矩阵的运算PPT课件
矩阵的运算优秀课件
(A
E )n
An
Cn1 An1
C
2 n
An2
Cnn1 A
E
3. 求矩阵A的n次幂的方法. 措施一 数学归纳法
先计算A2, A3等, 发现Ak的规律,再用数学归纳法证明之.
例1
设
A
1 0
11 , 求 An
解
A2
1 0
12 1
10
11 10
11
1 0
2 1
同理,
A3
A2
A
1 0
13
猜测
An
,
求An
1
1
n
1
n n
n
解
将A分解成A
E
1 n
B,
其中B
111
1
1
1
111,容易得出B2 nB
于是 A2
(E
1 n
B)2
E2
2 n
EB
1 n2
B2
E
2 n
B
1 n2
nB
E 1 B A(幂等矩阵),故An A.
n
措施三 利用乘法结合律 若A T , 其中 , 都是n 1矩阵(列矩阵).利用乘法结合律,
三、矩阵旳幂乘
1、定义 设A是一种n阶矩阵,对于正整数k, Ak AA A
k个
称为A旳k次幂。 2、幂乘旳运算规律:任意正整数 k , l ,有
Ak Al Akl , Ak l Akl
但一般来说 ( AB)k Ak Bk ,
例题 设A, B为n阶方阵, E为n阶单位矩阵,以下式子哪些成立 ?
由矩阵相等旳定义,得
x1 x3
x2 x4
得
矩阵的运算优秀课件
且A2X=B,求X。
解:
X
=
1 2
(B
A)
=
1 2
2 0 0
2 1 5
5 1 2
2
4
5
1 1 = 0 1/ 2
5/2 1/ 2
1 2
。
0 5 / 2 1 5 / 2
练习
首页
上页
返回
下页
结束
铃
三、矩阵的乘法
定义2.5 设A是一个ms矩阵,B是一个sn矩阵:
a11 a12 a1s
0 3 6 9 0 12 8 16
92 156 214 60 7 9 17 6
= 64 02 1210 914 = 2 2 2 5 。
00 312 68 916 0 9 2 7
首页
上页
返回
下页
结束
铃
3572
1320
例4.已知 A= 2 0 4 3 , B = 2 1 5 7 ,
0 1 23
0 6 48
列式称为矩阵A的行列式,记为|A|,即
首页
上页
返回
下页
结束
铃
2. 数乘矩阵满足的运算律
设 A, B 为同型矩阵, λ , μ为常数,则
(1) (λμ) A=λ (μ A); (2) (λ + μ)A = λ A + μ A. (3) λ(A + B) = λ A + λ B.
结合律 分配律 分配律
矩阵加法与数乘矩阵统称为矩阵的线性运算。
首页
上页
返回
下页
结束
铃
四、方阵的幂
(1) 定义
如果 A 是 n 阶矩阵, 那么AA 有意义, 也有意义, 因此有下述定义:
《矩阵及其运算 》课件
幂法
通过迭代计算矩阵A的幂 ,最终得到特征值和特征 向量。
反迭代法
利用已知的特征向量x, 通过反迭代计算得到对应 的特征值λ。
06
应用实例
在物理中的应用
线性变换
矩阵可以表示线性变换,如平移、旋转、缩放等,在物理中广泛应 用于描述物体运动和力的作用。
振动分析
矩阵可以用于分析多自由度系统的振动,通过矩阵表示系统的运动 方程,简化计算过程。
详细描述
矩阵乘法要求第一个矩阵的列数等于第二个矩阵的行数,并 且结果矩阵的行数等于第一个矩阵的行数,列数等于第二个 矩阵的列数。在计算过程中,对应元素相乘并求和,得到新 矩阵的一个元素。
矩阵的转置
总结词
矩阵的转置是将原矩阵的行变为列,列变为行的一种运算。
详细描述
矩阵的转置可以通过交换原矩阵的行和列得到,也可以通过计算元素的代数余 子式得到。转置后的矩阵与原矩阵的行列式值相等,但元素的位置发生了变化 。
《矩阵及其运算》PPT课件
目 录
• 矩阵的定义与性质 • 矩阵的运算 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 特征值与特征向量 • 应用实例
01
矩阵的定义与性质
矩阵的基本概念
矩阵的定义
矩阵是一个由数字组成的矩 形阵列,通常表示为二维数 组。
矩阵的元素
矩阵中的每个元素都有行标 和列标,表示其在矩阵中的 位置。
回带法
在消元过程中,每一步都需要回带, 以确保解的正确性。
解的判定
当系数矩阵的秩等于增广矩阵的秩时 ,线性方程组有唯一解;否则,无解 或有无数多解。
线性方程组的解的结构
解的表示
线性方程组的解可以表示为一个向量与自由变量 的线性组合。
线性代数第2章矩阵PPT课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。
《线性代数》课件-第3章 矩阵
§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。
第二章 矩阵的运算及与矩阵的秩ppt课件
钢笔 100 150
铅笔 300 260
.
