SDS-PAGE测定蛋白质分子量及蛋白质的纯度鉴定

合集下载

SDS-PAGE测定蛋白质相对分子质量解析

SDS-PAGE测定蛋白质相对分子质量解析

• 5.支持介质的筛孔:支持介质的筛孔大小 对生物大分子的电泳迁移速度有明显的影 响。在筛孔大的介质中泳动速度快,反之 则泳动速度慢。
电泳技术的分类
• 1. 根据电泳中是否使用支持介质分为自由电泳和区带电泳: ①自由电泳不使用支持介质,电泳在溶液中进行。②区带 电泳需使用支持介质,根据支持介质不同可分为醋酸纤维 薄膜电泳、薄层电泳和凝胶电泳等。根据支持介质的装置 形式不同又可分为水平板式电泳、垂直板式电泳、垂直盘 状电泳、毛细管电脉等。 • 2.根据电泳时电压的高低分为高压电泳和常压电泳:①高 压电泳使用的电压在500~1000V,这类电泳分离速度快, 但热效应较大,必须具备冷却装置,主要适用于小分子化 合物的快速分离。②常压电泳使用的电压在500 V以下, 电位梯度为2~10 V /cm。这类电泳的分离速度较慢,但 对电泳设备要求简单。
• 4.电渗:液体在电场中对于固体支持介质 的相对移动称为电渗。由于支持介质表面 存在一些带电基团,如滤纸表面含有羧基, 琼脂含有硫酸基等。这些基团电离后使支 持介质表面带电,吸附一些带相反电荷的 离子在电场作用下向电极方向移动,形成 介质表面溶液的流动。 • 当电渗方向与电泳方向相同时则加快电泳 速度;当电渗方向与电用的示踪剂有溴酚兰和二甲苯青FF。 示踪剂一般与蔗糖、甘油组成上样缓冲液, 蔗糖、甘油可增加溶液密度,使其比重增 加,以确保样品均匀沉入加样孔内。
醋酸纤维薄膜电泳分离血清蛋白质
【基本原理】 • 本实验用醋酸纤维薄膜作电泳支持物分离血清 蛋白质。血清蛋白质的等电点都小于7.5,在 pH=8.6的巴比妥缓冲溶液中都带有负电荷,在电 场中将向正极移动。由于血清中各蛋白质的等电 点不一,所带净电荷有差异,所以它们的泳动速 率也不同。将微量血清点于薄膜上,通电电泳后, 将薄膜置染色液中使蛋白质固定并染色,可将血 清蛋白质分成5条区带,从正极端起分别为白蛋白、 α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白。

种子蛋白质电泳在品种纯度鉴定中的应用

种子蛋白质电泳在品种纯度鉴定中的应用

种子蛋白质电泳在品种纯度鉴定中的应用种子蛋白质电泳在品种纯度鉴定中的应用种子蛋白质电泳(SDS-PAGE)是一种广泛用于分析蛋白质组学的常见方法。

它以及其衍生的所有形式都已成为生物化学和免疫学实验中不可或缺的工具。

随着研究和开发的不断深入,其重要性也正日益凸显。

近年来,SDS-PAGE在品种纯度鉴定中的应用也越来越广泛。

种子蛋白质电泳在品种纯度鉴定中的应用,主要是通过测定采用SDS-PAGE技术分析不同品种中的蛋白质组成来对样品进行纯度分析。

SDS-PAGE具有高灵敏度、低成本、简便快捷等优势,能够准确检测出各种蛋白质的组成和分子量,用于品种纯度鉴定具有重要意义。

SDS-PAGE首先将样品中的蛋白质用0.1% SDS(十二烷基硫酸钠)和2-mercaptoethanol调节。

然后,将调节后的蛋白液加入凝胶,用固定的电流,在特定的pH和温度下缓慢运行,使蛋白在凝胶中移动,最终形成蛋白质电泳图谱。

经过色谱定位和计量,可以获得蛋白质的分子量以及它们的组成比例,从而为品种纯度鉴定提供可靠的依据。

根据蛋白质电泳的原理,结合不同品种种子中蛋白质的组成结构,采用SDS-PAGE电泳技术,可以分析出不同品种种子中蛋白质的组成和比例,从而对种子来源进行有效的鉴定。

例如,在水稻品种纯度鉴定中,可以通过SDS-PAGE电泳技术对水稻种子中的蛋白质组成进行比较,以此来鉴定水稻品种的纯度。

水稻种子中的蛋白质以globulin、glutelin、albumin等为主,其中globulin含量最高,glutelin含量次之,而albumin含量最低。

根据SDS-PAGE 测定的蛋白质比例,可以知道水稻种子中globulin、glutelin和albumin的比例,并且可以分析出不同品种水稻种子中蛋白质的组成比例,从而对其品种纯度进行鉴定。

