司⽣产每套“陶娃”的成本是10元;(2)(50﹣10)×750=30000(元).答:订制公司获得的利润为30000元.9.解:(1)由题意有,40×200×0.8+30×300×(1﹣a%)=14050,解得a=15.故a的值为15;(2)若某单位购买A商品x件(x为正整数),则购买B商品(2x+1)件.当x+2x+1=100时,解得:x=33,当总数不⾜101时,即只能选择⽅案⼀获得最⼤优惠;当总数达到或超过101,即x>33时,⽅案⼀需付款:200×0.8x+300×0.85(2x+1)=160x+510x+255=670x+255,⽅案⼆需付款:[200x+300(2x+1)]×0.82=656x+246,∵(670x+255)﹣(656x+246)=14x+9>0,∴选⽅案⼆优惠更⼤.综上所述:当x≤33时,只能选择⽅案⼀获得最⼤优惠;当x>33时,采⽤⽅案⼆获得最⼤优惠.10.解:(1)25×8+(+1﹣3.5+2﹣2.5﹣3+2﹣2﹣2)=200﹣8=192(千克).故这8箱西红柿⼀共重192千克;(2)设在销售过程中西红柿的单价应定为每千克x元,根据题意得:192x﹣40×8=160,解得:x=2.5.故在销售过程中西红柿的单价应定为每千克2.5元.11.解:(1)4.=4=4;(2)设x=0.272727…,①∴100x=27.272727…,②②﹣①得:99x=27解得:∴∴0.=;(3)0.2==,∵∴∴;(4)∵0.1428=,∴等号两边同时乘以1000得:714..8571=,∴2.8571=714.8571﹣712=﹣712=.故答案为:4;,;.12.解:设应从第⼀组调x⼈到第⼆组去,依题意,得:28﹣x=(20+x),解得:x=12.答:应从第⼀组调12⼈到第⼆组去,13.解:(1)∵c=14,BC=6,∴b=14﹣6=8;∵AC=3BC,∴AC=18,∴a=14﹣18=﹣4;(2)[2﹣(﹣4)]÷2=3(秒),14﹣1×3=11.故Q点对应的数是11;(3)P在C点的左边,则18﹣2t=t,解得t=6;P在C点的右边,则2t﹣18=t,解得t=18.综上所述,t的值为6或18.故答案为:6;18.14.解:(1)设应按x折销售,则80×(1+50%)×0.1x﹣80=80×20%解得x=8答:应按8折销售;(2)A、设剩余的衬衫按a折销售,由题意,得80×(1+50%)×400+80×(1+50%)×0.1a×(500﹣400)﹣80×500=80×35%×500.解得a=5.答:剩余的衬衫按5折销售,才能使售完这批衬衫后盈利35%;B、设购买⼀件送b元打车费,由题意,得80×(1+50%)×0.9×500﹣(500﹣300)b﹣80×500=80×25%×500 解得b=20答:购买⼀件送20元打车费,售完这批衬衫后可盈利25%.15.解:(1)设今年10⽉份从鱼塘⾥捕捞草鱼x千克,则捕捞的花鲢是(2500﹣x)千克,由题意,得16x+(2500﹣x)×24=52000解得x=1000所以2500﹣1000=1500(千克)答:今年10⽉份从鱼塘⾥捕捞草鱼1000千克,则捕捞的花鲢是1500千克;(2)由题意,得16(1000﹣2a)+1500(1﹣a%)×24×(1﹣)=94040﹣52000 解得a=30.答:a的值是30.16.解:(1)设七年级(1)班的⼈数为x,则(2)班的⼈数为(102﹣x),由题得:80x+60(102﹣x)=7080化简得:20x=960解得:x=48(⼈)∴102﹣x=102﹣48=54(⼈)答:七年级(1)班有48⼈,(2)班有54⼈.(⽤算术⽅法求解正确同样给分)(2)联合购票应付钱数为:102×50=5100(元)则节省的钱数为:7080﹣5100=1980(元)答:如果两个班联合起来购票可省1980元.17.解:(1)设该超市第⼀次购进甲种商品每件x元,⼄种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第⼀次购进甲种商品每件15元,⼄种商品每件20元.(2)该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得1600元的利润.(3)由题意80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得a=5.答:a的值是5.18.解:(1)设购买书架x只时,到两家超市购买所需费⽤⼀样.根据题意得:20×200+80(x﹣20)=0.8×(20×200+80x),解得:x=50.答:购买书架50只时,到两家超市购买所需费⽤⼀样;(2)到A超市购买20个书柜和20个书架,到B超市购买80只书架,钱数最少,共需货款:20×200+80×(100﹣20)×0.8=9120(元).答:⾄少要准备9120元货款.19.解:(1)设当⾏程为x千⽶时,租⽤两种客车的费⽤相同,依题意有300+8x=14x,解得x=50.故当⾏程为50千⽶时,租⽤两种客车的费⽤相同;(2)300+8×30×2=780(元),14×30×2=840(元),∵840>780,∴为节省费⽤,会选择甲种客车.20.解:(1)设商场购进甲型节能灯x只,则购进⼄型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000解得:x=400购进⼄型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进⼄型节能灯600只进货款恰好为37000元.(2)设⼄型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:⼄型节能灯需打9折.。
(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(附解析)
