初中数学竞赛辅导讲义及习题解答第19讲转9讲转化灵活的圆中角60
超级资源(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)
(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用第一讲 走进追问求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式aacb b x 2422,1-±-=内涵丰富: 它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美.降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个.思路点拨: 从指数运算律、±1的特征人手,将问题转化为解方程.【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A 、一4B 、8C 、6D 、0思路点拨: 求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=.【例3】 解关于x 的方程02)1(2=+--a ax x a .思路点拨: 因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】设方程04122=---x x ,求满足该方程的所有根之和.思路点拨: 通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值. 思路点拨: 运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值.注: 一元二次方程常见的变形形式有:(1)把方程02=++c bx ax (0≠a )直接作零值多项式代换;(2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次;(3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x .解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222x x x ==.走进追问求根公式学历训练1、已知a 、b 是实数,且0262=-++b a ,那么关于x 的方程1)2(22-=++a x b x a 的根为 .2、已知0232=--x x ,那么代数式11)1(23-+--x x x 的值是 .3、若142=++y xy x ,282=++x xy y ,则y x +的值为 .4、若两个方程02=++b ax x 和02=++a bx x 只有一个公共根,则( )A 、b a =B 、0=+b aC 、1=+b aD 、1-=+b a5、当分式4312++-x x 有意义时,x 的取值范围是( )A 、1-<xB 、4>xC 、41<<-xD 、1-≠x 且4≠x 6、方程011)1(=+-++x x x x 的实根的个数是( ) A 、0 B 、1 C 、2 D 、3 7、解下列关于x 的方程:(1)03)12()1(2=-+-+-m x m x m ; (2)012=--x x ; (3)x x x 26542-=-+.8、已知0222=--x x ,求代数式)1)(3()3)(3()1(2--+-++-x x x x x 的值.9、是否存在某个实数m ,使得方程022=++mx x 和022=++m x x 有且只有一个公共的实根?如果存在,求出这个实数m 及两方程的公共实根;如果不存在,请说明理由. 注: 解公共根问题的基本策略是: 当方程的根有简单形式表示时,利用公共根相等求解,当方程的根不便于求出时,可设出公共根,设而不求,通过消去二次项寻找解题突破口.10、若0152=+-x x ,则1539222+++-x x x = .11、已知m 、n 是有理数,方程02=++n mx x 有一个根是25-,则n m +的值为 . 12、已知a 是方程020002=--x x 的一个正根. 则代数式a200012000120003+++的值为 .13、对于方程m x x =+-222,如果方程实根的个数恰为3个,则m 值等于( )A 、1B 、2C 、3D 、2.5 14、自然数n 满足16162472)22()22(2-+--=--n nn n n n ,这样的n 的个数是( )A 、2B 、1C 、3D 、4 15、已知a 、b 都是负实数,且0111=--+b a b a ,那么ab的值是( ) A 、215+ B 、251- C 、251+- D 、251-- 16、已知3819-=x ,求1582318262234+-++--x x x x x x 的值.17、已知m 、n 是一元二次方程0720012=++x x 的两个根,求)82002)(62000(22++++n m m m 的值.18、在一个面积为l 的正方形中构造一个如下的小正方形: 将正方形的各边n 等分,然后将每个顶点和它相对顶点最近的分点连结起来,如图所示,若小正方形面积为32811,求n 的值.19、已知方程0132=+-x x 的两根α、β也是方程024=+-q px x 的根,求p 、q 的值.20、如图,锐角△ABC 中,PQRS 是△ABC 的内接矩形,且S △ABC =n S 矩形PQRS ,其中n 为不小于3的自然数.求证: ABBS需为无理数.参考答案第二讲 判别式——二次方程根的检测器为了检查产品质量是否合格,工厂里通常使用各种检验仪器,为了辨别钞票的真伪,银行里常常使用验钞机,类似地,在解一元二次方程有关问题时,最好能知道根的特性: 如是否有实数根,有几个实数根,根的符号特点等. 我们形象地说,判别式是一元二次方程根的“检测器”,在以下方面有着广泛的应用:利用判别式,判定方程实根的个数、根的特性;运用判别式,建立等式、不等式,求方程中参数或参数的取值范围; 通过判别式,证明与方程相关的代数问题;借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题. 【例题求解】【例1】 已知关于x 的一元二次方程0112)21(2=-+--x k x k 有两个不相等的实数根,那么k 的取值范围是 . (广西中考题)思路点拨: 利用判别式建立关于k 的不等式组,注意k 21-、1+k 的隐含制约. 注: 运用判别式解题,需要注意的是:(1)解含参数的二次方程,必须注意二次项系数不为0的隐含制约;(2)在解涉及多个二次方程的问题时,需在整体方法、降次消元等方法思想的引导下,综合运用方程、不等式的知识.【例2】 已知三个关于y 的方程: 02=+-a y y ,012)1(2=++-y y a 和012)2(2=-+-y y a ,若其中至少有两个方程有实根,则实数a 的取值范围是( ) (山东省竞赛题)A 、2≤aB 、41≤a 或21≤≤x C 、1≥a D 、141≤≤a 思路点拨: “至少有两个方程有实根”有多种情形,从分类讨论人手,解关于a 的不等式组,综合判断选择.【例3】 已知关于x 的方程02)2(2=++-k x k x ,(1)求证: 无论k 取任何实数值,方程总有实数根;(2)若等腰三角形△ABC 的一边长a =1,另两边长b 、c 恰好是这个方程的两个根,求△ABC 的周长. (湖北省荆门市中考题)思路点拨: 对于(1)只需证明△≥0;对于(2)由于未指明底与腰,须分c b =或b 、c 中有一个与c 相等两种情况讨论,运用判别式、根的定义求出b 、c 的值.注: (1)涉及等腰三角形的考题,需要分类求解,这是命题设计的一个热点,但不一定每个这类题均有多解,还须结合三角形三边关系定理予以取舍.(2)运用根的判别式讨论方程根的个数为人所熟悉,而组合多个判别式讨论方程多个根(三个以上)是近年中考,竞赛依托判别式的创新题型,解这类问题常用到换元、分类讨论等思想方法.【例4】 设方程42=+ax x ,只有3个不相等的实数根,求a 的值和相应的3个根. (重庆市竞赛题)思路点拨: 去掉绝对值符号,原方程可化为两个一元二次方程.原方程只有3个不相等的实数根,则其中一个判别式大于零,另一个判别式等于零.【例5】已知: 如图,矩形ABCD 中,AD =a ,DC =b ,在 AB 上找一点E ,使E 点与C 、D 的连线将此矩形分成的三个三角形相似,设AE =x ,问: 这样的点E 是否存在?若存在, 这样的点E 有几个?请说明理由. (云南省中考题)思路点拨: 要使Rt △ADE 、Rt △BEC 、Rt △ECD 彼此相似,点E 必须满足∠AED+∠BEC =90°,为此,可设在AE 上存在满足条件的点E 使得Rt △ADE ∽Rt △BEC ,建立一元二次方程的数学模型,通过判别式讨论点E 的存在与否及存在的个数.注: 有些与一元二次方程表面无关的问题,可通过构造方程为判别式的运用铺平道路,常见的构造方法有:(1)利用根的定义构造; (2)利用根与系数关系构造; (3)确定主元构造.判别式——二次方程根的检测器学力训练1、已知014=+++b a ,若方程02=++b ax kx 有两个相等的实数根,则k = .2、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 .(辽宁省中考题)3、已知关于x 方程0422=++-k x k x 有两个不相等的实数解,化简4422+-+--k k k = .4、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( ) A 、43<m B 、43≤m C 、43>m 且2≠m D 、43<m 且2±≠m (山西省中考题)5、已知一直角三角形的三边为a 、b 、c ,∠B =90°,那么关于x 的方程0)1(2)1(22=++--x b cx x a 的根的情况为( )A 、有两个相等的实数根B 、没有实数根C 、有两个不相等的实数根D 、无法确定 (河南省中考题)6、如果关于x 的方程0)1(2)2(2=+---m x m x m 只有一个实数根,那么方程0)4()2(2=-++-m x m mx 的根的情况是( )A 、没有实数根B 、有两个不相等的实数根C 、有两个相等的实数根D 、只有一个实数根 (2003年河南省中考题)7、在等腰三角形ABC 中,∠ A 、∠B 、∠C 的对边分别为a 、b 、c ,已知3=a ,b 和c 是 关于x 的方程02122=-++m mx x 的两个实数根,求△ABC 的周长. (济南市中考题)8、已知关于x 的方程063)2(22=-+-+m x m x(1)求证: 无论m 取什么实数,方程总有实数根;(2)如果方程的两实根分别为1x 、2x ,满足1x =32x ,求实数m 的值. (盐城市中考题)9、a 、b 为实数,关于x 的方程22=++b ax x 有三个不等的实数根.(1)求证: 0842=--b a ;(2)若该方程的三个不等实根,恰为一个三角形三内角的度数,求证该三角形必有一个内角是60°; (3)若该方程的三个不等实根恰为一直角三角形的三条边,求a 和b 的值. (江苏省苏州市中考题)10、关于的两个方程03242=+++m mx x ,0)12(22=+++m x m x 中至少有一个方程有实根,则m 的取值范围是 . (2002年四川省竞赛题)11、当a = ,b = 时,方程0)2443()1(2222=++++++b ab a x a x 有实数根. (全国初中数学联赛试题)12、若方程a x x =-52有且只有相异二实根,则a 的取值范围是 .13、如果关于x 的方程05)2(22=+++-m x m mx 没有实数根,那么关于x 的方程0)2(2)5(2=++--m x m x m 的实根的个数( ) A 、2 B 、1 C 、0 D 、不能确定14、已知一元二次方程02=++c bx x ,且b 、c 可在1、2、3、4、5中取值,则在这些方程中有实数根的方程共有( ) A 、12个 B 、10个 C 、7个 D 、5个 (河南省中考题)15、已知△ABC 的三边长为a 、b 、c ,且满足方程0)(22222=+---b x b a c ax ,则方程根的情况是( ) A 、有两相等实根 B 、有两相异实根 C 、无实根 D 、不能确定 (河北省竞赛题) 16、若a 、b 、c 、d>0,证明: 在方程02212=+++cd x b a x ①;02212=+++ad x c b x ②;02212=+++ab x d c x ③;02212=+++bc x a d x ④中,至少有两个方程有两个不相等的实数根. (湖北省黄冈市竞赛题)17、已知三个实数a 、b 、c 满足0=++c b a ,abc =1,求证: a 、b 、c 中至少有一个大于23.18、关于x 的方程01)1(2=+--x k kx 有有理根,求整数是的值. (山东省竞赛题)19、考虑方程b a x x =+-22)10(①(1)若a =24,求一个实数b ,使得恰有3个不同的实数x 满足①式.(2)若a ≥25,是否存在实数b ,使得恰有3个不同的实数x 满足①式?说明你的结论. (国家理科实验班招生试题)20、如图,已知边长为a 的正方形ABCD 内接于边长为b 的正方形EFGH ,试求ab的取值范围.参考答案第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法. 【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 . 思路点拨: 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例 【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么baa b +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨: 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.注: 应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程: 04)2(22=---m x m x(1)求证: 无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x .思路点拨: 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.思路点拨: 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注: 应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性. 【例5】 已知: 四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根.(1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨: 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注: 在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.充满活力的韦达定理学历训练1、(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 .(2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2、已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3、CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4、设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( ) A .1,-3 B .1,3 C .-1,-3 D .-1,35、在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( ) A .23 B .25C .5D .2 6、方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p的值是( )A .1B .