另外,SDS-PAGE电泳法还可以用于棉花品种纯度鉴定中。

棉花种子中的蛋白质主要有globulin、glutelin、albumin三种,其中globulin和glutelin的比例是棉花品种的重要特征。

SDS-聚丙烯酰胺凝胶电泳PAGE测定蛋白质分子量

SDS-聚丙烯酰胺凝胶电泳PAGE测定蛋白质分子量

02 实验材料
所需的试剂和溶液
丙烯酰胺(AA):用于制备凝胶,是聚合反应 的单体。
甲叉双丙烯酰胺(MBA):交联剂,增加凝胶 的交联度。
N,N,N',N'-四甲基乙二胺(TEMED):催化剂, 加速交联聚合反应。
所需的试剂和溶液
过硫酸铵(APS)
引发剂,产生自由基,引发聚合反应。
SDS
十二烷基硫酸钠,用于变性蛋白质并促使其 带负电荷。
发展新型分离技术
随着生物技术的不断发展,可以发展新型的蛋白质分离技术, 如二维电泳、毛细管电泳等,以提高蛋白质分离的分辨率和准
确性。
应用多维度分析
在后续实验中,可以将SDS-PAGE与其他蛋白质分析技术相结 合,如质谱技术、免疫学检测等,进行多维度分析,更全面地
了解蛋白质的性质和功能。
THANKS FOR WATCHING
白质带负电荷,从而在电场中向正极移动。
聚丙烯酰胺凝胶作为支持介质,能够根据蛋白质分子量的不同
03
对其进行分离。
蛋白质的分子量测定
通过比较标准蛋白的迁移率和已知分 子量的标准蛋白,可以大致测定出待 测蛋白质的分子量。
蛋白质的迁移率与其分子量的对数成 反比,因此可以通过计算待测蛋白与 标准蛋白的相对迁移率来推算其分子 量。
甘氨酸
作为分子量标准品。
Tris-HCl缓冲液
维持电泳过程中的pH值稳定。
所需的仪器和设备
电源
为电泳提供电力。
凝胶板
放置凝胶的框架。
垂直电泳槽
提供电泳所需的基 本结构。
移液器
精确添加试剂和溶 液。
紫外透射仪
检测蛋白质条带。
实验前的准备事项
清洗电泳槽和相关器具,确保无残留物。 准备好所需的试剂和溶液,并确保其在有效期内。

SDS-PAGE电泳测定蛋白质相对分子质量

SDS-PAGE电泳测定蛋白质相对分子质量

SDS-PAGE电泳测定蛋白质相对分子质量SDS-PAGE电泳是现代生物学和生物化学研究中最常用的方法之一,可用于测定蛋白质的相对分子质量、纯度和数量等指标。

下面将就SDS-PAGE电泳测定蛋白质相对分子质量进行介绍。

SDS-PAGE电泳的原理:SDS-PAGE电泳是一种基于PAG(聚丙烯酰胺凝胶板)的矩阵上运行的直流凝胶电泳。

相对分子质量(MW)是以电泳迁移距离为单位来表示的。

蛋白质在PAG上被限制在孔道中运动,因此,蛋白质分子迁移距离与分子大小成正比。

通过使用外部标准,可以精确地将样品的迁移距离转换为分子量。

这种分离方法受到电荷和大小作用的影响,电势梯度使带电的蛋白质分子在凝胶中迁移。

SDS-PAGE电泳的过程:SDS-PAGE电泳的过程主要包括:样品加载、电泳和染色步骤。

(1)样品加载:样品的制备:蛋白质样品通常经过还原和变性,以便将所有蛋白质中的二硫键断裂并且在孔道中呈现线性的多聚蛋白质结构。

这需要在治疗过程中对样品添加SDS缓冲液,然后在热水浴或高压下暴露于还原剂,例如2-硫代乙酸(DTT)或β-巯基乙酸(MEA)。

(2)电泳:将处理过的样品通过凝胶基质中的丝状孔道。

随着电场的施加,蛋白质会在SDS凝胶板上自由迁移,从而分离出蛋白系列。

(3)染色:电泳结束后,将凝胶板进行染色。

目前较常用的方法是银染、共染和Coomassie Brilliant Blue染色法。

SDS-PAGE电泳的应用:SDS-PAGE电泳广泛应用于研究蛋白质相对分子质量、活性定量、纯度评估、亚基分离等方面。

其中,蛋白质相对分子质量的测定是SDS-PAGE电泳的最主要应用之一。

通过将未知蛋白与已知分子质量蛋白一起电泳,可以通过线性回归计算未知标本的分子大小。

SDS-PAGE(SDS聚丙烯酰胺凝胶电泳)原理

SDS-PAGE(SDS聚丙烯酰胺凝胶电泳)原理
.
甘氨酸
最广泛使用的不连续缓冲系统最早是由Ornstein(1964) 和 Davis(1964) 设计的, 样品和浓缩胶中含 Tris-HCl(pH 6.8), 上下槽缓冲 液含Tris-甘氨酸(pH 8.3), 分离胶中含Tris-HCl(pH 8.8)。系统中所有组 分都含有0.1% 的 SDS(Laemmli, 1970)。样品和浓缩胶中的氯离子形 成移动界面的先导边界而甘氨酸分子则组成尾随边界,在移动界面的两 边界之间是一电导较低而电位滴度较陡的区域, 它推动样品中的蛋白质 前移并在分离胶前沿积聚。此处pH值较高, 有利于甘氨酸的离子化, 所形成的甘氨酸离子穿过堆集的蛋白质并紧随氯离子之后,沿分离胶泳 动。从移动界面中解脱后,SDS-蛋白质复合物成一电位和pH值均匀的 区带泳动穿过分离胶,并被筛分而依各自的大小得到分离。
Ø 加入加速剂TEMED后聚合马上开始,应立即将凝胶混匀,迅速灌胶。
保存条件: 4℃保存。
注意事项:
Ø 易燃,有腐蚀性,请注意防护。
Ø为了您的安全和健康,请穿实验服并戴一次性手套操作。
.
过硫酸铵 分子式: (NH4)2S2O8 分子量: 228.20
性状:过硫酸铵是一种白色、无味晶体,常作强氧化剂使用,也可用作单体聚合引发 剂。它几乎不吸潮,由于能达到很高的纯度而具有特别好的稳定性,便于储存。另外, 它还具有使用方便、安全等优点。 储存及使用注意事项:
.
浓缩效应:凝胶由两种不同的凝胶层组成。上层为浓缩胶,下层为分离 胶。浓缩胶为大孔胶,缓冲液pH6.7,分离胶为小孔胶,缓冲液pH8.9。 在上下电泳槽内充以Tris—甘氨酸缓冲液(pH8.3),这样便形成了凝胶孔 径和缓冲液pH值的不连续性。在浓缩胶中 HCl几乎全部解离为Cl-,但只 有极少部分甘氨酸解离为H2NCH2COO-。蛋白质的等电点一般在pH5左 右,在此条件下其解离度在HCl和甘氨酸之间。当电泳系统通电后,这3 种离子同向阳极移动。其有效泳动率依次为Cl->蛋白质> H2NCH2COO-,故C1-称为快离子,而H2NCH2COO- 称为慢离子。电 泳开始后,快离子在前,在它后面形成离子浓度低的区域即低电导区。 电导与电压梯度成反比,所以低电导区有较高的电压梯度。这种高电压 梯度使蛋白质和慢离子在快离子后面加速移动。在快离子和慢离子之间 形成—个稳定而不断向阳极移动的界面。由于蛋白质的有效移动率恰好 介于快慢离子之间,因此蛋白质离子就集聚在快慢离子之间被浓缩成— 条狭窄带。这种浓缩效应可使蛋白质浓缩数百倍。