§2.1 矩阵的基本运算
每种商品进货单价和销售单价(元)如下表:
圆珠笔 钢笔 铅笔
进货单价 6 9 3
销售单价 8 12 4
.
§2.1 矩阵的基本运算
求每个月的总进货额和总销售额。
金额 月份
总进货额
总销售额
九月 200×6+100×9+300×3 200×8+100×12+300×4
0 0 2 5
0 1 8
0
0 0
A1
A2
0 0 0 3 2 0
A3
0 0 0 0 0 9
.
二、分块矩阵的运算
§2.2 分块矩阵
1.分块矩阵相加、减
设A、B是两个用相同方法分块的同型矩阵
A11
设Amn
A21 M
A12 L A22 L MO
Ap1 Ap2 L
A1q
B11 B12 L
001 a 31 a 32 a 33 a 3 4 a 31 a 32 a 33 a 34
.
§2.1 矩阵的基本运算
1 0 0 0
a11 A(E 2,3)a21
a12 a22
a13 a23
a a1 24 40 0
0 1
1 0
0 0a a1 21 1
a13 a23
a12 a22
a14 a24
P 1 P 2LP sA Q 1 Q 2LQ tB
.
三、矩阵的转置
§2.1 矩阵的基本运算
定义2.3:把m×n矩阵A的行和列依次互换得到的一个 n×m 矩阵,称为A的转置,记作AT或A’.
《线性代数》课件-第二章 矩阵及其运算
a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:
矩阵及其运算ppt课件
5.矩阵的转置:把矩阵 A 的行换成同序数的列
得到的一个新矩阵,叫做 A的转置矩阵,记作
AT。
如果 A是一个 m×n 阶矩阵,那么 AT 就是
一个 n×m 阶矩阵。且 A 的行一定就是 AT中同
序数的列
1 4 A 2
2 5
3 6
☞ (1) ( AT )T A
(2) ( A B)T AT BT
显然有:AB 0 AB BA
总结:矩阵乘法不满足交换律与消去律.
4.矩阵的乘幂:设 A 是 n 阶方阵,定义:
An 1A4A2L43A (n为正数)
n
只有方阵,它的乘幂才有意义。由于矩阵的 乘法满足结合律,而不满足交换律,因而有 下面的式子:
(1) An Am = An+m (2) ( An )m= An m (3) ( AB ) k ≠ Ak Bk
运算。
3.矩阵的乘法:设矩阵 A为m×n 阶矩阵、矩阵 B为 n×p 阶矩阵,A= (aij) m×n 、B= (bij) n×p , 则矩阵 A与 B 的乘积为一 m×p 阶矩阵
C = (cij) m×p,记 C = AB, 且
cij ai1b1 j ai2b2 j L ainbnj
n
aikbkj
元素是实数的矩阵,称为实矩阵;元素是复
数的矩阵称为复矩阵。
行数与列数都等于 n 的矩阵称之为 n 阶方阵, 记作 An。
2.行矩阵、列矩阵与方阵 只有一行的矩阵称行矩阵,又称行向量。 只有一列的矩阵称为列矩阵,又称为列向量。 行数与列数都等于n的矩阵叫方阵,记为An。
3.同型矩阵与矩阵相等: 如果两个矩阵的行数相 等、列数也相等,就称它们是同型矩阵。
☞矩阵的乘法中,必须注意矩阵相乘的顺序,
2024全新矩阵及其运算ppt课件
06
矩阵在实际问题中应 用举例
图像处理中矩阵运算应用
图像表示
将图像转换为矩阵形式,每个像 素点对应矩阵中的一个元素,方
便进行数学处理。
图像变换
通过矩阵运算实现图像的旋转、缩 放、平移等变换,满足图像处理的 各种需求。
图像压缩
利用矩阵分解等技术,对图像数据 进行压缩,减少存储空间和提高传 输效率。
一个矩阵可以与一个数相 乘,相乘的结果是一个维 度相同的矩阵,其元素为 原矩阵对应位置的元素与 数的乘积。
两个矩阵可以相乘当且仅 当第一个矩阵的列数等于 第二个矩阵的行数。相乘 的结果是一个维度为 $(m,p)$的矩阵,其中$m$ 为第一个矩阵的行数,$p$ 为第二个矩阵的列数。新 矩阵的元素由第一个矩阵 的一行与第二个矩阵的一 列对应元素相乘后求和得 到。
矩阵定义及表示方法
end{pmatrix}$
