(完整版)统计概率知识点归纳总结归纳大全
概率与统计知识点总结
概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。
比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。
随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子得到的点数就是随机事件。
必然事件,就是在一定条件下必然会发生的事件。
比如太阳从东方升起,这就是必然事件。
不可能事件,就是在一定条件下不可能发生的事件。
比如在地球上,水往高处流就是不可能事件。
概率的取值范围在 0 到 1 之间。
0 表示事件不可能发生,1 表示事件必然发生。
二、古典概型古典概型是一种最简单、最基本的概率模型。
它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。
计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。
三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。
比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。
几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。
举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。
四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。
计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。
比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。
统计概率知识点梳理总结
统计概率知识点梳理总结统计概率是统计学中非常重要的一个分支,它研究随机现象的概率规律,为我们处理不确定性的问题提供了一种方法。
在统计概率的学习中,有一些基本概念和方法是必须掌握的。
本文将对统计概率的相关知识进行梳理总结,包括概率基本概念、概率分布、概率密度函数、概率函数、随机变量、概率质量函数、期望、方差等内容。
1.概率基本概念概率是一个介于0-1之间的数,用来度量一个事件发生的可能性。
概率的基本概念包括样本空间、随机事件、事件的概率、事件的互斥和事件的独立性等。
样本空间是指试验中所有可能结果的集合,随机事件是指样本空间中的一个子集,事件的概率是指该事件发生的可能性大小,用P(A)表示。
事件的互斥指两个事件不可能同时发生,事件的独立性指两个事件之间的发生没有关系。
2.概率分布概率分布是描述随机变量所有可能取值及其对应概率的分布情况。
常见的概率分布包括离散型概率分布和连续型概率分布。
离散型概率分布是指随机变量只能取其中的一个值的概率分布,如伯努利分布和泊松分布;连续型概率分布是指随机变量可以取任意实数值的概率分布,如正态分布和指数分布。
3.概率密度函数概率密度函数是描述连续型随机变量的概率分布的函数,用f(x)表示。
概率密度函数具有非负性、非减性和归一性等性质。
通过概率密度函数可以计算随机变量在其中一区间内取值的概率。
4.概率函数概率函数是描述离散型随机变量的概率分布的函数,它给出了随机变量取各个值的概率。
概率函数具有非负性和归一性等性质。
通过概率函数可以计算随机变量取一些特定值的概率。
5.随机变量随机变量是一个实数值函数,它的取值是试验结果的函数。
随机变量可以是离散型的,也可以是连续型的。
离散型随机变量通常用字母大写表示,如X;连续型随机变量通常用字母小写表示,如x。
随机变量可以有多种数学表达方式,如分布函数、概率密度函数和概率函数等。
6.概率质量函数概率质量函数是描述离散型随机变量的概率分布的函数,用p(x)表示。
(完整版)高三数学概率统计知识点归纳
概率统计知识点归纳平均数、众数和中位数平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.一、正确理解平均数、众数和中位数的概念平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.二、注意区别平均数、众数和中位数三者之间的关系平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.三、能正确选用平均数、众数和中位数来解决实际问题由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.极差、方差、标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为:])()()[(1222212x x x x x x n S n -++-+-=Λ.三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.一、 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
(最全)高中数学概率统计知识点总结
概率与统计一、普通的众数、平均数、中位数及方差1、众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:x x x x1 2 nn②、加权平均数:xx x x1 12 2 n n1 2 n3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差: 2 2 2 21s [(x x) ( x x)(x x) ]1 2 nn二、频率直方分布图下的频率1、频率=小长方形面积: f S y距 d ;频率=频数/ 总数2、频率之和:f1 f2 f 1;同时n S1 S2 S 1;n三、频率直方分布图下的众数、平均数、中位数及方差1、众数:最高小矩形底边的中点。
2、平均数:x x f x f x f x f1 12 23 3 n n x x S x S x S x S1 12 23 3 n n3、中位数:从左到右或者从右到左累加,面积等于0.5 时x 的值。
4、方差: 2 2 2 2s ( x x) f ( x x) f ( x x) f1 12 2 n n四、线性回归直线方程:y?b?x a?其中:?bn n(x x)( y y)x y nxyi i i ii 1 i 1n n2 2 2(x x)x nxi ii 1 i 1, a?y b?x1、线性回归直线方程必过样本中心( x,y);2、b?0:正相关;b?0:负相关。
3、线性回归直线方程:y?b?x a?的斜率b?中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:? ?e y y (残差=真实值—预报值)。
分析:e?越小越好;i i i i2、残差平方和:i n12 ( ?)y y ,i i分析:①意义:越小越好;②计算:i n12 2 2 2 (y y?) (y y?) ( y y?) (y y?)i i 1 1 2 2 n n3、拟合度(相关指数):n( y y )?2i i2 i 1R 1n2( y y)ii 1,分析:①. 2 0,1R 的常数;②. 越大拟合度越高;4、相关系数:rn n(x x)( y y) x y nx yi i i ii 1 i 1n n n n2 2 2 2 (x x) ( y y) (x x) ( y y)i i i ii 1 i 1 i 1 i 1分析:①. r [ 1,1]的常数;②. r 0: 正相关;r 0: 负相关③. r [0,0.25] ;相关性很弱;r (0.25,0.75) ;相关性一般;r [0.75,1] ;相关性很强;六、独立性检验1、2× 2 列联表:x1 x 合计22 、独立性检验公式n ( a d b c )①.k y a b a b 1ycd c d 2合计a cb dn②.犯错误上界 P 对照表3、独立性检验步骤2n( a d bc)①.计算观察值k : k;(a b )(c d )(a c)( b d)②.查找临界值k:由犯错误概率P,根据上表查找临界值0 k ;③.下结论:k k :即犯错误概率不超过P 的前提下认为:, 有1-P 以上的把握认为:;k k :即犯错误概率超过P的前提认为:, 没有1-P 以上的把握认为:;【经典例题】题型1 与茎叶图的应用例1(2014 全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50 位市民。