SDS-PAGE蛋白质纯度分析

SDS-PAGE蛋白质纯度分析

SDS-PAGE蛋白质纯度分析十二烷基硫酸钠聚丙烯酰胺凝胶电泳(英语:sodium dodecyl sulfate polyacrylamide gel electrophoresis,简称SDS-PAGE)是较常用的一种蛋白纯化分析技术。

SDS-PAGE可根据不同蛋白质分子所带电荷的差异及分子大小的不同所产生的不同迁移率将蛋白质分离。

如果蛋白质样品中含有多个蛋白质或者纯化蛋白样品中含有其他杂蛋白,经过SDS-PAGE分离后不同的蛋白质会被分离成多个蛋白条带。

如果纯化的样品中只含有同一种蛋白质,蛋白质样品电泳后,则只显现一条蛋白条带。

由此SDS-PAGE技术可以对蛋白质样品的纯度进行分析。

SDS-PAGE分析原理SDS是一种阴离子表面活性剂能打断蛋白质的氢键和疏水键,并按一定的比例和蛋白质分子结合成复合物,使蛋白质带负电荷的量远远超过其本身原有的电荷,掩盖了各种蛋白分子间天然的电荷差异。

因此,各种蛋白质-SDS复合物在电泳时的迁移速度仅由蛋白质分子量决定,不同的蛋白质由于分子量的差异经过SDS-PAGE电泳后分离,再经由蛋白质染色对蛋白质分离结果进行分析。

蛋白质SDS-PAGE分析流程1. 蛋白质浓度检测2. 样品处理: 在蛋白样品中加入等量含有B-巯基乙醇的2x loading buffer,煮沸10分钟3. 电泳准备: 配置合适浓度的SDS分离胶,安装电泳槽,注入1x 电泳液4. 蛋白质样品上样:根据蛋白质浓度,取适量处理过的蛋白样品依次加入电泳孔槽内,另外取适量蛋白标准marker加入其他空余孔槽内。

5. 开始电泳: 接通电源,将电压调至120v,保持恒定电压。

6. 电泳结束剥离胶: 当溴酚蓝迁移至凝胶底部,停止电泳;将蛋白胶取出,并切去浓缩胶和分离胶底部的溴酚蓝胶条。

7. 染色: 使用R250染色液对蛋白胶染色1小时8. 脱色: 使用脱色液对染色的蛋白胶脱色至背景干净,蛋白条带清晰可见9. 拍照分析中/英文项目报告在技术报告中,百泰派克会为您提供详细的中英文双语版技术报告,报告包括:1. 实验步骤(中英文)。

《中国药典》(2020版)SDS-聚丙烯酰胺凝胶电泳

《中国药典》(2020版)SDS-聚丙烯酰胺凝胶电泳

第五法SDS-聚丙烯酰胺凝胶电泳法(SDS-PAGE法)SDS-PAGE法是一种变性的聚丙烯酰胺凝胶电泳方法。

本法分离蛋白质的原理是根据大多数蛋白质都能与阴离子表面活性剂十二烷基硫酸钠(SDS)按重量比结合成复合物,使蛋白质分子所带的负电荷远远超过天然蛋白质分子的净电荷,消除了不同蛋白质分子的电荷效应,使蛋白质按分子大小分离。

本法用于蛋白质的定性鉴别、纯度和杂质控制以及定量测定。

1.仪器装置恒压或恒流电源、垂直板电泳槽和制胶模具。

2.试剂(1)水。

(2)分离胶缓冲液(4×,A液) 1.5moL/L三羟甲基氨基甲烷-盐酸缓冲液称取三羟甲基氨基甲烷18.15g,加适量水溶解,用盐酸调节pH值至8.8,加水稀释至100mL。

(3)30%丙烯酰胺溶液(B液)称取丙烯酰胺58.0g、N,N-亚甲基双丙烯酰胺2.0g,加温水溶解并稀释至200mL,滤纸过滤(避光保存)。

(4)10%SDS溶液(C液)称取十二烷基硫酸钠10g,加水溶解并稀释至100mL。

(5)四甲基乙二胺溶液(TEMED,D液)商品化试剂。

(6)10%过硫酸铵溶液(E液)称取过硫酸铵10g,加水溶解并稀释至100mL。

建议临用前配制,或分装于-20℃可贮存2周。

(7)浓缩胶缓冲液(4×,F液)0.5moL/L三羟甲基氨基甲烷-盐酸缓冲液称取三羟甲基氨基甲烷6.05g,加适量水使溶解,用盐酸调pH值至6.8,加水稀释至100mL。

(8)电极缓冲液(10×)称取三羟甲基氨基甲烷30g、甘氨酸144g、十二烷基硫酸钠10g,加水溶解并稀释至约800mL,用盐酸调节pH值至8.1~8.8之间,加水稀释至1000mL。

(9)非还原型供试品缓冲液(4×)称取三羟甲基氨基甲烷3.03g、溴酚蓝20mg、十二烷基硫酸钠8.0g,量取甘油40m1,加水溶解并稀释至约80mL,用盐酸调节pH值至6.8,加水稀释至100mL。