《一元一次方程》应用题分类:相遇与追击类问题综合练习1.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2.一架飞机往返于两城之间,顺风需要5小时30分,逆风时需6小时,已知风速是每小时24千米,求两城之间的距离.3.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?4.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开出时间迟到15分钟.若李伟打算在火车开出前10分钟到达火车站,求李伟此时骑摩托车的速度该是多少?5.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们首次相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们首次相遇?6.运动场跑道周长400m,爷爷跑步的速度是小红的.(1)他们从同一起点沿跑道的相反方向同时出发,min后两人第一次相遇,求他们的跑步速度;(2)如果他们第一次相遇后小红立即转身也沿爷爷的方向跑,那么几分钟后他们再次相遇?7.某学校的一名学生从家到校去上课,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问他家到学校的距离是多少千米?8.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?9.列方程解应用题:成都到雅安的高速公路全长147千米,上午八时一辆货车由雅安到成都,车速是每小时60千米,半小时后,一辆小轿车从雅安出发去追赶货车,车速是每小时80千米.问:小轿车从雅安出发到追到货车用了多少小时?10.某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是5千米/时.(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人.请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场.请你通过计算说明方案的可行性.(3)所有学生、老师都到达考场,最少需要多少时间?参考答案1.解:设连云港至徐州客运专线的铁路全长为xkm,列方程得:﹣=260,1.7x=358.8,解得x=,≈352km/h.答:提速后的火车速度约是352km/h.2.解:设两城之间的距离为x千米,由题意得:﹣=24×2解得:x=3168答:两城之间的距离为3168千米.3.解:由题目分析,根据时间差可列一元一次方程:x﹣x=,即:x=,解得:x=30千米.答:小张家到火车站有30km.4.解:设火车开出时间为x小时,由题意得:30(x﹣)=18(x+),解得x=1.设李伟骑车速度为每小时y千米,y==27.故李伟骑车速度为每小时27千米.5.解:(1)设甲、乙两人同时同地反向出发,x分钟后他们首次相遇.则(550+250)x=400,解得x=.故甲、乙两人同时同地反向出发,分钟后他们首次相遇.(2)设甲、乙两人同时同地同向出发,y分钟后他们首次相遇.则(550﹣250)y=400,解得y=.故甲、乙两人同时同地同向出发,分钟后他们首次相遇.6.解:(1)设小红的跑步速度是xm/min,则爷爷跑步的速度是xm/min,由题意得:x+×x=400,解得:x=200.x=120.答:小红的跑步速度是200m/min,则爷爷跑步的速度是120m/min.(2)设y分钟后他们再次相遇.由题意得:200y﹣120y=400,解得:y=5.答:5分钟后两人首次相遇.7.解:设他家到学校的距离是x千米,﹣1=,5x﹣40=x,x=10,故他家到学校的距离是10千米.8.解:设平路所用时间为x小时,29分=小时,25分=小时,则依据题意得:10(﹣x)=18(),解得:x=,则甲地到乙地的路程是15×+10×()=6.5km,答:从甲地到乙地的路程是6.5km.9.解:设轿车从出发到追上货车用了x小时,由题意得:60×+60x=80x解得:x=1.5;答:轿车从出发到追上货车用了1.5小时.10.解:(1)所需要的时间是:15×3÷60×60=45分钟,∵45>42,∴不能在截至进考场的时刻前到达考场;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为=0.25(h)=15(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与先步行的4人相遇,5t+60t=13.75,解得t=.汽车由相遇点再去考场所需时间也是h.所以用这一方案送这8人到考场共需15+2××60≈40.4<42.所以这8个人能在截止进考场的时刻前赶到;(3)8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需(h),汽车从出发点到A处需(h)先步行的4人走了5×(km),设汽车返回t(h)后与先步行的4人相遇,则有60t+5t=x﹣5×,解得t=,所以相遇点与考场的距离为:15﹣x+60×=15﹣(km).由相遇点坐车到考场需:(﹣)(h).所以先步行的4人到考场的总时间为:(++﹣)(h),先坐车的4人到考场的总时间为:(+)(h),他们同时到达则有:++﹣=+,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(+)×60=37(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.。
人教版七年级数学上册作业课件 第三章 一元一次方程 专题训练(七) 列一元一次方程解决实际问题
(3)t 秒后点 A 表示的数为 6t-4,点 B 表示的数为 2t+2. ①当点 A 在点 B 的左侧时,有(2t+2)-(6t-4)=3,解得 t=34 ,此时 6t-4=21 ; ②当点 A 在点 B 的右侧时,有(6t-4)-(2t+2)=3,解得 t=94 ,此时 6t-4=129 . 综上所述,当 A,B 两点相距 3 个单位长度时,点 A 表示的数为21 或129
答:甲现在的年龄是 42 岁,乙现在的年龄是 56 岁
类型四 数字问题 5.一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数字与个 位上的数字对调后,那么所得的两位数比原来的两位数的2倍小12,求原来的两位 数. 解:设原来十位上的数字为x,则个位上的数字为x+4.依题意,得10(x+4)+x =2(10x+x+4)-12,解得x=4,则x+4=8. 答:原来的两位数是48
解:设玻璃杯中水的高度下降 x mm,根据题意,得π(920 )2·x=125×125×81, 解得 x=6π25 ≈199.