高中数学概率统计知识点总结大全
概率统计一,统计初步1.简单随机抽样简单随机抽样是不放回抽样,被抽取样本的个体数有限,从总体中逐个地进行抽取,使抽样便于在实践中操作.每次抽样时,每个个体等可能地被抽到,保证了抽样的公平性.实施方法主要有抽签法和随机数法.2.系统抽样(1)定义:当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样,也称作等距抽样.(2)系统抽样的步骤:①编号.采用随机的方式将总体中的个体编号.②分段.先确定分段的间隔k.当Nn(N为总体中的个体数,n为样本容量)是整数时,k=Nn;当Nn不是整数时,通过从总体中随机剔除一些个体使剩下的总体中个体总数N′能被n整除,这时k=N′n.③确定起始个体编号.在第1段用简单随机抽样确定起始的个体编号S.④按照事先确定的规则抽取样本.通常是将S加上间隔k,得到第2个个体编号S +k,再将(S+k)加上k,得到第3个个体编号S+2k,这样继续下去,获得容量为n 的样本.其样本编号依次是:S,S+k,S+2k,…,S+(n-1)k.3.分层抽样(1)定义:当总体由有明显差别的几部分组成时,按某种特征在抽样时将总体中的各个个体分成互不交叉的层,然后按照各层在总体中所占的比例,从各层独立地抽取一定数量的个体合在一起作为样本,这种抽样的方法叫做分层抽样.分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体中所占比例抽取.分层抽样要求对总体的内容有一定的了解,明确分层的界限和数目,分层要恰当.(2)分层抽样的步骤①分层;②按比例确定每层抽取个体的个数;③各层抽样(方法可以不同);④汇合成样本.(3)分层抽样的优点分层抽样充分利用了己知信息,充分考虑了保持样本结构与总体结构的一致性.使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着非常广泛的应用.4.绘制频率分布直方图把横轴分成若干段,每一段对应一个组距,然后以线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率.这些矩形就构成了频率分布直方图.在频率分布直方图中,纵轴表示“频率/组距”,数据落在各小组内的频率用小矩形的面积表示,各小矩形的面积总和等于1.5.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图.茎是指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少、较为集中,且位数不多时,用茎叶图表示数据的效果较好,它较好的保留了原始数据信息,方便记录与表示,但当样本数据较多时,茎叶图就不太方便.6.平均数、中位数和众数(1)平均数:一组数据的总和除以数据的个数所得的商就是平均数.(2)中位数:如果将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的一个数是这组数据的中位数;当数据有偶数个时,处在最中间两个数的平均数,是这组数据的中位数.(3)众数:出现次数最多的数(若有两个或几个数据出现得最多,且出现的次数一样,这些数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数).(4)在频率分布直方图中,最高小长方形的中点所对应的数据值即为这组数据的众数.而在频率分布直方图上的中位数左右两侧的直方图面积应该相等,因而可以估计其近似值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.7.方差、标准差(1)设样本数据为x1,x2,…,x n样本平均数为x-,则s2=1n[(x1-x-)2+(x2-x-)2+…+(x n-x-)2]=1n[(x12+x22+…+x n2)-n x2]叫做这组数据的方差,用来衡量这组数据的波动大小,一组数据方差越大,说明这组数据波动越大.把样本方差的算术平方根叫做这组数据的样本标准差.(2)数据的离散程度可以通过极差、方差或标准差来描述,其中极差反映了一组数据变化的最大幅度.方差则反映一组数据围绕平均数波动的大小.8.两个变量的线性相关(1)散点图将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,表示具有相关关系的两个变量的一组数据的图形叫做散点图.利用散点图可以判断变量之间有无相关关系.(2)正相关、负相关如果散点图中各点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.反之,如果两个变量的散点图中点散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.9.回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析.其基本步骤是:①画散点图,②求回归直线方程,③用回归直线方程作预报.(1)回归直线:观察散点图的特征,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归直线方程的求法——最小二乘法.设具有线性相关关系的两个变量x、y的一组观察值为(x i,y i)(i=1,2,…,n),则回归直线方程y^=a^+b^x的系数为:⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧ b ^=∑i =1n x i y i -n x ·y ∑i =1n x i 2-n x 2=∑i =1n (x i -x -)(y i -y -)∑i =1n (x i -x -)2a^=y --b ^x 其中x -=1n ∑i =1n x i ,y -=1n ∑i =1n y i ,(x -,y -)称作样本点的中心. a ^,b ^表示由观察值用最小二乘法求得的a ,b 的估计值,叫回归系数.10.独立性检验(1)若变量的不同“值”表示个体所属的不同类别,则这些变量称为分类变量.(2)两个分类变量X 与Y 的频数表,称作2×2列联表.二.随机事件的概率1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件.(1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件.(2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母,,,A B C 表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n=为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在某个常数上,把这个常数记作()p A ,称为事件A 的概率,简称为A 的概率.3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即A B 为不可能事件(A B φ=),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.一般地,如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即A B 为不可能事件,而A B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件.4.事件的关系与运算 B 或A B +) B (或AB ) B 为不可能事件B φ= B 为不可能事件B 为必然事件与事件B 互为对立事件 B φ=且B =Ω5.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()p A . 由定义可知()01p A ≤≤,显然必然事件的概率是1,不可能事件的概率是0.5.概率的几个基本性质(1)概率的取值范围:()01p A ≤≤.