cotx三角函数单调区间
三角函数公式及图像大全
![三角函数公式及图像大全](https://img.taocdn.com/s3/m/c7c765a387c24028915fc3d9.png)
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscαcosα·secαtanα·cotα三角函数的性质函数y=sinx y=cosx y=tanx y=cotx定义域R R {x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在[2kπ+2π,2kπ+32π]上都是减函数(k∈Z)在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)在(kπ-2π,kπ+2π)内都是增函数(k∈Z)在(kπ,kπ+π)内都是减函数(k∈Z)反三角函数的图形反三角函数的性质名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinx(x∈〔-2π,2π〕的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosyy=tanx(x∈(-2π,2π)的反函数,叫做反正切函数,记作x=arctanyy=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于[-2π,2π]且正弦值等于x的角arccosx表示属于[0,π],且余弦值等于x的角arctanx表示属于(-2π,2π),且正切值等于x的角arccotx表示属于(0,π)且余切值等于x的角性质定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[-2π,2π][0,π](-2π,2π)(0,π)单调性在〔-1,1〕上是增函数在[-1,1]上是减函数在(-∞,+∞)上是增数在(-∞,+∞)上是减函数奇偶性arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotx周期性都不是同期函数恒等式sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[-2π,2π])cos(arccosx)=x(x∈[-1,1])arccos(cosx)=x(x∈[0,π])tan(arctanx)=x(x∈R)arctan(tanx)=x(x∈(-2π,2π))cot(arccotx)=x(x∈R)arccot(cotx)=x(x∈(0,π))互余恒等式arcsinx+arccosx=2π(x∈[-1,1])arctanx+arccotx=2π(X∈R)三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=tanAtanB -1tanBtanA +tan(A-B)=tanAtanB 1tanBtanA +-cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA 2-Sin2A=2SinA•CosACos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A =3sinA-4(sinA)3cos3A =4(cosA)3-3cosA tan3a =tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=AA cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba -sina-sinb=2cos 2b a +sin2ba -cosa+cosb =2cos 2b a +cos2ba -cosa-cosb =-2sin 2b a +sin2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb =-21[cos(a+b)-cos(a-b)]cosacosb =21[cos(a+b)+cos(a-b)]sinacosb =21[sin(a+b)+sin(a-b)]cosasinb =21[sin(a+b)-sin(a-b)]sin(-a)=-sina cos(-a)=cosa sin(2π-a)=cosa cos(2π-a)=sina sin(2π+a)=cosa cos(2π+a)=-sinasin(π-a)=sina cos(π-a)=-cosa sin(π+a)=-sina cos(π+a)=-cosatgA=tanA =aacos sin 万能公式sina=2)2(tan 12tan2aa +cosa=22)2(tan 1)2(tan 1aa+-tana=2)2(tan 12tan2aa -其它公式a•sina+b•cosa=)b (a 22+×sin(a+c)[其中tanc=a b ]a•sin(a)-b•cos(a)=)b (a 22+×cos(a-c)[其中tan(c)=b a ]1+sin(a)=(sin 2a +cos 2a )21-sin(a)=(sin 2a -cos 2a )2其他非重点三角函数csc(a)=asin 1sec(a)=a cos 1双曲函数sinh(a)=2e -e -aa cosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinαcos (2kπ+α)=cosαtan (2kπ+α)=tanαcot (2kπ+α)=cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)=cosαcos (2π+α)=-sinαtan (2π+α)=-cotαcot (2π+α)=-tanαsin (2π-α)=cosαcos (2π-α)=sinαtan (2π-α)=cotαcot (2π-α)=tanαsin (23π+α)=-cosαcos (23π+α)=sinαtan (23π+α)=-cotαcot (23π+α)=-tanαsin (23π-α)=-cosαcos (23π-α)=-sinαtan (23π-α)=cotαcot (23π-α)=tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+B•sin(ωt+φ)=)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有一个实根b2-4ac<0注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h--------------------------------------------------------------------------------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β),|m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。
三角函数知识点归纳总结高中
![三角函数知识点归纳总结高中](https://img.taocdn.com/s3/m/529a330f59fb770bf78a6529647d27284a733751.png)
三角函数知识点归纳总结高中在学习高中物理学的过程中,要掌握的内容非常多,其中最重要的就是三角函数知识点,它不仅涉及到数学计算知识,而且是在进行精确计算时必不可少的基础工具。
学习三角函数,不但需要不断地记忆、理解,更重要的是培养合理推理、对三角函数性质证明的能力。
一、三角函数基本(1)角度的弧度和度数。
弧度与角度之间的换算关系是:1度=1π/180弧度;(2)正弦、余弦、正切函数的定义:正弦函数(sin x)、余弦函数(cos x)和正切函数(tan x)别定义为:正弦函数指的是在一个直角三角形中,两直角边的比值所对应的弧长的比值,余弦函数指的是在一个直角三角形中,邻边与斜边的比值所对应的弧长的比值,而正切函数指的是在一个直角三角形中,斜边与邻边的比值所对应的弧长的比值。
(3)基本函数关系:根据正弦、余弦、正切函数的定义,可将已知任意函数中的一项函数求出,其他函数可由此得出,三角函数定义的基本关系式为:sin2x+cos2x=1; tanx=sinx/cosx; cotx=cosx/sinx。
(4)正弦函数的区间函数性质:正弦函数的值在区间[0,]内,分别为[0,1],区间[π, 2π]内,分别为[-1, 0],在区间[2π,3π]内,分别为[0,1],在区间[3π,4π]内,分别为[-1,0],在任一定区间内,正弦函数为有界函数,其值域在-1到1之间变化,所以可以说正弦函数是一个周期性函数,其周期间隔为π。
(5)余弦函数的区间函数性质:余弦函数的值在区间[0,]内,分别为[1, 0],区间[π, 2π]内,分别为[0, -1],在区间[2π,3π]内,分别为[-1, 0],在区间[3π,4π]内,分别为[0,1],在任一定区间内,余弦函数为有界函数,其值域在-1到1之间变化,所以可以说余弦函数也是一个周期性函数,其周期间隔为π。
(6)正切函数的值域特点:正切函数是三角函数中特殊的函数,不满足有界性,它的值域[-∞, +∞],所以正切函数不是有界函数,只有在所有小区间内,它的值仍然有界。
三角函数的单调性