答:玻璃杯中的水的高度下降约 199 mm
类型二 古代数学问题 2.(湘潭中考)“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前 成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有 三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔 关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只 鸡和兔? 解:设鸡有x只,则兔有(35-x)只,根据题意得2x+4(35-x)=94,解得x=23, 所以35-x=12.答:有鸡23只,兔12只
人教版七年级数学上册 3.4 一元一次方程应用题分类集训(word版有答案)
一元一次方程应用题分类集训和差倍分问题1.某县有一些农户处于贫困状态,去年这些农户中有25%脱离贫困状态,但仍有600户处于贫困状态,求这个县原来贫困农户有多少户?(1)设这个县原来贫困农户有x户,①由这个县原有贫困农户=脱离贫困农户+未脱离贫困农户,可以得到的方程是;②由脱离贫困农户=这个县原有贫困农户-未脱离贫困农户,可以得到的方程是;③由未脱离贫困农户=这个县原有贫困农户-脱离贫困农户,可以得到的方程是;(2)解决这个问题,得x= .答:这个县原来贫困农户有户.2.某校号召学生为贫困地区的学生捐献图书,初中和高中的同学共捐书5 200册,经过统计知道初中学生捐的书是高中学生捐的书的30%,求高中学生捐的书为多少册?3.某产品的成本价为25元,现在按标价的8折销售,还可以有10元的利润,求此产品的标价.4.学校组织七年级同学参加植树劳动,七年级甲班和七年级乙班共种树31株,其中甲班种的树比乙班种的树的2倍多1株,求两班各种树多少株?5.挖一条长为1 320 m 的水渠,由甲、乙两队从两头同时施工,甲队每天挖130 m ,乙队每天挖90 m ,需要几天才能挖好?6.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?7.三个连续偶数和为24,求这三个数.8.一个数的4倍与这个数的13的差为1112,求这个数.9.甲、乙、丙三个数的和是14,已知甲数是乙数的2倍,丙数是乙数的一半,求三个数各是多少?10.一个两位数,把十位数字与个位数字对调后所得的数比90小4,那么这个两位数是( ) A.86 B.64 C.46 D.6811.某农场有试验田1 080 m2,种植A,B,C三种农作物.已知三种农作物的种植面积比是2∶3∶4,求三种农作物的种植面积分别是多少.设A种农作物的种植面积是2x m2,根据题意可列出方程为 .12.某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?13.中国古代有很多经典的数学题,例如《孙子算经》卷下第17题是一首诗:“妇人洗碗在河滨,路人问她客几人?答曰不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”这首诗翻译成现代文就是:每两位客人合用1只饭碗,三位合用1只汤碗,四位合用1只肉碗,共用65只碗,问有多少客人?14.七年级(1)班的学生分成三个小组,利用星期日的时间去参加公益活动,第一组有学生m 名,第二组的学生数比第一组学生数的2倍少10人,第三组的学生数是第二组学生数的一半.(1)七年级(1)班共有多少名学生?(用含m的式子表示)(2)若七年级(1)班共有45名学生,求m的值.15.如图是由一些奇数排成的数阵,用一长方形框在表中任意框住4个数.(1)若这样框出的四个数的和是156,求这四个数.(2)能否框住这样的四个数,它们的和为220,为什么?16.某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50 kg,茄子、豆角当天的批发价和零售价如下表所示:品名茄子豆角批发价(元·kg-1) 3.0 3.5这天该经营户批发了茄子和豆角各多少千克?路程问题及工程问题相遇问题1.小明和小刚从相距25.2 km的两地同时相向而行,小明每小时走4 km,3 h后两人相遇,设小刚的速度为x km/h,列方程得( )A.4+3x=25.2B.3×4+x=25.2C.3(4+x)=25.2D.3(x-4)=25.22.A、B两地相距70 km,甲从A地出发,每小时行15 km,乙从B地出发,每小时行20 km.若两人同时出发,相向而行,则经过几小时两人相遇?3.A,B两地相距300 km.甲车从A地出发,每小时行驶60 km,乙车从B地出发,每小时行驶40 km.甲车从A地开出1小时后,乙车从B地出发,两车相向而行,则乙车出发几小时后两车相遇?追及问题4.(衡水安平县期末)小刚、小强两人练习赛跑,小刚每秒跑7米,小强每秒跑6.5米,小刚让小强先跑5米,设x秒钟后,小刚追上小强,下列四个方程中不正确的是( )A.7x=6.5x+5B.7x-5=6.5C.(7-6.5)x=5D.6.5x=7x-55.已知A,B两地相距90 km,甲、乙两车分别从A,B两地同时出发,已知甲车速度为115 km/h,乙车速度为85 km/h,两车同向而行,快车在后,求经过几小时快车追上慢车?6.列方程解应用题.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?7.汽车从甲地到乙地,如果以35 km/h的速度行驶,就要迟到2小时;如果以50 km/h的速度行驶,那么可以提前1小时到达.设甲、乙两地相距x千米,则所列方程为 .8.上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1 180公里,问两车几点相遇?9.甲、乙两辆汽车同时从两个村庄出发,相向而行,4小时后相遇,已知乙车每小时比甲车多走12 km,相遇时乙车所走的路程是甲车的1.5倍.