-lC .21-D .217、若关于x 的一元二次方程的两个实数根满足关系式: )1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8、已知关于x 的方程01)32(22=++--k x k x . (1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足: 312=+x x ,求k 的值.9、已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10、已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11、△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12、两个质数a 、b 恰好是整系数方程的两个根,则baa b +的值是( )A .9413B .1949413 C .999413 D .97941313、设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14、如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43 C .143≤<m D .43≤m ≤115、如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16、设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值. (2)求22212111x mx x mx -+-的最大值.17、如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2: BC 2=2: 1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18、设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案第四讲 明快简捷—构造方程的妙用有些数学问题虽然表面与一元二次方程无关,但是如果我们能构造一元二次方程,那么就能运用一元二次方程丰富的知识与方法辅助解题,构造一元二次方程的常用方法是: 1.利用根的定义构造当已知等式具有相同的结构,就可把某两个变元看成是关于某个字母的一元二次方程的两根. 2.利用韦达定理逆定理构造若问题中有形如a y x =+,b xy =的关系式时,则x 、y 可看作方程02=+-b az z 的两实根. 3.确定主元构造对于含有多个变元的等式,可以将等式整理为关于某个字母的一元二次方程. 成功的构造是建立在敏锐的观察、恰当的变形、广泛的联想的基础之上的;成功的构造能收到明快简捷、出奇制胜的效果.注: 许多数学问题表面上看难以求解,但如果我们创造性地运用已知条件,以已知条件为素材,以所求结论为方向,有效地运用数学知识,构造出一种辅助问题及其数学形式,就能使问题在新的形式下获得简解,这就是解题中的“构造”策略,构造图形,构造方程、构造函数、构造反例是常用构造方法. 【例题求解】【例1】 已知x 、y 是正整数,并且23=++y x xy ,12022=+xy y x ,则=+22y x .思路点拨 xy y x y x 2)(222-+=+,变形题设条件,可视y x +、xy 为某个一元二次方程两根,这样问题可从整体上获得简解.【例2】 若1≠ab ,且有09200152=++a a 及05200192=++b b ,则ba的值是( ) A .59 B .95C .52001-D .92001-思路点拨 第二个方程可变形为09200152=++b b ,这样两个方程具有相同的结构,从利用定义构造方程入手.【例3】 已知实数a 、b 满足122=++b ab a ,且22b a ab t --=,求t 的取值范围.思路点拨 由两个等式可求出b a +、ab 的表达式,这样既可以从配方法入手,又能从构造方程的角度去探索,有较大的思维空间.【例4】 已知实数a 、b 、c 满足2=++c b a ,4=abc . (1)求a 、b 、c 中最大者的最小值; (2)求3=++c b a 的最小值.思路点拨 不妨设a ≥b ,a ≥c ,由条件得a c b -=+2,abc 4=.构造以b 、c 为实根的一元二次方程,通过△≥0探求a 的取值范围,并以此为基础去解(2).注: 构造一元二次方程,在问题有解的前提下,运用判别式△≥0,建立含参数的不等式, 缩小范围逼近求解,在求字母的取值范围,求最值等方面有广泛的应用.【例5】 试求出这样的四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数. (2003年全国初中数学联赛试题)思路点拨 设前后两个二位数分别为x ,y ,则有y x y x +=+100)(2,将此方程整理成关于x (或y )的一元二次方程,在方程有解的前提下,运用判别式确定y (或x )的取值范围.学历训练1.若方程01)32(22=+--x m x m 的两个实数根的倒数和是s ,则s 的取值范围是 .2.如图,在Rt △ABC 中,斜边AB =5,CD ⊥AB ,已知BC 、AC 是一元二次方程0)1(4)12(2=-+--m x m x 的两个根,则m 的值是 .3.已知a 、b 满足0122=--a a ,0122=--b b ,则abb a += . 4.已知012=-+αα,012=-+ββ,,则βααβ++的值为( )A .2B .-2C .-1D . 05.已知梯形ABCD 的对角线AC 与BD 相交于点O ,若S △AOB =4,S △COD =9,则四边形ABCD 的面积S 的最小值为( )A .21B . 25C .26D . 366.如图,菱形A6CD 的边长是5,两条对角线交于O 点,且AO 、BO 的长分别是关于x 的方程的根,则m 的值为( )A .一3B .5C .5或一3 n 一5或37.已知0522=--p p ,01252=-+q q ,其中p 、q 为实数,求221q p +的值.8.已知x 和y 是正整数,并且满足条件71=++y x xy ,88022=+xy y x ,求22y x +的值.9.已知05232=--m m ,03252=-+n n ,其中m 、n 为实数,则nm 1-= .10.如果a 、b 、c 为互不相等的实数,且满足关系式14162222++=+a a c b 与542--=a a bc ,那么a 的取值范围是 .11.已知017101422522==--++y x xy y x ,则x = ,y = .;12.如图,在Rt △ABC 中,∠ACB =90°,AC =b ,AB =c ,若D 、E 分别是AB 和AB 延长线上的两点,BD=BC ,CE ⊥CD ,则以AD 和AE 的长为根的一元二次方程是 .13.已知a 、b 、c 均为实数,且0=++c b a ,2=abc ,求c b a ++的最小值.14.设实数a 、b 、c 满足⎪⎩⎪⎨⎧=+-++=+--066078222a bc c b a bc a ,求a 的取值范围. 15.如图,梯形ABCD 中,AD ∥BC ,AD =AB ,813=∆ABCABCD S S 梯形,梯形的高AE=235,且401311=+BC AD . (1)求∠B 的度数;(2)设点M 为梯形对角线AC 上一点,DM 的延长线与BC 相交于点F ,当323125=∆ADM S ,求作以CF 、DF 的长为根的一元二次方程.16.如图,已知△ABC 和平行于BC 的直线DE ,且△BDE 的面积等于定值2k ,那么当2k 与△BDE 之间满足什么关系时,存在直线DE ,有几条?参考答案第五讲一元二次方程的整数整数解在数学课外活动中,在各类数学竞赛中,一元二次方程的整数解问题一直是个热点,它将古老的整数理论与传统的一元二次方程知识相结合,涉及面广,解法灵活,综合性强,备受关注,解含参数的一元二次方程的整数解问题的基本策略有:从求根入手,求出根的有理表达式,利用整除求解;从判别式手,运用判别式求出参数或解的取值范围,或引入参数(设△=2k ),通过穷举,逼近求解; 从韦达定理入手,从根与系数的关系式中消去参数,得到关于两根的不定方程,借助因数分解、因式分解求解;从变更主元入人,当方程中参数次数较低时,可考虑以参数为主元求解.注: 一元二次方程的整数根问题,既涉及方程的解法、判别式、韦达定理等与方程相关的知识,又与整除、奇数、偶数、质数、合数等整数知识密切相关. 【例题求解】【例1】若关于x 的方程054)15117()9)(6(2=+----x k x k k 的解都是整数,则符合条件的整数是的值有 个.思路点拨 用因式分解法可得到根的简单表达式,因方程的类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定是的值才能全面而准确.注: 系数含参数的方程问题,在没有指明是二次方程时,要注意有可能是一次方程,根据问题的题设条件,看是否要分类讨论.【例2】 已知a 、b 为质数且是方程0132=+-c x x 的根,那么baa b +的值是( ) A .22127 B .22125 C .22123 D .22121思路点拨 由韦达定理a 、b 的关系式,结合整数性质求出a 、b 、c 的值.【例3】 试确定一切有理数r ,使得关于x 的方程01)2(2=-+++r x r rx 有根且只有整数根.思路点拨 由于方程的类型未确定,所以应分类讨论.当0≠r 时,由根与系数关系得到关于r 的两个等式,消去r ,利用因式(数)分解先求出方程两整数根. 【例4】当m 为整数时,关于x 的方程01)12()12(2=++--x m x m 是否有有理根?如果有,求出m 的值;如果没有,请说明理由.思路点拨 整系数方程有有理根的条件是为完全平方数.设△=22224)12(544)12(4)12(n m m m m m =+-=+-=--+(n 为整数)解不定方程,讨论m 的存在性.注: 一元二次方程02=++c bx ax (a ≠0)而言,方程的根为整数必为有理数,而△=ac b 42-为完全平方数是方程的根为有理数的充要条件.【例5】 若关于x 的方程0)13()3(22=-+--a x a ax 至少有一个整数根,求非负整数a 的值. 思路点拨 因根的表示式复杂,从韦达定理得出的a 的两个关系式中消去a 也较困难,又因a 的次数低于x 的次数,故可将原方程变形为关于a 的一次方程.学历训练1.已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数a 有 .2.已知方程019992=+-m x x 有两个质数解,则m = .3.给出四个命题: ①整系数方程02=++c bx ax (a ≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程02=++c bx ax (a ≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程02=++c bx ax (a ≠0)的根只能是无理数;④若a 、b 、c 均为奇数,则方程02=++c bx ax 没有有理数根,其中真命题是 .4.已知关于x 的一元二次方程0)12(22=+-+a x a x (a 为整数)的两个实数根是1x 、2x ,则21x x -= . 5.设rn 为整数,且4<m<40,方程08144)32(222=+-+--m m x m x 有两个整数根,求m 的值及方程的根.(山西省竞赛题)6.已知方程015132)83(222=+-+--a a x a a ax (a ≠0)至少有一个整数根,求a 的值.7.求使关于x 的方程01)1(2=-+++k x k kx 的根都是整数的k 值.8.当n 为正整数时,关于x 的方程0763*******=-+-+-n n x nx x 的两根均为质数,试解此方程.9.设关于x 的二次方程4)462()86(2222=+--++-k x k k x k k 的两根都是整数,试求满足条件的所有实数k 的值.10.试求所有这样的正整数a ,使得方程0)3(4)12(22=-+-+a x a ax 至少有一个整数解.11.已知p 为质数,使二次方程015222=--+-p p px x 的两根都是整数,求出p 的所有可能值.12.已知方程02=++c bx x 及02=++b cx x 分别各有两个整数根1x 、2x 及1x '、2x ',且1x 2x >0,1x '2x ' >0. (1)求证: 1x <0,2x <0,1x '<0,2x '< 0; (2)求证: 11+≤≤-b c b ;(3)求b 、c 所有可能的值.13.如果直角三角形的两条直角边都是整数,且是方程0122=+--m x mx 的根(m 为整数),这样的直角三角形是否存在?若存在,求出满足条件的所有三角形的三边长;若不存在,请说明理由.参考答案第六讲 转化—可化为一元二次方程的方程数学(家)特有的思维方式是什么?若从量的方面考虑,通常运用符号进行形式化抽象,在一个概念和公理体系内实施推理计算,若从“转化”这个侧面又该如何回答?匈牙利女数学家路莎·彼得在《无穷的玩艺》一书中写道: “作为数学家的思维来说是很典型的,他们往往不对问题进行正面攻击,而是不断地将它变形,直至把它转化为已经能够解决的问题.”转化与化归是解分式方程和高次方程(次数高于二次的整式方程)的基本思想.解分式方程,通过去分母和换元;解高次方程,利用因式分解和换元,转化为一元二次方程或一元一次方程去求解.【例题求解】【例1】 若0515285222=-+-+-x x x x ,则1522--x x 的值为 .思路点拨 视x x 522-为整体,令y x x =-522,用换元法求出y 即可.【例2】 若方程x x p -=-2有两个不相等的实数根,则实数p 的取值范围是( )A .1->pB .0≤pC .01≤<-pD .01<≤-p思路点拨 通过平方有理化,将无理方程根的个数讨论转化为一元二次方程实根个数的讨论,但需注意注02≥-=-x x p 的隐含制约.注: 转化与化归是一种重要的数学思想,在数学学习与解数学题中,我们常常用到下列不同途径的转化: 实际问题转化大为数学问题,数与形的转化,常量与变量的转化,一般与特殊的转化等.解下列方程:(1)121193482232222=+-++-++x x x x x x xx ;。
北师大版初中数学九年级下册知识讲解,巩固练习(教学资料,补习资料):第19讲《圆》全章复习与巩固(基础)
《圆》全章复习与巩固—知识讲解(基础)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系;探索并了解点与圆、直线与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积;【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的所有点组成的图形.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A L 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:(1)OA=OB=OC定在三角形内部(1)(2)OABAC心在三角形内部2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质1.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为.;【解析】由已知得BC ∥x 轴,则BC 中垂线为 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为P(1,0) 则【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°,2412x -+==r PA ===求CD 的长.【思路点拨】作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长. 【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ ,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°, ∴ ,∴. 在Rt △DFO 中,OF =,OD =OA =3,∴ (cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM⊥AB,ON⊥AC,垂足分别为M 、N ,如果MN =3,那么BC = .32ABOA ==112EF OE ==223OF OE EF =-=322223(3)6DF OD OF =-=-=26N MO C BA【答案】由OM⊥AB,ON⊥AC,得M、N分别为AB、AC的中点(垂径定理),则MN是△ABC的中位线,BC=2MN=6.3.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB = 20°,则∠OCD =.【答案】65°.【解析】连结OD,则∠D OB = 40°,设圆交y轴负半轴于E ,得∠D OE= 130°,∠OCD =65°.【总结升华】根据同弧所对圆周角与圆心角的关系可求.举一反三:【变式】(2019•黑龙江)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60°B.120°C.60°或120°D.30°或150°【答案】C.【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系yxOA BDC4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).(1)求与直线相切时点P的坐标.(2)请直接写出与直线相交、相离时x的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2019•丽水)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°, ∵OA=OE , ∴∠AOE=90°, ∵⊙O 的半径为4,∴S 扇形AOE =4π,S △AOE=8 , ∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【思路点拨】求覆盖棚顶的帆布的面积,就是求以为底面的圆柱的侧面积.