![三角函数的单调性](https://img.taocdn.com/s3/m/5b318804de80d4d8d15a4f62.png)
三角函数的单调性1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,题型5:三角函数的单调性 1.求下列函数的单调区间.(1) ⎪⎭⎫ ⎝⎛-=324sin 21x y π (2) ⎪⎭⎫ ⎝⎛+-=4cos πx y解:(1).原函数变形为⎪⎭⎫⎝⎛--=432sin 21πx y 令432π-=x u ,则只需求u y sin =的单调区间即可.2243222sin πππππ+≤-=≤-=k x u k u y 在 ,(Z k ∈)上 即893833ππππ+≤≤-k x k ,(Z k ∈)上单调递增, u y sin =在)(,23243222Z k k x u k ∈+≤-=≤+πππππ,上 即)(,8213893Z k k x k ∈+≤≤+ππππ,上单调递减 故⎪⎭⎫ ⎝⎛-=324sin 21x y π的递减区间为:,893,833⎥⎦⎤⎢⎣⎡+-ππππk k ()k Z ∈ 递增区间为:)(,8213,893Z k k k ∈⎥⎦⎤⎢⎣⎡++πππ.(2)原函数的增减区间即是函数⎪⎭⎫ ⎝⎛+=4cos πx y 的减增区间,令4π+=x u由函数u y cos =的图象可知:周期π=T 且 u y cos =在,42ππππk x u k ≤+=≤-上,即Z k k x k ∈-≤≤-,443ππππ上递增, 在24ππππ+≤+=≤k x u k 即在Z k k x k ∈+≤≤-,44ππππ上递减故所求的递减区间为⎥⎦⎤⎢⎣⎡--4,43ππππk k ,递增区间为,44k k ππππ⎡⎤-+⎢⎥⎣⎦(Z k ∈) 2.函数y =2sin x的单调增区间是( ) A .[2k π-2π,2k π+2π](k ∈Z )B .[2k π+2π,2k π+23π](k ∈Z ) C .[2k π-π,2k π](k ∈Z ) D .[2k π,2k π+π](k ∈Z )解析:A ;函数y =2x为增函数,因此求函数y =2sin x的单调增区间即求函数y =sin x 的单调增区间。
完整版三角函数公式和图像大全
![完整版三角函数公式和图像大全](https://img.taocdn.com/s3/m/9f129cdd0b4c2e3f572763fd.png)
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sin α· csc αcos α· sec αtan α· cot α三角函数的性质函数y=sinx y=cosx y=tanx{x|x∈R 且定义域R R x ≠ k π+,k∈2Z }[-1,1]x=2kπ+时[ -1,1]x=2k π时2Ry max =1 y max =1值域无最大值x=2k π- 时 y min =-1 x=2k π +π时无最小值y min =-12周期性周期为 2π周期为 2π周期为π奇偶性奇函数偶函数奇函数在[ 2kπ- ,2k π+ ]在[ 2kπ-π,在(k π- ,2k π]上都是增2 2 2单调性上都是增函数;在函数;在[2kπ,kπ+)内都是[2kπ+ 2 2k π +π]上都是 2,2k π+π]2 3 减函数 (k ∈Z) 增函数 (k ∈ Z)上都是减函数 (k ∈Z) y=cotx{x|x∈R 且 x ≠ k π∈,kZ }R无最大值无最小值周期为π奇函数在(k π,kπ+π)内都是减函数(k ∈Z)反三角函数的图形反三角函数的性质名称反正弦函数y=sinx(x ∈〔- ,〕的反2 2函数,叫做反正定义弦函数,记作x=arsinyarcsinx 表示属于[- ,]2 2理解且正弦值等于 x的角定义域[-1, 1]值域[- ,]2 2 反余弦函数y=cosx(x ∈〔0, π〕)的反函数,叫做反余弦函数,记作x=arccosyarccosx 表示属于[ 0,π],且余弦值等于x的角[-1, 1][0,π]反正切函数y=tanx(x ∈(-,2)的反函数,叫2做反正切函数,记作x=arctanyarctanx 表示属于(- , ),且正切2 2值等于 x 的角(-∞,+∞)(-,)2 2反余切函数y=cotx(x ∈(0, π的))反函数,叫做反余切函数,记作x=arccotyarccotx 表示属于(0,π)且余切值等于 x 的角(-∞, +∞)(0,π)性单调性在〔 -1,1〕上是质增函数奇偶性arcsin(-x)=-arcsi nx周期性都不是同期函数sin(arcsinx)=x(x∈[ -1,恒等式1])arcsin(sinx)=x(x ∈[- , ])2 2互余恒等arcsinx+arccosx=式在[-1,1]上是减函数arccos(-x)=π-arccosxcos(arccosx)=x(x ∈[ -1,1])arccos(cosx)=x(x ∈[ 0, π])(x ∈[ -1,1])2在(-∞,+∞)上是增在 (-∞,+∞)上数是减函数arctan(-x)=-arcta arccot(- x)= π-anx rccotxtan(arctanx)=x(x cot(arccotx)=x∈ (x ∈R) R)arctan(tanx)=xarccot(cotx)=x ( x∈ (- , ))(x∈(0,π))2 2arctanx+arccotx=(X∈R)2三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanA tanBtan(A-B) =1- tanAtanB tanA tanBcot(A+B) =1 tanAtanBcotAcotB -1cot(A-B) =cotB cotA cotAcotB 1 cotB cotA倍角公式tan2A = 2tanA1 tan2 ASin2A=2SinA?CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式3sin3A = 3sinA-4(sinA) 3cos3A = 4(cosA) -3cosAtan3a = tana ·tan(+a)· tan(-a)33sin( A)=1 cosA 22cos( A)= 1 cosA2 2 tan( A)= 1 cosA 1 cosA 2cot( A )= 1cosA 21 cosAtan( A2)= 1cosA sin A =sin A1 cos A和差化积sina+sinb=2sina b cosab22 sina-sinb=2cosa bsinab2 2cosa+cosb = 2cosa bcosab2 2 cosa-cosb = -2sina bsinab22tana+tanb=sin(ab)cosa cosb积化和差1sinasinb = - [cos(a+b)-cos(a-b)]1cosacosb = [cos(a+b)+cos(a-b)]1 sinacosb = [sin(a+b)+sin(a-b)]1cosasinb =[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(-a) = cosa2 cos(-a) = sina2 sin(+a) = cosa 2cos( +a) = -sina2sin( -πa) = sinacos( π-a) = -cosasin( π +a)-sina=cos( π +a) -=cosasin atgA=tanA =全能公式2tanasina=2 1 (tan a) 221 (tan a) 2cosa=21 (tan a)2 22tanatana=21 (tan a)2 2a?sina+b?cosa= (a 2 b 2) × sin(a+c) [其中 tanc= b]aa?sin(a)-b?cos(a) = (a2b 2) ×cos(a-c) [其中 tan(c)= a]b1+sin(a) =(sin a+cos a)22 2 1-sin(a) = (sin a-cos a)222其他非重点三角函数csc(a) =1sec(a) =sin a 1cos a双曲函数sinh(a)= e a - e -a 2cosh(a)=e ae -a2sinh( a) tg h(a)=cosh(a)公式一设 α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)= sin α cos (2k π+ α) = cos α tan (2k π+α)= tan αcot (2k π+α)= cot α设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sin αcos(π+α)= -cos αtan(π+α)= tan αcot(π+α)= cot α公式三任意角α与 -α的三角函数值之间的关系:sin(-α) = -sin αcos(-α) = cos αtan(-α) = -tan αcot(-α) = -cot α公式四利用公式二和公式三可以获取π-α与α的三角函数值之间的关系:sin(π-α)= sin αcos(π-α)= -cos αtan(π-α)= -tan αcot(π-α)= -cot α公式五利用公式 -和公式三可以获取2π-α与α的三角函数值之间的关系:sin(2π-α)= -sin αcos(2π-α)= cos