求甲、乙两车的速度.10.某中学学生步行到郊外旅行,七年级(1)班学生组成前队,步行速度为4千米/小时,七(2)班的学生组成后队,速度为6千米/小时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.(1)后队追上前队需要多长时间?(2)后队追上前队的时间内,联络员走的路程是多少?(3)七年级(1)班出发多少小时后两队相距2千米?(直接写出结果)11.列方程解应用题:成雅高速公路全长147 km,上午八时一辆货车由雅安到成都,车速是每小时60 km,半小时后,一辆小轿车从雅安出发去追赶货车,车速是80 km/h,问:(1)小车几小时能追上货车?(2)小车追到货车时行驶了多少千米?(3)能在到达成都之前追上货车吗?(4)小轿车追上货车时距离成都还有多少千米?12.列方程解应用题:如图,现有两条乡村公路AB,BC,AB长为1 200米,BC长为1 600米,一个人骑摩托车从A处以200 m/min的速度匀速沿公路AB,BC向C处行驶;另一人骑自行车从B处以100 m/min的速度从B向C行驶,并且两人同时出发.(1)求经过多少分钟摩托车追上自行车?(2)求两人均在行驶途中时,经过多少分钟两人在行进路线上相距150米?工程问题1.甲、乙两个人给花园浇水,甲单独做需要4小时完成任务,乙单独做需要6小时完成任务,现在由甲、乙合做,完成任务需要几个小时?2.一项工程,甲队单独做需要5天完成,乙队单独做需要8天完成,甲队和乙队先合做一段时间,后来又有新任务,剩下的工作由乙队来完成,结果这项工程用了4天就全部竣工了,求甲队干了几天?3.一项工作,小李单独做需要6小时完成,小王单独做需要9小时完成,现小李先做几小时后,再由小李和小王合做125小时完成,求小李单独做的小时数.4.整理一批图书,由一个人做要40 h 完成,现计划由一部分人先做4 h ,然后增加2人与他们一起再做8 h ,就能完成这项工作.假设这些人的工作效率相同,具体应先安排的人数为 .5.修筑一条公路,由3个工程队分筑,第一工程队筑全路的13;第二工程队筑剩下的13;第三工程队筑了20 km 把这条公路筑完.问:这条公路共长多少千米?6.一项工程,甲独做需要10天,乙独做需要12天,丙独做需要15天.现甲、乙、丙3人合做2天后,乙因有事提前离去,余下的由甲和丙合作完成.问还需几天能完成这项工程?7.整理一批图书,若由一个人独做需要80个小时完成,假设每人的工作效率相同. (1)若限定32小时完成,一个人先做8小时,需再增加多少人帮忙才能在规定的时间内完成? (2)计划由一部分人先做4小时,然后增加3人与他们一起做4小时,正好完成这项工作的34,应该安排多少人先工作?储蓄、利润及增长率问题 增长率问题1.某农场今年粮食总产量为500吨,比去年增产25%,求去年粮食总产量,设去年粮食总产量为x吨,则可列出方程( )A.25%x=500B.(1+25%)x=500C.x=500×25%D.(1-25%)x=5002.一件羽绒服降价10%后售出价是270元,设原价x元,得方程( )A.x(1-10%)=270-xB.x(1+10%)=270C.x(1+10%)=x-270D.x(1-10%)=2703.某所中学现有学生4 200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校在校生将增加10%,问:这所学校现在的初中在校生和高中在校生人数分别是多少?4.国家规定:银行一年定期储蓄的年利率为 3.25%.小明有一笔一年定期存款,如果到期后全取出,可取回1 239元.若设小明的这笔一年定期存款是x元,则下列方程中正确的是( ) A.x+3.25%=1 239 B.3.25%x=1 239C.1+3.25%x=1 239D.x+3.25%x=1 2395.王海的爸爸想用一笔钱买年利率为5.5%的5年期国库券,如果他想5年后本息和为2万元,现在应买这种国库券多少元?如果设应买这种国库券x元,那么可以列出方程( )A.x×(1+5.5%×5)=20 000B.5x×(1+5.5%)=20 000C.x×(1+5.5%)5=20 000D.x×5.5%×5=20 0006.王先生手中有30 000元钱,想买年利率为5.18%的三年期国库券,到银行时,银行所剩国库券已不足30 000元,王先生全部买下这部分国库券后,余下的钱改存三年定期银行存款,年利率为5%,三年后,王先生得到的本息和为34 608元.求王先生买了多少元国库券?在银行存款是多少元?7.某商店进行年终促销活动,将一件标价为690元的羽绒服7折售出,仍获利15%,则这件羽绒服的进价为( )A.380元B.420元C.460元D.480元8.苏宁电器元旦促销,将某品牌彩电按进价提高40%,然后在广告上写“元旦大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电进价是多少元?9.某商品的售价为每件900元,为了参与市场竞争,商店按售价的九折再让利40元销售,此时可获利10%.求此商品的进价.10.高速发展的芜湖奇瑞汽车公司,去年汽车销量达到18万辆,该公司今年汽车总销售目标为25.2万辆,则奇瑞公司今年的汽车销量将比去年增加的百分率为( )A.40%B.32%C.9%D.15%11.已知银行一年期定期储蓄的年利率为3.25%,所得利息要缴纳20%的利息税,例如:某人将100元按一年期的定期储蓄存入银行,到期储户纳税后所得利息的计算公式为:税后利息=100×3.25%-100×3.25%×20%=100×3.25%×(1-20%).已知某储户有一笔一年期的定期储蓄,到期纳税后,得到利息650元,问:该储户存入了多少本金?12.一个计算器,若卖100元,可赚原价的25%;若卖120元,则可以赚原价的百分之几?13.时代中学现有校舍面积20 000平方米,为改善办学条件,计划拆除部分旧校舍,新建教学楼.如果新建教学楼的面积是拆除旧校舍面积的3倍,那么计划完成后校舍总面积增加20%,拆除旧校舍多少平方米?14.