根据题意,应先求出所对的圆心角度数以及所在圆的半径,才能求的长. 【答案与解析】连接OB ,过点O 作OE ⊥AB ,垂足为E ,交于点F ,如图(2). 由垂径定理,可知E 是AB 中点,F 是的中点, ∴EF =2. 设半径为R 米,则OE =(R-2)m .在Rt △AOE 中,由勾股定理,得.解得R =4. ∴ OE =2,,∴ ∠AOE =60°,∴ ∠AOB =120°. »AB »AB »AB »AB »AB »AB 12AE AB ==222(2)R R =-+12OE AO =∴ 的长为(m).∴ 帆布的面积为(m 2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm ,水最深的地方的高度为4cm ,求这个圆形截面的半径.【答案】①作法略.如图所示.②如图所示,过O 作OC ⊥AB 于D ,交于C ,∵ OC ⊥AB , ∴.由题意可知,CD=4cm. 设半径为x cm ,则. 在Rt △BOD 中,由勾股定理得:∴. ∴ .即这个圆形截面的半径为10cm.»AB 120481803ππ⨯=8601603ππ⨯=《圆》全章复习与巩固—巩固练习(基础)【巩固练习】一、选择题1.对于下列命题:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中,正确的有( ).A.1个 B.2个 C.3个 D.4个2.(2019•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30° C.75° D.60°3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图所示,则该秋千所荡过的圆弧长为( ).A.米B.米C.米D.米4.在直角坐标平面中,M(2,0),圆M的半径为4,那么点P(﹣2,3)与圆M的位置关系是()A.点P在圆内 B.点P在圆上 C.点P在圆外 D.不能确定5.如图所示,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、F,OE=8,OF=6,则圆的直径长为( ).A.12 B.10 C.4 D.156.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ). A.(2,-1) B.(2,2) C.(2,1) D.(3,1)7.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于( ).A.55° B.90° C.110° D.120°8.正多边形的中心角是36°,那么这个正多边形的边数是()A.10 B.8 C.6 D.5二、填空题9.如图,已知直线AB与⊙O相交于A、B两点,∠OAB=30°,半径OA=2,那么弦AB= .10.如图,CD是⊙O的直径,A,B是⊙O上任意两点,设∠BAC=y,∠BOD=x,则y与x之间的函数关系式是__________ .11.如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.12.如图所示,⊙O 的内接四边形ABCD 中,AB=CD ,则图中与∠1相等的角有________________.13.点M 到⊙O 上的最小距离为2cm ,最大距离为10 cm ,那么⊙O 的半径为___ _____. 14.已知半径为R 的半圆O ,过直径AB 上一点C ,作CD ⊥AB 交半圆于点D ,且,则AC 的长 为_____ ___.15.如图所示,⊙O 是△ABC 的外接圆,D 是弧AB 上一点,连接BD ,并延长至E ,连接AD ,若AB =AC ,∠ADE =65°,则∠BOC =___ _____.16.(2019•酒泉)如图,半圆O 的直径AE=4,点B ,C ,D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为 .三、解答题17.如图,是半圆的直径,过点作弦的垂线交半圆 于点,交于点使.试判断直线与圆的位置关系,并证明你的结论;18.在直径为20cm 的圆中,有一弦长为16cm ,求它所对的弓形的高。
九年级数学竞赛讲座圆的基本性质附答案
【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 . 作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( ) A .2 B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M . (1)求∠COA 和∠FDM 的度数; (2)求证:△FDM ∽△COM ;(3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论. 思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.⌒ ⌒⌒⌒注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3. (1)求证:AF =DF ; (2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积. 思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点D 的所有弦中,最小弦AB= . 2.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是 cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a.是轴对称图形但不是中心对称图形.b.既是轴对称图形又是中心对称图形.4.如图,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为( ) A.12cm B.10cm C. 8cm D.6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25 C .3 D .3166.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数. 9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F . (1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程); (3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB= .11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形. ①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系⌒⌒是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB ×AC .17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根. (1)求线段OA 、OB 的长;(2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒ ⌒参考答案。
初一数学竞赛培优讲义 含答案 全册 共15讲 改好98页
装订线初一数学竞赛培优第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
2019-2020学年北京初中数学竞赛 九年级 圆的专题
2019-2020 北京初中数学竞赛 九年级 圆的专题(含答案)1. 求证:若半径为R 的圆内接四边形对角线垂直,则以对角线交点到四边射影为顶点的四边形有内切圆,且此圆半径不大于2R.解析 如图,已知圆内接四边形ABCD ,AC BD ⊥,垂足为P ,P 在AB 、BC 、CD 、DA 上的射影分别为E 、F 、G 、H ,则由几组四点共圆易知sin sin sin 2AC BDEH FG AP BAD CP BCD AC BAD R⋅+=∠+⋅∠=∠∠=,同理EF HG +也是此值,因此四边形EFGH 有内切圆.CFGPH DBEA由于FEP CBD CAD HEP ∠=∠=∠=∠,故EP 平分FEH ∠,同理HP 、GP 、FP 平分另外3个角,P 为四边形EFGH 的内心.于是内切圆半径sin sin sin 2ADr PF PFG PF ACD PF PC ACB R=⋅∠=⋅∠=⋅=⋅∠⋅2224222AD PC AB AD PC PA R RR R R R ⋅⋅⋅==≤=.取到等号仅当P 为圆心时.2. 如图(a),已知O e 的直径为AB ,1O e 过点O ,且与O e 内切于点B .C 为O e 上的点,OC 与1O e 交于点D ,且满足OD CD >,点E 在线段OD 上,使得D 为线段CE 的中点,连结BE 并延长,与1O e 交于点F ,求证:BOC △∽1DO F △.(b)(a)O 1AOBM E CD F O 1OB E CD F解析 如图(b),连结BD ,因为OB 为1O e 的直径,所以90ODB ∠=︒,结合DC DE =,可得BDE △≌BDC △.设BC 与1O e 交于点M ,连结OM ,则90OMB ∠=︒,于是OM 平分COB ∠,从而有 122222BOC DOM DBM DBC DBE DBF DO F ∠=∠=∠=∠=∠=∠=∠.又因为BOC ∠,1DO F ∠分别是等腰BOC △,1DO F △的顶角,所以BOC △∽1DO F △.3. I 是ABC △的内心,线段AI 延长交ABC △的外接圆于D ,若3AB =,4AC =,且IBC DBC S S =△△,求BC .解析 如图,设BC 与AD 交于E ,则IE ED x ==,2BD CD ID x ===,又设AE y =,由于在等腰三角形BCD 中,有熟知的结论22BD DE BE CE AE ED -=⋅=⋅,此即23x yx =,3y x =,故2AB AC AI BC IE +==,72BC =.lE DCBA4. 在平面上给定等腰三角形ABC ,其中AB AC =,试在平面上找到所有符合要求的点M ,使ABM △、ACM △都是等腰三角形.解析 要使ABM △为等腰三角形,M 必定在AB 的垂直平分线上,或在以A 、B 为圆心、AB 为半径的圆上.ACM △亦然.这样得到3个圆A e 、B e 、C e .M 6M 5M 4M3M 2M 1B'C'CB A在A e 上除了B 、C 及其对径点B '、C ',其余的点都符合要求.此外,还有6个点,即AB 中垂线与Ce 的两个交点1M 、2M ,AC 的中垂线与B e 的两个交点3M 、4M ,B e 与C e 的另一个交点6M (不是A ),两条中垂线的交点5M (即ABC △之外心),如图.何时1M 在直线AB 上或A 、C 、2M 共线,此时A ∠是三边长分别为1:2:2的等腰三角形的底角,此时1M 、2M 、3M 、4M 均不符合要求;又120A ∠=︒时,六点变一点,且在A e 上,120A ∠>︒时,只有5M 与6M 两点.评注 读者可考虑ABC △为不等边三角形时的情形.5. 已知:ABC △中,AB AC =,AD 是高,P 为AC 上任一点,PC 的中垂线RQ 交AD 于R ,求证:RPB DAC ∠=∠.解析 如图,易知RP RC RB ==,R 为PBC △外心,2180BRP C BAC ∠=∠=︒-∠,故A 、B 、R 、P 共圆,于是RPB BAD DAC ∠=∠=∠.P QRCDBA6. D 、E 、F 分别在ABC △的边BC 、CA 、AB 上,则AEF △、BFD △、CDE △的外接圆共点. 解析 如图,设AEF △、BFD △的外接圆除F 之外,还交于P ,连结PD 、PE 、PF ,则PEC AFP BDP ∠=∠=∠,故E 、P 、D 、C 共圆,证毕.题12.2.2CDBPEFA7. 平面上有一条光线穿过该平面上的一圆,打在一条直径上并发生反射,最后穿出圆去,求证:这条光线与圆的两个交点、与直径的接触点以及圆心,该四点共圆.解析 如图,设这条光线为APB ,EOF 是题设中的直径,延长AP 至O e 于C ,则BPF APE CPF ∠=∠=∠,B 与C 关于EF 对称.于是BPO △≌CPO △.这样一来,便有OBP OCP OAP ∠=∠=∠,于是A 、O 、P 、B 四点共圆.题12.2.3POCFB EA评注 本题亦可利用圆心角证.8. 已知P 为ABC △外接圆的»BC上一点,则P 在直线AB 、BC 、CA 的射影L 、M 、N 共线. 解析 如图,连结LM 、MN ,BP ,CP ,则由L 、M 、P 、B 共圆,M 、P 、N 、C 共圆及A 、B 、P 、C 共圆,得9090180LMP NMP LMB PCN LPB ABP ∠+∠=∠+︒+∠=∠+∠+︒=︒,故L 、M 、N 共线.P NM L CBA评注 此线称为西摩松线.反之,若三垂足共线,则P 在ABC △外接圆上.9. 四边形ABCD 对角线交于O ,AO CO BO DO ⋅=⋅,O 在AB 、BC 、CD 、DA 上的垂足分别是E 、F 、G 、H ,求证:EF GH EH FG +=+. 解析 如图,易知A 、B 、C 、D 共圆.CGFODBHEA由A 、E 、O 、H 共圆,得sin EH AO A =(A ∠即BAD ∠,余同),同理sin FG CO C == sin(180)sin CO A CO A ︒-=⋅,故sin EH FG AC A +=,同理sin EF GH BD B +=.而sin sin AC BDB A=,于是上述结论成立. 评注 读者不妨研究由EF GH EH FG +=+能否得出A 、B 、C 、D 共圆. 10. 已知凸四边形ABCD ,2BAC BDC ∠=∠,2CAD CBD ∠=∠,求证: AB AC AD ==.解析 如图,1180()1802BCD CBD CDB BAD ∠=︒-∠+∠=︒-∠,故180BCD BAD ∠+∠>︒,作BCD △外接圆,A 在圆内、延长CA 至圆于P .连结PB 、PD ,则P 、B 、C 、D 四点共圆. DCBAP于是12APD CBD CAD ∠=∠=∠,故APD ADP ∠=∠,PA AD =,同理PA AB =.A 为PBD △外心,也即BCD △之外心,于是AB AC AD ==.11. 设圆内接ABC △的垂心为H ,P 为圆周上任一点,求证:PH 被P 关于该三角形的西摩松线平分.解析 如图,不妨设P 在»BC上.P 在直线AB 、BC 上的射影分别是M 、N ,MN 即为西摩松线.AL 是高,延长后交圆于D ,PN 延长后交圆于Q ,连结PD 、QA 、CD 、BP .则HCB BAD DCB ∠=∠=∠,得HL LD =. ①CEDP LNH R M BAQ又易知M 、N 、P 、B 共圆,因此ENP ABP AQP ∠=∠=∠,故MN AQ ∥.又作HR AQ ∥,于是由四边形AQPD 为等腰梯形,知四边形HRPD 也是等腰梯形,于是由①知BC 垂直平分HD ,从而BC 垂直平分RP .由PN NR =及MNE RH ∥,知MN 必将PH 平分.12. 已知MON 为O e 直径,S 在ON 上,弦ASB MN ⊥,P 在¼BM上,PS 延长后交圆于Q ,PN 交AB 于R ,求证:QS RN <.解析 如图,连结MP 、MR ,知M 、S 、R 、P 共圆,于是RN SN QSMR SP MS==,于是1RN MR QS MS =>.NB13. 已知锐角三角形ABC 中,AB AC >,AD BC ⊥于D ,G 、F 分别在AB 、AC 上,GC 、BF 、AD交于H ,若G 、B 、C 、F 共圆,则H 为ABC △之垂心.解析 如图,易知BD CD >,今在BD 上找一点E ,使ED CD =,连结AE 、HE ,则E 与C 关于AD 对称.于是由对称及G 、B 、C 、F 共圆,得ABH ACH AEH ∠=∠=∠,于是A 、B 、E 、H 共圆,故BAD HEC HCE ∠=∠=∠,于是90AGH HDC ∠=∠=︒,H 为垂心.HCDEBF GA14. 已知ABC △与ACD △均为正三角形,过D 任作一直线,分别交BA 、BC 延长线于E 、F ,CE 与AF 交于G ,求证:GB 平分AGC ∠.FCBGDAE解析 设AB BC AC a ===,AE x =,CF y =,由AD BF ∥,CD BE ∥,则x y x a y a+=++ 1ED DF EF EF +=,去分母整理得2xy a =.此即AE ACAC CF=,又120EAC ACF ∠=︒=∠,故EAC △∽ACF △,60AGE GAC ACG GAC AFC ∠=∠+∠=∠+∠=︒,故A 、B 、C 、G 共圆,60AGB ACB BAC ∠=∠=︒=∠= CGB ∠.15. 设圆内接四边形ABCD ,AB 、DC 延长交于E ,AD 、BC 延长交于F ,EF 中点为G ,AG 与圆又交于K ,求证:C 、E 、F 、K 四点共圆.