αtan(2π-α)= -tan αcot(2π-α)= -cot α±α及3±α与 α的三角函数值之间的关系:22sin ( +α)= cos α 2cos ( +α)= -sin α2tan ( +α)= -cot α2cot ( +α)= -tan α2sin ( -α)= cos α2cos ( -α)= sin α2tan ( -α)= cot α2cot ( -α)= tan α 2sin (3+α)= -cos α2cos ( 3+α)= sin α2tan (3+α)= -cot α2cot ( 3+α)= -tan α2sin (3-α) = -cos α2cos ( 3-α)= -sin α2tan (3-α) = cot α2cot (3-α) = tan α2(以上 k ∈ Z)这个物理常用公式我费了半天的劲才输进来 ,希望对大家适用A?sin( ω t+ θ )+ B?sin( 22ω t+A φ )B = 2AB cos() × sintarcsin[(As in Bsin ) A 2 B 2 2 AB cos( )三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b| ≤ |a|+|b||a-b| ≤ |a|+|b||a| ≤ b<=>-≤ a≤ b|a-b| ≥ |a||b|--|a| ≤ a≤ |a|一元二次方程的解-b+√ (b2-4ac)/2a -b-b+√ (b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理鉴识式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)= √-((1cosA)/2) sin(A/2)=- √ ((1-cosA)/2)cos(A/2)= √ ((1+cosA)/2) cos(A/2)=-√ ((1+cosA)/2)tan(A/2)=√-cosA)/((1+cosA)) tan(A/2)=-√ ((1-cosA)/((1+cosA))ctg(A/2)=√ ((1+cosA)/((1-cosA)) ctg(A/2)=-√ ((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前 n 项和1+2+3+4+5+6+7+8+9+⋯ +n=n(n+1)/21+3+5+7+9+11+13+15+⋯ +(2n-1)=n22+4+6+8+10+12+14+⋯ +(2n)=n(n+1)12+22+32+42+52+62+72+82+⋯ +n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+⋯ n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+ ⋯ +n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中 R 表示三角形的外接半径余弦定理b2=a2+c2-2accosB注:角 B 是 a 和 c 的角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}的准方程(x-a)2+(y-b)2=r2 注:( a,b)是心坐的一般方程x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0抛物准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra 是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中 ,S'是直截面面积,L 是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。
(完整版)三角函数知识点总结
![(完整版)三角函数知识点总结](https://img.taocdn.com/s3/m/077d24e25a8102d276a22fe9.png)
1. ①与 ②终边在 ③终边在 04. 三 角函数 知识要 点0°≤ <360°)终边相同的角的集合(角 与角x 轴上的角的集合: y 轴上的角的集合: ④终边在坐标轴上的角的集合:⑤终边在 y=x 轴上的角的集合: yk 180 ,k Z32sinxsinx4 1 k 180 90 ,k Z cosxcosxxk 90 ,k Zcosx cosx 14sinx sinx k 180 45 ,k Z23的终边重合) :| | | | k 180 45 ,k Z4表示第一、四象限一半所在区域 | k 360 ,k ZSIN COS 三角函数值大小关系图1、 2、3、 4表示第一、二、三、 ⑦若角 与角 的终边关于 x 轴对称,则角 与角 的关系: 360 k ⑧若角 与角 的终边关于 y 轴对称,则角 与角 的关系: 360 k 180⑨若角 与角 的终边在一条直线上,则角 与角 的关系: 180 k⑩角 与角 的终边互相垂直,则角 与角 的关系 : 360 k 90 x 轴上的角的集合: ⑥终边在 y |1° =0.01745 1=57.30 180°= 2. 角度与弧度的互换关系: 注意:正角的弧度数为正数, 360°=2 负角的弧度数为负数,零角的弧度数为零 =57° 18′ 、弧度与角度互换公式:1rad = 180 °≈ 57.30°=57°18ˊ. 1° ≈ 0.01745rad )3、弧长公式: l | r .4、三角函数:设 是 个任意角,在 1扇形面积公式: s扇形1lr 2|r12|180原点的)一点 x,y ) P 与原点的距离为 cot x ; y sec r ; x 5、三角函数在各象限的符号: 正弦、余割 y + o +x 余弦、正割 6、三角函数线 正弦线: MP; 余弦线: r , cscOMyx的终边上任取(异于9、诱导公式:k把 的三角函数化为 的三角函数,概括为:2奇变偶不变,符号看象限” 三角函数的公式: (一)基本关系sin( x) sinx sin(2 x) sinx sin( x) sinx cos( x)cosxcos(2 x) cosx cos( x) cosx tan( x) tanx tan(2 x) tanx tan( x) tanx cot(x) cot xcot(2x)cotxcot( x)cot x(二) 角与角之间的互换公式组一公式组二cos( )cos cos sin sin sin22sin coscos( )cos cos sin sin cos2 cos22 2 2 sin22cos 21 1 2sin 2sin()sin coscos sintan2 2tan 1 tan 2sin( )sin coscos sin sin21 cos7. 三角函数的定义域:8、同角三角函数的基本关系式:sintancos cotsincossinx ·cscx=1tanx=sin x cos x22sin x+cos x=1cosx 22cosx · secx=1x=1+tan x =secxsin xtanx ·cotx=1221+cot x=csc x公式组四公式组五公式组二公式组三sin(2k x) sinx sin( x) sinx cos(2kx) cosx cos( x) cosxtan(2k x) tanx tan( x) tanx cot(2kx) cotxcot( x)cotxtan(tan tan1 tan tancos21 cos公式组一公式组六10.tan(tan tan 1 cossin1 cos 1 tan tansin cossin2tan2 cos sintan 221 cos cos cos1 tan2 2 sin sin1tan22sin sinsinsin2tantan2cos cos1tan 22coscos sin15 cos75 6 24,sin 75 cos15sin 2 sin1 cos(1 sinsin2 21 1 coscossin(2 21 1tan(1 cos 2cos2 2sincos(1222 2cos2sin 1 tan(222coscos2 212sin 2 sin 2sin(2 公式组五) sin ) cos ) cot ) sin ) cot) cos cot15 2 3.公式组三 公式组四1 tan2 1 cos 1 cossin6 2 , tan15 cot 75 2 3 , tan754注意:① y sin x与y sinx 的单调性正好相反;y f (x)在[a,b] 上递增(减),则y y cosx与y cosx 的单调性也同样相反.一般地,若f(x)在[a,b] 上递减(增).②y sin x与y cosx 的周期是y sin( x ) 或y cos( x )(0 )的周期T 2tan x2的周期为 2 (T T sin( x )的对称轴方程是k Z ),对称中心(k cos2x 原点对称cos( 2x),如图,翻折无效)2(k Z ),,0);y tan( x12cos2x⑤当tan ·tan 1, k 2 (k Z) ;tan ·tan 对称中心(k ,0);y cos( x )的对称轴方程是)的对称中心k2 ,0).1, 2 (k Z).⑥ y cosx 与y sin 2k是同一函数, 而y (2 )是偶函数,y ( x ) sin( xk 1 ) cos( x).2⑦函数y tanx在R 上为增函数.