这$m times n$个数称为矩阵A的元素,简称为元,数$a_{ij}$位于矩阵A的第$i$行第$j$列 ,称为矩阵A的$(i,j)$元,以数$a_{ij}$为$(i,j)$元的矩阵可记为$(a_{ij})$或$(a_{ij})_{m times n}$,$m times n$矩阵A也记作$A_{mn}$。
单元刚度矩阵
根据单元的物理特性和形状函数,构造单元刚度矩阵,反映单元 的力学特性。
整体刚度矩阵
将所有单元的刚度矩阵按照一定规则组装成整体刚度矩阵,用于 求解整个系统的力学响应。
THANK YOU
配方法
通过配方将二次型化为标 准型。
合同变换法
利用合同变换将二次型化 为标准型。
正交变换法
利用正交变换将二次型化 为标准型。
正交变换在二次型化简中应用
31-23矩阵的基本运算逆矩阵分块矩阵精品PPT课件
要的基本概念之一 . 它是线性代数一个主要的研究对象,
且贯穿在线性代数的各个方面 . 矩阵的理论和方法在处
理许多实问际题问题,特方别法是计算机理应论用上是非应常用有力的.
20.10.2020
3
一、矩阵的基本运算
1、 数乘矩阵
Definitio数n 1 与矩阵 A = (aij) 的乘积,简称数乘
矩阵,记作 A
有数的,特cij 是殊的A 规的律第,i 行主与要产B 生的于第矩j 列阵的的对乘应法元运素算乘. 积的和
Definition设3 是一A 个(aij ) 矩阵, ms
B (bij )
是一个 s矩n阵,那么规定矩阵 A 与矩阵 B 的乘积
是一个 m矩n阵 b 1jai2b2j aisbsj aikbkj (i1 m ;j1 n) k 1
a11b11
a1n b1n
AB
am1 bm1
amn bmn
5
一、矩阵的基本运算
矩阵加法满足如下性质:
(1) A + B = B + A ; (2)A + (B + C) = (A + B) + C (3) A + 0 = 0 + A = A ( 0为与 A 同型的零矩阵 )
(4) ()AA A(5) (AB )AB
记为 C AB
20.10.2020
7
E xyya1y 2二y aa2 m1 21 11p、bba 1a 1l11e1 21 1 aa例x x 121 11 11aa 子1222a a bbaa1 2 设222 2 1211x x 222 2 有 aaaa两a 1a 2311 322 b3 3b33 x 个3x 313 13 线bbb132aa111性(213 11bb.变1b1 b1b22)132222换aa12tt2212 bbx 2x 2x 222 3 1 aab b b 1 3 12 21 1 1 33tttbb1 1 133 22b b b 1 3 2 2 2 2 tttt2 t2 2 12 (3.2)
矩阵1-概念计算ppt课件
1
矩阵的概念
数域P中m n个数aij ,(i 1,2,L ,m; j 1,2,L , n), 按照一定的顺序排成m行n列的数表 称为数域P上
的m n矩阵,记作A、Amn或A (aij )mn ,(i 1, 2,L , m;
j 1,2,L , n)
a11
a21
a12 L a22 L
A
1 1
1 1
,
B
1 1
1
1
0 AB 0
0 0
10
性质: 1)( AB)C A(BC)
2)A(B C) AB AC;(B C)A BA CA
3) AmnEn Amn , Em Amn Amn
4)( AB) ( A)B A( B)
a11 x1 a12 x2 L a1n xn b1
bm
11
线性方程组
a11 a12 L
矩阵表示 增广矩阵:
A%
a21
L
a22 L
L L
am
1
am 2
L
a1n b1
a2n
b2
L L
amn
bm
a11
ABC为同阶
对角矩阵
A
a22 O
b11
B
ann
b22 O
bnn
C
c11 Biblioteka c22 Ocnna11b11c11 ABC
an1
an2 L
ann
a11 a12 L a1n
A
a22 L
a2n
O M
ann
4
矩阵相等
如果A (aij ), B (bij )都是m n矩阵, 并且它们对应的元素都相等,即aij bij , (i 1, 2,L , m; j 1, 2,L , n),则称为矩阵 A和矩阵B相等,记为A B.