解析 如图,延长AG 一倍至J ,作平行四边形AEJF .连结CK ,则CEJ ADE AKC ∠=∠=∠,于是E 、C 、K 、J 共圆,或K 在CEJ △的外接圆上.FG EKCDB又180180EJF EAF BCD ECF ∠=∠=︒-∠=︒-∠,故E 、C 、F 、J 共圆,或F 亦在CEJ △的外接圆上.于是C 、E 、J 、F 、K 五点共圆,结论成立.16. AD 、BE 是锐角三角形ABC 的高,D 、E 是垂足,D 在AB 、AC 上的射影分别是M 、N ,E 在BC 、AB 上的射影分别是P 、Q ,求证:QN PM =.解析 如图,连结ED 、PN ,则易知NPC DEC ABC ∠=∠=∠,故NP AB ∥.P D CNE B MQ A欲证四边形MPNQ 为等腰梯形,只需证MN PQ =即可. 由于A 、M 、D 、N 共圆,AD 为直径,故sin 2ABCS AD BC MN AD A R R⋅=⋅==△,R 为ABC △外接圆半径,同理PQ 也是此值,因此结论成立.17. 过两定点A 、B 的圆与定圆交于P 、Q ,求证:AP AQBP BQ⋅⋅为定值.解析 如图,延长(或不延长)AP 、BQ ,可与定圆再分别交于M 、N 两点,则由四点共圆知180BAP PQN M ∠=∠=︒-∠,故AB MN ∥.NQB MP A于是四边形ABNM 为梯形,sin sin AM A BN B =(A ∠即BAP ∠,余类似);又由定圆性质知AP AM ⋅为定值,BQ BN ⋅亦为定值,故AP AM BQ BN ⋅⋅为定值,此即sin sin AP B BQ A ⋅⋅为定值.但由正弦定理,sin sin B AQA BP=,于是AP AQ BP BQ⋅⋅为定值.18. 直角三角形ABC 中,E 、F 分别是直角边AB 、AC 上的任意点,自A 向BC 、CE 、EF 、FB 引垂线,垂足分别是M 、N 、P 、Q .证明:M 、N 、P 、Q 四点共圆. 解析 因A 、E 、N 、P 共圆,故CNP EAP AFP ∠=∠=∠,因A 、N 、M 、C 共圆,故CNM CAM ∠=∠,又A 、B 、M 、Q 共圆,故MQB MAB ∠=∠,由A 、P 、Q 、F 共圆,得PQB FAP ∠=∠.所以()()()()MNP MQP CNM CNP MQB PQB CAM AFP MAB FAP ∠+∠=∠+∠+∠+∠=∠+∠+∠+∠=()()9090180CAM MAB AFP FAP ∠+∠+∠+∠=︒+︒=︒.故M 、N 、P 、Q 共圆.PQ NCMBFEA19. ABCD 是圆内接四边形,AC 是圆的直径,BD AC ⊥,AC 与BD 的交点为E ,F 在DA 的延长线上,连结BF ,G 在BA 的延长线上,使得DG BF ∥,H 在GF 的延长线上,CH GF ⊥.证明:B 、E 、F 、H 四点共圆.解析 如图,连结BH 、EF 、CG .因为BAF △∽GAD △,所以FA DAAB AG=, DEA BH FG又因为ABE △∽ACD △,所以 AB ACEA DA =, 从而得 FA ACEA AG=. 因为FAE CAG ∠=∠,所以FAE △∽CAG △,于是FEA CGA ∠=∠.由题设知,90CBG CHG ∠=∠=︒,所以B 、C 、G 、H 四点共圆,得BHC BGC ∠=∠.于是 90BHF BEF BHC BEF ∠+∠=∠+︒+∠ 90BGC BEF =∠+︒+∠ 90FEA BEF =∠+︒+∠ 180=︒,所以,B 、E 、F 、H 四点共圆.20. 四边形ABCD 内接于圆,P 是AB 的中点,PE AD ⊥,PF BC ⊥,PG CD ⊥,E ,F ,G 为垂足,M 是线段PG 和EF 的交点,求证:ME MF =.解析 如图,作1AF BC ⊥,1BE AD ⊥(1E 、1F 为垂足),则1112PE AB PF ==.设PG 与11E F 交于K ,因A 、B 、1F 、1E 共圆,所以11180CF E A C ∠=∠=︒-∠,因此11E F CD ∥,11PK E F ⊥,K 是11E F 的中点(因11PE F △为等腰三角形),故PEKF 为平行四边形(因P 、E 、K 、F 为四边形11ABF E 各边中点),因此ME MF =.F 1E 1F M E KC GD评注 本题亦可用面积法快速解决.21. ABC △中,AD 、AE 分别是高和中线,且都在三角形内部,求证:若DAB CAE ∠=∠,则ABC△或者是等腰三角形,或者是直角三角形.解析 如图,D 与E 无非是三种位置关系,由对称性,可归结为两种:D 与E 重合,或D 位于E 的左侧.D FA若D 与E 重合时,ABC △显然为等腰三角形.若D 在E 的左侧,设AB 中点为F ,连接FD 、FE .则EF 为中位线,由条件,知 AEF CAE DAB ADF ∠=∠=∠=∠,故A 、F 、D 、E 共圆,于是 90BAC BAE EAC FDB ADF ∠=∠+∠=∠+∠=︒.22. 设A 、B 、C 、D 、E 是单位半圆上依次五点,AE 是直径,且AB a =,BC b =,CD c =,DE d =,证明:22224a b c d abc bcd +++++<.解析 如图,连接CA 、CE ,则AC CE ⊥,设CAE α∠=,CEA β∠=,则由四点共圆及余弦定理,有:βαAEDCB2224AE AC CE ==+22222cos 2cos a b ab c d cd βα=+++++2222a b c d ab CE cd AC =++++⋅+⋅,由于ABC ∠,90CDE ∠>︒,故CE CE c >=,AC BC b >=,代入,即得 22224a b c d abc bcd >+++++.23. 已知四边形ABCD 内接于圆,点E 、F 分别为AB 、CD 上的动点,且满足AE CFEB FD=,又点P 在EF 上且满足PE ABPF CD=,证明:APD △与BPC △的面积之比与点E 、F 无关. 解析 如图,不妨设AD 、BC 延长后交于S ,由四点共圆知ABS CSF △∽△,又E 、F 分别是对应点,故ASE CSF △∽△.于是ES AS AB PEFS CS CD PF===,于是SP 平分ESF ∠进而平分ASB ∠,于是P 至AD 、BC 距离相等,APD BPC S ADS BC=△△,与E 、F 无关.(图中SE 、SF 、SP 未画出.)PSCF D BE AAD BC ∥时,结论不变.24. AB 是圆O 的直径,C 为AB 延长线上的一点,过点C 作圆O 的割线,与圆O 交于D 、E 两点,OF是BOD △的外接圆1O 的直径,连接CF 并延长交圆1O 于点G .求证:O 、A 、E 、G 四点共圆. 解析 如图,连接AD 、DG 、GA 、GO 、DB 、EA 、EO .A因为OF 是等腰DOB △的外接圆的直径,所以OF 平分DOB ∠,即2DOB DOF ∠=∠.又12DAB DOB ∠=∠,所以DAB DOF ∠=∠.又DGF DOF ∠=∠,所以DAB DGF ∠=∠,因此,G 、A 、C 、D 四点共圆.所以AGC ADC ∠=∠.而90AGC AGO OGF AGO ∠=∠+∠=∠+︒,90ADC ADB BDC BDC ∠=∠+∠=︒+∠,因此AGO BDC ∠=∠.因为B 、D 、E 、A 四点共圆,所以BDC EAO ∠=,又OA OE =,所以EAO AEO ∠=∠.从而AGO AEO ∠=∠,所以,O 、A 、E 、G 四点共圆.25. 已知ABC △中,AD BC ⊥于D ,DM AC ⊥于M ,DB AB ⊥于N ,NM 与BC 延长线交于E ,求证:111CD BD DE-=. 解析 如图,延长DM ,作EF DM ⊥于F ,由FDE CAD ∠=∠,知AMD DFE ADC △∽△∽△,所以DM EF AD DE =,DF ADEF CD=,又由A 、N 、D 、M 四点共圆,得NAD NMD ∠=∠,从而MEF ABD △∽△,从而MF AD EF BD =,因此AD AD DF MF DM AD CD BD EF EF EF DE -=-==,于是111CD BD DE-=. NMBDCEFA26. 凸四边形ABCD 中,ABD α∠=,CBD β∠=,若sin sin sin()AB BC BD βααβ+=+,则A 、B 、C 、D 共圆.解析 如图,不妨设ABC △外接圆交直线BD 于D '.βαD'CBDA由托勒密定理得AB CD BC AD AC BD '''⋅+⋅=⋅两边同除以外接圆直径,得sin sin sin()AB BC BD βααβ'+=+,于是由条件BD BD '=(因为sin()0αβ+≠),故D 与D '重合,即A 、B 、C 、D 共圆.。
初中数学竞赛辅导讲义及习题解答 第讲 直线与圆
第21讲直线与圆直线与圆的位置有相交.相切.相离3种情形,既可从直线与圆交点的个数来判定,也可以从圆心到直线的距离与圆的半径的大小比较来考察.讨论直线与圆的位置关系的重点是直线与圆相切,直线与圆相切涉及切线的性质和判定.切线长定理.弦切角的概念和性质.切割线定理等丰富的知识,这些丰富的知识对应着以下基本图形.基本结论:注:点与圆的位置关系和直线与圆的位置关系的确定有共同的精确判定方法,即量化的方法(距离与半径的比较),我们称“由数定形”,勾股定理的逆定理也具有这1特点.【例题求解】【例1】如图,AB是半圆O的直径,CB切⊙O于B,CD切⊙O于D,交BA的延长线于E,若EA=1,ED=2,则BC的长为.思路点拨从C点看,可用切线长定理,从E点看,可用切割线定理,而连OD,则OD⊥EC,又有相似3角形,先求出⊙O的半径.注:连结圆心与切点是1款常用的辅助线,利用切线的性质可构造出直角3角形,在圆的证明与计算中有广泛的应用.【例2】如图,AB.AC与⊙O相切于B.C,∠A=50°,点P是圆上异于B.C的1个动点,则∠BPC的度数是( )A.65°B.115°C.60°和115°D.130°和50°(山西省中考题)思路点拨略【例3】如图,以等腰△ABC的1腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:(1)若点O在AB上向点B移动,以O为圆心,OB为半径的圆的交BC于D,DE⊥AC的款件不变,那么上述结论是否还成立?请说明理由。
(2)如果AB=AC=5cm,sinA=,那么圆心O在AB的什么位置时,⊙O与AC相切? (2022年黑龙江省中考题)思路点拨(1)是结论探索题,(2)是款件探索题,从切线的判定方法和性质入手,分别画图,方能求解.【例4】如图,已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A.B 不重合),Q是BC边上的动点(与点B.C不重合).(1)当PQ∥AC,且Q为BC的中点时,求线段PC的长。
2021年初中数学竞赛辅导讲义及习题解答 第 讲 走进追问求根公式
感谢您使用本资源,本资源是由订阅号”初中英语资源库“制作并分享给广大用户,本资源制作于2020年底,是集实用性、可编辑性为一体。
本资源为成套文件,包含本年级本课的相关资源。
有教案、教学设计、学案、录音、微课等教师最需要的资源。
我们投入大量的人力、物力,聘请精英团队,从衡水中学、毛毯厂中学、昌乐中学等名校集合了一大批优秀的师资,精研中、高考,创新教学过程,将同学们喜闻乐见的内容整体教给学生。
本资源适用于教师下载后作为教学的辅助工具使用、适合于学生家长下载后打印出来作为同步练习使用、也适用于同学们自己将所学知识进行整合,整体把握进度和难度,是一个非常好的资源。
如果需要更多成套资料,请微信搜索订阅号“初中英语资源库”,在页面下方找到“资源库”,就能得到您需要的每一份资源(包括小初高12000份主题班会课课件免费赠送!)第一讲 走进追问求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式aac b b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。
【九年级数学几何培优竞赛专题】专题1 巧构圆,妙解题【含答案】
第一章 圆专题1巧构圆,妙解题知识解读在处理平面几何中的许多问题时,常常需要借助圆的性质,问题才能解决.而有时候我们需要的圆并不存在,这就需要我们能利用已知的条件,借助图形的特点把实际存在的圆找出来,从而运用圆中的性质来解决问题,往往有事半功倍的效果,使问题获得巧解或简解,这是我们解题必须要掌握的技巧. 作辅助圆的常用依据有以下几种:①圆的定义:若几个点到某个固定点的距离相等,则这几个点在同一个圆上; ②有公共斜边的两个直角三角形的顶点在同一个圆上;③对角互补的四边形四个顶点在同一个圆上,简记为:对角互补,四点共圆;④若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,则这两个三角形有公共的外接圆,简记为:同旁张等角,四点共圆.培优学案典例示范例1将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转(0120)αα<<得到线段AD ,连接CD . (1)连接BD .①如图1-1-1①,若α=80°,则∠BDC 的度数为;②在第二次旋转过程中,请探究∠BDC 的大小是否改变?若不变,求出∠BDC 的度数;若改变,请说明理由;(2)如图1-1-1②,以AB 为斜边作Rt △ABE ,使得∠B =∠ACD ,连接CE ,DE .若∠CED =90°,求α的值.图1-1-1②①EDCBADBA【提示】(1)①∠BDC =∠ADC -∠ADB ,利用“等边对等角及三角形内角和为180°”可求出∠BDC 为30°; ②由题意知,AB =AC =AD ,则点B ,C ,D 在以A 为圆心,AB 为半径的圆上,利用“一条弧所对的圆周角等于它所对的圆心角的一半”可快速求出∠BDC 仍然为30°;(2)过点A 作AM ⊥CD 于点M ,连接EM ,证明“点A ,C ,D 在以M 为圆心,MC 为半径的圆上”.跟踪训练如图1-1-2,菱形ABCD 中,∠B =60°,点E 在边BC 上,点F 在边CD 上.若∠EAF =60°,求证:△AEF 是等边三角形.角相等”获证.图1-1-2BFEDC A例2 (1)如图1-1-3①,正方形ABCD 中,点E 是BC 边上的任意一点,∠AEF =90°,且EF 交正方形外角平分线CF 于点F .求证:AE =EF ;(2)若把(1)中的条件“点E 是BC 边上的任意一点”,改为“点E 是BC 边延长线上的一点”,其余条件不变,如图1-1-3②,那么结论AE =EF 是否还成立?若成立,请证明;若不成立,请说明理由.①②图1-1-3A B E CFDFDCEBA【提示】连接AC ,AF ,显然∠ACF =∠AEF =90°,所以A ,E ,C ,F 四点在以AF 为直径的圆上. (1)如图1-1-4①,当点E 在BC 边上,则∠AFE =∠ACE =45°,于是△AEF 是等腰直角三角形,AE =EF 获证;(2)如图1-1-4②,当点E 在BC 边的延长线上,则∠F AE =∠FCE =45°,于是△AEF 是等腰直角三角形,AE=EF 获证.F图1-1-4②①【拓展】本题将“正方形”改为“正三角形”,“∠AEF =90°”相应改为“∠AEF =60°”,仍然可以运用构造“辅助圆”的思路.还可进一步拓展为“正n 边形”,360180AEF =-∠,仍然可延续这种思路,读者可自己完成.跟踪训练已知,将一副三角板(Rt △ABC 和Rt △DEF )如图1-1-5①摆放,点E ,A ,D ,B 在一条直线上,且D 是AB的中点.将Rt △DEF 绕点D 顺时针方向旋转角(090)αα<<,在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N ,分别过点M ,N 作直线AB 的垂线,垂足为G ,H . (1)如图1-1-5②,当α=30°时,求证:AG =DH ; (2)如图1-1-5③,当α=60°时,(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当090α<<时,(1)中的结论是否成立?请写出你的结论,并根据图1-1-5④说明理由.③④图1-1-5②①HGEAF D C (N )BFE DCBA【提示】本题除了常规解法外,还可考虑构造“辅助圆”.例3 已知,在△ABC 中,AB =AC ,过A 点的直线a 从与边AC 重合的位置开始绕点A 按顺时针方向旋转角θ,直线a 交BC 边于点P (点P 不与点B ,点C 重合),△BMN 的边MN 始终在直线a 上(点M 在点N 的上方),且BM =BN ,连接CN . (1)当∠BAC =∠MBN =90°时.①如图1-1-6①,当θ=45时,∠ANC 的度数为 ; ②如图1-1-6②,当45θ≠时,①中的结论是否发生变化?说明理由;(2)如图1-1-6③,当∠BAC =∠MBN ≠90°时,请直接写出∠ANC 与∠BAC 之间的数量关系,不必证明.③②C【提示】由于在旋转过程中不变的关系是:∠BAC =∠MBN ,AB =AC ,BM =BN ,易知∠ABC =∠ACB =∠BMN =∠BNM .由∠ACB =∠BNM 可知A ,B ,N ,C 四个点在同一个圆上(如图1-1-7),则∠ANC =∠ABC =1902BAC -∠,这样思考,所有问题都会迎刃而解.跟踪训练在△ABC 中,BA =BC ,∠BAC =α,M 是AC 的中点,P 是线段BM 上的动点,将线段P A 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60°且点P 与点M 重合(如图1-1-8①),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图1-1-8②中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.①图1-1-8②DP BACMQQM (P )CB A例4如图1-1-9,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.图1-1-9【提示】(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.跟踪训练已知,如图1-1-10①,,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=43,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上.(3)如图1-1-10②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.若四边形CDEF的周长用t表示,请直接写出t的取值范围.图1-1-10例5已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.、① ②③图1-1-11【提示】本题除了建立方程模型,将问题转化为方程是否有解的判断外,还可以通过构造辅助圆,将问题转化为直线与圆的位置关系来讨论.跟踪训练1.如图1-1-12,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC1m .图1-1-12【提示】(1)①由直线y=-x+3写出OA=3,OB=3;由等腰直角三角形的边长关系,可得AB2;由PC⊥y轴,可得QC=1,BC=2;由对称知A'B=AB2,OA'=0A=3,然后用勾股定理求出A'C的长,也就可以求出△A'BC的周长;(2)②如果选用上一题的思路求∠BMC的正弦值,会陷入计算的麻烦,这里采用转化的思想,找到外接圆的半径,另外还应分类讨论。