某商品的进价是100元,提高50%后标价售出,在销售旺季过后,经营者想得到5%的销售利润,请你帮他想一想,该商品需打几折销售?15.如表是某电脑进货单,其中进价一栏被墨迹污染,请求出这台电脑的进价.商场进货单进价(进货价格)标价(预售价格) 5 850元折扣8折利润率 20%16.一家商店因换季准备将某种服装打折销售,每件服装如果按标价的五折出售将亏20元,而按标价的八折出售将赚40元.问:(1)每件服装的标价是多少?(2)每件服装的成本是多少?(3)为保证不亏本,最多能打几折?17.某集团公司有甲、乙两个商场,一月份甲、乙两商场销售总额为2 000万元,二月份甲商场因内部装修,影响销售,致使销售额比一月份下降10%;而乙商场大搞促销活动,因而销售额比一月份增加了20%,这样整个集团公司(甲、乙两商场)的销售总额比一月份还要增加3.5%.问甲、乙两商场二月份的销售额分别是多少万元?18.某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完,该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,则可列方程为( )A.4x +8=4.5xB.4x -8=4.5xC.4x =45x +8D.4(x +8)=4.5x19.设有x 个人共种m 棵树苗,若每人种8棵,则剩下2棵树苗未种;若每人种10棵,则缺6棵树苗.根据题意,列方程正确的是( )A.x 8-2=x 10+6B.x 8+2=x10-6 C.m -28=m +610 D.m +28=m -61020.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,请问该小组共有多少人?计划做多少个“中国结”? 根据题意,小明、小红分别列出了如下尚不完整的方程: 小明:5x□( )=4x□( ); 小红:y□( )5=y□( )4.(1)根据小明、小红所列的方程,其中“□”中是运算符号,“( )”中是数字,请你分别指出未知数x 、y 表示的意义:小明所列方程中x 表示 小红所列方程中y 表示 .(2)请选择小明、小红中任意一种方法,完整的解答该题目.等积变形问题1.根据图中给出的信息,可得正确的方程是( )A.π×(82)2×x =π×(62)2×(x +5)B.π×82×x =π×62×5C.π×(82)2×x =π×(62)2×(x -5)D.π×82×x =π×62×(x -5)2.一块棱长2分米的立方体钢块,可以锻造成一块长8分米、宽25分米、厚 分米的钢板.3.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80 cm 2,100 cm 2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲中的水位高度低了8 cm ,求甲中水的高度.4.全班同学去春游,准备租船游玩,如果比计划减少一条船,那么每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班共有 个同学.5.已知5台A 型机器一天生产的产品装满8箱后还剩4个,7台B 型机器一天生产的产品装满11箱后还剩1个,每台A 型机器比B 型机器一天多生产1个产品.求每箱装多少个产品.6.桌面上有甲、乙两个圆柱形的杯子,杯深均为20 cm,各装有10 cm高的水且下表记录了甲、乙两个杯子的底面积.今小明将甲杯内一些水倒入乙杯,过程中水没溢出,使得甲、乙两杯内水的高度比变为3∶4.若不计杯子厚度,则甲杯内水的高度变为多少厘米?几何图形及动点问题几何图形问题1.一个正方形花圃边长增加2 m,所得新正方形花圃的周长是28 m,设原正方形花圃的边长为x m,由此可得方程为( )A.x+2=28B.4(x+2)=28C.2(x+2)=28D.4x+2=282.一块长方形黎锦的周长为80 cm,已知这块黎锦的长比宽多5 cm,求它的长和宽.设这块黎锦的宽为x cm,则所列方程正确的是( )A.x+(x+5)=40B.x+(x-5)=40C.x+(x+5)=80D.x+(x-5)=803.一个三角形的三边长的比为3∶4∶5,最短的边比最长的边短6 cm,则这个三角形的周长为 cm.4.一个角的余角的3倍比它的补角小10°,求这个角的度数.5.如图,用总长为6米的铝合金条制作“日”字形窗框,已知窗框的高比宽多0.5米,求窗框的高和宽.动点问题6.已知:如图所示,在△ABC中,AB=5 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.如果P,Q分别从A,B同时出发,那么几秒后,BP=BQ?7.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则所列方程为8.图1是边长为30 cm的正方形纸板,裁掉阴影后将其折叠成图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm3.9.如图,悦悦将一张正方形纸片剪去一个宽为3 cm的长方形纸条,再从剩下的长方形纸片上剪去一个宽为1 cm的长条,如果第一次剪下的长方形纸条的周长恰好是第二次剪下的长方形纸条周长的2倍.求:(1)原正方形纸片的边长;(2)第二次剪下的长方形纸条的面积.10.如图,在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B,点C表示的数;(2)在(1)的条件之下,若小虫P从点B出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q恰好从点C出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的D点相遇,求D点表示的数是多少?11.将长为40 cm,宽为15 cm的长方形白纸按如图所示的方法粘合起来,粘合部分宽为5 cm.