第一章(第一二节)矩阵的概念及基本运算PPT课件
没有得到老一辈数学家们的重视。如:他曾五次将一篇
代 “五次方程不能由公式给出其解”的论文寄给在格廷根的
高斯,但都没有得到回音。由于他的不断出外求学,致使
数 经济状况十分糟糕,最后只得回到自己的故乡—挪威。没
过多久,他就在忧郁中结束了自己年仅27岁的短暂生命。
就在他死后的第三天,他的朋友通知他,他已被柏林大学
代 们称之为维是 m×n 的矩阵,简称为 m×n 矩阵,简记为
。其表[ a示ij ]形m 式n (通式)为:
数
a11 a12 a1n
a
21
a 22
a2n
a m1 a m 2 a mn 7
一、矩阵的定义
a11 a12 a1n
a
21
a 22
a2n
线
a m1 a m 2 a mn
线 们满足
(1)m = p 且n = q;
性 (2)aij=bij,其中i=1,2,…,m;j=1,2,…,n。
代
则称A与B相等,记为A=B。
数
即: A 与B 两个矩阵的维和相对应的
元均一一对应相等。
24
二、矩阵的和
定义 设A=[aij]m×n ,B=[bij]m×n ,令C= [aij+ bij]m×n , 称矩
22 35 31 21
14 61 14 45
数
49 55 45 62
5
6
59
67
a21=2; a22=12; a23=24; a31=3; a32=11; a33=27。
9
试问: 6 3 1
332
B= 8 4 3 C= 4 7 分别是否为矩阵?
线
952
3 6 1 为什么?
工程数学第二章矩阵课件
68 34
上页
下页
返回
结束
例 6 若 A 为 n 阶方阵, k 为实数,则 kA kn A .
证 由于 A 为 n 阶方阵, k 为实数,根据数与矩阵乘法的定义知, kA 是将 A 的 每个元素都乘以 k ,在求 kA 时,根据行列式性质的单行可提性,每一行提出一个 k , 所以 kA kn A .
例1
已知
a
3
b
a
3
b
c
7
d
2c d 3
,求
a,b,c, d
.
解 根据题意,得
a b 7,
2c d 3,
cd
3,
a b 3
故 a 5,b 2,c 2, d 1 .
上页
下页
返回
结束
例2 设
A
1 3
2 4
,
B
0 1
2 1
,
试求:(1) A 与 B 是否相等?(2) A , B .
;
0
0
A
0
0 0
0 0
0 2 1 0 4 2
0
3
2
5
1
3
10 2 5
4
1
.
0 A 称为 A 的负矩阵,记为 A,其中 A与 A 的每个对应元素都互为相反数.
上页
下页
返回
结束
矩阵加法具有如下性质:
假设 A, B,C, 0 均为 m n 矩阵,则 (1) A B B A(交换律); (2) (A B) C A (B C) (结合律); (3) A 0 0 A A; (4) A (A) 0 .
5
3
7 5
4 2
第二章 矩阵及其运算 《工程数学线性代数》课件PPT
0
x
§2 矩阵的运算
例 某工厂生产四种货物,它在上半年和下半年向三家商店 发送货物的数量可用数表表示:
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34
其中aij 表示上半年工厂向第 i 家 商店发送第 j 种货物的数量.
c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33 c34
行数不等于列数 共有m×n个元素 本质上就是一个数表
det(aij )
(aij )mn
三、特殊的矩阵
1. 行数与列数都等于 n 的矩阵,称为 n 阶方阵.可记作 An.