电泳纯度(非还原型SDS-PAGE)测定标准操作规程

电泳纯度(非还原型SDS-PAGE)测定标准操作规程

细胞因子电泳纯度(非还原型SDS-PAGE)测定标准操作规程依据:《中华人民共和国药典》2005年版第三部。

范围:适用于细胞因子纯度的检测。

目的:检测细胞因子蛋白质纯度。

原理:蛋白质具有不同的电荷和分子量,在经过阴离子去污剂SDS处理后,蛋白质分子上的电荷被中和,在聚丙稀酰胺凝胶电泳时,不同的蛋白质按照其分子量大小进行分布,电泳迁移率仅取决于蛋白质的分子量。

由于不连续的PH梯度作用,样品被压缩成一条狭窄区带,采用染色液染色,经扫描仪扫描胶片可及时观察结果。

内容:1 材料1.1样品:经二人复核批号无误后检测1.2试剂甲醇 CH3OH 分析纯无水乙醇 CH3CH2OH 分析纯浓盐酸 HCl 分析纯甘油 C3H8O3分析纯硝酸银 AgNO3分析纯重铬酸钾 K2Cr2O7分析纯正丁醇 C4H9OH 分析纯甲醛 HCHO 分析纯丙烯酰胺 CH2CHCONH2分析纯甲叉双丙烯酰胺(CH2CHCONH2)2CH2分析纯过硫酸铵(NH4)2S2O8分析纯TEMED(四甲基乙二胺)(CH3)2N(CH2)2N(CH3)2分析纯甘氨酸 C2H5NO2分析纯SDS(十二烷基硫酸钠)C12H25O4SNa 分析纯乙酸 CH3COOH 分析纯碳酸钠 Na2CO3分析纯溴酚蓝 C19H10Br4O5S 分析纯1.3注射用水:符合《中华人民共和国药典》2005年版要求。

1.4设备1.4.1扭力天平上海第二天平仪器厂1.4.2垂直板状电泳槽北京东方仪器厂1.4.3恒温恒流电泳仪法玛西亚公司1.4.4快速电泳槽BIORAD USA1.4.5全自动扫描仪CS-930 日本岛津1.4.6TS-1型摇床1.5器皿:500ml瓶、100ul移液器、1ml吸管、10ml吸管3000ml三角瓶、平皿、1000ml烧杯、80ml烧杯,以上器皿经本室洗刷组处理。

2 方法2.1准备工作2.1.1工作环境:控制区,确认场地清场合格,摘下“清场合格”标志牌,挂上“使用中”标志牌。

蛋白质纯度测定方法

蛋白质纯度测定方法

蛋白质纯度测定方法一、引言蛋白质是生命体中最基本的分子之一,它在细胞的生命活动中扮演着极其重要的角色。

因此,对蛋白质进行纯度测定是非常必要的。

本文将介绍几种常用的蛋白质纯度测定方法。

二、背景知识在进行蛋白质纯度测定之前,需要了解几个基本概念:1. 蛋白质的纯度:指在样品中含有的目标蛋白质所占比例。

2. 蛋白质的含量:指样品中所有蛋白质所占比例。

3. 蛋白质的分离:指将混合物中不同种类的蛋白质分离出来。

三、方法介绍1. SDS-PAGE法SDS-PAGE法是一种常见的蛋白质分离方法,可以用于测定目标蛋白质在混合物中所占比例。

具体步骤如下:(1)制备样品:将待测样品加入SDS-PAGE电泳缓冲液中,并加入还原剂和热处理。

(2)电泳:将样品加入凝胶孔中,进行电泳分离。

(3)染色:将凝胶染色,观察目标蛋白质的带位置和强度。

2. 尿素-PAGE法尿素- PAGE法是一种用于测定蛋白质含量的方法。

具体步骤如下:(1)制备样品:将待测样品加入尿素-PAGE电泳缓冲液中,并加入还原剂和热处理。

(2)电泳:将样品加入凝胶孔中,进行电泳分离。

(3)染色:将凝胶染色,计算所有蛋白质的含量。

3. 透析法透析法是一种常见的蛋白质纯化方法。

具体步骤如下:(1)制备样品:将待纯化的混合物加入透析袋中。

(2)透析:用适当的缓冲液对混合物进行透析,使目标蛋白质从袋子中渗出。

(3)收集目标蛋白质:收集渗出液,即为目标蛋白质。

4. 亲和层析法亲和层析法是一种高效的蛋白质纯化方法。

具体步骤如下:(1)制备样品:将待纯化的混合物加入含有亲和基团的树脂中。

(2)洗涤:用适当的缓冲液对树脂进行洗涤,使非目标蛋白质从树脂上洗掉。

(3)吸附:目标蛋白质与亲和基团结合在一起,被吸附在树脂上。

(4)洗涤:用适当的缓冲液对树脂进行洗涤,去除杂质。

(5)洗脱:用适当的缓冲液将目标蛋白质从树脂上洗下。

四、总结本文介绍了几种常用的蛋白质纯度测定方法,包括SDS-PAGE法、尿素-PAGE法、透析法和亲和层析法。

细胞色素C的制备测定及SDS—PAGE纯度鉴定

细胞色素C的制备测定及SDS—PAGE纯度鉴定

细胞色素C的制备测定及SDS—PAGE纯度鉴定摘要:本文研究细胞色素C的制备及测定方法和SDS-PAGE测定蛋白质分子质量及纯度鉴定,以猪心未原料,采用离心、透析、抽提、抽滤、沉淀等技术,制备出细胞色素C,然后用消光法,紫外吸收法测得细胞色素C的产量,蛋白质的总含量。

再运用SDS-聚丙烯酰胺凝胶电泳技术测定细胞色素C的分子质量。

实验结果细胞色素C的产量为8.84mg,产率为60.86mg/kg,蛋白质浓度为0.722mg/ml,纯度为38.04%,细胞色素C的分子质量为12417,相对误差为0.14%。