你认为白纸粘合起来总长度可能为2 019 cm吗?为什么?12.如图1,在长方形ABCD中,AB=12 cm,BC=6 cm,点P沿AB边从点A开始向点B以2 cm/s 的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P,Q同时出发,用t(s)表示移动的时间,那么:(1)如图1,当点P到达点B,或点Q到达点A时,两点都停止运动.①当t=3时,分别求AQ和BP的长;②当t为何值时,BP=7?(2)如图2,若P,Q到达B,A后速度不变继续运动,点Q开始向点B移动,P点返回向点A 移动,其中一点到达目标点后就停止运动.问当t为何值时,线段PQ的长度等于线段BC长度的一半?图1 图2一元一次方程应用题分类集训答案和差倍分问题1.某县有一些农户处于贫困状态,去年这些农户中有25%脱离贫困状态,但仍有600户处于贫困状态,求这个县原来贫困农户有多少户?(1)设这个县原来贫困农户有x户,①由这个县原有贫困农户=脱离贫困农户+未脱离贫困农户,可以得到的方程是x=25%x+600;②由脱离贫困农户=这个县原有贫困农户-未脱离贫困农户,可以得到的方程是25%x=x-600;③由未脱离贫困农户=这个县原有贫困农户-脱离贫困农户,可以得到的方程是600=x-25%x;(2)解决这个问题,得x=800.答:这个县原来贫困农户有800户.2.某校号召学生为贫困地区的学生捐献图书,初中和高中的同学共捐书5 200册,经过统计知道初中学生捐的书是高中学生捐的书的30%,求高中学生捐的书为多少册?解:设高中学生捐的书为x册,则初中学生捐的书为30%x册,根据题意,得x+30%x=5 200.解得x=4 000.答:高中学生捐的书为4 000册.3.某产品的成本价为25元,现在按标价的8折销售,还可以有10元的利润,求此产品的标价.解:设此产品的标价为x元,依题意,得80%x-25=10.解得x=43.75.答:此产品的标价为43.75元.4.学校组织七年级同学参加植树劳动,七年级甲班和七年级乙班共种树31株,其中甲班种的树比乙班种的树的2倍多1株,求两班各种树多少株?解:设乙班种树x株,则甲班种树(2x+1)株,依题意,有x+(2x+1)=31.解得x=10.则2x+1=20+1=21.答:甲班种树21株,乙班种树10株.5.挖一条长为1 320 m 的水渠,由甲、乙两队从两头同时施工,甲队每天挖130 m ,乙队每天挖90 m ,需要几天才能挖好? 解:设需要x 天才能挖好,根据题意,得 130x +90x =1 320. 解得x =6.答:需要6天才能挖好.6.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?解:设这本名著共有x 页,根据题意,得 36+14(x -36)=38x ,解得x =216.答:这本名著共有216页.7.三个连续偶数和为24,求这三个数.解:设这三个连续偶数分别为n -2,n ,n +2.依题意,得 n -2+n +n +2=24.解得n =8.从而有n -2=6,n +2=10. 答:这三个数分别为6,8,10.8.一个数的4倍与这个数的13的差为1112,求这个数.解:设这个数为x ,依题意,得 4x -13x =1112.解得x =14.答:这个数为14.9.甲、乙、丙三个数的和是14,已知甲数是乙数的2倍,丙数是乙数的一半,求三个数各是多少?解:设乙数为x ,则甲数为2x ,丙数为12x ,依题意,得x +2x +12x =14.解得x =4.从而有2x =8,12x =2.答:甲、乙、丙三个数分别为8,4,2.10.一个两位数,把十位数字与个位数字对调后所得的数比90小4,那么这个两位数是(D) A.86 B.64 C.46 D.6811.某农场有试验田1 080 m 2,种植A ,B ,C 三种农作物.已知三种农作物的种植面积比是2∶3∶4,求三种农作物的种植面积分别是多少.设A 种农作物的种植面积是2x m 2,根据题意可列出方程为2x +3x +4x =1_080.12.某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 解:设应安排x 名工人生产螺钉,则安排(22-x)名工人生产螺母.根据题意,得 2 000(22-x)=2×1 200x. 解得x =10. 则22-x =12.答:应安排10名工人生产螺钉,12名工人生产螺母.13.中国古代有很多经典的数学题,例如《孙子算经》卷下第17题是一首诗:“妇人洗碗在河滨,路人问她客几人?答曰不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”这首诗翻译成现代文就是:每两位客人合用1只饭碗,三位合用1只汤碗,四位合用1只肉碗,共用65只碗,问有多少客人?解:设有x名客人,依题意,得1 2x+13x+14x=65.解得x=60.答:有60名客人.14.七年级(1)班的学生分成三个小组,利用星期日的时间去参加公益活动,第一组有学生m 名,第二组的学生数比第一组学生数的2倍少10人,第三组的学生数是第二组学生数的一半.(1)七年级(1)班共有多少名学生?(用含m的式子表示)(2)若七年级(1)班共有45名学生,求m的值.解:(1)根据题意,得第二组有(2m-10)人,第三组有12(2m-10)=(m-5)人,则三个小组一共有m+(2m-10)+(m-5)=(4m-15)人.(2)因为七年级(1)班共有45名学生,所以4m-15=45,解得m=15.15.(邯郸魏县期中)如图是由一些奇数排成的数阵,用一长方形框在表中任意框住4个数.(1)若这样框出的四个数的和是156,求这四个数.(2)能否框住这样的四个数,它们的和为220,为什么?解:(1)记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是x+2,x+10,x+12.根据题意,得x+(x+2)+(x+10)+(x+12)=156.