初三数学下旋转--知识讲解 +巩固练习
旋转--知识讲解【学习目标】1、掌握旋转的概念,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计;3、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;4、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;5、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、旋转定义、性质、作图1.旋转的定义:在平面内,一个图形绕着某一点O转动一个角度的图形变换叫做旋转.如下图,点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;(3)旋转中心是唯一不动的点;''').(4)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转对称图形:在平面内,一个图形绕着一个定点旋转一定角度θ(0°<θ<360°)后,能够与原图形重合,这样的图形叫做旋转对称图形.例如等边三角形,平行四边形都是旋转对称图形.4.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.4.关于原点对称的点的坐标特征:关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、旋转的概念与性质1.如图,把四边形AOBC绕点O旋转得到四边形DOEF. 在这个旋转过程中:(1)旋转中心是谁?(2)旋转方向如何?(3)经过旋转,点A、B的对应点分别是谁?(4)图中哪个角是旋转角?(5)四边形AOBC与四边形DOEF的形状、大小有何关系?(6) AO与DO的长度有什么关系? BO与EO呢?(7)∠AOD与∠BOE的大小有什么关系?【答案与解析】(1)旋转中心是点O;(2)旋转方向是顺时针方向;(3)点A的对应点是点D,点B的对应点是点E;(4)∠AOD和∠BOE;(5) 四边形AOBC与四边形DOEF的图形全等,即形状一致,大小相等;(6)AO=DO,BO=EO;(7)∠AOD=∠BOE.【总结升华】通过具体实例认识旋转,了解旋转的概念和性质.举一反三【变式】如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.【答案】下面给出几种解法:解法一:连接OA、OB、OC即可.如图甲所示;解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、OD2即得,如图乙所示.解法三:在解法二中,用相同的曲线连结OD、OD1、OD2即得如图丙所示2. 如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )【答案】C.【解析】抓住图形特征,观察图中的每个小的图形绕中心点旋转180°后能否与自身重合.【总结升华】在解题的过程中,可看出如果选取的基本图形不同,可得到不同的形成过程,甚至所选取的基本图形相同,也有不同的形成过程,因此分析图案的形成过程旨在了解图形的变化规律,而不必强求分析的一致性.类型二、旋转的作图3. 如图,已知△ABC与△DEF关于某一点对称,作出对称中心.【答案与解析】【总结升华】确定关于某点成中心对称的两个图形的对称中心的方法:⑴利用中心对称的性质:对称点所连线段被对称中心所平分,所以连接任意一对对称点,取这条线段的中点,则该点即为对称中心.⑵利用中心对称的性质:对称点所连线段都经过对称中心,所以连接任意两对对称点,则这两条线段的交点即为对称中心.举一反三【变式1】如图,在正方形网格中,每个小正方形的边长均为1个单位.将向下平移4个单位,得到,再把绕点顺时针旋转,得到,请你画出和(不要求写画法).【答案与解析】【总结升华】注意平移和旋转中关键点移动规律的不同.∆绕点O逆时针旋转100︒所得到的图形.【变式2】如图,画出ABC【答案】(∠AOA′=∠BOB′=∠COC′=100°)类型三、中心对称和中心对称图形4. 下列图形不是中心对称图形的是 ( )A.①③ B.②④ C.②③ D.①④【答案】D【解析】中心对称图形要求绕中心旋转180°与原图形重合,①④两个图形绕中心旋转180°不能与原图形重合,所以选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A5. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件.旋转--巩固练习【巩固练习】一. 选择题1. 下图中,不是旋转对称图形的是( ).2. 在线段、等腰梯形、平行四边形、矩形、菱形、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A.3个B.4个C.5个D.6个3. 有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化.A.1个 B.2个 C.3个 D.4个4.如图,4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( ).A.点A B.点B C.点C D.点D5.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是( ).A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC6. 如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为( )A.10°B.15°C.20°D.25°二.填空题7.如图,△ABC与△ADE都是直角三角形,∠C与∠AED都是直角,点E在AB上,∠D=30°,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点______,至少旋转了_____度.8. 在下列四种图形变换中,本题图案包含的变换是___________.(填序号即可)①中心对称②旋转③轴对称④平移9.正三角形绕其中心至少旋转__________ 度,可与其自身重合.10.如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为_____________.11.如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是______三角形.12. 如图,P是正三角形ABC内的一点,且PA=6,PB=8,•PC=10,若将△PAC绕点A逆时针旋转后,•得到△P′AB,•则点P•与点P′之间的距离为_____,∠APB=_______°.三.综合题13. 已知:如图,F是正方形ABCD中BC边上一点,延长AB到E,使得BE=BF,试用旋转的性质说明:AF=CE且AF⊥CE.14. 如图,E 是正方形ABCD 的边BC 上一点,F 是DC 的延长线上一点,且∠BAE=∠FAE. 求证:BE+DF=AF.15.如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在O 点处,并将纸板绕O 点旋转,其半径分别交AB 、AD 于点M N 、, 求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a321BM CDNOA16. 已知:直线l 的解析式为y =2x +3,若先作直线l 关于原点的对称直线l 1,再作直线l 1关于y 轴的对称直线l 2,最后将直线l 2沿y 轴向上平移4个单位长度得到直线l 3,试求l 3的解析式.【答案与解析】一、选择题 1.【答案】B ; 2.【答案】B ;【解析】既是轴对称图形,又是中心对称图形的图形有线段、矩形、菱形、正方形. 3.【答案】D 4.【答案】B【解析】连接对应点111,,PP MM NN ,做三条线段的垂直平分线,交点即是旋转中心。
初中数学竞赛辅导讲义全
初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。
2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。
3、 分式运算:实质就是分式的通分与约分。
[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。
解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。
解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。
解:13313232+++++x ax x X ax1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21 证:左边=21(1 - 31 + 31 - 51 + …… + 121-n - 121+n ) aaax ax xO x -++++1133223=21(1- 121+n ) ∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21[小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。
初中数学竞赛辅导讲座19讲(全套)
第一讲 有 理 数一、有理数的概念及分类。
二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。
三、例题示范例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个?例2、 将9998,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。
提示1:四个数都加上1不改变大小顺序;提示2:先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。
例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。
试确定三个数ca b ab 1,1,1-的大小关系。
分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较ca b ab 1,1,1-的大小关系,只要比较分母的大小关系。
例4、 在有理数a 与b(b >a)之间找出无数个有理数。
提示:P=na b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。
2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。
例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非负数是多少?提示:造零:n-(n+1)-(n+2)+(n+3)=0注:造零的基本技巧:两个相反数的代数和为零。
3、算对与算巧例6、 计算 -1-2-3-…-2000-2001-2002提示:1、逆序相加法。
2、求和公式:S=(首项+末项)⨯项数÷2。
例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002例8、 计算9999991999999个个个n n n +⨯ 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。
八年级(下)数学竞赛班辅导讲义.docx
八年级(下)数学竞赛班辅导资料(1)原班级:姓名:等腰三角形的性质( 1)【一】等腰三角形有哪些性?(1)等腰三角形两底角 ____________;(2)等腰三角形具有“三合一”的性;“三”指_____________________________________.(3)称性:等腰三角形是 ______ 称形 .A 【二】例精例 1(1)等腰三角形两个内角的度数之比1:2 ,个等腰三角形底角的度数_______________;45 或 72( 2)等腰△ ABC的三 a、 b、 c 均整数,且足 a bc b ca 24 ,的三角形共有 ___________个 . 3个例 2如,若AB=AC,BG=BH,AK=KG,∠ BAC的度数 ________________.BCHK36G例 3(2012?淮安)理解如 1,△ ABC中,沿∠ BAC的平分AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分A1B2折叠,剪掉重复部分;⋯;将余下部分沿∠B n A n C 的平分A n B n+1折叠,点B n与点 C 重合,无折叠多少次,只要最后一次恰好重合,∠BAC是△ ABC的好角.小展示了确定∠BAC是△ ABC的好角的两种情形.情形一:如2,沿等腰三角形ABC角∠ BAC的平分 AB1折叠,点 B 与点 C 重合;情形二:如3,沿∠ BAC的平分AB1折叠,剪掉重复部分;将余下部分沿∠ B1A1C的平分A1B2折叠,此点B1与点 C重合.探究(1)△ ABC中,∠ B=2∠ C,两次折叠,∠BAC是不是△ ABC的好角? ________(填“是”或“不是”).(2)小三次折叠了∠ BAC是△ ABC的好角,探究∠ B 与∠ C(不妨∠ B>∠ C)之的等量关系.根据以上内容猜想:若 n 次折叠∠ BAC是△ ABC的好角,∠ B 与∠ C(不妨∠ B>∠ C)之的等量关系_____________________ .(3)小找到一个三角形,三个角分 15°、 60°、 105°, 60°和 105°的两个角都是此三角形的好角.你完成,如果一个三角形的最小角是 4°,求出三角形另外两个角的度数,使三角形的三个角均是此三角形的好角.分析:( 1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠ C;( 2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠ C+∠ A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠ B- 2C=180°①,根据三角形 ABC的内角和定理知∠BAC+∠ B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠ C;(3)利用( 2)的结论知∠ B=n∠ C,∠ BAC是△ ABC的好角,∠ C=n∠ A,∠ ABC是△ ABC的好角,∠ A=n∠ B,∠ BCA是△ ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是4、 172; 8、 168; 16、160; 44、 132;88°、 88°.