三角函数的单调性和最值

合集下载

1.4.2第2课时 正、余弦函数的单调性与最值 课件

1.4.2第2课时 正、余弦函数的单调性与最值 课件
栏目 导引
第一章 三角函数
(4)确定含有正弦函数或余弦函数的较复杂函数的单调性时, 要注意使用复杂函数的判断方法来判断. 2.解析正弦函数、余弦函数的最值 (1)明确正弦、余弦函数的有界性,即|sin x|≤1,|cos x|≤1. (2)对有些函数,其最值不一定就是1或-1,要依赖函数的定 义域来决定. (3)形如y=Asin(ωx+φ)(A>0,ω>0)的函数求最值时,通常利 用“整体代换”,即令ωx+φ=z,将函数转化为y=Asin z的 形式求最值.
第一章 三角函数
栏目 导引
第一章 三角函数
单调减区间为[34π+2kπ,74π+2kπ](k∈Z). 所以原函数 y=2sin(π4-x)的单调增区间为[34π+2kπ,74π+ 2kπ](k∈Z); 单调减区间为[-π4+2kπ,34π+2kπ](k∈Z).
栏目 导引
第一章 三角函数
【名师点评】 正弦、余弦函数单调区间的求解技巧: (1)结合正弦、余弦函数的图象,熟记它们的单调区间. (2)确定函数y=Asin(ωx+φ)(A>0,ω>0)单调区间的方法:采 用“换元”法整体代换,将ωx+φ看作一个整体,可令“z= ωx+φ”,即通过求y=Asin z的单调区间而求出函数的单调 区间.若ω<0,则可利用诱导公式将x的系数转变为正数.
栏目 导引
第一章 三角函数
跟踪训练
1.求函数 y=sin(π3-12x),x∈[-2π,2π]的单调递增区间. 解:y=sin(π3-12x)=-sin(12x-π3). 由 y=sin x 与 y=-sin x 的图象关于 x 轴对称可知,y=sin x 的递增 区间就是 y=-sin x 的递减区间.因此,要求 y=-sin(12x-π3)的递 增区间,只要求出 y=sin(12x-π3)的递减区间即可.