关键词:细胞色素C 离心抽提抽滤透析消光法紫外吸收法 SDS-聚丙烯酰胺凝胶电泳法纯度前言:细胞色素C是一种细胞色素C(Cytochrome C)是以一种铁卟啉为辅基的呼吸酶,是呼吸链中的一个基本成分,广泛存在于所有的需氧组织中。

一般说来,组织的细胞色素C的含量与它们的呼吸活性大致成平行关系,在心肌与其它作剧烈运动的肌肉中含量最为丰富。

在细胞内细胞色素C位于线粒体的蛋白质—脂质络合物中,是线粒体电子传递链中重要成员,在生物氧化过程中起着重要作用。

细胞色素C是一种细胞呼吸激活剂,早期研究发现在临床上细胞呼吸障碍引起的一系列缺氧状态,在使用细胞色素C后就可以纠正其物质的代谢,使细胞恢复正常呼吸,病情得到缓解或痊愈目前在临床上虽非特效药物,但可用于缺氧急救、解毒及其辅助治疗,是治疗组织缺氧及由缺氧所引起的一系列症状的重要生物药品。

本实验以猪心为原料,向心肌中加入三氯乙酸溶液中,一起进行匀浆,大部分的蛋白质都沉淀下来,细胞色素C则存留在三氯乙酸溶液中。

将硫酸氨粉末加入到三氯乙酸抽提液中,硫酸铵与抽提液中的肌红蛋白,血红蛋白等一起沉淀下来,细胞色素C则仍留于溶液中。

进一步用三氯乙酸酸化此溶液,细胞色素C就沉淀出来,然后透析并鉴定之。

鉴定及测定细胞色素C用消光法。

在550毫微米波长下,细胞色素C的克分子消光值为:氧化型细胞色素C:K1=0.9*10^4/克分子/厘米,还原型细胞色素C:K2=2.77*10^4/克分子/厘米,样品较纯时,从氧化型转变为还原型或者还原型转变为氧化型,消光值的情况相同。

蛋白质sdspage电泳实验报告

蛋白质sdspage电泳实验报告

蛋白质sdspage电泳实验报告蛋白质SDS-PAGE电泳实验报告引言:蛋白质是生命体中最基本的分子之一,它们在细胞的结构和功能中起着重要的作用。

为了研究蛋白质的性质和功能,科学家们开发了许多技术和方法。

其中,SDS-PAGE电泳是一种常用的蛋白质分析方法,它通过电泳的方式将蛋白质按照其分子量大小进行分离和定量。

实验目的:本实验旨在通过SDS-PAGE电泳技术对不同来源的蛋白质进行分析,了解其分子量和纯度,并探讨其应用于蛋白质研究中的意义。

实验步骤:1. 样品制备:收集不同来源的蛋白质样品,如乳清蛋白、鸡蛋清蛋白等。

将样品加入SDS-PAGE样品缓冲液中,加热至100摄氏度,使蛋白质完全变性。

2. 准备电泳胶:根据实验需要,配制相应浓度的聚丙烯酰胺凝胶,加入TEMED和过硫酸铵使其聚合。

3. 装载样品:将变性后的蛋白质样品注入电泳胶槽中,注意不要产生气泡。

4. 电泳:将电泳胶槽连接至电源,设置合适的电压和时间,进行电泳分离。

5. 凝胶染色:将电泳胶取出,用凝胶染色剂染色,使蛋白质带可见。

6. 图像分析:使用分子量标准品作为参照,通过图像分析软件测量蛋白质带的迁移距离,计算其分子量。

实验结果:通过SDS-PAGE电泳实验,我们成功地将不同来源的蛋白质样品分离出来,并得到了清晰的蛋白质带。

根据分子量标准品的迁移距离,我们计算出了各个蛋白质样品的分子量。

讨论:1. 分子量测定:通过SDS-PAGE电泳实验,我们可以准确地测定蛋白质的分子量。

这对于研究蛋白质的结构和功能非常重要,因为不同分子量的蛋白质可能具有不同的生物活性和相互作用方式。

2. 纯度分析:通过观察电泳胶上的蛋白质带的清晰度和数量,我们可以初步评估样品的纯度。

纯度高的样品通常只有一个清晰的蛋白质带,而纯度低的样品则可能有多个模糊的带。

因此,SDS-PAGE电泳可以帮助我们选择纯度较高的蛋白质样品进行后续实验。

3. 应用前景:SDS-PAGE电泳技术在生物医学研究中有着广泛的应用前景。

生物化学实验中的蛋白质分析技术

生物化学实验中的蛋白质分析技术

生物化学实验中的蛋白质分析技术蛋白质分析技术在生物化学实验中的应用在生物化学实验中,蛋白质分析技术是一项十分重要的技术。

蛋白质是生物体中最基本的分子组成部分之一,对于研究生物体的生化过程和功能具有重要意义。

本文将介绍几种常用的蛋白质分析技术,包括SDS-PAGE、Western Blot、质谱分析和免疫沉淀等。

重点讲述这些技术的原理、操作步骤以及其在生物化学实验中的应用。

一、SDS-PAGE技术SDS-PAGE(Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis)是一种常用的蛋白质分析技术,通过电泳的方式将蛋白质样品分离成不同的电泳带来研究其分子量和组成。

1. 原理:SDS-PAGE利用带负电荷的SDS使蛋白质样品具有净电荷,根据蛋白质分子量的不同,通过电泳的方式将蛋白质分离到聚丙烯酰胺凝胶中,然后用染色方法可视化蛋白质电泳带。