(2)必然事件的概率:()1p A =.(3)不可能事件的概率:()0p A =.(4)互斥事件的概率加法公式:①()()()p A B p A p B =+(,A B 互斥),且有()()()1p A A p A p A +=+=. ②()()()()1212n n p A A A p A p A p A =+++ (12,,,n A A A 彼此互斥).(5)对立事件的概率:()()1P A P A =-.三.古典概型1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m . 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件).2.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古典概型. ①试验中所有可能出现的基本事件只有有限个,即有限性.②每个基本事件发生的可能性相等,即等可能性.概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.四.几何概型1.(1)随机数的概念:随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.(2)随机数的产生方法①利用函数计算器可以得到0~1之间的随机数;②在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数.2.几何概型(1)定义:如果某个事件发生的概率只与构成该事件区域的长度(面积或体积等)成比例,则称这样的概率模型为为几何概率模型,简称几何概型.(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个; ②等可能性:每个结果的发生具有等可能性.(3)几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A 构成的区域长度(角度、弧长等),最后代公式()p A =构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A 分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.(4)求几何概型时,注意首先寻找到一些重要的临界位置,再解答.一般与线性规划知识有联系.3.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积。
(完整版)高中数学统计与概率知识点归纳(全)
高中数学统计与概率知识点(文)的平均数就是中位数。
③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平 均数。
四、 中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据;⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若 这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单 位相同; (6) 众数可能是一个或多个甚至没有;(7) 平均数、众数和中位数都是描述一组数据集中趋势的量。
五、 平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系, 所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、 对于样本数据 X i , X 2,…,X n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散 程度,那么这个平均距离如何计算?|X i - x| + |X 2- X| + L + |X n - x|思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差, 一般用s 表示•假设样本数据X i , X 2,…,X n 的平均数为X ,则标准差的计算公式是:(X i - X)2 + (X 2 - x)2 + L +(x n - X)2七、简单随即抽样的含义一般地,设一个总体有 N 个个体,从中逐个不放回地抽取 n 个个体作为样本(n W N ),如果每次 抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样•八、 根据你的理解,简单随机抽样有哪些主要特点?一、 众数:一组数据中出现次数最多的那个数据。
统计概率知识点梳理总结
统计概率知识点梳理总结第一章随机事件与概率一、教学要求1.理解随机事件的概念,了解随机试验、样本空间的概念,掌握事件之间的关系与运算.2.了解概率的各种定义,掌握概率的基本性质并能运用这些性质进行概率计算. 3.理解条件概率的概念,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算.4.理解事件的独立性概念,掌握运用事件独立性进行概率计算.5.掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率.本章重点:随机事件的概率计算.二、知识要点1.随机试验与样本空间具有下列三个特性的试验称为随机试验:(1) 试验可以在相同的条件下重复地进行;·(2) 每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;(3) 每次试验前不能确定哪一个结果会出现.试验的所有可能结果所组成的集合为样本空间,用Ω表示,其中的每一个结果用eΩ=.表示,e称为样本空间中的样本点,记作{}e2.随机事件在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某 种规律性的事情称为随机事件(简称事件).通常把必然事件(记作Ω)与不可能事件(记作φ)看作特殊的随机事件.3.**事件的关系及运算(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃).(2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =.(3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12n A A A ⋃⋃⋃(简记为1nii A =).(4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nAA A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B 互不相容(或互斥),若n 个事件1,2,,n A A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件1,2,,nA A A 互不相容.(6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .(8) 交换律:对任意两个事件A和B 有A B B A ⋃=⋃,AB BA =.(9) 结合律:对任意事件A ,B ,C 有()()A B C A B C ⋃⋃=⋃⋃, ()()A B C A B C ⋂⋂=⋂⋂.(10) 分配律:对任意事件A ,B ,C 有()()()A B C A B A C ⋃⋂=⋃⋂⋃, ()()()A B C A B A C ⋂⋃=⋂⋃⋂.(11) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.4.频率与概率的定义 (1) 频率的定义设随机事件A 在n 次重复试验中发生了A n 次,则比值A n /n 称为随机事件A 发生的频率,记作()n f A ,即 ()An n f A n =.(2) 概率的统计定义在进行大量重复试验中,随机事件A 发生的频率具有稳定性,即当试验次数n 很大时,频率()n f A 在一个稳定的值p (0<p <1)附近摆动,规定事件A 发生的频率的稳定值p 为概率,即()P A p =. (3) **古典概率的定义具有下列两个特征的随机试验的数学模型称为古典概型: (i) 试验的样本空间Ω是个有限集,不妨记作12{,,,}n e e e Ω=;(ii) 在每次试验中,每个样本点i e (1,2,,i n =)出现的概率相同,即12({})({})({})n P e P e P e ===.