解答:解:(1)△ ABC中,∠ B=2∠ C,经过两次折叠,∠BAC是△ ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠ BAC的平分线AB1折叠,∴∠ B=∠ AA1B1;又∵将余下部分沿∠B1A1C 的平分线 A1B2折叠,此时点B1与点 C 重合,∴∠ A1B1C=∠ C;∵∠ AA1B1=∠ C+∠ A1B1C(外角定理),∴∠ B=2∠ C,∠ BAC是△ ABC的好角.故答案是:是;( 2)∠ B=3∠ C;如图所示,在△ ABC中,沿∠ BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线 A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C 的平分线 A2B3折叠,点 B2与点 C 重合,则∠ BAC是△ ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠ C=∠ A2B2C,∠ A1B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠ C+∠A2B2C=2∠ C;∵根据四边形的外角定理知,∠BAC+∠ B+∠ AA1B1- ∠A1 B1C=∠ BAC+2∠ B-2 ∠C=180°,根据三角形 ABC的内角和定理知,∠ BAC+∠ B+∠C=180°,∴∠ B=3∠ C;由小丽展示的情形一知,当∠B=∠ C 时,∠ BAC是△ ABC的好角;由小丽展示的情形二知,当∠B=2∠ C 时,∠ BAC是△ ABC的好角;由小丽展示的情形三知,当∠B=3∠ C 时,∠ BAC是△ ABC的好角;故若经过 n 次折叠∠ BAC是△ ABC的好角,则∠ B 与∠ C(不妨设∠ B>∠ C)之间的等量关系为∠B=n∠ C;( 3)由( 2)知设∠ A=4°,∵∠ C 是好角,∴∠ B=4n°;∵∠ A 是好角,∴∠ C=m∠B=4mn°,其中m、 n 为正整数得4+4n+4mn=180∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.点评:本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.【三】练一练1.等腰三角形一腰上的高与另一腰的角36 ,等腰三角形的底角的度数___________.63 或272.如, AA、 BB 分是EAB、 DBC 的平分,若 AA BB AB,BAC 的度数_____.EA C B'B DA 'E, 且 AE=1BD.求:3.如,在△ ABC中,AC=BC,ACB 90,D 是 AC上一点,AE BD 交的延于BD是ABC的角平分 .2AED4. 某数学趣小开展了一次活,程如下:C B ∠ BAC=θ(0 °<θ< 90° ) .把小棒依次放在两射之,并使小棒两端分落在射AB, AC上.活一:如甲所示,从点A1开始,依次向右放小棒,使小棒与小棒在端点互相垂直,A1A2第 1 根小棒.数学思考:(1)小棒能无限下去?答:______. ( 填“能”或“不能” )(2)11223AA=A A =A A =1.① θ =______度;②若小棒A2n-1 A2n的度a n(n 正整数,如 A1A2=a1,A3A4=a2,⋯)求出此a2,a3的,并直接写出a n( 用含 n 的式子表示 ) .活二:如乙所示,从点A1开始,用等的小棒依次向右放,其中A1A2第 1 根小棒,且A1A2=AA1.数学思考:(3)若已放了 3 根小棒,θ1=______,θ2=______,θ3=______; ( 用含θ的式子表示 )(4)若只能放 4 根小棒,求θ的范.解:( 1)∵根据已知条件∠BAC=θ( 0°<θ< 90°)小棒两端能分落在两射上,(2)①∵ A1A2 =A2A3, A1A2⊥ A2A3,∴∠ A2A1A3=45°,∴∠ AA2A1+∠θ=45°,∵∠ AA2A1=∠ θ,∴∠ θ=22.5 °;②∵ AA=A A=AA=1,AA⊥AA∴AA=, AA=1+,112231223133又∵ A A ⊥A A ,A A ∥AA ,同理; A A ∥A A ,∴∠ A=∠AAA =∠AAA =∠AAA ,∴ AA=A A ,AA=A A 23341234345621436533455623433335235352356522+1)2∴ a =A A =AA=1+, a =AA+AA =a +A A ,∵ A A = a ,∴ a =A A =AA=a + a =(∴ a n=(+1) n-1;(3)∵ A1A2=AA1,∴∠ A1AA2=∠ AA2A1=θ,∴∠ A2A1A3=θ1=θ+θ,∴θ1=2θ同理可得:θ2 =3θ,θ3=4θ;(4)如图:∵A4A3=A4A5,∴∠ A4A3A5=∠ A4A5A3=4θ °,∵根据三角形内角和定理和等腰三角形的性质,当∠ A5A4B 是钝角或直角时,不能继续摆放小棒了,∴当∠ A4A3A5是锐角,∠ A5A4B=5θ是钝角或直角时,只能摆放 4 根小棒,∴ 5θ ≥ 90°, 4θ<90°,即,∴18°≤ θ< 22.5 °.( 1)能;(2)①∠θ =22.5 °;② a =(n-1;( 3) 2θ;3θ; 4θ;+1)n(4) 18°≤ θ< 22.5 °.本题主要考查了相似三角形的判定和性质,在解题时要注意根据题意找出规律并与相似三角形的性质相结合八年级(下)数学竞赛班辅导资料(2)原班级:姓名:等腰三角形的性质( 2)一、例题讲解:如图,已知内角度数的三个三角形,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形.C C90°84°24°A 24°A B B36°C104°72°52°BBA C二、练一练1.如图,点 O 是等边△ ABC 内一点.将△ BOC 绕点 C 按顺时针方向旋转60°得△ ADC ,连接 OD .已知∠ AOB=110 °.(1)求证:△ COD 是等边三角形;(2)当α=150°时,试判断△ AOD 的形状,并说明理由;(3)探究:当α为多少度时,△ AOD 是等腰三角形.解:( 1)证明:∵ CO=CD ,∠ OCD=60 °,∴△ COD 是等边三角形;(3 分)(2)解:当α=150°,即∠ BOC=150 °时,△ AOD 是直角三角形.( 5 分)∵△ BOC≌△ ADC ,∴∠ ADC= ∠BOC=150 °,又∵△ COD 是等边三角形,∴∠ODC=60 °,∴∠ ADO=90 °,即△ AOD 是直角三角形;( 7 分)(3)解:①要使 AO=AD ,需∠ AOD= ∠ ADO .∵∠ AOD=360 °﹣∠ AOB ﹣∠ COD ﹣α=360 °﹣ 110°﹣ 60°﹣α=190°﹣α,∠ ADO= α﹣ 60°,∴190°﹣α=α﹣ 60°,∴ α=125°;②要使 OA=OD ,需∠ OAD= ∠ ADO .∵∠ AOD=190 °﹣α,∠ ADO= α﹣ 60°,∴∠ OAD=180 °﹣(∠ AOD+ ∠ADO )=50 °,∴α﹣ 60°=50 °,∴ α=110°;③要使 OD=AD ,需∠ OAD= ∠ AOD .∵190°﹣α=50 °,∴α=140 °.综上所述:当α的度数为125°,或 110°,或 140°时,△ AOD 是等腰三角形.(12 分)点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力2.( 2014?宁波)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成 3 张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图 1 是其中的一种方法:定义:如果两条线段将一个三角形分成 3 个等腰三角形,我们把这两条线段叫做这个三角形的三分线.( 1)请你在图 2 中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成 3 对全等三角形,则视为同一种)( 2)△ ABC 中,∠B=30 °,AD 和 DE 是△ ABC 的三分线,点 D 在 BC 边上,点 E 在 AC 边上,且 AD=BD ,DE=CE ,设∠ C=x °,试画出示意图,并求出 x 所有可能的值;(3)如图 3,△ ABC 中, AC=2 , BC=3 ,∠ C=2 ∠B ,请画出△ ABC 的三分线,并求出三分线的长.考点:相似形综合题;图形的剪拼分析:( 1) 45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和 22.5°,再以 22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法.( 2)用量角器,直尺标准作30°角,而后确定一边为BA ,一边为 BC,根据题意可以先固定BA 的长,而后可确定 D 点,再标准作图实验﹣﹣分别考虑 AD 为等腰三角形的腰或者底边,兼顾 AEC 在同一直线上,易得 2 种三角形 ABC .根据图形易得 x 的值.(3)因为∠ C=2∠ B ,作∠ C 的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图 4 图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,求解方程可知各线的长.解答:解:( 1)如图 2 作图,(2)如图 3 ①、②作△ ABC .①当 AD=AE 时,∵2x+x=30+30 ,∴ x=20 .②当 AD=DE 时,∵30+30+2x+x=180 ,∴ x=40 .( 3)如图 4, CD、 AE 就是所求的三分线.设∠ B=a,则∠ DCB= ∠ DCA= ∠ EAC=a ,∠ ADE= ∠ AED=2a ,此时△ AEC ∽△ BDC ,△ ACD ∽△ ABC ,设 AE=AD=x ,BD=CD=y ,∵△ AEC ∽△ BDC ,∴ x: y=2: 3,∵△ ACD ∽△ ABC ,∴ 2:x= ( x+y ): 2,x : y 2 :3,即三分线长分别是和.所以联立得方程组,解得2 : x( x y) :2点评:本题考查了学生学习的理解能力及动手创新能力,知识方面重点考查三角形内角、外角间的关系及等腰三角形知识,是一道很锻炼学生能力的题目.八年级(下)数学竞赛班辅导资料(3)原班级:姓名:等腰三角形的判定( 1)一、知识要点1.等腰三角形的判定方法:(1)两 _____相等的三角形是等腰三角形.简称__________________ ;( 2)两 _____相等的三角形是等腰三角形.简称______________________ .2.解题技巧:构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用方法有:( 1)“角平分线+平行线”构造等腰三角形;(2)“角平分线+垂线”构造等腰三角形;( 3)用“垂直平分线”构造等腰三角形;(4)用“三角形中角的 2 倍关系”构造等腰三角形.3.等腰三角形中长作的辅助线:(1)底边上的高;(2)底边上的中线;(3)顶角的平分线.二、例题精讲例 1 在△ ABC中 AB=AC ,∠ BAC=80°, O为△ ABC内一点,且∠ OBC=10°,∠ OCA=20° .求∠ BAO的度数.A70°OB C例 2 如图,在△ ABC中, AB=7, AC=11,点 M是 BC的中点, AD是∠ BAC的平分线, MF∥ AD,求 FC的长 .A9FB D M C三、练一练1.如图,已知 Rt △ ABC中,∠ C=90°,∠ BAC=30°,在直线 BC或 AC上取一点 P,使得△ PAB是等腰三角形,则符合条件的P 点有()C AA.2个B.4个C.6个D.8个2. 如图,△ ABC中, AD平分∠ BAC,AB+BD=AC,求B : C 的值. 2:1A B CB D C2. 如图,在△ ABC 中,BAC BCA44 ,M为△ABC内一点,使得MCA 30 , MAC 16 .求BMC 的度数.(北京市竞赛题)150°BMA C八年级(下)数学竞赛班辅导资料(4)原班级:姓名:等腰三角形的判定( 2)一、例题精讲两个全等的含 30°, 60°角的三角板 ADE 和三角板 ABC 如图所示放置, E, A ,C 三点在一条直线上,连接 BD ,取 BD 的中点 M ,连接 ME , MC .试判断△ EMC 的形状,并说明理由.解:△ EMC 是等腰直角三角形.理由如下:连接MA .∵∠ EAD=30 °,∠ BAC=60 °,∴∠ DAB=90 °,∵△ EDA ≌△ CAB ,∴ DA=AB , ED=AC ,∴△ DAB 是等腰直角三角形.又∵M 为 BD 的中点,∴∠MDA= ∠ MBA=45 °, AM ⊥ BD (三线合一),1AM=BD=MD ,(直角三角形斜边上的中线等于斜边的一半)∴∠EDM= ∠ MAC=105 °,2在△ MDE 和△ CAM 中, ED=AC ,∠ MDE= ∠ CAM ,MD=AM ,∴△ MDE ≌△ MAC .∴∠ DME= ∠ AMC ,ME=MC ,又∵∠ DMA=90 °,∴∠ EMC= ∠ EMA+ ∠ AMC= ∠ EMA+ ∠ DME= ∠DMA=90 °.∴△ MEC 是等腰直角三角形.二、练一练1.如图 (1), Rt△ABC 中,∠ ACB=-90 °, CD ⊥AB ,垂足为 D. AF 平分∠ CAB ,交 CD 于点 E,交 CB 于点F(1)求证: CE=CF.(2)将图( 1)中的△ AD E 沿 AB 向右平移到△ A’D ’E’的位置,使点 E’落在 BC 边上,其它条件不变,如图( 2)所示.试猜想: BE'与 CF 有怎样的数量关系 ?请证明你的结论.( 1)证明:略( 2)解:相等证明:如图,过点 E 作 EG⊥ AC 于 G.又∵AF 平分∠ CAB , ED⊥ AB ,∴ ED=EG .由平移的性质可知:D’E’=DE ,∴ D’E’=GE .∵∠ ACB=90 °.∴∠ ACD+ ∠DCB=90 °[来源:Z|xx|]∵CD⊥AB 于 D.∴∠ B+ ∠ DCB=90 °.∴ ∠ ACD= ∠ B在 Rt△ CEG 与 Rt△ BE’D’中,∵∠ GCE= ∠ B ,∠ CGE= ∠BD ’E’, CE=D ’E’∴△ C EG≌△BE ’D’∴ CE=BE ’由( 1)可知 CE=CF, (其它证法可参照给分 ).2.如图,已知△BAD 和△ BCE 均为等腰直角三角形,∠BAD= ∠ BCE=90 °,点 M 为 DE 的中点,过点E 与 AD 平行的直线交射线AM 于点 N.( 1)当 A , B, C 三点在同一直线上时(如图1),求证: M 为 AN 的中点;( 2)将图 1 中的△ BCE 绕点 B 旋转,当 A ,B , E 三点在同一直线上时(如图 2),求证:△ ACN 为等腰直角三角形;(3)将图 1 中△ BCE 绕点 B 旋转到图 3 位置时,( 2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.DMA B图 3C(1 )证明:如图1,∵EN∥ AD ,∴∠ MAD= ∠MNE ,∠ ADM= ∠NEM .∵点 M 为 DE 的中点,∴ DM=EM .在△ ADM 和△ NEM 中,∴.∴△ ADM ≌△ NEM .∴ AM=MN .∴ M 为 AN 的中点.( 2)证明:如图2,∵△ BAD 和△ BCE 均为等腰直角三角形,∴AB=AD , CB=CE ,∠ CBE= ∠ CEB=45 °.∵AD ∥ NE,∴∠ DAE+ ∠ NEA=180 °.∵∠ DAE=90 °,∴∠ NEA=90 °.∴∠ NEC=135 °.∵A , B, E 三点在同一直线上,∴∠ ABC=180 °﹣∠ CBE=135 °.∴∠ ABC= ∠ NEC .∵△ ADM ≌△ NEM (已证),∴ AD=NE .∵ AD=AB ,∴ AB=NE .在△ ABC 和△ NEC 中,∴△ ABC ≌△ NEC .∴ AC=NC ,∠ ACB= ∠ NCE.∴∠ ACN= ∠ BCE=90 °.∴△ ACN 为等腰直角三角形.( 3)△ ACN 仍为等腰直角三角形.证明:如图3,此时 A 、 B、 N 三点在同一条直线上.∵AD ∥ EN,∠ DAB=90 °,∴∠ ENA= ∠ DAN=90 °.∵∠ BCE=90 °,∴∠ CBN+ ∠ CEN=360 °﹣ 90°﹣ 90°=180 °.∵ A 、 B、 N 三点在同一条直线上,∴∠ABC+ ∠ CBN=180 °.∴∠ ABC= ∠ NEC .∵△ ADM ≌△ NEM (已证),∴ AD=NE .∵AD=AB ,∴ AB=NE .在△ ABC 和△ NEC 中,N E∴△ ABC ≌△ NEC .∴ AC=NC ,∠ ACB= ∠ NCE.∴∠ ACN= ∠ BCE=90 °.八年级(下)数学竞赛班辅导资料(5)原班级:姓名:等边三角形( 1)一、知识要点1.等边三角形的性质:( 1)三边相等,三角相等,每个角等于60°;( 2)每条边上的高线、中线、所对角的平分线互相重合.简称“” ;( 3)等边三角形内任意一点到三边距离和是一个定值,等于一边上的高.2.判定等边三角形的基本方法:( 1)从边入手,证明三边相等;(2)从角入手,证明三角相等或证明两个角都为60°;(3)从边角入手,有一个角为 60°的等腰三角形是等边三角形.二、例题精讲如图,△ ABC 中,∠ B=60 °,延长 BC 到 D,延长 BA 到 E,使 AE=BD ,连 CE、DE,若 CE=DE .