2. 只有一行的矩阵 A (a1, a2 ,L , an ) 称为行矩阵(或行向量) .
a1
只有一列的矩阵
B
a2
M
称为列矩阵(或列向量)
说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.
知识点比较
a11 a12 a13 a11 b12 a13 a11 a12 b12 a13 a21 a22 a23 a21 b22 a23 a21 a22 b22 a23 a31 a32 a33 a31 b32 a33 a31 a32 b32 a33
( )A A A (A B) A B
备 注
矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.
知识点比较
a11 a12 a13 a11 a12 a13 a11 a12 a13 a21 a22 a23 a21 a22 a23 a21 a22 a23
a31 a32 a33 a31 a32 a33 a31 a32 a33
a12 a22
a13 a23
a14 a24
高等代数课件--第四章 矩阵§4.2 矩阵的运算
为反对称矩阵;A可表示为一个对称矩
阵与一个反对称矩阵之和。
例4 A反对称,B对称.证明: 1)A2对称.2)ABBA对称; AB+BA反对 称. 3)AB反对称的充要条件为 AB=BA. 例5 A为n级实对称矩阵,且A2=0,证明:A=0。
§4.2 矩阵的运算
一、加法
1. 定义
设A=(aij)sn, B=(bij)sn 则矩阵
C = (cij)sn=(aij+bij)sn 称为矩阵A与B的和,记作 C=A+B.
2.性质
1)交换律 2)结合律 3) A+0=A 4) A+(A)=0 A+B=B+A
(A+B)+C=A+(B+C )
3.减法:A B= A+(B)
1. 定义
设A=(aij)sn, kP, 记矩阵
B = (kaij)sn 称B为矩阵A与k的数量乘积,记作 B=kA.
2.性质:
1) (k+l)A=kA + lA 2) k (A+B)= kA + kB 3) k(lA)=(kl)A 4) 1A=A
5) k (AB)= (kA)B= A(kB)
6) 若A是n级方阵,则|kA|=
(AB)k与AkBk 是否相等?如果不等,
又需要添加什么条件?
7) 对于两个n级矩阵A, B,当AB=0时, R(A) + R(B) n 8) 对于n级矩阵A, 当A2=0时,
R(A+E) + R(AE) = n
9) 对于n级矩阵A, 当A2=A时, R(A) + R(AE) = n三、数量乘法(数乘) Nhomakorabea 性质:
矩阵(Matrix)PPT课件
a11 a12
A
a21
a22
am1 am2
a1n x1 b1
a2n
,
x
x2
,
b
b2
amn xn bn
ai1x1 ai2 x2 ain xn bi
则方程组又可表示为 Ax b.
x1ai1 x2ai2 xnain bi
a11 a21
定义成
a11 a21
x1 x1
a12 x2 a22 x2
x1
a11
a21
x2
a12
a22
x1 1 x2 2
e2
(a12 , a22 )
2
1
y ( y1, y2 )
2
A和x的乘法实质给出了 向量y在A坐标系(β1Oβ2) 下的刻划方法。
e1
(a11,1a21 )
y y1e1 y2e2
ai1b1 j ai 2b2 j a b b 1j is sj
a a a i1 i2
b2 j is
注:A的列数和B的行数相等时 b,sj AB才有意义。
• 例3 设矩阵
1 0 1
A
1
1
3
,
求乘积 AB.
解
1 0
C
AB
1
1
0 3 4 B 1 2 1
3 1 1
B
a12
a22
a1n a2n
am1
am2
y (x1, x2, , xn )
c (b1,b2, ,bm)
amn nm
则方程组又可表示为 yB c.