在古典概型中,规定事件A 的概率为()An A P A n ==Ω中所含样本点的个数中所含样本点的个数.(4) 几何概率的定义如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·(5) 概率的公理化定义设随机试验的样本空间为Ω,随机事件A 是Ω的子集,()P A 是实值函数,若满足下列三条公理:公理1 (非负性) 对于任一随机事件A,有()P A ≥0; 公理2 (规范性) 对于必然事件Ω,有()1P Ω=;公理3 (可列可加性) 对于两两互不相容的事件1,2,,,n A A A ,有11()()i i i i P A P A ∞∞===∑,则称()P A 为随机事件A的概率. 5.**概率的性质由概率的三条公理可导出下面概率的一些重要性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,nA A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3) 对于任意一个事件A :()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) 对于任意一个事件A ,有()1P A ≤. (6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,nA A A ,有111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑.6.**条件概率与乘法公式设A 与B 是两个事件.在事件B 发生的条件下事件A 发生的概率称为条件概率,记作(|)P A B .当()0P B >,规定()(|)()P AB P A B P B =.在同一条件下,条件概率具有概率的一切性质.乘法公式:对于任意两个事件A 与B ,当()0P A >,()0P B >时,有()()(|)()(|)P AB P A P B A P B P A B ==.7.*随机事件的相互独立性如果事件A 与B 满足()()()P AB P A P B =,那么,称事件A 与B 相互独立.关于事件A ,月的独立性有下列两条性质:(1) 如果()0P A >,那么,事件A 与B 相互独立的充分必要条件是(|)()P B A P B =;如果()0P B >,那么,事件A 与B 相互独立的充分必要条件是(|)()P A B P A =. 这条性质的直观意义是“事件A 与B 发生与否互不影响”. (2) 下列四个命题是等价的: (i) 事件A 与B 相互独立; (ii) 事件A 与B 相互独立; (iii) 事件A 与B 相互独立; (iv) 事件A 与B 相互独立.对于任意n 个事件1,2,,nA A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,nA A A 总满足11()()()k k i i i i P A A P A P A =,则称事件1,2,,nA A A 相互独立.这里实际上包含了21nn --个等式.8.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,kn k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,称这组概率为二项概率. 9.**全概率公式与贝叶斯公式全概率公式:如果事件1,2,,nA A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 离散型随机变量及其分布一、教学要求1.理解离散型随机变量及其概率函数的概念并掌握其性质,掌握0-1分布、二项分布、泊松(Poisson)分布、均匀分布、几何分布及其应用.2.理解二维离散型随机变量联合概率函数的概念及性质;会利用二维概率分布计算有关事件的概率.3.理解二维离散型随机变量的边缘分布,了解二维随机变量的条件分布. 4.掌握离散型随机变量独立的条件.5. 会求离散型随机变量及简单随机变量函数的概率分布. 本章重点:离散型随机变量的分布及其概率计算.二、知识要点 1.一维随机变量若对于随机试验的样本空间Ω中的每个试验结果e ,变量X 都有一个确定的实数值与e 相对应,即()X X e =,则称X 是一个一维随机变量.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 2.**离散型随机变量及其概率函数如果随机变量X 仅可能取有限个或可列无限多个值,则称X 为离散型随机变量. 设离散型随机变量X 的可能取值为(1,2,,,)i a i n =,(),1,2,,,.i i p P X a i n ===若11ii p∞==∑,则称(1,2,,,)i p i n =离散型随机变量X 的概率函数,概率函数也可用下列表格形式表示:X12n a a ar P12np p p3.*概率函数的性质 (1) 0i p ≥, 1,2,,,;i n =(2)11ii p∞==∑.由已知的概率函数可以算得概率()i ia SP X S p ∈∈=∑,其中,S 是实数轴上的一个集合. 4.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)in in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4) 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>.(5) 均匀分布,它的概率函数为1()i P X a n ==,其中,0,1,2,,i n =.5.二维随机变量若对于试验的样本空间Ω中的每个试验结果e ,有序变量(,)X Y 都有确定的一对实数值与e 相对应,即()X X e =, ()Y Y e =,则称(,)X Y 为二维随机变量或二维随机向量.6.*二维离散型随机变量及联合概率函数如果二维随机变量(,)X Y 仅可能取有限个或可列无限个值,那么,称(,)X Y 为二维离散型随机变量.二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:(,),,1,2,,i j ij P X a Y b p i j ====其中,0,,1,2,,1ij ijijp i j p≥==∑∑.7.二维离散型随机变量的边缘概率函数 设(,)X Y 为二维离散型随机变量,ijp 为其联合概率函数(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘概率函数,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘概率函数,记为.jp ,并有.jp =(),1,2,j ij iP Y b p j ===∑.8.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为,,1,2,.ij i j p p p i j ==对一切多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.9.随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为X12n a a ar P12np p p则随机变量函数()Y g X =的概率函数可由下表求得()Y g X = 12()()()n g a g a g ar P1p 2pn p但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布一、教学要求1.理解连续型随机变量及其概率密度的概念,并掌握其性质,掌握均匀分布、指数分布、正态分布及其应用.2.理解二维随机变量的联合分布的概念、性质以及连续型随机变量联合概率密度;会利用二维概率分布计算有关事件的概率.3.理解二维随机变量的边缘分布,了解二维随机变量的条件分布. 4.理解随机变量的独立性概念,掌握连续型随机变量独立的条件.5.掌握二维均匀分布;了解二维正态分布的密度函数,理解其中参数的概率意义.(不考)6.