求证:△ ABC 是等边三角形.EAB C D三、练一练1.如图,一个六边形的每个角都是120°,连续四边的长依次是 2.7, 3,5,2,则该六边形的周长是____. 20.72.如图, P 是等边△ ABC 内部一点,∠ APB 、∠ BPC 、∠ CPA的大小之比是 5:6:7,则以 PA、PB、PC 为边的三角形的三个角的大小之比(从小到大)是______________.2:3:4A5232.7PB C3.(2013?北京)在△ ABC 中, AB=AC ,∠ BAC= α( 0°<α<60°),将线段 BC 绕点 B 逆时针旋转 60°得到线段 BD.(1)如图 1,直接写出∠ ABD 的大小(用含α的式子表示);(2)如图 2,∠ BCE=150 °,∠ ABE=60 °,判断△ABE 的形状并加以证明;(3)在( 2)的条件下,连接 DE,若∠ DEC=45 °,求α的值.解:( 1)∵ AB=AC ,∠ A= α,∴∠ ABC= ∠ ACB=(180°﹣∠ A)=90°﹣α,∵∠ ABD= ∠ ABC ﹣∠ DBC ,∠ DBC=60 °,即∠ ABD=30 °﹣α;( 2)△ ABE 是等边三角形,证明:连接AD , CD ,ED,∵∠ ABE=60 °,∴∠ ABD=60 °﹣∠ DBE= ∠ EBC=30 °﹣α,且△BCD为等边三角形,在△ ABD 与△ ACD 中∴△ ABD≌△ ACD,∴∠ BAD=∠ CAD=∠ BAC=α,∵∠ BCE=150 °,∴∠ BEC=180 °﹣( 30°﹣α)﹣150°=α=∠ BAD,在△ABD 和△EBC 中∴△ ABD ≌△ EBC,∴ AB=BE ,∴△ ABE 是等边三角形;(3)∵∠ BCD=60 °,∠ BCE=150 °,∴∠ DCE=150 °﹣ 60°=90 °,∵∠ DEC=45 °,∴△ DEC 为等腰直角三角形,∴DC=CE=BC ,∵∠ BCE=150 °,∴∠ EBC=(180°﹣150°)=15°,∵∠ EBC=30 °﹣α=15°,∴ α=30°.4.【探究发现】如图 1,△ ABC 是等边三角形,∠ AEF=60 °, EF 交等边三角形外角平分线 CF 所在的直线于点F,当点 E 是 BC 的中点时,有 AE=EF 成立;【数学思考】某数学兴趣小组在探究AE 、EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点 E 是直线 BC 上( B ,C 除外)任意一点时(其它条件不变),结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点 E 是线段 BC 上的任意一点”;“点E时线段BC延长线上的任意一点”;“点 E 时线段 BC 反向延长线上的任意一点”三种情况中,任选一种情况,在图 2 中画出图形,并证明 AE=EF .解答:证明:如图一,在 B 上截取 AG ,使 AG=EC ,连接 EG,∵△ ABC 是等边三角形,∴AB=BC ,∠ B=∠ ACB=60 °.∵ AG=EC ,∴ BG=BE ,∴△ BEG 是等边三角形,∠BGE=60 °,∴∠ AGE=120 °.∵ FC 是外角的平分线,∠ECF=120 °=∠ AGE .∵∠ AEC 是△ ABE 的外角,∴∠AEC= ∠ B+ ∠GAE=60 °+∠GAE .∵∠ AEC= ∠ AEF+ ∠ FEC=60 °+∠ FEC,∴∠ GAE= ∠FEC.在△AGE 和△ECF 中,∴△ AGE ≌△ ECF( ASA ),∴ AE=EF ;八年级(下)数学竞赛班辅导资料(6)原班级:姓名:等边三角形( 2)1.背景:某外学小在一次学研中,得到如下两个命:①如 1,在正三角形 ABC中,M、N分是 AC、AB 上的点, BM与 CN相交于点 O,若∠ BON=60°, BM=CN.②如 2,在正方形 ABCD中, M、N 分是 CD、AD上的点, BM与 CN相交于点 O,若∠ BON=90°, BM=CN.然后运用比的思想提出了如下的命:③如 3,在正五形 ABCDE中, M、N 分是 CD、 DE上的点, BM与 CN相交于点 O,若∠ BON=108°,BM=CN.任要求:(1)你从①、②、③三个命中一个行明;(2)你完成下面的探索:①如 4,在正 n( n≥ 3)形 ABCDEF⋯中, M、N分是 CD、DE上的点, BM与 CN相交于点 O,当∠ BON 等于多少度,BM=CN成立?(不要求明)②如 5,在五形ABCDE中, M、 N 分是 DE、 AE上的点, BM与 CN相交于点 O,当∠ BON=108° ,BM=CN是否成立?若成立,予明;若不成立,明理由.解:( 1)命①明:在 1 中,∵∠ BON=60°,∴∠ CBM+∠ BCN=60°,∵∠ BCN+∠ACN=60°,∴∠ CBM=∠ ACN,又∵ BC=CA,∠ BCM=∠ CAN=60°,∴△ BCM≌△ CAN,∴ BM=CN,命②,明:在 2 中,∵∠ BON=90°,∴∠ CBM+∠ BCN=90°,∵∠ BCN+∠DCN=90°,∴∠ CBM=∠ DCN,又∵ BC=CD,∠ BCM=∠ CDN=90°,∴△ BCM≌△ CDN,∴ BM=CN,命③ 明:在 3 中,∵∠ BON=108°,∴∠ CBM+∠BCN=108°,∵∠ BCN+∠DCN=108°,∴∠ CBM=∠ DCN,又∵ BC=CD,∠ BCM=∠ CDN=108°,∴△ BCM≌△ CDN,∴ BM=CN;( 2)①当∠ BON=,BM=CN成立,② BM=CN成立,明:如5, BD、CE,在△ BCD和△ CDE中,∵ BC=CD,∠ BCD=∠ CDE=108°,CD=DE,∴△ BCD≌△ CDE,∴ BD=CE,∠ BDC=∠ CED,∠ DBC=∠ ECD,∵∠ OBC+∠ OCB=108°,∠ OCB+∠ OCD=108°,∴∠ MBC=∠ NCD,又∵∠ DBC=∠ ECD=36°,∴∠ DBM=∠ ECN,∴△ BDM≌△ ECN。
初中奥林匹克数学竞赛知识点总结及训练题目-圆的基本性质
初中数学竞赛辅导讲义---圆的基本性质到定点(圆心)等于定长(半径)的点的集合叫圆,圆常被人们看成是最完美的事物,圆的图形在人类进程中打下深深的烙印.圆的基本性质有:一是与圆相关的基本概念与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基本性质解题应注意:1.熟练运用垂径定理及推论进行计算和证明;2.了解弧的特性及中介作用;3.善于促成同圆或等圆中不同名称等量关系的转化.熟悉如下基本图形、基本结论:【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 .作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )A .2B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M .(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM ∽△COM ; (3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论.思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3.(1)求证:AF =DF ;(2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积.思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN ,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.⌒ ⌒ ⌒ ⌒注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D是半径为5cm的⊙O内一点,且OD=3cm,则过点D的所有弦中,最小弦AB= .2.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a .是轴对称图形但不是中心对称图形.b .既是轴对称图形又是中心对称图形.4.如图,AB 是⊙O 的直径,CD 是弦,若AB=10cm ,CD =8cm ,那么A 、B 两点到直线CD 的距离之和为( )A .12cmB .10cmC . 8cmD .6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25C .3D .316 6.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数.9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB=.11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB×AC .⌒ ⌒ ⌒17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.(1)求线段OA 、OB 的长; (2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒参考答案。
初中数学竞赛辅导讲义及习题解答-园幂定理
园幂定理相交弦定理、切割线定理、割线定理统称为圆幂定理.圆幂定理实质上是反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段有关.相交弦定理、切割线定理、割线定理有着密切的联系,主要体现在:1.用运动的观点看,切割线定理、割线定理是相交弦定理另一种情形,即移动圆内两条相交弦使其交点在圆外的情况;2.从定理的证明方法看,都是由一对相似三角形得到的等积式.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,PT切⊙O于点T,PA交⊙O于A、B两点,且与直径CT交于点D,CD=2,AD=3,BD=6,则PB= .思路点拨综合运用圆幂定理、勾股定理求PB长.注:比例线段是几何之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段:(1)平行线分线段对应成比例;(2)相似三角形对应边成比例;(3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来.【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C .415 D .516思路点拨 连AC ,CE ,由条件可得许多等线段,为切割线定理的运用创设条件.注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键.【例3】 如图,△ABC 内接于⊙O ,AB 是∠O 的直径,PA 是过A 点的直线,∠PAC=∠B .(1)求证:PA 是⊙O 的切线;(2)如果弦CD 交AB 于E ,CD 的延长线交PA 于F ,AC=8,CE :ED=6:5,,AE :BE=2:3,求AB 的长和∠ECB 的正切值.思路点拨 直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x 、k 处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x 与k 的关系,建立x 或k 的方程.【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE思路点拨由切割线定理得EG2=EF·EP,要证明EG=DE,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明.注:圆中的许多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁.需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几何各种类型的问题中.【例5】如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.求:(1)cos∠F的值;(2)BE的长.思路点拨解决本例的基础是:熟悉圆中常用辅助线的添法(连OE,AE);熟悉圆中重要性质定理及角与线段的转化方法.对于(1),先求出EF,FO值;对于(2),从△BE F ∽△EAF,Rt△AEB入手.注:当直线形与圆结合时就产生错综复杂的图形,善于分析图形是解与圆相关综合题的关键,分析图形可从以下方面入手:(1)多视点观察图形.如本例从D点看可用切线长定理,从F点看可用切割线定理.(2)多元素分析图形.图中有没有特殊点、特殊线、特殊三角形、特殊四边形、全等三角形、相似三角形.(3)将以上分析组合,寻找联系.学力训练1.如图,PT是⊙O的切线,T为切点,PB是⊙O的割线,交⊙O于A、B两点,交弦CD于点M,已知CM=10,MD=2,PA=MB=4,则PT的长为.2.如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,则AC:BD= .3.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点F,若AB=CD=2,则CE= .4.如图,在△ABC中,∠C=90°,AB=10,AC=6,以AC为直径作圆与斜边交于点P,则BP的长为( )A.6.4 B.3.2 C .3.6 D.85.如图,⊙O 的弦AB 平分半径OC ,交OC 于P 点,已知PA 、PB 的长分别为方程024122=+-x x 的两根,则此圆的直径为( )A .28B .26C .24D .226.如图,⊙O 的直径Ab 垂直于弦CD ,垂足为H ,点P 是AC 上一点(点P 不与A 、C两点重合),连结PC 、PD 、PA 、AD ,点E 在AP 的延长线上,PD 与AB 交于点F ,给出下列四个结论:①CH 2=AH ·BH ;②AD =AC :③AD 2=DF ·DP ;④∠EPC=∠APD ,其中正确的个数是( )A .1B .2C .3D .47.如图,BC 是半圆的直径,O 为圆心,P 是BC 延长线上一点,PA 切半圆于点A ,AD ⊥BC 于点D .(1)若∠B=30°,问AB 与AP 是否相等?请说明理由; (2)求证:PD ·PO=PC ·PB ;(3)若BD :DC=4:l ,且BC =10,求PC 的长.8.如图,已知PA 切⊙O 于点A ,割线PBC 交⊙O 于点B 、C ,PD ⊥AB 于点D ,PD 、AO 的延长线相交于点E ,连CE 并延长交⊙O 于点F ,连AF . (1)求证:△PBD ∽△PEC ;(2)若AB=12,tan ∠EAF=32,求⊙O 的半径的长.⌒⌒⌒9.如图,已知AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,PF 分别交AB 、BC 于E 、D ,交⊙O 于F 、G ,且BE 、BD 恰哈好是关于x 的方程0)134(622=+++-m m x x (其中m 为实数)的两根.(1)求证:BE=BD ;(2)若GE ·EF=36,求∠A 的度数.10.如图,△ABC 中,∠C=90°,O 为AB 上一点,以O 为圆心,OB 为半径的圆与AB 相交于点E ,与AC 相切于点D ,已知AD=2,AE=1,那么BC= .11.如图,已知A 、B 、C 、D 在同一个圆上,BC=CD ,AC 与BD 交于E ,若AC=8,CD=4,且线段BE 、ED 为正整数,则BD= .12.如图,P 是半圆O 的直径BC 延长线上一点,PA 切半圆于点A ,AH ⊥BC 于H ,若PA=1,PB+PC=a (a >2),则PH=( )A .a2B .a 1C .2a D .3a 13.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长为( )A .21 B .215- C .23D .114.如图,已知AB 为⊙O 的直径,C 为⊙O 上一点,延长BC 至D ,使CD=BC ,CE ⊥AD 于E ,BE 交⊙O 于F ,AF 交CE 于P ,求证:PE=PC .15.已知:如图,ABCD 为正方形,以D 点为圆心,AD 为半径的圆弧与以BC 为直径的⊙O 相交于P 、C 两点,连结AC 、AP 、CP ,并延长CP 、AP 分别交AB 、BC 、⊙O 于E 、H 、F 三点,连结OF .(1)求证:△AEP ∽△CEA ;(2)判断线段AB 与OF 的位置关系,并证明你的结论; (3)求BH:HC16.如图,PA 、PB 是⊙O 的两条切线,PEC 是一条割线,D 是AB 与PC 的交点,若PE=2,CD=1,求DE 的长.17.如图,⊙O 的直径的长是关于x 的二次方程0)2(22=+-+k x k x (k 是整数)的最大整数根,P 是⊙O 外一点,过点P 作⊙O 的切线PA 和割线PBC ,其中A 为切点,点B 、C 是直线PBC 与⊙O 的交点,若PA 、PB 、PC 的长都是正整数,且PB 的长不是合数,求PA+PB+PC 的值.参考答案。
初中数学竞赛辅导讲义及习题解答第19讲转化灵活的圆中角
