阻抗匹配与史密斯圆图共39页
第节 Smith 圆图及应用阻抗匹配

(1) /4阻抗变换器匹配方法
此处接/4阻抗 变换器
Z 01 Z 0 Rl
Zin Z0
Z0
第一个电压波节点 所处的位置
/4
Z0
Z01
电容性负载
l1
4
l
4
l1
Z0
Z01
Z0
Zi n=Z0
Rx=Z0/
Z0
第一个电压波腹点 所处的位置
/4
Z0
Z01
电感性负载
Zl Rl jX l
l1
4
在圆图上做直线找到P1点相对中心点对称的P2点, P2点即是归一化负载导纳(查图得其归一化导纳即为0.4-j0.2)对应位置; P2点对应的向电源方向的电长度为0.463 ;
将P2点沿等l圆顺时针旋转与匹配电导圆交于A点B 点
A点的导纳为1+j1,对应的电长度为0.159,
B点的导纳为1-j1,对应的电长度为0.338。
纯电导线
g=1 匹配圆
开路点
匹配点
短路点
纯电纳圆
下半圆电感性
b=-1电纳圆弧
《微波技术与天线》
[例1-8]设负载阻抗为Zl=100+j50接入特性阻抗为Z0=50的传输线上。要用支节 调配法实现负载与传输线匹配,试用Smith圆图求支节的长度及离负载的距离。
解:
A
B
0.463 负载阻抗归一化2+j,并在圆图上找到与相对应的点P1;
(1)支节离负载的距离为
d1=(0.5-0.463) +0.159 =0.196 d2=(0.5-0.463) +0.338 =0.375
0.159 0.125
A B
(2)短路支节的长度:
阻抗匹配与史密斯圆图

p jq
p jq R jX 1
R jX 1
p R2 1 X 2 (R 1)2 X 2
2x q (R 1)2 X 2
p-
R 2 R 1
q2
1 2 R 1
表示一组圆,其圆心位于:
p R R 1
q0
4.1 背景
一个众所周知的定理指出:对于直流电路,如果负载电阻等于电源内 阻,负载将从源获得最大功率。
R = 1W
+
VS -
RL
(a)电路
证明:当 RL RS 时输出功率最大。
V1
V1 =
RL RS RL
VS
P1
为方便起见,设 VS = 1V,RS = 1Ω
V1
=
1
RL RL
0.1
P1
QS QP
RP 1 3.32 RS
X S QS RS 166 W
XP
RP QP
181 W
1
C
12.78 pF
XS
L X P 384 nH
4.4 三元件匹配网络
两元件L形网络的潜在不足:源和负载的阻抗一旦确定了,网络的Q值 也就确定了。换句话说,使用L形网络,设计者不能选择电路的Q值, 而只能接受计算所得的值。
4.1 背景
举个实例来说明阻抗匹配的重要性:“iphone4信号门事件”
天线的工作原理是传输线理论,而传输线理论中有一个很重要的概念 就是阻抗匹配。线的阻抗和终端阻抗不匹配的时候,会产生很大的信号反射, 导致工作效率的大幅度下降。在手机天线工作的高频段,人体并不是一个 绝缘体,而是一个包含了极大电容的导体。如果让这样一个导体接触到天线 ,会导致天线传输特性的严重偏离,改变其自有阻抗。由于机器内部的电路 是不可能根据这个作出改变的,所以就会产生阻抗失配,导致性能下降。
如何利用史密斯圆图匹配阻抗

如何利用史密斯圆图匹配阻抗(教程)先上张主角 SMITCH圆图!!
先来点基础的东西。
史密斯圆图红色的代表阻抗圆,蓝色的代表导纳圆!!
先以红色线为例!
圆中间水平线是纯阻抗线,如果有点落在该直线上,表示的是纯电阻!!
例如一个100欧的电阻,就在中间那条线上用红色标2.0的地方;15欧的电阻就落在中间红色标0.3的点上!
水平线上方是感抗线,下方是容抗线;落在线上方的点,用电路表示,就是一个电阻串联一个电感,落在线下方的点,是一个电阻串联
一个电容。
图上的圆表示等阻抗线,落在圆上的点阻抗都相等,向上的弧线表示等感抗线,向下的弧线表示等容抗线!!
看图好点
接着讲蓝色线。
因为导纳是阻抗的倒数,所以,很多概念都很相似。
中间的是电导线,图上的圆表示等电导圆,向上的是等电纳线,向下的是等电抗线!
转入正题:
用该图进行阻抗匹配计算的基本原则是:
是感要补容,是容要加感,是高阻要想办法往低走,是低阻要想办法抬高。
无论在任何位置,均要向50欧(中点)靠拢。
进行匹配时候,在等阻抗圆以及等电导圆上进行换算。
下图表示的是变化趋势!
以图上B点为例,如何进行阻抗匹配!!
B点所在位置为40+50j,
先顺着等电导圆,运动到B1点,再顺着等阻抗圆,运行到终点(50欧)。
按照上贴的运动规律,电路先并电容,再串电感。
由此完成阻抗匹配。
匹配方法讲完了,具体数值可通过RFSIM99计算!!。
用史密斯圆图做RF阻抗匹配课件