2. 操作步骤:制备凝胶、样品处理、电泳、染色等。

3. 应用:常用于估计蛋白质的分子量、纯度和相对表达水平等。

二、Western Blot技术Western Blot是一种用于检测特定蛋白质的技术,常用于研究蛋白质的表达、定位和相互作用等。

1. 原理:Western Blot主要由蛋白质电泳分离、转膜、蛋白质与抗体的特异性结合以及信号检测等步骤组成。

2. 操作步骤:SDS-PAGE分离蛋白质、转膜、抗体孵育、信号检测等。

3. 应用:常用于检测特定蛋白质在不同样品中的表达差异、研究蛋白质的翻译后修饰等。

三、质谱分析技术质谱分析技术是一种可以确定蛋白质分子量和氨基酸序列的方法,广泛应用于蛋白质鉴定和结构研究等领域。

1. 原理:质谱分析技术常用的方法有质谱图谱分析和串联质谱分析。

2. 操作步骤:样品制备、质谱分析、数据解析等。

3. 应用:常用于蛋白质的鉴定、研究蛋白质的翻译后修饰、蛋白质定量等。

四、免疫沉淀技术免疫沉淀技术是一种通过特异性抗体与特定蛋白质结合,进而将目标蛋白质从混合物中分离出来的方法,常用于研究蛋白质相互作用以及功能等。

sds-page测定蛋白质纯度

sds-page测定蛋白质纯度

百泰派克生物科技
sds-page测定蛋白质纯度
SDS-PAGE是一种根据分子量分离蛋白质的凝胶电泳分析技术。

当蛋白质通过凝胶
基质电泳分离时,较小分子量的蛋白质受到来自凝胶基质的阻力更小,电泳时迁移速度更快。

影响蛋白质在凝胶基质中的迁移速率的其他因素还包括蛋白质的结构和电荷,在SDS-PAGE中,十二烷基硫酸钠(SDS,又称十二烷基硫酸钠)和聚丙烯酰胺凝胶的使用很大程度上消除了结构和电荷的影响,蛋白质的分离完全基于多肽链的长度。

蛋白质经SDS-PAGE电泳后按分子量大小分离开来,如果蛋白样品只含有一种蛋白质,那么其电泳后只会显现一个唯一的蛋白条带;但如果一个蛋白样品中含有多种大小不同的蛋白,那么电泳后不同的蛋白质会被分离成大小不同的蛋白条带。

于是,可以据此利用SDS-PAGE的分离作用进行蛋白纯度的鉴定,不仅可以分析一个未知
蛋白样品的纯度,还可以验证蛋白样品纯化后的效果。

百泰派克生物科技使用Bio-Rad Mini-PROTEAN® Tetra凝胶系统,提供基于1D和
2D的 SDS-PAGE分析服务技术包裹,用于多种蛋白质组学分析,包括蛋白质样品纯度分析、分子量测定、蛋白质鉴定、二硫键鉴定以及蛋白质定量等,欢迎免费咨询。

sds-page测定蛋白质的相对分子量

sds-page测定蛋白质的相对分子量

03 SDS-PAGE测定蛋白质相 对分子量的原理
蛋白质的相对分子量与迁移率的关系
蛋白质在SDS-PAGE电泳中的迁移率 与其相对分子量成反比,即相对分子 量越大,迁移速度越慢。
在电场的作用下,SDS将蛋白质分子 包裹起来,消除了蛋白质分子间的电 荷差异,使相对分子量成为影响迁移 率的唯一因素。
电泳
加样
将准备好的样品用微量移液器加到加 样孔中。
开始电泳
接通电源,开始电泳,注意控制电流 和电压,确保电泳过程稳定。
染色和脱色
染色
电泳结束后,将凝胶取出,放入含有染色液的容器中,染色一定时间,以便观 察蛋白质条带。
脱色
染色完成后,将凝胶取出,放入含有脱色液的容器中,脱色一定时间,以便观 察清晰的蛋白质条带。
将SDS和β-巯基乙醇加入样品中,以促进蛋白 质变性并带上负电荷。
煮沸处理
通过煮沸处理使蛋白质变性,并使SDS充分结合到蛋白质上。
凝胶制备
01
制备分离胶
按照分离胶的配方,将各组分混 合均匀,并迅速注入到玻璃板中 的凹槽内。
聚合凝胶
02
03
制备浓缩胶
加入适量水,使分离胶聚合凝固。
按照浓缩胶的配方,将各组分混 合均匀,并迅速注入到分离胶上。
计算相对分子量时需考虑实验条件、电泳缓冲液、电压等因素的影响,以 确保结果的准确性。
04 SDS-PAGE实验注意事项
避免样品降解
确保样品储存于低温环境
01
在实验过程中,应将未使用的样品保存在低温环境中,以避免
蛋白质降解。
避免样品反复冻融
02
反复冻融会使蛋白质发生变性,影响实验结果,因此应尽量减
SDS-PAGE可用于测定各种相对分子 量范围的蛋白质,从低到高均可。

PAGE测定蛋白质分子量

PAGE测定蛋白质分子量

PAGE测定蛋白质分子量一、实验目的1. 理解SDS-PAGE测定蛋白质分子量的原理2. 掌握垂直板电泳的操作方法3. 掌握运用SDS-PAGE测定蛋白质分子量二、实验原理带电质点在电场中向带有异相电荷的电极移动,这种现象称为电泳。

聚丙烯酰胺凝胶是由单体丙烯酰胺和交联剂N,N-甲叉双丙烯酰胺在催化剂和加速剂的作用下聚合并联成三维网状结构的凝胶,以此凝胶为支持物的电泳称为聚丙烯酰胺凝胶电泳(简称PAGE)。

蛋白质在普通PAGE凝胶中的电泳速度取决于蛋白质分子的大小、分子形状和所带电荷量。

而SDS-PAGE凝胶电泳在样品及电泳缓冲溶液中加入了SDS。

SDS(十二烷基磺酸钠)是一种阴离子去污剂,它能破坏蛋白质分子之间及其他物质分子之间的非共价键,使蛋白质变性解离成亚基,并且和蛋白质亚基结合成带负电荷的蛋白质-SDS棒状复合物。

当蛋白质样品中加入SDS后,由于SDS与蛋白质分子的结合,使蛋白质分子带上大量的负电荷,其电荷量远远超过蛋白质分子原来所带的电荷量,因而掩盖了不同蛋白质之间的电荷差异。