第十九讲转变灵巧的圆中角角是几何图形中最重要的元素,证明两直线地点关系、运用全等三角形法、相像三角形法都要波及角,而圆的特点,给予角极强的活性,使得角能灵巧地相互转变.依据圆心角与圆周角的倍半关系,可实现圆心角与圆周角的转变;由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的状况下,改变极点在圆上的地点进行研究;由圆内接四边形的对角互补和外角等于内对角,可将与圆有关的角相互联系起来.熟习以下基本图形、基本结论.注:依据极点、角的两边与圆的地点关系,我们定义了圆心角与圆周角,近似地,当角的顶点在圆外或圆内,我们能够定义圆外角与圆内角,这两类角分别与它们的所夹弧度数有如何的关系 ?读者可自行作一番商讨.【例题求解】【例 1】如图,直线AB 与⊙ O 订交于 A , B 再点,点O 在 AB 上,点 C 在⊙ O 上,且∠AOC = 40°,点 E 是直线 AB 上一个动点 (与点 O 不重合 ),直线 EC 交⊙ O 于另一点D,则使 DE=DO 的点正共有个.思路点拨在直线 AB 上使 DE=DO 的动点 E 与⊙ O 有如何的地点关系?分点 E 在 AB 上 (E 在⊙ O 内 )、在 BA 或 AB 的延伸线上 (E 点在⊙ O 外 )三种状况考虑,经过角度的计算,确立 E 点地点、存在的个数.注:弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促进与圆有关的角相互转变的基本方法.【例 2】如图,已知△ ABC 为等腰直角三形, D 为斜边 BC 的中点,经过点 A 、D 的⊙ O 与边AB 、AC 、BC 分别订交于点 E、F、M ,对于以下五个结论:①∠ FMC=45 °;② AE+AF=AB ;③ED BA;④ 2BM 2=BF × BA ;⑤四边形 AEMF 为矩形.此中正确结论的个数是EF BC()A.2 个B.3 个C.4 个D.5 个思路点拨充足运用与圆有关的角,找寻特别三角形、特别四边形、相像三角形,逐个考证.注:多重选择单项选择化是最近几年出现的一种新题型,解这种问题,需把条件重组与整合,发掘隐合条件,作深入的研究,方能作出小正确的选择.【例 3】如图,已知四边形ABCD 外接⊙ O 的半径为5,对角线AC 与 BD 的交点为E,且 AB 2=AE × AC , BD = 8,求△ ABD 的面积.思路点拨由条件出发,利用相像三角形、圆中角可推得 A 为弧 BD 中点,这是解本例的关键.【例 4】如图,已知AB 是⊙ O 的直径, C 是⊙ O 上的一点,连接AC,过点 C 作直线 CD ⊥AB 于 D(AD<DB) ,点 E 是 AB 上随意一点 (点 D、 B 除外 ),直线 CE 交⊙ O 于点 F,连接AF 与直线 CD 交于点 G.2(1) 求证: AC =AG ×AF ;(2)若点 E 是 AD( 点 A 除外 )上随意一点,上述结论能否仍旧建立?若建立.请画出图形并赐予证明;若不建立,请说明原因.思路点拨(1) 作出圆中常用协助线证明△ACG ∽△ AFC ;( 2)判断上述结论在 E 点运动的状况下能否建立,依题意正确画出图形是重点.注:结构直径上90°的圆周角,是解与圆有关问题的常用协助线,这样就为勾股定理的运用、相像三角形的判断创建了条件.【例 5】如图,圆内接六边形ABCDEF 知足 AB=CD=EF ,且对角线 AD 、BE、CF 订交于一点 Q,设 AD 与 CF 的交点为 P.QD AC CP AC 2.求证:( 1); (2)PE CE 2ED EC思路点拨解本例的重点在于运用与圆有关的角,能发现多对相像三角形.(1) 证明△ QDE∽△ ACF ;(2) 易证CPQC,经过其余三角形相像并联合(1) 把特别规问题PE DE的证明转变为惯例问题的证明.注:有些几何问题固然表面与圆没关,可是若能发现隐含的圆,特别是能发现共圆的四点,就能运用圆的丰富性质为解题服务,确立四点共圆的主要方法有:(1)利用圆的定义判断;(2)利用圆内接四边形性质的抗命题判断.学历训练1.一条弦把圆分红2: 3 两部分,那么这条弦所对的圆周角的度数为2.如图, AB 是⊙ O 的直径, C、D 、E 都是⊙ O 上的一点,则∠1+∠2=..3.如图,AF=3 ,则AB 是⊙ O 的直径,弦EF 的长为CD⊥AB , F 是.CG 的中点,延伸AF交⊙ O于 E, CF=2 ,4.如图,已知△ ABC 内接于⊙ O,AB+AC=12 AB 的长为x,用x的代数式表示y , y = 5.如图, ABCD 是⊙ O 的内接四边形,延伸∠BOD 等于 (),AD ⊥ BC 于 D ,AD = 3,设⊙ O 的半径为y,.BC 到 E,已知∠ BCD :∠ ECD= 3: 2,那么A .120°B . 136°C. 144°D. 150°6.如图,⊙ O 中,弦A.20°AD ∥ BC , DA=DC ,∠ AOC=160 °,则∠B. 30°C. 40° D . 50°BOC等于 ()7.如图, BC 为半圆 O 的直径, A 、D 为半圆 O 上两点, AB= 3 ,BC=2,则∠D的度数为()A . 60°B. 120°C.135°D. 150°8.如图,⊙ O 的直径 AB 垂直于弦 CD ,点 P 是弧 AC 上一点 (点 P 不与 A、 C 两点重合 ),连接PC、PD、PA、AD ,点 E 在 AP 的延伸线上, PD 与 AB 交于点 F.给出以下四个结论:2⌒ ⌒2①CH=AH × BH ;② AD=AC ;③ AD =DF × DP;④∠EPC=∠ APD ,此中正确的个数是 ()A .1B . 2C. 3D. 49.如图,已知 B 正是△ ABC 的外接圆 O 的直径, CD 是△ ABC 的高.(1) 求证: AC · BC=BE · CD;(2) 已知 CD=6 ,AD=3 , BD=8 ,求⊙ O 的直径 BE 的长.10.如图,已知AD是△ ABC外角∠ EAC的均分线,交BC的延伸线于点D,延伸DA交△ABC 的外接圆于点F,连接FB, FC.(1)求证: FB=FC ;(2)求证: FB2 =FAFD ;(3)若 AB 是△ ABC 的外接圆的直径,∠ EAC=120 °, BC=6cm ,求 AD 的长.11.如图, B 、C 是线段 AD 的两个三均分点,点除外 ),则 tan∠APB · tan∠ CPD=.P 是以BC为直径的圆周上的随意一点(B、C12.如图,在圆内接四边形ABCD 中, AB=AD ,∠ BAD=60 °, AC= a,则四边形ABCD 的面积为.13.如图,圆内接四边形ABCD 中,∠ A = 60°,∠ B = 90°, AD=3 ,CD=2 ,则 BC=.⌒14.如图, AB 是半圆的直径, D 是 AC 的中点,∠ B=40 °,则∠ A 等于 ()A . 60°B .50°C. 80°D. 70°15.如图,已知ABCD 是一个以AD 为直径的圆内接四边形,和 DC,它们订交于P,若∠ APD=60 °,则⊙ O 的面积为 (AB=5 ,PC=4,分别延伸)ABA . 25πB .16πC. 15π D . 13π(2001年绍兴市比赛题)16.如图, AD 是 Rt△ ABC 的斜边 BC 上的高, AB=AC ,过 A 、D 两点的圆与AB 、AC 分别订交于点E、F,弦 EF 与 AD 订交于点G,则图中与△ GDE 相像的三角形的个数为() A.5B.4C.3D.217.如图,已知四边形 ABCD 外接圆⊙ O 的半径为2,对角线 AC 与 BD 的交点为E,AE=EC ,AB= 2 AE,且BD=2 3 ,求四边形ABCD的面积.18.如图,已知ABCD 为⊙ O 的内接四边形,求证: (1) △ ABE ∽△ ACD ; (2)ABDC+ADE 是 BD 上的一点,且有∠·B C=AC ·BD.BAE= ∠ DAC .19.如图,已知 P 是⊙ O 直径 AB 延伸线上的一点,直线 PCD 交⊙ O 于 C、D 两点,弦 DF ⊥AB 于点 H, CF 交 AB 于点 E.(1) 求证: PA· PB=PO ·PE; (2) 若 DE ⊥ CF,∠ P=15 °,⊙ O 的半径为2,求弦 CF 的长.20 .如图,△ABC内接于⊙O , BC=4 , S△ABC=6 3,∠B为锐角,且对于x 的方程⌒x2 4x cos B 1 0 有两个相等的实数根, D 是劣弧 AC 上任一点 (点 D 不与点 A 、 C 重合 ), DE 均分∠ ADC ,交⊙ O 于点 E,交 AC 于点 F.(1)求∠ B 的度数;(2)求 CE 的长;(3) 求证: DA 、DC 的长是方程y 2DE y DE DF0 的两个实数根.参照答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九讲 转化灵活的圆中角
角是几何图形中最重要的元素,证明两直线位置关系、运用全等三角形法、相似三角形法都要涉及角,而圆的特征,赋予角极强的活性,使得角能灵活地互相转化.
根据圆心角与圆周角的倍半关系,可实现圆心角与圆周角的转化;由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的情况下,改变顶点在圆上的位置进行探索;由圆内接四边形的对角互补和外角等于内对角,可将与圆有关的角互相联系起来.
熟悉以下基本图形、基本结论.
注:根据顶点、角的两边与圆的位置关系,我们定义了圆心角与圆周角,类似地,当角的顶点在圆外或圆内,我们可以定义圆外角与圆内角,这两类角分别与它们的所夹弧度数有怎样的关系?读者可自行作一番探讨.
【例题求解】
【例1】 如图,直线AB 与⊙O 相交于A ,B 再点,点O 在AB 上,点C 在⊙O 上,且∠AOC =40°,点E 是直线AB 上一个动点(与点O 不重合),直线EC 交⊙O 于另一点D ,则使DE=DO 的点正共有 个.
思路点拨 在直线AB 上使DE=DO 的动点E 与⊙O 有怎样的位置关系?
分点E 在AB 上(E 在⊙O 内)、在BA 或AB 的延长线上(E 点在⊙O 外)三种情况考虑,通过角度的计算,确定E 点位置、存在的个数.
注: 弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促使与圆有关的角相互转化的基本方法.
【例2】 如图,已知△ABC 为等腰直角三形,D 为斜边BC 的中点,经过点A 、D 的⊙O 与边AB 、AC 、BC 分别相交于点E 、F 、M ,对于如下五个结论:①∠FMC=45°;②AE+AF =AB ;③BC
BA EF ED ;④2BM 2=BF ×BA ;⑤四边形AEMF 为矩形.其中正确结论的个数是( )
A .2个
B .3个
C .4个
D .5个
思路点拨 充分运用与圆有关的角,寻找特殊三角形、特殊四边形、相似三角形,逐一验证.
注:多重选择单选化是近年出现的一种新题型,解这类问题,需把条件重组与整合,挖掘隐合条件,作深入的探究,方能作出小正确的选择.
【例3】 如图,已知四边形ABCD 外接⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE ×AC ,BD =8,求△ABD 的面积.
思路点拨 由条件出发,利用相似三角形、圆中角可推得A 为弧BD 中点,这是解本例的关键.
【例4】 如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,连结AC ,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是AB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F ,连结AF 与直线CD 交于点G .
(1)求证:AC 2=AG ×AF ;
(2)若点E 是AD(点A 除外)上任意一点,上述结论是否仍然成立?若成立.请画出图形并给予证明;若不成立,请说明理由.
思路点拨 (1)作出圆中常用辅助线证明△ACG ∽△AFC ;
(2)判断上述结论在E 点运动的情况下是否成立,依题意准确画出图形是关键.
注:构造直径上90°的圆周角,是解与圆相关问题的常用辅助线,这样就为勾股定理的运用、相似三角形的判定创造了条件.
【例5】 如图,圆内接六边形ABCDEF 满足AB=CD=EF ,且对角线AD 、BE 、CF 相交于一点Q ,设AD 与CF 的交点为P .
求证:(1)EC AC ED QD =;(2)22CE AC PE CP =.
思路点拨 解本例的关键在于运用与圆相关的角,能发现多对相似三角形.
(1) 证明△QDE ∽△ACF ;(2)易证DE
QC PE CP =,通过其他三角形相似并结合(1)把非常规问题的证明转化为常规问题的证明.
注:有些几何问题虽然表面与圆无关,但是若能发现隐含的圆,尤其是能发现共圆的四点,就能运用圆的丰富性质为解题服务,确定四点共圆的主要方法有:
(1)利用圆的定义判定;
(2)利用圆内接四边形性质的逆命题判定.
学历训练
1.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为
.
2.如图,AB是⊙O的直径,C、D、E都是⊙O上的一点,则∠1+∠2= .
3.如图,AB是⊙O的直径,弦CD⊥AB,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长为.
4.如图,已知△ABC内接于⊙O,AB+AC=12,AD⊥BC于D,AD=3,设⊙O的半径为y,AB的长为x,用x的代数式表示y,y= .
5.如图,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD等于( )
A.120°B.136°C.144°D.150°
6.如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BOC等于( ) A.20°B.30°C.40°D.50°
7.如图,BC为半圆O的直径,A、D为半圆O上两点,AB=3,BC=2,则∠D的度数为
( )
A.60°B.120°C.135°D.150°
8.如图,⊙O的直径AB垂直于弦CD,点P是弧AC上一点(点P不与A、C两点重合),连结PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F.给出下列四个结论:①CH2=AH×BH;②AD=AC;③AD2=DF×DP;④∠EPC=∠APD,其中正确的个数是( )
A.1 B.2 C.3 D.4
9.如图,已知B正是△ABC的外接圆O的直径,CD是△ABC的高.
(1)求证:AC·BC=BE·CD;
(2)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.
⌒⌒
10.如图,已知AD是△ABC外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.
(1)求证:FB=FC;
(2)求证:FB2=FAFD;
(3)若AB是△ABC的外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.
11.如图,B、C是线段AD的两个三等分点,P是以BC为直径的圆周上的任意一点(B、C
点除外),则tan∠APB·tan∠CPD=
.
12.如图,在圆内接四边形ABCD中,AB=AD,∠BAD=60°,AC=a,则四边形ABCD 的面积为.
13.如图,圆内接四边形ABCD中,∠A=60°,∠B=90°,AD=3,CD=2,则BC= .
14.如图,AB是半圆的直径,D是AC的中点,∠B=40°,则∠A等于( ) A.60°B.50°C.80°D.70°
15.如图,已知ABCD是一个以AD为直径的圆内接四边形,AB=5,PC=4,分别延长AB 和DC,它们相交于P,若∠APD=60°,则⊙O的面积为( )
A.25πB.16πC.15πD.13π
(2001年绍兴市竞赛题)
16.如图,AD是Rt△ABC的斜边BC上的高,AB=AC,过A、D两点的圆与AB、AC分别相交于点E、F,弦EF与AD相交于点G,则图中与△GDE相似的三角形的个数为( ) A.5 B.4 C.3 D.2
17.如图,已知四边形ABCD外接圆⊙O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=2AE,且BD=3
2,求四边形ABCD的面积.
⌒
18.如图,已知ABCD 为⊙O 的内接四边形,E 是BD 上的一点,且有∠BAE=∠DAC . 求证:(1)△ABE ∽△ACD ;(2)ABDC+AD ·B C =AC ·BD .
19.如图,已知P 是⊙O 直径AB 延长线上的一点,直线PCD 交⊙O 于C 、D 两点,弦DF ⊥AB 于点H ,CF 交AB 于点E .
(1)求证:PA ·PB=PO ·PE ;(2)若DE ⊥CF ,∠P=15°,⊙O 的半径为2,求弦CF 的长.
20.如图,△ABC 内接于⊙O ,BC=4,S △ABC =
36
,∠B 为锐角,且关于x 的方程
01cos 42=+-B x x 有两个相等的实数根,D 是劣弧AC 上任一点(点D 不与点A 、C 重合),
DE 平分∠ADC ,交⊙O 于点E ,交AC 于点F .
(1)求∠B 的度数;
(2)求CE 的长;
(3)求证:DA 、DC 的长是方程02=⋅+⋅-DF DE y DE y 的两个实数根.
⌒
参考答案。