(×)[只能在某个单调区间单调递增. 若在整个定义域,y tanx 为增函数,同样也是错误的].⑧定义域关于原点对称是f(x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f( x)奇偶性的单调性:奇同偶反. 例如:y tan x是奇函数,yf (x),奇函数:f( x) f (x))1)是非奇非偶.(定义域不关于原点3tan(x对称)奇函数特有性质:若0 x 的定义域,则f (x)一定有 f (0) 0.( 0x 的定义域,则无此性质)⑨ y sinx 不是周期函数;y sinx 为周期函数(T);x1/2cosx 是周期函数(如图);y cosx 为周期函数();y= cos|x| 图象cos2x 1的周期为2y=| cos2x+1/2| 图象如图),并非所有周期函数都有最小正周期,例如:f (x) 5 f (x k),k R.22y acos bsin a b sin( ) cos b有a2b2y .a11、三角函数图象的作法:1)、几何法:2)、描点法及其特例五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线)3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等. 函数 y = Asin (ω x + φ)的振幅 |A| ,周期 T 2 ,频率 fT| | f 时的相位) .(当 A >0,ω> 0 时以上公式可去绝对值符号) , 由 y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当的|A|倍,得到 y =Asinx 的图象,叫做 振幅变换 或叫沿 y 轴的伸缩变换. (用 y/A 替换 y )由 y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长( 0< |ω |< 1)或缩短( |ω |>1)到原来的 |1 |倍,得到 y = sin ω x 的图象,叫做 周期变换 或叫做沿 x 轴的伸缩变换. (用ω x 替换 x )由 y = sinx 的图象上所有的点向左(当 φ> 0)或向右(当 φ< 0)平行移动| φ|个单位,得到 y =sin ( x + φ)的图象,叫做 相位变换 或叫做沿 x 轴方向的平移. (用 x +φ替换 x )由 y =sinx 的图象上所有的点向上(当 b > 0)或向下(当 b < 0)平行移动| b |个单位,得到 y =sinx +b 的图象叫做沿 y 轴方向的平移. (用 y+(-b )替换 y )由 y =sinx 的图象利用图象变换作函数 y = Asin (ω x + φ)( A > 0,ω> 0)( x ∈ R )的图象,要特别注 意:当周期变换和相位变换的先后顺序不同时,原图象延 x 轴量伸缩量的区别。
三角函数实用图像
![三角函数实用图像](https://img.taocdn.com/s3/m/f246a34da45177232f60a297.png)
六个三角函数值在每个象限的符号:
sinα·cscα 三角函数的图像和性质:
cosα·secα
tanα·cotα
y=sinx
-4 -7 -3 2 -5 2 -2 -3 - 2 -
y
2
1 o -1 y
2
3 2 2 5 2 3
7 2 4
x
y=cosx
arccotx 反正切函数 y=tanx(x∈(-
)的反函数,叫 2
做反正切函数, 记作 x=arctany arctanx 表示属于
, 2
反余切函数 y=cotx(x∈(0,π)) 的反函数,叫做 反余切函数,记 作 x=arccoty
理解
[- , ] 2 2
定义域 值域
(0, π)且余切值等 (- , ), 且正切值 于 x 的角 2 2 等于 x 的角 (-∞,+∞) (-∞,+∞) (0,π) 在(-∞,+∞)上是 减函数 arccot(-x)=π-arc cotx cot(arccotx)=x(x ∈R) arccot(cotx)=x(x ∈(0,π))
tan(arctanx)=x(x∈ R)arctan(tanx)=x (x∈(-
恒等式
, ]) 2 2
, )) 2 2
互余恒等式
arcsinx+arccosx=
(x∈[-1,1]) 2
arctanx+arccotx=
(X∈R) 2
2 / 3
反三角函数其他公式
arcsin(-x)=-arcsinx ; arccos(-x)=π-arccosx ; arctan(-x)=-arctanx ; arccot(-x)=π-arccotx ; arcsinx+arccosx=π/2=arctanx+arccotx; sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x ; 当 x∈[-π/2, π/2] 有 arcsin(sinx)=x ; x∈[0,π], arccos(cosx)=x ; x∈(-π/2, π/2), arctan(tanx)=x ; x∈(0, π), arccot(cotx)=x ;
三角函数的单调区间
![三角函数的单调区间](https://img.taocdn.com/s3/m/341854ce6137ee06eff9181a.png)
三角函数的图像及性质1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
4.对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。
类型一:三角函数的定义域、单调性及值域 例题1.求下列函数的定义域:(5)y =例题2.求下列函数的单调增区间(1)sin(21)y x =+;(2)sin(2)y x =-;(3)12log sin y x =;(4)12log tan y x =例题3.(2010重庆文)下列函数中,周期为π,且在[,]42ππ上为减函数的是(A )sin(2)2y x π=+ (B )cos(2)2y x π=+ (C )sin()2y x π=+(D )cos()2y x π=+ 例题4.(12全国理) 已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
三角函数之正切与余切
![三角函数之正切与余切](https://img.taocdn.com/s3/m/d599f535f02d2af90242a8956bec0975f465a4f2.png)
三角函数之正切与余切三角函数是数学中非常重要的概念,它们在几何学、物理学、工程学等领域都有广泛的应用。
其中,正切和余切是三角函数中的两个重要概念。
本文将深入探讨正切和余切的定义、性质以及应用。
一、正切的定义与性质1.1 正切的定义在直角三角形中,正切是指一个角的对边与邻边的比值。
设直角三角形中的一个角为θ,邻边长度为a,对边长度为b,则正切的定义为tanθ = b/a。
1.2 正切的周期性正切函数是一个周期函数,其周期为π。
也就是说,对于任意实数x,有tan(x + π) = tanx。
这一性质使得正切函数在数学和物理问题中有着广泛的应用。
1.3 正切的图像与性质通过绘制正切函数的图像,我们可以发现以下性质:- 正切函数在每个周期内都是单调递增的。
- 当角θ接近90°或270°时,正切函数的值趋于无穷大。
- 正切函数在0°和180°之间的值为负数,而在180°和360°之间的值为正数。
二、余切的定义与性质2.1 余切的定义余切是正切的倒数,即cotθ = 1/tanθ。
它表示一个角的邻边与对边的比值。
2.2 余切的周期性与正切函数类似,余切函数也是一个周期函数,其周期也为π。
对于任意实数x,有cot(x + π) = cotx。
2.3 余切的图像与性质余切函数的图像与正切函数的图像相似,但是在0°和180°之间的值为正数,而在180°和360°之间的值为负数。
余切函数在每个周期内都是单调递减的。
三、正切与余切的应用3.1 几何学中的应用正切和余切在几何学中有着广泛的应用。
例如,在解决三角形的边长和角度问题时,可以利用正切和余切的关系来求解未知量。
此外,正切和余切还可以用于计算两条直线的斜率。
3.2 物理学中的应用在物理学中,正切和余切的应用非常广泛。
例如,在力学中,可以利用正切和余切来计算物体在斜面上的受力情况。
高中数学三角函数知识点总结实用版
![高中数学三角函数知识点总结实用版](https://img.taocdn.com/s3/m/c09aa70b1a37f111f0855bac.png)
到原来的 |A|倍,得到 y= Asinx 的图象, 叫做振幅变换或叫沿 y 轴的伸缩变换. (用 y/A 替换
y) 由 y= sinx 的图象上的点的纵坐标保持不变,横坐标伸长( 原来的 |1|倍,得到 y=sin ω x的图象,叫做周期变换或叫做沿
0< | ω<|1)或缩短( | ω>|1)到 x 轴的伸缩变换. (用 ωx
替换 x)
由 y= sinx 的图象上所有的点向左(当 φ> 0)或向右(当 φ< 0)平行移动| φ|个单位,得
到 y= sin( x+ φ)的图象,叫做相位变换或叫做沿 x 轴方向的平移. (用 x+ φ替换 x)
由 y= sinx 的图象上所有的点向上(当 b>0)或向下(当 b< 0)平行移动| b|个单位,得
y tanx 为增函数,同样也是错误的 ].