会求两个独立随机变量的简单函数的分布,会求两个独立随机变量的简单函数的分布,会求两个随机变量之和的概率分布. (不考)7.会求简单随机变量函数的概率分布.本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算.二、知识要点 1.*分布函数随机变量的分布可以用其分布函数来表示,随机变量X 取值不大于实数x 的概率()P X x ≤称为随机变量X 的分布函数,记作()F x , 即()(),F x P X x x =≤-∞<<∞.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()F x 是非减函数,即当12x x <时,有12()()F x F x ≤;(3) ()0,()1lim lim x x F x F x →-∞→+∞==;(4) ()F x 是右连续函数,即0()()lim x a F x F a →+=.由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率()()();P a X b F b F a <≤=-也可以求得()()(0)P X a F a F a ==--.3.联合分布函数二维随机变量(,)X Y 的联合分布函数规定为随机变量X 取值不大于x 实数的概率,同时随机变量Y 取值不大于实数y 的概率,并把联合分布函数记为(,)F x y ,即(,)(,),,F x y P X x Y y x y =≤≤-∞<<+∞-∞<<+∞.4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;(2) (,)F x y 是变量x (固定y )或y (固定x )的非减函数;(3)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,l i m l i mx x y y F x y Fx y→-∞→+∞→-∞→+∞==;(4) (,)F x y 是变量x (固定y )或y (固定x )的右连续函数;(5) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()xF x f x dx-∞=⎰成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥(2)()1f x dx +∞-∞=⎰;(3)连续型随机变量X 的分布函数为()F x 是连续函数,且在()F x 的连续点处有()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==; (5) 设()f x 是连续型随机变量X 的概率密度,则有()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为1,;()0,a xb f x b a⎧<<⎪=-⎨⎪⎩其余. 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为,0;()0,x e x f x λλ-⎧>=⎨⎩其余. 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()21(),2x f x ex μσπσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为221(),2x f x e x π-=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dt π--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有(,)(,)xyF x y f s t dtds-∞-∞=⎰⎰成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度.9.二维连续型随机变量及联合概率密度的性质 (1) (,)0,,f x y x y ≥-∞<<+∞;(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;(3) 设(,)X Y 为二维连续型随机变量,则对任意一条平面曲线L ,有((,))0P X Y L ∈=; ’(4) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(5) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为1,(,)x y f x y G ⎧∈⎪=⎨⎪⎩,()G;的面积0,其余. (2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212222112112()()()()11(,)exp 22(1)21x x y x f x y μμμμρρσσσσπσσρ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪-⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .如果X 与Y 的联合分布函数等于,X Y 的边缘分布函数之积,即(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为(,)()(),X Y f x y f x f y =在一切连续点上.如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=.多维随机变量的相互独立性可类似定义.即多维随机变量的联合分布函数等于每个随机变量的边缘分布函数之积,多维连续型随机变量的独立性有与二维相应的结论. 13.随机变量函数的分布 **一维随机变量函数的概率密度设连续型随机变量X 的概率密度为()X f x ,则随机变量()Y g X =的分布函数为()()(())()()yY y XI F y P Y y P g X y P X I fx dx=≤=≤=∈=⎰其中,{}y X I ∈与{()}g X y ≤是相等的随机事件,而{||()}y I x g x y =≤是实数轴上的某个集合.随机变量Y 的概率密度()Y f y 可由下式得到:'()()Y Y f y F y =.连续型随机变量函数有下面两条性质:(i) 设连续型随机变量的概率密度为()X f x ,()Y g X =是单调函数,且具有一阶连续导数,()x h y =是()y g x =的反函数,则()Y g X =的概率密度为()(())|'()|Y f y f h y h y =⋅.(ii) 设2~(,)X N μσ,则当0k ≠时,有22~(,)Y kX b N k b k μσ=++,特别当1,k b μσσ==-时,有~(0,1)Y kX b N =+,~(0,1)X N μσ-.特别有下面的结论:设211~(,)X N μσ,222~(,)Y N μσ,且X 与Y 相互独立,则221212~(,)X Y N μμσσ+++.第四章 随机变量的数字特征一、教学要求1.理解随机变量的数学期望、方差的概念,并会运用它们的基本性质计算具体分布的期望、方差,2.掌握二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望和方差. 3.会根据随机变量X 的概率分布计算其函数()g X 的数学期望[()]E g X ;会根据随机变量(,)X Y 的联合概率分布计算其函数(,)g X Y 的数学期望正[(,)]E g X Y .(不考)4.理解协方差、相关系数的概念,掌握它们的性质,并会利用这些性质进行计算,了解矩的概念。
(完整word版)高中数学统计与概率知识点归纳(全)
高中数学统计与概率知识点(文)一、众数: 一组数据中出现次数最多的那个数据。
众数与平均数的区别: 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
二、.中位数: 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)三 .众数、中位数及平均数的求法。
①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。