解得x=33.从而有x+2=35,x+10=43,x+12=45.答:这四个数分别是33,35,43,45.(2)不能.理由如下:假设能框住这样的4个数,它们的和等于220,则x+(x+2)+(x+10)+(x+12)=220,解得x=49.则x+2=51,x+10=59,x+12=61.因为49在最右边,51在最左边,所以不能.16.某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50 kg,茄子、豆角当天的批发价和零售价如下表所示:这天该经营户批发了茄子和豆角各多少千克?解:设这天该经营户批发茄子x kg,则批发豆角(50-x)kg.由题意,得3.0x+3.5(50-x)=160.解得x=30.从而有50-30=20(kg).答:批发茄子30 kg,批发豆角20 kg.路程问题及工程问题相遇问题1.小明和小刚从相距25.2 km的两地同时相向而行,小明每小时走4 km,3 h后两人相遇,设小刚的速度为x km/h,列方程得(C)A.4+3x=25.2B.3×4+x=25.2C.3(4+x)=25.2D.3(x-4)=25.22.A、B两地相距70 km,甲从A地出发,每小时行15 km,乙从B地出发,每小时行20 km.若两人同时出发,相向而行,则经过几小时两人相遇?解:设经过x小时两人相遇,依题意,得15x+20x=70.解得x=2.答:经过2小时两人相遇.3.A,B两地相距300 km.甲车从A地出发,每小时行驶60 km,乙车从B地出发,每小时行驶40 km.甲车从A地开出1小时后,乙车从B地出发,两车相向而行,则乙车出发几小时后两车相遇?解:设乙车出发x小时后两车相遇.依题意,得60+(60+40)x=300.解得x=2.4.答:乙车出发2.4小时后两车相遇.追及问题4.(衡水安平县期末)小刚、小强两人练习赛跑,小刚每秒跑7米,小强每秒跑6.5米,小刚让小强先跑5米,设x秒钟后,小刚追上小强,下列四个方程中不正确的是(B)A.7x=6.5x+5B.7x-5=6.5C.(7-6.5)x=5D.6.5x=7x-55.已知A,B两地相距90 km,甲、乙两车分别从A,B两地同时出发,已知甲车速度为115 km/h,乙车速度为85 km/h,两车同向而行,快车在后,求经过几小时快车追上慢车?解:设经过x小时快车追上慢车.根据题意,得115x-85x=90,解得x=3.答:经过3小时快车追上慢车. 6.(衡水枣强县期中)列方程解应用题.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?解:设快马x 天可以追上慢马,由题意,得 240x -150x =150×12. 解得x =20.答:快马20天可以追上慢马.7.汽车从甲地到乙地,如果以35 km/h 的速度行驶,就要迟到2小时;如果以50 km/h 的速度行驶,那么可以提前1小时到达.设甲、乙两地相距x 千米,则所列方程为x 35-2=x50+1. 8.上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1 180公里,问两车几点相遇?解:设从北京到上海的G5次列车行驶x 小时与G102次列车相遇,根据题意,得 200(x +12)+280x =1 180.解得x =2.25. 2.25时=2时15分, 7时+2时15分=9时15分. 答:两车于9点15分相遇.9.甲、乙两辆汽车同时从两个村庄出发,相向而行,4小时后相遇,已知乙车每小时比甲车多走12 km ,相遇时乙车所走的路程是甲车的1.5倍.求甲、乙两车的速度. 解:设甲车每小时走x km ,则乙车每小时走(x +12)km.由题意,得 4(x +12)=1.5×4x. 解得x =24.则x +12=24+12=36.。
人教版七年级数学上册第三章《一元一次方程》练习题(含答案)
人教版七年级数学上册第三章《一元一次方程》练习题(含答案)一、单选题1.若1x =是方程21ax x +=的解,则a 的值是( )A .-1B .1C .2D .—12 2.若关于x 的一元一次方程1322022x x b +=+的解为3x =-,则关于y 的一元一次方程1(1)32(1)2022y y b ++=++的解为( ) A .1y = B .=2y - C .=3y - D .4y =- 3.已知下列方程:①22x x -=;②0.31x =;③512x x =+;④243x x -=;⑤6x =;⑥20.x y +=其中一元一次方程的个数是( )A .2B .3C .4D .54.已知x =y ,则下列等式不一定成立的是( )A .x ﹣k =y ﹣kB .x+2k =y+2kC .x y k k =D .kx =ky5.小江去商店购买签字笔和笔记本(其中签字笔和笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱还缺25元;若购买19支签字笔和12本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱还缺65元B .他身上的钱会剩下65元C .他身上的钱还缺115元D .他身上的钱会剩下115元6.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( )A .60100100x x =-B .60100100x x =+C .10010060x x =+D .10010060x x =- 7.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4) B .π×92×x =π×92×(x+4) C .π×(92)2×x =π×(52)2×(x-4) D .π×92×x =π×92×(x-4)8.