⑧定义域关于原点对称是 f(x) 具有奇偶性的必要不充分条件 .( 奇偶性的两个条件: 一是定义
域关于原点对称(奇偶都要) ,二是满足奇偶性条件,偶函数:
f( x) f(x) ,奇函数:
f( x) f(x) ) 1 奇偶性的单调性:奇同偶反
. 例如: y tanx 是奇函数, y tan(x
到 y= sinx+ b 的图象叫做沿 y 轴方向的平移. (用 y+(-b) 替换 y)
由 y= sinx 的图象利用图象变换作函数 y= Asin ( ωx+ φ)( A> 0, ω> 0)(x∈ R)的图象,
要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延
x 轴量伸缩量的区别。
4、反三角函数: 函数 y= sinx,
cos cos cot sin 8、同角三角函数的基本关系式: sin tan
cos 1 tan cot 1 csc sin 1 sec
三角函数图像公式大全
![三角函数图像公式大全](https://img.taocdn.com/s3/m/3d6febdd58fafab068dc0221.png)
幂函数的图形指数函数的图形对数函数的图形数的图形三角函各三角函数值在各象限的符号cosα·secαtanα·cotαsinα·cscα三角函数的性质函数y=cosxy=sinx y=tanx y=cotx且R{x|x∈|xx∈R 且{定义域RR Z}x≠kπ,k∈Z,k∈}x≠kπ+ 2[-1,1]Rπ+x=2k 时[-1,1]R时=1y x=2kπ2max无最大值无最大值值域y x=2k π+π时=-1y=1minmax无最小值无最小值时y=-1x=2kπ-min2周期性周期为2π周期为ππ周期为周期为2π奇函数奇函数奇偶性偶函数奇函数.在[2kπ-π,2kπ]上都是在(kπ,kπ+π)内都],2kπ+在(kπ-,kπ+)内都2kπ-在[增函数;在是减函数(k∈Z)2222[2kπ,2kπ+π]上都是上都是增函数;在是增函数(k∈Z)单调性减函数(k∈Z)2]上,2k π+π[2kπ+32(k∈Z)都是减函数反三角函数的图形反三角函数的性质反余切函反正弦函反余弦函反正切函名称y=cotx((0,π)y=cosx(∈0),-y=tanx(x∈(-y=sinx(x∈〔,反函数,叫做反余的反函数,叫做反2222 切函数,记作余弦函数,记作〕的反函数,叫做反的反函数,叫做反正切定义正弦函数,记作x=arccotyx=arccosyx=arctany函数,记作x=arsiny表示属于arccotx arccosx 表示属于表示属于[-arcsinx , 表示属于(-arctanx(0,π)且余切值等于2π],且余弦,[0],的角x 的角x 值等于22 理解x),且正切值等于的角且正弦值等于x2的角定义域+∞),[-1,1](-∞,1]∞(-,+∞)[-1值域π)(0],[0,π)(-,[-,] 2 22 2性上是增数,+∞)在(-∞1〕上是增函+∞)上是减1]上是减,在[-1,在〔-1,(-在∞单调性质函数函数数arctan(-x)=-arctanxarccot(-x)=πarcsin(-x)=-arcsinxπarccos(-x)=-arccotx-奇偶性arccosx都不是同期函数周期性.cos(arccosx)R∈tan(arctanx)=x(x∈[∈-R)arcsin(arcsinx)=x(xcot(arccotx)=x(x) ∈[)-1,1]=x(x ]11,)arcsin(sinx) 2arccos(cosx) (0∈arccot(cotx)=x(x恒等式)∈[]-=x(x,,(- tan(tanx)=x(x∈,π))2 2)=x(x∈[0,π]))2互余恒等式R)arcsinx+arccosx=(x∈[-1,1])arctanx+arccotx=(X∈22公式三角函数A1 cos A)=tan(A cos12式和公两角sinAcosB+cosAsinB sin(A+B) =A cos 1A sinAcosB-cosAsinB =sin(A-B))=cot(A1 cos2cosAcosB-sinAsinB=cos(A+B) A sin A 1cos A cosAcosB+sinAsinB= cos(A-B) =)= tan( tanBtanA tan(A+B) =A A 1 cos2 sin tanAtanB 1- 和差化积tanB tanA= tan(A-B)b aa b tanAtanB 1cossina+sinb=2sin1-cotAcotB 2 2 cot(A+B) =b b a a cotAcotB sin sina-sinb=2cos1 cotAcotB2 2 a= cot(A-B)ba b cotA cotB cos2cos cosa+cosb = 2 2b a 公倍角式ab sincosa-cosb = -2sin 2tanA22 = tan2A2)b sin( a A 1tan tana+tanb=Sin2A=2SinA?CosA b coscos a22 2 2 A-1=1-2sin A Cos Cos2A= A-Sin A=2Cos积化和差式公角三倍1[cos(a+b)-cos(a-b)]sinasinb = - 32 3sinA-4(sinA)sin3A = 31 -3cosA 4(cosA)cos3A =[cos(a+b)+cos(a-b)]= cosacosb 2-a)tan(tan( ··+a)tana= tan3a133[sin(a+b)+sin(a-b)] sinacosb =21公半角式[sin(a+b)-sin(a-b)]cosasinb =2A1cos A)=sin( 12式公诱导A1cos A)=cos( -sina sin(-a) =12cosa=cos(-a)a a2-cos )1-sin(a) = (sin cosa -a) sin( =22 2 sina-a) cos( = 2其他非重点三角函数1= csc(a)cosa sin( =+a)sin a21= sec(a)= -sina+a) cos( cos a2sina πsin(-a) =。
高中数学三角函数知识点总结实用版
![高中数学三角函数知识点总结实用版](https://img.taocdn.com/s3/m/f77e65c1b8f3f90f76c66137ee06eff9aef849c3.png)
三角函数1. ① 与(0°≤<360°)终边相同的角的集合(角与 角|k 360, k Z②终边在 x 轴上的角的集合:|k 180 , kZ4cosx ③终边在 y 轴上的角的集合:|k 18090 , k Zcosx④终边在坐标轴上的角的集合:|k 90 , k Z1的终边重合):▲y32sinxsinx1cosxxcosx4sinxsinx 23⑤终边在 y=x 轴上的角的集合: |k 18045 , k Z⑥终边在 yx 轴上的角的集合:|k 18045 , kZSIN COS 三角函数值大小关系图1、 2、 3、 4表示第一、二、三、 四象限一半所在区域⑦若角 与角 的终边关于 x 轴对称,则角 与角 的关系: 360 k ⑧若角 与角 的终边关于 y 轴对称,则角 与角 的关系: 360 k 180 ⑨若角 与角 的终边在一条直线上,则角 与角的关系:180 k⑩角与角的终边互相垂直,则角与角的关系:360 k902. 角度与弧度的互换关系: 360 °=2 180 °= 1° =0.01745 1=57.30 ° =57 ° 18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 、弧度与角度互换公式:1rad =180°≈ 57.30°=57 ° 18ˊ.3、弧长公式:l|| r .s 扇形1 扇形面积公式: lr24、三角函数:设 是一个任意角,在的终边上任取(异于原点的)一点P (x,y ) P 与原点的距离为 r ,则siny ;rcos x ; tan y;cotx ; secr;.cscr .rxyxy5、三角函数在各象限的符号: (一全二正弦,三切四余弦)yy y + + - + -+ox o + xox-- --+正弦、余割 余弦、正割正切、余切.1°=≈0.01745( rad ) 1801 | | r2 2ya 的终边P ( x,y )roxy T POMA x16. 几个重要结论:6、三角函数线(1)y(2) y|sinx|>|cosx|正弦线: MP;余弦线: OM;正切线: AT.sinx>cosx|cosx|>|sinx||cosx|>|sinx|Ox xOcosx>sinx|sinx|>|cosx|(3) 若 o<x<2 ,则sinx<x<tanx7.