③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。
四、中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。
五.平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广; ⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、对于样本数据x 1,x 2,…,x n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数据x 1,x 2,…,x n 的平均数为x ,则标准差的计算公式是:七、简单随即抽样的含义一般地,设一个总体有N 个个体, 从中逐个不放回地抽取n 个个体作为样本(n≤N), 如果每次12||||||n x x x x x x n-+-++-L 22212()()()n x x x x x x s n -+-++-=L抽取时总体内的各个个体被抽到的机会都相等, 则这种抽样方法叫做简单随机抽样.八、根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.九、抽签法的操作步骤?第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第二步,将号签放在一个容器中,并搅拌均匀第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.十一、抽签法有哪些优点和缺点?优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.十一、利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?第一步,将总体中的所有个体编号.第二步,在随机数表中任选一个数作为起始数.第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.简单随机抽样一般采用两种方法:抽签法和随机数表法。
统计概率知识点归纳
本文将通过以下几部分对统计概率的知识点进行归纳:一、随机变量随机变量(random variable)表示随机试验各种结果的实值单值函数。
随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。
随机变量可分为离散随机变量和连续随机变量两种,可通过概率计算公式进行概率的计算。
计算离散随机变量的公式叫做概率质量函数(Probability Mass Function,PMF),计算连续随机变量的公式叫做概率密度函数(Probability Density Function,PDF)。
1、概率质量函数是离散随机变量在各特定取值上的概率。
2、概率密度函数描述随机变量的输出值,在某个确定的取值点附近的可能性的函数。
而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。
二、概率分布数据在统计图中的形状叫做它的分布。
可以通俗的理解为:概率分布=随机变量+概率+分布1、离散(Discrete)概率分布以下是几种常见离散概率分布A、伯努利分布(Bernoulli Distribution)(0-1分布)伯努利试验是单次随机试验,只有"成功(值为1)"或"失败(值为0)"这两种结果,其概率分布称为伯努利分布,也叫“0-1分布”或“两点分布”,是最简单的离散型概率分布。
记成功概率为p(0≤p≤1),则失败概率为q=1-p,则:其概率质量函数为:其期望为:其方差为:Python实现方式:绘制图形如下:B、二项分布(Binomial distribution)(n个伯努利分布)二项分布是n重伯努利试验成功次数的离散概率分布。
二项分布具有如下特征:1)每次试验相互独立2)每次试验只有两种可能结果:成功或失败3)每次试验成功与失败的概率是相同的4)当n=1时,二项分布服从0-1分布其概率质量函数为:其期望为:其方差为:Python实现方式:绘制图形如下:C、几何分布(Geometric distribution)(二项分布第一次成功)几何分布是在n次伯努利试验中,试验k次才得到第一次成功的机率。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
(完整版)概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
(最全)高中数学概率统计知识点总结
概率与统计一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数.4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+- 二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=;三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。
2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。
4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。
3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值).分析:ˆi e 越小越好; 2、残差平方和:21ˆ()ni i i y y=-∑, 分析:①意义:越小越好; ②计算:222211221ˆˆˆˆ()()()()ni i n n i y yy y y y y y =-=-+-+⋅⋅⋅+-∑ 3、拟合度(相关指数):22121ˆ()1()ni i i ni i y yR y y ==-∑=--∑,分析:①.(]20,1R ∈的常数; ②。
概率统计知识点全面总结
知识点总结:统计与概率I 统计1.三大抽样 (1)基本定义:①总体:在统计中,所有考查对象的全体叫做全体.②个体:在所有考查对象中的每一个考查对象都叫做个体. ③样本:从总体中抽取的一部分个体叫做总体的样本. ④样本容量:样本中个体的数目叫做样本容量. (2)抽样方法:①简单随机抽样:逐个不放回、等可能性、有限性。
=======★适用于总体较少★抽签法:整体编号(1~N )放入不透明的容器中搅拌均匀逐个抽取n次,即可得样本容量为n 的样本。
随机数表法:整体编号(等位数,如001、111不能是1、111)从0~9中随机取一行一列然后初方向随机(上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。
②系统抽样:容量大.等距,等可能。
=======★适用于总体多★用随机方法编号,若N 无法被整除,则剔除后再分组,nNk。
再用简单随机抽样法来抽取一个个体,设为l ,则编号为l ,k+l ,2k+l ……(n-1)k ,抽出容量为n 的样本。
(每组编号相同)。
③分层抽样:总体差异明显.按所占比例抽取.等可能.=======★适用于由差异明显的几部分构成的总体★总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样.抽样比为:k =nN3.总体分布的估计: (1)一表二图:①频率分布表——数据详实②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势★注:总体分布的密度曲线与横轴围成的面积为1。
(2)茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数.众位数等。
②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。
4.样本分析(1)在频率直方图中计算众数.平均数.中位数众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。
(最多的那个)--忽视其他数据中位数在频率分布直方图中,中位数左边和右边的直方图的面积应该相等。
统计与概率知识点汇总