解决方案
通过使用史密斯圆图,可以方便 地找到最佳的阻抗匹配点,并设
计出相应的匹配网络。
案例分析
在具体案例中,需要考虑系统的 实际情况,如信号频率、传输线 长度和类型、元件参数等,通过 调整匹配网络的参数,实现最佳
的阻抗匹配效果。
01
实践操作与案例分 析
实际操作:使用史密斯圆图进行RF阻抗匹配
01
02
03
04
05
史密斯圆图简介
1. 确定源阻抗和 负载…
2. 绘制史密斯圆 3. 寻找匹配点 图
4. 设计匹配网络
史密斯圆图是一种用于表 示阻抗、导纳和反射系数 的图示方法,通过在图上 旋转和缩放,可以方便地 找到最佳的阻抗匹配点。
问题1
01 信号反射大,传输效率低。
解决方案
02 调整传输线的特征阻抗或信号
源的输性差,容易受到干扰
。
解决方案
04 通过阻抗匹配,减小信号反射
和能量损失,提高系统的稳定 性和可靠性。
问题3
05 无法找到最佳的阻抗匹配点。
解决方案
06 使用史密斯圆图进行阻抗匹配
用史密斯圆图做RF 阻抗匹配课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 史密斯圆图简介 • RF阻抗匹配概述 • 使用史密斯圆图进行RF阻抗匹配 • 史密斯圆图的高级应用与技巧 • 实践操作与案例分析
01
史密斯圆图简介
史密斯圆图的历史与发展
史密斯圆图由工程师Reginald Aubrey Smith于1937年发明,
用于解决阻抗匹配问题。
随着无线通信技术的发展,史密 斯圆图在RF领域的应用越来越
最全的阻抗匹配与史密斯(Smith)圆图基本原理

最全的阻抗匹配与史密斯(Smith)圆图基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2472工作在900MHz时匹配网络的作图范例。
事实证明,史密斯圆图仍然是确定传输线阻抗的基本工具。
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括•计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
•手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
•经验:只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
•史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
阻抗匹配与史密斯(Smith)圆图 基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理本文利用史密斯圆图作为 RF 阻抗匹配的设计指南。
文中给出了反射系 数、阻抗和导纳的作图范例,并用作图法设计了一个频率为 60MHz 的匹 配网络。
实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级 联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包 括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之 间的匹配、LNA/VCO 输出与混频器输入之间的匹配。
匹配的目的是为了保证信号 或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹 配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿 真已经远远不能满足要求, 为了得到适当的最终结果,还必须考虑在实验室中进 行的 RF 测试、并进行适当调整。
需要用计算值确定电路的结构类型和相应的目 标元件值。
有很多种阻抗匹配的方法,包括:•• • •计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用 起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具 有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、 并且被处理的数据多为复数。
经验: 只有在 RF 领域工作过多年的人才能使用这种方法。
总之, 它只适合于资深的 专家。
史密斯圆图: 本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识, 并且总结它在实际中的应 用方法。
讨论的主题包括参数的实际范例, 比如找出匹配网络元件的数值。
当然, 史密斯圆图不仅能够为我们找出最大功率传输的匹配网络, 还能帮助设计者优化 噪声系数,确定品质因数的影响以及进行稳定性分析。
阻抗匹配与史密斯(Smith)圆图:基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理本文利用史密斯圆图作为 RF 阻抗匹配的设计指南。
文中给出了反射系 数、阻抗和导纳的作图范例,并用作图法设计了一个频率为 60MHz 的匹 配网络。
实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级 联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包 括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之 间的匹配、LNA/VCO 输出与混频器输入之间的匹配。
匹配的目的是为了保证信号 或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹 配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿 真已经远远不能满足要求, 为了得到适当的最终结果,还必须考虑在实验室中进 行的 RF 测试、并进行适当调整。
需要用计算值确定电路的结构类型和相应的目 标元件值。
有很多种阻抗匹配的方法,包括: 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用 起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具 有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、 并且被处理的数据多为复数。
经验: 只有在 RF 领域工作过多年的人才能使用这种方法。
总之, 它只适合于资深的 专家。
史密斯圆图: 本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识, 并且总结它在实际中的应 用方法。
讨论的主题包括参数的实际范例, 比如找出匹配网络元件的数值。
当然, 史密斯圆图不仅能够为我们找出最大功率传输的匹配网络, 还能帮助设计者优化 噪声系数,确定品质因数的影响以及进行稳定性分析。
smith圆图阻抗匹配

阻抗匹配调试
1.阻抗匹配要求(@1GHz)
Z t=77.1+j*4.2(Target Res)
Z L=44.52-j*22.03(Load Res)
图1 匹配网络
2.匹配工具
选用ADS里面的Smith Chart Utility阻抗匹配调试工具。
3
1
2
图2 阻抗匹配调试
步骤如下:
✓先将频点设置为1GHz,特性阻抗为Z0=50Ω。
Load设置为Z L=44.52-j*22.03,Source设置为Z S=77.1+j*4.2;
✓从Z L作为匹配的起点,分别串电容,并电感。
✓根据匹配的要求,需要匹配的网路为:
图3 匹配网络元件值
3.电路仿真验证
采用ADS仿真,仿真验证原理图如下:
图4 匹配后的阻抗仿真
将图4的元件值及Z L代入仿真网络,ADS量测S11参数,频率范围从30MHz~3GHz。
图5 仿真图
图6图5 匹配阻抗调试后的仿真图
通过仿真可以看出,匹配调试后的阻抗为77.761+j3.887,比较接近我们预期的值,有些许差异与我们仿真选取的频点差异以及采用元件模拟Z L 的精度有关。
freq (30.00MHz to 3.000GHz)
S (1,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
阻抗匹配与史密斯圆图 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!