三角函数的定义域:三角函数f ( x) sinxf ( x)cosxf ( x)tanxf ( x) cotxf ( x)secxf ( x)cscx8、同角三角函数的基本关系式:tan cot1 csc sin1sin 2cos21sec2tan2定义域x | x Rx | x Rx | x R且 x k1, k Z2x | xR且x k, k Zx | x R且 x k1, k Z2x | xR且x k, k Zsintancoscotcos sinsec cos11csc2cot 219、诱导公式:把k的三角函数化为的三角函数,概括为:2“奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组一公式组二公式组三sinx·cscx=1sin x22sin(2k x)sin x sin(x)sin xtanx=sin x+cos x=1cos x cos(2k x)cos x cos(x)cosxx= cos xcosx· secx=11+tan2 x =sec2 x tan(2k x)tan x tan(x)tan x sin xcot(2k x)cot x cot(x)cot x tanx·cotx=11+cot2 x=csc2x公式组四公式组五公式组六sin(x)sin x sin(2x)sin x sin(x)sin xcos(x)cos x cos(2x)cosx cos(x)cos xtan(x)tan x tan(2x)tan x tan(x)tan xcot(x)cot x cot(2x)cot x cot(x)cot x(二)角与角之间的互换公式组一公式组二cos()cos cos sin sin sin 22sin coscos()cos cos sin sin cos 2cos2sin2 2 cos2 1 1 2 sin2sin()sin cos cos sin tan22 tan 1tan 2sin()sin cos cos sin sin1cos22tan()tan tancos1cos 1 tan tan22tan(tantantan1 cossin1 cos)tan tan1 cos1 cossin12公式组三公式组四公式组五2 tansin cos1sinsin1) sin22cos(sin22cos sin1sinsinsin(11 tan) cos22cos cos1coscos2tan(11 tan 222) cotcossin sin1cos2tan2cos121 )sin2sin sin 2 sincoscos(2222 tansinsin2 cossin1 )cottan(tan22222cos cos 2 coscos11tan22 2sin() coscoscos2sin2 sin22sin 15 cos 7562, , tan 15 cot 7523,.tan 75 cot15234sin 75cos156 2410. 正弦、余弦、正切、余切函数的图象的性质:y sin xycosxytan xy cot x定义域RRx | x R 且xk1,kZx | x R 且 x k , k Z2值域 [ 1, 1] [ 1, 1]RR周期性22奇偶性奇函数偶函数奇函数奇函数[2k , [ 2k 1 , ;k , k k , k 1 上为减函 22k ]22数( kZ )2k ]上为增函 上 为 增 函 数2 数( k Z )上为增函 [ 2k ,数 ; 2k1 ]单调性[ 2k ,上为减函数232k ]( k Z )2上为减函数( k Z )y A sin x( A 、 >0)RA, A2当 0, 非奇非偶 当0, 奇函数2k2( A),1 2k2( A)上为增函数;2k2( A),32k2( A)上 为减函数( k Z )注意:① y sin x 与 y sin x 的单调性正好相反;y cosx 与 y cos x 的单调性也同样相反.一般地,若 y f ( x) 在 [a, b] 上递增(减),则 y f ( x) 在 [ a, b] 上递减(增) .▲ycosx 的周期是.② y sin x 与y③ y sin(x) 或 y cos( x) (0)的周期T 2.xx Oy的周期为 2(T T2,如图,翻折无效) . tan2④ y sin(x) 的对称轴方程是x k2( k Z ),对称中心( k,0); y cos( x) 的对称轴方程是x k ( k Z ),对称中心(k1,0);y tan( x) 的对称中心(k,0 ).22 y cos 2x原点对称y cos( 2 x )cos 2 x⑤当tan·1,k(k Z); tan·tan1,k( k Z ) .22⑥ y cos x 与y sin x2k是同一函数 ,而 y( x) 是偶函数,则2y ( x)sin(x k 1 )cos(x) .2⑦函数 y tan x 在R上为增函数.(×)[只能在某个单调区间单调递增. 若在整个定义域,y tan x为增函数,同样也是错误的].⑧定义域关于原点对称是 f ( x) 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数: f ( x) f ( x) ,奇函数:f ( x) f (x) )奇偶性的单调性:奇同偶反. 例如:y tan x 是奇函数,y tan( x 1)是非奇非偶 .(定3义域不关于原点对称)奇函数特有性质:若 0x 的定义域,则 f (x) 一定有f (0)0.(0x 的定义域,则无此性质)▲▲y sin x为周期函数( T y y⑨ y sin x 不是周期函数;);x1/2xy= cos|x| 图象y=|cos2x+1/2|图象ycos x 是周期函数(如图) ;y cos x 为周期函数(T );ycos 2x 1的周期为(如图),并非所有周期函数都有最小正周期,例如:2y f ( x) 5 f ( x k ), k R .⑩ y a cosb sina 2b 2sin()cosb有a 2 b 2y .a11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例 —— 五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线) .3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数 y = Asin (ω x +φ)的振幅 |A| ,周期T2,频率1 | |,相位 x; 初相| | f2T(即当 x =0 时的相位).(当 A > 0,ω> 0 时以上公式可去绝对值符号) ,由 y = sinx 的图象上的点的横坐标保持不变,纵坐标伸长 (当 |A|> 1)或缩短(当 0< |A|<1)到原来的 |A|倍,得到 y = Asinx 的图象, 叫做 振幅变换 或叫沿 y 轴的伸缩变换.(用 y/A替换 y )由 y = sinx 的图象上的点的纵坐标保持不变, 横坐标伸长 ( 0< |ω |< 1)或缩短( |ω |> 1)到原来的| 1 倍,得到 y = sin ω x 的图象,叫做 周期变换 或叫做沿 x 轴的伸缩变换. (用ω x|替换 x)由 y = sinx 的图象上所有的点向左 (当φ> 0)或向右(当φ< 0)平行移动|φ|个单位,得到 y = sin ( x +φ)的图象,叫做相位变换 或叫做沿 x 轴方向的平移. (用 x +φ替换 x)由 y = sinx 的图象上所有的点向上 (当 b > 0)或向下(当 b < 0)平行移动| b |个单位,得到 y = sinx + b 的图象叫做沿 y 轴方向的平移. (用 y+(-b) 替换 y )由 y = sinx 的图象利用图象变换作函数y = Asin (ω x +φ)( A > 0,ω> 0)( x ∈ R )的图象, 要特别注意: 当周期变换和相位变换的先后顺序不同时, 原图象延 x 轴量伸缩量的区别。
六种三角函数性质
![六种三角函数性质](https://img.taocdn.com/s3/m/961aed19dd36a32d737581d8.png)
六种三角函数性质、公式三角函数包括。
它包含六种基本函数:正弦、余弦、正切、余切、正割、余割1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx.反三角函数:arcsinx arccosxarctanx arccotx函数y=sinx y=cosx y=tanx y=cotx定义域R R {x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数在(kπ-2π,在(kπ,kπ+π)内都是减函数(k∈Z)y=secx的性质:(1)定义域,{x|x≠π/2+kπ,k∈Z}(2)值域,|secx|≥1.即secx≥1或secx≤-1;(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.