统计与概率知识点汇总高中统计与概率知识点汇总一、简单随机抽样1.总体和样本在统计学中,把研究对象的全体叫做总体.把每个研究对象叫作个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,通常从总体中随机提取一部分:,,,研究,我们表示它为样本.其中个体的个数称作样本容量.2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.直观随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在直观随机抽样的样本容量设计中,主要考量:①总体变异情况;②容许误差范围;③概率确保程度。
(1)给调查对象群体中的每一个对象编号;(2)准备工作分组的工具,实行分组(3)对样本中的每一个个体进行测量或调查基准:恳请调查你所在的学校的学生搞讨厌的体育活动情况。
5.随机数表法:基准:利用随机数Amancey所在的班级中提取10十一位同学出席某项活动。
1.系统抽样(等距抽样或机械抽样):把总体的单位展开排序,再排序出来样本距离,然后按照这一紧固的样本距离提取样本。
第一个样本使用直观随机抽样的办法提取。
k(抽样距离)=n(总体规模)/n(样本规模)前提条件:总体中个体的排序对于研究的变量来说,应当就是随机的,即为不存有某种与研究变量有关的规则原产。
可以在调查容许的条件下,从相同的样本已经开始样本,对照几次样本的特点。
如果存有显著差别,表明样本在总体中的原产成某种循环性规律,且这种循环和样本距离重合。
系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
高中数学概率统计知识点全归纳
高中数学《概率与统计》知识点总结一、统计1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本,每个个体被抽到的机会(概率)均为Nn 。
2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。
⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。
②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。
3、总体特征数的估计:⑴平均数:nx x x x x n++++= 321;取值为n x x x ,,,21 的频率分别为n p p p ,,,21 ,则其平均数为n n p x p x p x +++ 2211; 注意:频率分布表计算平均数要取组中值。
⑵方差与标准差:一组样本数据n x x x ,,,21 方差:212)(1∑=−=ni ix xns ;标准差:21)(1∑=−=ni ix xns注:方差与标准差越小,说明样本数据越稳定。
平均数反映数据总体水平;方差与标准差反映数据的稳定水平。
⑶线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧−⎪⎪=⎪⎨−⎪⎪=−⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。
二、概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果,用大写英文字母表示; ⑵必然事件、不可能事件、随机事件的特点; ⑶随机事件A 的概率:1)(0,)(≤≤=A P nmA P . 2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果; ⑵古典概型的特点:①所有的基本事件只有有限个; ②每个基本事件都是等可能发生。
高考数学概率统计知识点(大全)
高考数学概率统计知识点(大全)高考数学概率统计知识点一、随机事件(1)事件的三种运算:并(和)、交(积)、差;注意差A—B可以表示成A与B 的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式(1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);(2)差:P(A—B)=P(A)—P(AB),特别地,如果B包含于A,则P(A—B)=P(A)—P(B);(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);(4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。
它是由因求果,贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。
它是由果索因;如果一个事件B可以在多种情形(原因)A1,A2,...,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。
(5)二项概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。
当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。
概率与统计基本知识点总结
概率与统计基本知识点总结1.概率理论:概率的定义:概率是描述随机事件发生可能性的数值,通常用介于0和1之间的数表示。
概率的基本性质:概率值在0到1之间,且所有可能事件的概率之和为1事件的独立性:两个或多个事件相互独立,意味着一个事件的发生不受其他事件发生与否的影响。
加法法则:若A和B是两个事件,则它们联合发生的概率等于它们各自发生的概率之和减去它们同时发生的概率。
乘法法则:对于两个独立事件A和B,它们同时发生的概率等于它们各自发生的概率之积。
条件概率:事件A在事件B发生的条件下发生的概率,表示为P(A,B)。
贝叶斯定理:根据已知的条件概率,求解另一个条件概率的计算公式。
2.随机变量与概率分布:随机变量:将随机事件的结果映射到实数上的变量。
离散型随机变量:取有限个或可数个值的随机变量。
连续型随机变量:取任意实数值的随机变量。
概率分布:描述随机变量取各个值的概率的函数。
离散型概率分布:包括离散均匀分布、二项分布、泊松分布等。
连续型概率分布:包括连续均匀分布、正态分布、指数分布等。
期望:随机变量的平均值,反映其分布的中心位置。
方差:随机变量偏离其均值的程度,反映其分布的离散程度。
3.统计推断:总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
参数与统计量:总体的数值特征称为参数,样本的数值特征称为统计量。
抽样分布:样本统计量的概率分布。
中心极限定理:在一定条件下,样本容量足够大时,样本的均值近似服从正态分布。
置信区间:用样本统计量作为总体参数的估计范围。
假设检验:通过对样本数据的分析,判断总体参数是否满足其中一种假设。
概率统计知识点汇总
概率统计知识点汇总1.分类加法计数原理完成一件事有n 类不同的方案,在第一类方案中有m 1种不同的方法,在第二类方案中有m 2种不同的方法,……,在第n 类方案中有m n 种不同的方法,则完成这件事情,共有N =m 1+m 2+…+m n 种不同的方法. 2.分步乘法计数原理完成一件事情需要分成n 个不同的步骤,完成第一步有m 1种不同的方法,完成第二步有m 2种不同的方法,……,完成第n 步有m n 种不同的方法,那么完成这件事情共有N =m 1×m 2×…×m n 种不同的方法. 3.两个原理的区别分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.4.排列与排列数公式 (1)排列与排列数从n 个不同元素中取出m m ≤n 个元素――――――――→按照一定的顺序排成一列排列―――――→所有不同排列的个数排列数(2)排列数公式A mn =n (n -1)(n -2)…(n -m +1)=n !n -m !.(3)排列数的性质 ①A nn =n !; ②0!=1. 5.组合与组合数公式 (1)组合与组合数从n 个不同元素中取出m m ≤n 个元素――――→合成一组组合――――――→所有不同组合的个数组合数(2)组合数公式C m n=A mn A m m=nn -n -n -m +m !=n !m !n -m !.(3)组合数的性质①C 0n =1; ②C mn =C n -mn ; ③C m n +C m -1n =C mn +1.6.排列与组合问题的识别方法7.