矩阵向量乘法意义之二:为刻划向量提供了坐标系
根据矩阵乘法定义,m n 阶矩阵A与n维列向
第二章 矩阵运算基础PPT课件
2.矩阵的四种创建方式
(1)直接输入法
最简单的建立矩阵的方法是在命令窗口从 键盘直接输入矩阵的元素。
具体方法如下: ①将矩阵的元素用方括号括起来; ②按矩阵行的顺序输入各元素; ③同一行的各元素之间用空格或逗号分隔; ④不同行的元素之间用分号分隔。
14
例2-3. 在命令窗口创建简单的数值函数。
a.冒号表达式可生成一个行向量,一般格式是: e1:e2:e3
其中e1为初始值,e2为步长,e3为终止值。 b.在MATLAB中,还可以用linspace函数产生行 向量。其调用格式为:
linspace(a,b,n) 其中,a和b分别是生成向量的第一个和最后一 个元素,n是元素总数。 显然,linspace(a,b,n)与a:(b-a)/(n-1):b等价。
②选中某些变量后,单击Open按钮,进入
变量编辑器,可以直接观察或修改变量中的具 8
体元素。
(2)命令窗口输入命令进行操作: ①clear命令用于删除MATLAB工作空间中
的变量。 ②who和whos这两个命令用于显示在
MATLAB工作空间中已经驻留的变量名清单 。
9
2.内存变量文件
MAT文件是MATLAB系统的二进制数据文件,用于保存系 统
③-ascii选项使文件以ASCII格式处理,省略该选项时文 件将以二进制格式处理。save命令中的-append选项控10 制将变量追加到MAT文件中。
2.1.4 MATLAB数学函数
MATLAB提供了许多数学函数,函数的变量规定为矩阵变
量,运算法则是将函数逐项作用于矩阵的元素上,因而运算
的结果是一个与自变量同维数的矩阵。
》z=(cos(abs(x+y))-
矩阵的运算PPT精品课件
平衡膳食宝塔说明
第三层
• 肥肉和荤油为高能量和 高脂肪食物,摄入过多 往往会引起肥胖,并是 某些慢性病的危险因素, 应当少吃。提倡吃含蛋 白质较高,脂肪较低的 鸡、鱼、兔、牛肉等动 物性食物,适当减少猪 肉的消费比例。
平衡膳食宝塔说明
第四层
• 第四层为奶类及制品、 豆类及豆制品 ,是蛋 白质、矿物质和维生 素的丰富来源。每天 应吃奶类及奶制品100 克和豆类及豆制品50克。
平衡膳食宝塔说明
第四层
• 奶类除含丰富的优质 蛋白质和维生素外, 含钙量较高,且利用 率也很高,是天然钙 质的极好来源。
平衡膳食宝塔说明
第五层
• 第五层为油脂类。 每日应摄取25克, 过量食用有潜在的 危险,油炸食物要 少吃。
三、居民膳食指南
• (一)食物多样、谷类为主 人类的食物是多种多样的,各种食物所含的营养成分
结合律 (kl)A=k(lA)=l(kA) 加法与减法的互化 AB=A+(1)B 2. 移项法则 A+B=CA=CB或B=CA
问题4:已知二元一次方程组
aa12
x x
b1 y b2 y
c1 c2
(1)将二元一次方程组 运算来表示;
a1 a2
x x
b1 y b2 y
c1用矩阵的
c2
(2)讨论方程组存在唯一解的条件。
210
3 235
3
265
3
255 3 255
75 85 75
= 80 78.33 85
70
83.33
85
3
3
3
(2)求三位同学的学期总评对应的矩阵G
A
=
80 90 60
90 80 80
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
5
3
B-31
3
5-41 3
6 7- 7
例15 利3用6 下清 列 57 模空 型验223 证单464位37 矩54阵143 的性质.
单击
乘位
积矩
矩阵
阵-的2195的性某质334一3:0
A元21素417 39,
可E 3-得22133该
元5素
65
的
清
计4
3 4
算
空
过
程
单
位
矩
2阵-352的01*8
设
引
有
例
三
2
组
变量
总收
x入1 ,
与x 2
总, x
3利,
x润4
、
y1
, y2
, y3 、
z1
,
z2
,
它们之间的关系分别为 设某地区有甲、乙、丙
三
个
工
厂
,
每
个
工
厂
都
生 产 Ⅰ 、 Ⅱx1 、 Ⅲa1、1 yⅣ1 4a1种2 y产2 品 a.已13 知y 3每, 个 工 厂 的 年
产 量 (单位x:2 个 )a如21 下y1 表 所a 2示2 y:2 a 23 y 3 ,
例例 设设
AA
22 11 33
707055 ,,
BB
33 44 33
929255 ,,
CC 9494
5533..