(5)正割与余弦互为倒数;余割与正弦互为倒数;(6)正割函数无限趋于直线x=π/2+Kπ;(7) 正割函数是无界函数;(8)正割函数的导数:(secx)′=secx×tarx;(9正割函数的不定积分:∫secxdx=ln∣secx+tanx∣+Cy=cscx的性1、定义域:{x|x≠kπ,k∈Z}2、值域:{y|y≤-1或y≥1}3、奇偶性:奇函数4、周期性:最小正周期为2π5、图像:图像渐近线为:x=kπ ,k∈Z 余割函数与正弦函数互为倒数第一部分三角函数公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·和差化积[/url]公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差[/url]公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式[/url]:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式[/url]:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·si nγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·co sγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·其它公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)=sinα/(1-cosα) ·和差化积[/url]公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差[/url]公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式[/url]:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式[/url]:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinαsec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·si nγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·co sγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·其它公式1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30tanα+cotα=2/sin2αtanα-cotα=-2cot21+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^21+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30=cos60·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^2。
反三角函数的图像
![反三角函数的图像](https://img.taocdn.com/s3/m/c5d1c3067375a417876f8f17.png)
反三角函数的图像六个三角函数值在每个象限的符号:sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质:1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy xy=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx函数 y=sinx y=cosx y=tanx y=cotx定义域R R{x |x ∈R 且{x |x ∈R 且x≠kπ,k ∈Z }x≠kπ+2π,k∈Z }值域 [-1,1]x=2kπ+2π时y max =1x=2kπ-2π 时y min =-1[-1,1] x=2kπ时y max =1x=2kπ+π时y min =-1R无最大值无最小值R无最大值无最小值周期性周期为2π 周期为2π 周期为π 周期为π 奇偶性奇函数 偶函数奇函数奇函数 单调性 在[2k π-2π,2k π+2π ]上都是增函数;在[2k π+2π ,2k π+32π]上都是减函数(k ∈Z)在[2k π-π,2k π]上都是增函数;在[2k π,2k π+π]上都是减函数(k ∈Z)在(k π-2π,k π+2π)内都是增函数(k ∈Z)在(k π,k π+π)内都是减函数(k ∈Z).反三角函数:arcsinx arccosxarctanx arccotx名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinx(x∈〔-2π,2π〕的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosyy=tanx(x∈(-2π,2π)的反函数,叫做反正切函数,记作x=arctanyy=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于[-2π,2π]且正弦值等于x的角arccosx表示属于[0,π],且余弦值等于x的角arctanx表示属于(-2π,2π),且正切值等于x的角arccotx表示属于(0,π)且余切值等于x的角性质定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[-2π,2π][0,π](-2π,2π) (0,π)单调性在〔-1,1〕上是增函数在[-1,1]上是减函数在(-∞,+∞)上是增数在(-∞,+∞)上是减函数奇偶性arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotx 周期性都不是同期函数恒等式sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[-2π,2π])cos(arccosx)=x(x∈[-1,1])arccos(cosx)=x(x∈[0,π])tan(arctanx)=x(x∈R)arctan(tanx)=x(x∈(-2π,2π))cot(arccotx)=x(x∈R)arccot(cotx)=x(x∈(0,π))互余恒等式arcsinx+arccosx=2π(x∈[-1,1]) arctanx+arccotx=2π(X∈R)同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1=1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a) =sin(a+2a) =sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin^3a cos3a =cos(2a+a)=cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosasin3a=3sina-4sin^3a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2] =4cosa(cos²a-cos²30°) =4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)n倍角公式sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。
cotx函数
![cotx函数](https://img.taocdn.com/s3/m/c5fafcdc0342a8956bec0975f46527d3240ca6ac.png)
cotx函数
cotx是三角函数里的余切三角函数符号,此符号在以前写作ctg,cot坐标系表示为cotθ=x/y,在三角函数中cotθ=cosθ/sinθ。
常见的三角函数包括正弦函数、余弦函数和正切函数。
在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。
不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
余切的图像性质:
(1)定义域:余切函数的定义域是。
(2)值域:余切函数的值域是实数集R,没有最大值、最小值。
三角函数及反三角函数
![三角函数及反三角函数](https://img.taocdn.com/s3/m/7399955d804d2b160b4ec0b6.png)
三角函数及反三角函数221.sin 2sin cos 3cos ,222.sincos 3363.sin 2cos 2, .634.y=2sin 1,,54y x x x x x R y x x y x m x x m x x x ππππω=++∈⎛⎫=++ ⎪⎝⎭=+=-⎛⎫⎛⎤+-+ ⎪ ⎥⎝⎭⎝⎦例求函数的对称轴方程以及对称中心坐标.例求函数的图像相邻的两条对称轴之间的距离.例函数的一条对称轴为则的值为例函数在区间, .x R ω∈内恰有两个对称中心则=()()()[]2sin .,0,sin ,cos .sin cos ,sin cos ||,||sec ,0,2||,||csc ,,0||cos ,0,.2y A x B y at bt c a t x x x x t t x x x a x a x a x a x a ωϕωϕωϕπθθπθθθθπ=++=++≠++⎡⎫±=≥=∈⎪⎢⎣⎭⎡⎫≤-=∈-=∈⎪⎢⎣⎭二、三角函数的值域或最值①利用公式化为的形式②可以整理为为等③令用对进行换元可令可令可令等等[]sin ,0,cos ,,.63a x by ac c x dx πππ+≠+⎡⎫-⎪⎢⎣⎭④形如=可化为①来解,也可以利用万能公式代换,还可以构造斜率.注:上述几种形式中的都可以取实数集的真子集,如0,等()()()()225.cos cos ,0,2,.26.sin 2cos 2,.1117.2,0,.sin cos sin cos 28.219.f x x x x a a R x f x a y m x x m N N g m y x x x x x y x y x x y ππ⎡⎤=++∈∈⎢⎥⎣⎦=+--⎛⎫=+++∈ ⎪⎝⎭=+=-+≥=例设函数若时的最小值为求的值例若函数的最大值为求=的函数表达式例求函数的值域例求函数①的值域例求函数.