某市出租车收费标准是:起步价8元(即行驶距离不超过3km ,付8元车费),超过3km ,每增加1km 收1.6元(不足1km 按1km 计),小梅从家到图书馆的路程为xkm ,出租车车费为24元,那么x 的值可能是( )A .10B .13C .16D .189.《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x 只,可列方程为( )A .42(94)35x x +-=B .42(35)94x x +-=C .24(94)35x x +-=D .24(35)94x x +-=10.下列运用等式的性质对等式进行的变形中,错误的是( )A .若()()2211a x b x +=+,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c = D .若x y =,则33x y -=- 11.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为( )A .7.4元B .7.5元C .7.6元D .7.7元 12.若方程()2180m m x---=是关于x 的一元一次方程,则m =( ) A .1B .2C .3D .1或3二、填空题13.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.14.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.15.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.16.课本习题中有一方程32x x -=+其中一个数字被污渍盖住了,书后该方程的答案为x =﹣7,那么□的数字应是___.17.某兴趣小组中女生人数占全组人数的一半,如果再增加4名女生,那么女生人数占全组人数的35,则这个兴趣小组原来的人数是______人. 18.若单项式m 21+4x y 与-54n x y 是同类项,则m+n=_____;19.关于x 的一元一次方程230x kx --=的解是正整数,整数k 的值是____________. 20.已知a ,b 为定值,且无论k 为何值,关于x 的方程2132-+=-kx a x bk 的解总是x =2,则ab =_________.三、解答题21.解下列方程:(1)4223x x -=+ (2)223146x x +--=22.解方程(1)2(x +8)=3(x -1) (2)121124x x --=-23.已知一列数2,0,﹣1.﹣12.(1)求最大的数和最小的数的差;(2)若再添上一个有理数m ,使得五个有理数的和为0,求m 的值.24.学校安排某班部分男生将新购进的电脑桌椅搬入微机室,若每人搬4套,则还缺8套;若每人搬3套,则还剩4套.问学校安排了多少男生搬运电脑桌椅?25.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.(1)求该车间当前参加生产的工人有多少人;(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.26.对数轴上的点P 进行如下操作:将点P 沿数轴水平方向,以每秒m 个单位长度的速度,向右平移n 秒,得到点P ',称这样的操作为点P 的“m 速移”点P '称为点P 的“m 速移”点.(1)点A 、B 在数轴上对应的数分别是a 、b ,且()25150a b ++-=.①若点A 向右平移n 秒的“5速移”点A '与点B 重合,求n ;②若点A 向右平移n 秒的“2速移”点A '与点B 向右平移n 秒的“1速移”点B '重合,求n ;(2)数轴上点M 表示的数为1,点C 向右平移3秒的“2速移”点为点C ',如果C 、M 、C '三点中有一点是另外两点连线的中点,求点C 表示的数;(3)数轴上E ,F 两点间的距高为3,且点E 在点F 的左侧,点E 向右平移2秒的“x 速移”点为点E ',点F 向右平移2秒的“y 速移”点为点F ',如果3E F EF ''=,请直接用等式表示x ,y 的数量关系.27.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“联盟点”.(1)若点A 表示数﹣2,点B 表示的数4,下列各数,3,2,0所对应的点分别C 1,C 2,C 3,其中是点A ,B 的“联盟点”的是 ;(2)点A 表示数﹣10,点B 表示的数30,P 在为数轴上一个动点:①若点P 在点B 的左侧,且点P 是点A ,B 的“联盟点”,求此时点P 表示的数;②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P 表示的数为 .28.已知关于x 的一元一次方程ax +b =0(其中a ≠0,a 、b 为常数),若这个方程的解恰好为x =a ﹣b ,则称这个方程为“恰解方程”,例如:方程2x +4=0的解为x =﹣2,恰好为x =2﹣4,则方程2x +4=0为“恰解方程”.(1)已知关于x 的一元一次方程3x +k =0是“恰解方程”,则k 的值为 ;(2)已知关于x的一元一次方程﹣2x=mn+n是“恰解方程”,且解为x=n(n≠0).求m,n的值;(3)已知关于x的一元一次方程3x=mn+n是“恰解方程”.求代数式3(mn+2m2﹣n)﹣(6m2+mn)+5n的值参考答案1.A2.D3.B4.C5.B6.B7.A8.B9.D10.C11.C12.C13.10014.2000,15.716.117.1618.5.19.1或-120.4-21.(1)52x=;(2) 0x=.22.(1)19x=(2)74 x=23.(1)3;(2)m=-12.24.12名25.(1)当前参加生产的工人有40人(2)车间还需要28天才能完成任务26.(1)①4;②20(2)−11,−2或7(3)y−x=3 27.(1)C2或C3(2)①103或503或﹣50;②70或50或11028.(1)9 2(2)m=﹣3,n=﹣23 (3)-9。