同时,所有蛋白质-SDS复合物的形状均近似于长的椭圆棒,他们的短轴是恒定的,约1.8nm。

而长轴与蛋白质分子量的大小成正比,从而又消除了不同蛋白质分子之间分子形状的差异。

这样电泳的速度只取决于蛋白质分子量的大小,蛋白质分子在电泳中的相对迁移率和分子质量的对数成直线关系。

可用下式表示:lgde M A Bdo =-⨯(de =样品迁移距离,do=电泳前沿距离,A、B均为常数)以标准蛋白质分子质量的对数和其相对迁移率作图,绘制出标准曲线,根据所测样品的相对迁移率,从标准曲线上便可查出其分子质量。

该方法快速、简便、分辨率高,在很多情况下超过超速离心、常用的层析及一般的电泳技术,是一种既经济又快速测量分子量的方法。

并且所需样品少,可同时测定多个样品,是实验室常用的蛋白质分子测定方法之一。

三、实验所需的试剂与仪器(一)试剂1. 凝胶贮备液丙烯酰胺29.2g和亚甲基双丙烯酰胺0.8g重蒸水溶解后,定容至100ml,棕色试剂瓶4℃保存,30天内使用。

(完整版)SDS-PAGE检测蛋白质纯度

(完整版)SDS-PAGE检测蛋白质纯度

SDS-PAGE检测蛋白质纯度1.电泳的基本原理许多生物分子都带有电荷,其电荷的多少取决于分子性质及其所在介质的pH及其组成。

由于混合物中各组分所带电荷性质、电荷数量以及分子量的不同,在同一电场的作用下,各组分泳动的方向和速度也各异,因此,在一定时间内,由于各组分移动距离的不同,而达到分离鉴定各组分的目的。

2.影响电泳的主要因素2.1 电泳介质的pH当介质的pH等于某种两性物质的等电点时,该物质处于等电状态,即不向正极或负极移动。

当介质pH小于其等电点时,则呈正离子状态,移向负极;反之,介质pH大于其等电点时,则呈负离子状态,移向正极。

因此,任何一种两性物质的混合物电泳均受介质pH的影响,即决定两性物质的带电状态及其量,为了保持介质pH的稳定性,常用一定pH的缓冲液,如分离血清蛋白质常用pH8.6的巴比妥或三羟甲基氨基甲烷(Tris)缓冲液。

2.2 缓冲液的离子强度离子强度对电泳的影响是:离子强度低,电泳速度快,分离区带不易清晰;离子强度高,电泳速度慢,但区带分离清晰。

如离子强度过低,缓冲液的缓冲量小,不易维持pH的恒定;离子强度过高,则降低蛋白质的带电量(压缩双电层)使电脉速度减慢。

所以常用离子强度为0.02-0.2之间。

2.3 电场强度电场强度和电泳速度成正比关系。

电场强度以每厘米的电势差计算,也称电势梯度。

如纸电泳的滤纸长15cm,两端电压(电势差)为150V,则电场强度为150/15=10V/cm,电场强度愈高,则带电粒子的移动愈快。

电压增加,相应电流也增大,电流过大时易产生热效应可使蛋白质变性而不能分离。

2.4 电渗作用在电场中,液体对固体的相对移动,称为电渗。

如滤纸中含有表面带负电荷的羧基,溶液则向负极移动。

由于电渗现象与电泳同时存在,所以电泳的粒子移动距离也受电渗影响,如纸上电泳蛋白质移动的方向与电渗现象相反,则实际上蛋白质泳动的距离,等于电泳移动距离减去电渗距离。

如电泳方向和电渗方向一致,其蛋白质移动距离,等于二者相加。

SDS-PAGE蛋白纯度鉴定

SDS-PAGE蛋白纯度鉴定

百泰派克生物科技
SDS-PAGE蛋白纯度鉴定
一般实验分离的蛋白质常常会含有一些杂质蛋白或提取步骤中使用的试剂等,影响后续实验的顺利进行,因此有必要对其进行纯化,并对纯化结果进行检测,即蛋白质纯度测定。

蛋白质纯度测定可以评价蛋白质是否含有杂质以及杂质的含量,是进一步研究蛋白质至关重要的环节。

一些蛋白产品尤其要进行纯度检测,以确保产品的质量和安全性。

随着生命科学研究的发展进步,蛋白纯度鉴定的方法也越来越多样化,包括电泳法、免疫化学法、沉降速率测定法、色谱法、质谱法等,他们的原理和方法也不尽相同。

聚丙烯凝胶电泳(SDS-PAGE)是最经典的纯度鉴定方法,简便快速,灵敏度高且成本低,在蛋白质纯度鉴定中被广泛应用。

将待检测蛋白样品进行SDS-PAGE电泳,
若该蛋白样品中不含其他蛋白杂质,那么电泳结束后只有一条蛋白条带;若蛋白质样品中含有多个蛋白质或者纯化蛋白样品中含有其他杂蛋白,经过SDS-PAGE分离
后不同的蛋白质会被分离成多个蛋白条带。

百泰派克生物科技提供SDS-PAGE蛋白质纯度鉴定一站式服务,包括检测污染物、
蛋白质变体、异构体、S-S链错配、不完整蛋白产物、降解蛋白、蛋白质修饰、蛋
白质聚集体和蛋白质前体等,欢迎免费咨询。

蛋白SDS-PAGE纯度鉴定与分子量测定

蛋白SDS-PAGE纯度鉴定与分子量测定

蛋⽩SDS-PAGE纯度鉴定与分⼦量测定蛋⽩SDS-PAGE纯度鉴定与分⼦量测定⼀、原理:(1)SDS-聚丙烯酰胺凝胶电泳⼗⼆烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulphate - polyacrylamide gel electrophoresis, SDS- PAGE)简称SDS - PAGE。