二项式定理(1)定理: (a +b )n=C 0n a n+C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *).(2)通项:第k +1项为:T k +1=C k n an -k b k.(3)二项式系数:二项展开式中各项的二项式系数为:C kn (k =0,1,2,…,n ). 8.二项式系数的性质9.概率与频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率. (2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 10.事件的关系与运算11.理解事件中常见词语的含义:(1)A ,B 中至少有一个发生的事件为A ∪B ; (2)A ,B 都发生的事件为AB ; (3)A ,B 都不发生的事件为A -B -;(4)A ,B 恰有一个发生的事件为A B -∪A -B ; (5)A ,B 至多一个发生的事件为A B -∪A -B ∪A -B -. 12.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (E )=1. (3)不可能事件的概率:P (F )=0.(4)概率的加法公式:如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (5)对立事件的概率若事件A 与事件B 互为对立事件,则P (A )=1-P (B ).13.互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件. 14.基本事件的特点(1)任意两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 15.古典概型(1)定义:具有以下两个特点的概率模型称为古典概率模型,简称古典概型.①试验中所有可能出现的基本事件只有有限个. ②每个基本事件出现的可能性相等.(2)古典概型的概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.16.几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)几何概型的概率公式:P (A )=构成事件A 的区域长度面积或体积试验的 所构成的区域长度面积或体积.17.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P AB P A =n ABn A.(2)条件概率具有的性质: ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 18.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ),P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立.19.离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X ,Y ,ξ,η,…表示.所有取值可以一一列出的随机变量,称为离散型随机变量. 20.离散型随机变量的分布列及其性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表(2)离散型随机变量的分布列的性质:①p i ≥0(i =1,2,…,n ); ②∑ni =1p i =1. 21.常见离散型随机变量的分布列 (1)两点分布:若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=C kM C n -kN -MC n N ,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,称(3①独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.②在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p),并称p 为成功概率.22.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为<1>均值:称E (1122i i n n 它反映了离散型随机变量取值的平均水平.<2>方差:称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D X 为随机变量X 的标准差.<3>均值与方差的性质E aX +b = D aX +b =(a ,b 为常数).<4>两点分布与二项分布的均值、方差23.(1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x =μ对称;(3)曲线在x =μ处达到峰值1σ2π;(4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x 轴平移;(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. (7)正态分布的三个常用数据(不需记忆) ① P (μ-σ<X ≤μ+σ)=0.682 6; ② P (μ-2σ<X ≤μ+2σ)=0.954 4; ③ P (μ-3σ<X ≤μ+3σ)=0.997 4. 24.简单随机抽样(1)定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),且每次抽取时各个个体被抽到的机会都相等,就称这样的抽样方法为简单随机抽样. (2)常用方法:抽签法和随机数表法. 25.系统抽样(1)步骤:①先将总体的N 个个体编号;②根据样本容量n ,当N n 是整数时,取分段间隔k =N n; ③在第1段用简单随机抽样确定第一个个体编号l (l ≤k ); ④按照一定的规则抽取样本.(2)适用范围:适用于总体中的个体数较多时. 26.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)适用范围:适用于总体由差异比较明显的几个部分组成时.27.三种抽样方法的比较(1)求极差(即一组数据中最大值与最小值的差). (2)决定组距与组数. (3)将数据分组. (4)列频率分布表. (5)画频率分布直方图. 29.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 30.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指 的一列数,叶是从茎的旁边生长出来的数. 31.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据叫做这组数据的中位数. (3)平均数:把a 1+a 2+…+a nn称为a 1,a 2,…,a n 这n 个数的平均数.(4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x ,则这组数据 标准差为s =1nx 1-x2+x 2-x2+…+x n -x2]方差为s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]32.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关. 33.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.(2)回归方程为y ^=b ^x +a ^,其中 ,a ^=y -b ^x .(3)通过求Q = (y i -bx i -a )2的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法. (4)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r |大于0.75时,认为两个变量有很强的线性相关性. 34.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为:K 2=n ad -bc 2a +ba +cb +dc +d(其中n =a +b +c +d 为样本容量).。