((11 )) 问问三三 个个 矩矩 阵阵 中中哪哪些些能能进进行行加加法法运运算算,, 并并 求求
第二节 矩阵的运算
主要内容
矩阵的加法 数与矩阵相乘 矩阵的乘法 方阵的幂
矩阵矩阵乘积的意义 矩阵的转置 方阵的行列式 共轭矩阵
一、矩阵的加法
1. 定义 定义 2 设 A= (aij)m×n 与 B= (bij)m×n 是 两个同型矩阵,称 m×n 矩阵 C = (aij + bij)m×n 为 矩阵 A 与矩阵 B 的和,记为 A+B. 若记 - A = ( -aij) , 则称 -A 为矩阵 A 的负矩 阵. 显然有 A + (-A) = O. 由此可定义矩阵的差为
00 11
33 00
2211,, BB121211
11 00 33
143143,,
解 因 为 A 是 2× 4 矩 阵 , B 是 4× 3 矩 阵 , A
的列数等于 B 的行数,所以矩阵 A 与 B 可以相乘, 其 乘 积 AB = C 是 一 个 2× 3 矩 阵 , 由 矩 阵 乘 积 的 定义有
记作
C = AB.
注意: 只有当第一个矩阵(左矩阵)的列数等于第
二个矩阵(右矩阵)的行数时,两个矩阵才能相乘.
例 利用下列模型计算两个矩阵的乘积. 矩 阵 乘 法 模 型 之 : A2 2 B2 2
矩
阵
乘
23
积
模
2
型
之
:
1
A2
-39
B3
3
15 -197
矩
阵
乘3
积
模41
型
之2-:4
A
3
二、数与矩阵相乘
1. 定义
定义 3 设 A = ( aij )m×n , k 是一个数, 则
称矩阵
ka11
(k aij)mn
k a21
k
am1
k a12 k a22
k am2
ka1n ka2n kamn
为数 k 与矩阵 A 的数量乘积, 简称数乘, 记为 kA.
(1)
2. 定义
定义 4 设矩阵 A = (aij)m×p , B = (bij)p×n ,
C = (cij)m×n , 其中
cij = ai1b1j + ai2b2j + … + aipbpj
p
aikbkj , i = 1, 2, … , m, j = 1, 2, …, n
k 1
则称矩阵 C 为矩阵 A 与矩阵 B 的乘积,
A - B = A + (-B) .
2. 运算规律
设 A, B, C 为同型矩阵, 则 (1) A + B = B + A ( 加法交换律) ; (2) ( A + B ) + C = A + ( B + C ) (加法结合律); (3) A + O = O + A = A, 其中 O 是与 A 同型矩阵; (4) A + ( -A ) = O .
2. 运算规律
设 A, B 为同类型矩阵, k, l 为常数,则
(1) 1A = A; (2) k(lA) = (kl) A; (3) k(A + B) = kA + kB; (4) (k + l)A = kA + lA. 矩阵相加与数乘矩阵合起来,统称为矩 3 32 2 1 10 0 ,, B B 2 22 2 1 2 12 ,,
且且 22AA33XXBB, , 求求 矩矩 阵阵 XX ..
解 在 2A 3X B, 两端同加上 2A
得
3X 2A B
(
2)
3 2
0 1
2 2
1 2
8 6
1 0
,
三、矩阵的乘法
1. 引例
引例 1 线性变换的乘积
4 6
16
其其 和和 ,, 哪哪 些些 不不 能能 进进 行行加加法法运运算算,, 说说 明明 原原 因因;;
((22 )) 求求 CC 的的 负负 矩矩 阵阵..
解 (1) A 与 B 能 进 行 加 法 运 算 ; 而 A 与 C,
B 与 C 不能进行加法运算,因为它们不是同型矩
阵 , A 和 B 都 是 3× 2 矩 阵 , C 是 2× 2 矩 阵 .
性( -3质798263):3
666
+E2322353*
5A
3 1=
3-
1
90
7
0
双
击
乘
积
矩- 2阵514
的 3某6051一
元2036素4
,
可10
0
得
该清21元 素空- 90的
01
计
算
过
程
例例 44 已已 知知
44 11 00
AA1212 求求 AA BB .
例例 55 求求 矩矩 阵阵
AA1122 4422,,BB 22334466
的的 乘乘 积积 AA BB 及及 BB AA .
解 由定义有
模
型
之
:
AAB2
2
1B22
4
2
2
2 3