⽤于蛋⽩纯度及蛋⽩质亚基相对分⼦量(relative molecular mass, Mr)测定。

SDS是⼀种阴离⼦去污剂,带有⼤量负电荷,与蛋⽩质结合后使蛋⽩质所带负电荷⼤⼤超过了天然蛋⽩质原有的负电荷,因⽽消除或掩盖了不同种类蛋⽩质间原有电荷的差异。

SDS 破坏蛋⽩质氢键、疏⽔键,引起蛋⽩质构象改变,使蛋⽩质-SDS 复合物形状近似椭圆形,短轴相同(1.8nm),长轴与蛋⽩质分⼦量成正⽐。

因此,蛋⽩质—SDS复合物(SDS-denatured protein)在凝胶中的迁移率不受蛋⽩质原有电荷和形状的影响,只与椭圆棒长度(蛋⽩质分⼦量)有关。

蛋⽩质的迁移率与分⼦量的对数呈线性关系,符合下式:logMW=K-bXMW:分⼦量;X:迁移率;k、b均为常数将已知分⼦量的标准蛋⽩质的迁移率对分⼦量对数作图,可获得⼀条标准曲线,未知蛋⽩质在相同条件下进⾏电泳,根据其相对迁移率即可在标准曲线上求得分⼦量。

(2)分离效应:PAGE根据其有⽆浓缩效应,分为:连续电泳(continuous electrophoresis):采⽤相同孔径的凝胶和相同的缓冲系统不连续电泳(discontinuous electrophoresis):采⽤不同孔径的凝胶和不同缓冲体系连续PAGE:电荷效应;分⼦筛效应不连续PAGE:电荷效应;分⼦筛效应;浓缩效应不连续聚丙烯酰胺凝胶电泳:凝胶由上、下两层凝胶组成,两层凝胶的孔径不同,上层为⼤孔径的浓缩胶,下层为⼩孔径的分离胶。

①浓缩效应:使样品在浓缩胶中被浓缩成⼀条窄带,然后再进⼊分离胶进⾏分离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SDS-PAGE测定蛋白质分子量及蛋白质的纯度鉴定一、实验目的与原理
蛋白质在聚丙烯酰胺凝胶中电泳时,它的迁移取决于它所带电荷以及分子大小和形状等因素。

1967年Shapiro等人发现,如果在聚丙烯酰胺系统中加入阴离子去污剂十二烷基磺酸钠(SDS),大多数蛋白质能与SDS按一定比例结合,即每克蛋白质结合1.4g的SDS-复合物都带上相同密度的负电荷,它的量大大超过了蛋白质分子原有的电荷量,因而消除了蛋白质原有的电荷差别,使蛋白质分子电泳的迁移率主要取决于本身的分子量,而与蛋白质所带的电荷无关,在一定条件下,蛋白质的分子量的对数与电泳迁移率间呈负相关。

本实验的目的是对多酚氧化酶的纯化度鉴定及分子量的测定,通过实验,学习和掌握SDS聚丙烯酰胺凝胶电泳法蛋白质纯度和分子量的鉴定。

二、仪器与试剂
1、材料:
硫酸铵盐析沉淀的多酚氧化酶粗酶样品、DEAE-纤维素DE52柱层析的样品,Sephadex G-100柱层析的样品。

2、试剂:
(1)丙稀酰胺(Acr母液):30%Acr (Acr/Bis)
(2)10%的SDS溶液
(3)10%的过硫酸铵溶液
(4)四甲基乙二胺(TEMED)
(5)分离胶缓冲液:1.5M Tris,PH8.8
(6)浓缩胶缓冲液:1.0M Tris,PH6.8
(7)电极缓冲液:10×30g Tris,125g 甘氨酸和5g SDS,加水溶解定容至1000ml,pH8.3
(8)样品缓冲液:0.2M Tris,PH6.8,1%SDS,30%甘油,巯基乙醇及溴酚兰
(9)染色液:0.15%考马斯亮蓝R250,溶于脱色液
(10)脱色液:50%的甲醇,7%的冰醋酸的水溶液
(11)标准分子量蛋白。

3、仪器设备:
电泳仪、垂直电泳槽等。

三、操作步骤
1、凝胶制备:
用两块电泳玻璃板制成垂直板槽(不能漏胶),垂直放置。

将配制好的分离胶溶液倒入,滴加入无离子水,待凝胶聚集后,倒出无离子水,用吸水纸吸干,倒入浓缩胶,再插入梳子。

2、上样:
分别取样品若干ml于离心管中,按1/1~1/5比例加入5×样品缓冲液,再沸水浴中加热3~5min,取出待用。

用微量注射器分别吸取不超过30μl不同浓度的标准蛋白样品和试验样品注入样品槽。

点样结束后,调节电泳仪电流到10mA(2~3mA/em),保持电流稳定不变,当溴酚蓝迁移到离分离胶底1~2cm时,即可停止电泳。

3、染色:
电泳完毕后,取出凝胶板,浸入染色液中,在37℃温箱中保温过夜。

倒掉染色液,24h后,即可看到清晰的蛋白质条带。

四、结果(略)
五、注意事项
1、SDS与蛋白质的结合按质量成比例(即:1.4gSDS/g蛋白质),如果比例不当,就不能得到准确的数据。

2、用SDS-聚丙烯酰胺凝胶电泳法测定蛋白质相对分子量时,必须同时作标准曲线。

不能利用这次的标准曲线作为下次用。

3、有些蛋白质由亚基(如血红蛋白)或两条以上肽链(α-胰凝乳蛋白酶)组成的,它们在巯基乙醇和SDS的作用下解离成亚基或多条单肽链。

因此,对于这一类蛋白质,SDS-聚丙烯酰胺凝胶电泳法测定的只是它们的亚基或是单条肽链的相对分子量。

4、有的蛋白质(如:电荷异常或结构异常的蛋白质;带有较大辅基的蛋白质)不能采用该法测相对分子量。

5、如果该电泳中出现拖尾、染色带的背景不清晰等现象,可能是SDS不纯引起。

相关文档
最新文档