()()[]()()sin 0,0,||20,0?.10.sin 00150 11.2sin 1,0||01,0,22,112.|sin |y Ax B A A y x y x y x πωϕωϕωωωωππωϕωϕπ=++>><>>=>⎡⎤=+->≤⎢⎥⎣⎦⎛⎫- ⎪⎝⎭=+三、的图像,注:为什么要限定说明理由例为使函数在区间,上至少出现个最大值,则的最小值是多少?例函数经过,点且在区间内单调递减,函数图像3关于对称,求函数解析式.4例求作函数()()()()22|cos |.13.,32,,2cos ,().14.,.15.()sin 2(1)sin cos 5cos 2,x y f x y x y f x f x f x x a x x x a a x R a πππ====-=-+--+-∈的图像例将函数的图像向右平移个单位再将所得图像上各点的横坐标伸长为原来的倍纵坐标不变最后将所得图像向上平移个单位,得到曲线与函数的图像重合求的解析式例讨论函数并在,内作出它的图像例设①若1,()sin |()|6,.y f x y x a f x x R a ===≤∈说明的图像可由的图像经过怎样的变换得到?②已知常数使得不等式对任意恒成立求实数的取值范围()()[][]()1sin arcsin cos(arccos ),1,1;tan(arctan )(),1sin(arccos )cos(arcsin )1,1;tan()(arctan ),02arcsin(sin ),2,[,],22ar x x x x x cot arccotx x x Rx x x arccotx cot x x xy x T y πππ==∈-==∈==∈-==≠==-=四、反三角函数的几个等式值域单调区间同正弦函数;(连续的折线)()[]ccos(cos ),2,[0,],;arctan(tan ),,((),,;(31,1,arcsin arccos ;,arctan arccot .22216.sin ,x T y x T y arccot cotx T x x x x R x x y x x πππππππ=====∈-+=∈+==∈值域单调区间与余弦函数相反(连续的折线)其值域和单调区间同正切函数;不连续的线段)其值域和单调区间与余切函数相反不连续的线段)当时当时例求函数①2212123,2arcsin(1).3217.arccos()218.arccos(sin ),arcsin(1)arccos 2.3319.,sin cos 0,0,arctan arctan .y x y x x y x x y x x x x x x x x ππππαααπ⎡⎫=-+⎪⎢⎣⎭=+=-<<=-+-+=<<+②的反函数例求函数的定义域、单调区间、值域.例求函数①②的值域例是方程的两个根且求的值22220.:lg(25)21.:arccos 3arcsin arcsin(1)arcsin(1)222.:3cos 4sin 33sin cos 1sin sin 2sin()0323.y y x x x x x x x xx x x x yx ππ==-++≥-+--==+--==五、三角方程或三角不等式例求下列函数的定义域①例解不等式①②例解下列方程①②③六、三角函数和反三角函数的应用例求函数(){}(){}212.24.|4,,|2cos 3sin ,,,.25.cos sin cos ,,log 410,.M z z t t i t R i N z z i R M N D x D y x y x θλθθλαβαβ==+-∈==++∈=∅+=+∈=+ 例设集合为虚数单位,若求实数的取值范围例已知的取值范围是若求函数最小值并求取得最小值时的值()()121226.,,120,,1.2,A B C ABCD l A B BC AB CD ABC l AB BC CD S Sl l '''∆''''∆=+=∠=++= 例已知水渠在过水面积为定值时,过水湿周越小其流量越大,现有两种设计,其纵断面如图:甲过水断面为等腰,过水湿周乙为等腰梯形,过水湿周=求和的最小值为使流量最大给出最佳设计方案.'图乙。
arctan特殊值表
![arctan特殊值表](https://img.taocdn.com/s3/m/e3383937b6360b4c2e3f5727a5e9856a561226a7.png)
arctan特殊值表反三角函数是一种基本初等函数。
它是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx,反正割arcsecx,反余割arccscx这些函数的统称,各自表示其正弦、余弦、正切、余切,正割,余割为x的角。
扩展资料反三角函数的分类1.反正弦函数正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。
记作arcsinx,表示一个正弦值为x的.角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1],值域[-π/2,π/2]。
2.反余弦函数余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。
记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。
定义域[-1,1],值域[0,π]。
3.反正切函数正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。
记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。
定义域R,值域(-π/2,π/2)。
4.反余切函数余切函数y=cotx在(0,π)上的反函数,叫做反余切函数。
记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。
定义域R,值域(0,π)。
5.反正割函数正割函数y=secx在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。
记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。
定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
6.反余割函数余割函数y=cscx在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。
记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。
定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。
向你推荐的相关文章相关文章列表微信扫码分享。
反三角函数定义域的确定
![反三角函数定义域的确定](https://img.taocdn.com/s3/m/2299d9344a35eefdc8d376eeaeaad1f346931108.png)
反三⾓函数定义域的确定反三⾓函数的定义域,背了忘,忘了背,有没有什么好办法呢?知其然,也知其所有,就是⾃⼰推导吧;1、反三⾓函数它是⼀个初等函数,也就是说它是⼀个单值函数2、反三⾓函数与原三⾓函数是有对应关系的,反三解函数的定义域就是原三⾓函数的值域。
由第⼆条可得arcsin 的定义域[-1,1]arccos 的定义域[-1,1]arctan 的定义域(负⽆穷到正⽆穷)arccot 的定义域(负⽆穷到正⽆穷)三⾓函数的值域是反三⾓函数的定义域,三⾓函数的定义域是三⾓函数的值域f->f' ; f'->f ⼀⼀映射。
即函数图像区域⼀定是单调的;通过观察三⾓函数的图像,考虑函数取坐标原点的⽅便性,容易取得反三⾓函数的值域; 也可以⽤列表法描点作图arcsin 的值域[-PI/2, PI/2]arccos 的值域[0,PI]arctan 的值域[-PI/2,PI/2]arccot 的值域[0,PI]列表描点绘图找⼀个最接近原点的单区间sinx -PI/2 0 PI/2 =====>可得arcsin -1 0 1-1 0 1 -PI/2 0 PI/2-------------------------------------------------------------------------cosx 0 PI/2 PI =====> 可得arccosx 1 0 -11 0 -1 0 PI/2 PI-------------------------------------------------------------------------tanx -PI/2 0 PI/2 =====>可得arctanx 负⽆穷 0 正⽆穷负⽆穷 0 正⽆穷 -PI/2 0 PI---------------------------------------------------------------------- --cotx 0 PI/2 PI =====>可得arccotx 正⽆穷 0 负⽆穷正⽆穷 0 负⽆穷 0 PI/2 PI有以上列表画图EASY。