三角函数的单调性与周期知识点

三角函数的单调性与周期知识点

三角函数的单调性与周期知识点三角函数是数学中一类重要的函数,包括正弦函数、余弦函数、正切函数等。

研究三角函数的单调性与周期是深入理解和应用三角函数的基础。

在本文中,我们将重点讨论三角函数的单调性与周期的相关知识点。

一、正弦函数的单调性与周期正弦函数是最常见的三角函数之一,可以表示周期性的波动现象。

正弦函数的标准形式为:f(x) = A*sin(Bx + C) + D,其中A、B、C和D 为常数。

1. 单调性:正弦函数的单调性与其幅值A有关。

当A>0时,正弦函数在每个周期内先上升后下降,即先递增后递减,如图1所示。

当A<0时,正弦函数在每个周期内先下降后上升,即先递减后递增,如图2所示。

插入图1和图22. 周期:正弦函数的周期与参数B有关。

正弦函数的周期为2π/B,其中B 为正数。

当B增大时,正弦函数的周期变短,波动速度加快;当B减小时,正弦函数的周期变长,波动速度减慢。

二、余弦函数的单调性与周期余弦函数也是常用的三角函数之一,可以表示周期性的波动现象。

余弦函数的标准形式为:f(x) = A*cos(Bx + C) + D,其中A、B、C和D为常数。

1. 单调性:余弦函数的单调性与其幅值A有关。

当A>0时,余弦函数在每个周期内先下降后上升,即先递减后递增,如图3所示。

当A<0时,余弦函数在每个周期内先上升后下降,即先递增后递减,如图4所示。

插入图3和图42. 周期:余弦函数的周期与参数B有关。

余弦函数的周期为2π/B,其中B 为正数。

当B增大时,余弦函数的周期变短,波动速度加快;当B减小时,余弦函数的周期变长,波动速度减慢。

三、正切函数的单调性与周期正切函数是三角函数中的一种特殊函数,可以表示角度的对称性关系。

正切函数的标准形式为:f(x) = A*tan(Bx + C) + D,其中A、B、C 和D为常数。

1. 单调性:正切函数在每个周期内都存在间断点,因此不存在严格的单调性。

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。

题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。

这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。

题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。

这类题目需要熟练掌握各种诱导公式,以及灵活应用。

题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。

需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。

题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。

需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。

题型五:三角函数的周期性这类题目要求确定三角函数的周期。

需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。

题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。

需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。

题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。

需要掌握各种三角函数的恒等式,以及灵活应用。

2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。

高二数学三角函数的单调性与极值

高二数学三角函数的单调性与极值

高二数学三角函数的单调性与极值高二数学三角函数的单调性与极值三角函数是数学中一个非常重要且常见的概念,在数学课程中,我们常常会遇到讨论三角函数的单调性和极值的问题。

本文将针对高二数学课程中三角函数的单调性与极值进行详细的论述和解析。

一、三角函数的定义与基本性质在开始讨论三角函数的单调性与极值之前,我们首先需要了解三角函数的定义和基本性质。

三角函数包括正弦函数、余弦函数和正切函数等。

1. 正弦函数:由一个单位圆周上的某一点P(x, y)引出的线段OP,其中O为圆心,P在单位圆的半径为1的圆上。

正弦函数的定义为sinθ = y。

2. 余弦函数:同样由单位圆上的某一点引出的线段OP,余弦函数的定义为cosθ = x。

3. 正切函数:正切函数的定义为tanθ = sinθ / cosθ。

二、三角函数单调性的判定方法为了讨论三角函数的单调性,我们需要先了解如何判定函数的单调性。

对于区间[a, b]上的函数f(x),我们可以通过其导数的正负来判断函数的单调性。

1. 如果函数f'(x) > 0,那么函数f(x)在[a, b]上单调递增。

2. 如果函数f'(x) < 0,那么函数f(x)在[a, b]上单调递减。

3. 如果函数f'(x) = 0,那么函数f(x)在[a, b]上可能存在极值点。

三、正弦函数的单调性与极值正弦函数的图像为周期性的波浪线,在区间[0, 2π]上,正弦函数的单调性和极值如下:1. 单调递增:在区间[0, π/2]和[3π/2, 2π]上,正弦函数单调递增。

2. 单调递减:在区间[π/2, 3π/2]上,正弦函数单调递减。

3. 极值点:在区间[0, π]和[π, 2π]上,正弦函数存在极值点。

极小值点为π/2的整数倍,极大值点为π的整数倍。

四、余弦函数的单调性与极值余弦函数的图像也是周期性的波浪线,在区间[0, 2π]上,余弦函数的单调性和极值如下:1. 单调递增:在区间[3π/2, 2π]和[0, π/2]上,余弦函数单调递增。

1.4.2 正弦 余弦函数的性质(单调性、最值)

1.4.2  正弦 余弦函数的性质(单调性、最值)

3 5 对称中心: ( ,0),( ,0),( ,0),( ,0) 2 2 2 2

2
k ,0) k Z
1 例5:求函数 y sin( x ) 的单调递增区间: 2 3
解:

2
1 y sin x 3 2
y sin z

2k z
余弦函数的单调性
y
1 -3
5 2
-2
3 2
-


2
o
-1

2

3 2
2
5 2
x
3
7 2
4
x
cosx
-
-1



2

0
1

2


-1
0
0
y=cosx (xR) 增区间为 [ +2k, 2k],kZ + ], kZ 减区间为 [2k, 2k, 其值从-1增至1 其值从 1减至-1
y cos x
3 5 2
2


y
1
任意两相邻对称轴 ( 或对称中心 ) 的间距为 3 2 O 5 x 3 半个周期;
2
2
1
2

2
3
2
对称轴与其相邻的对称中心的间距为
对称轴:x
,0, , 2
四分之一个周期.
(
x k , k Z

o
-1

2
3
4
5
6
x
sin(-x)= - sinx (xR) cos(-x)= cosx (xR)

三角函数的图象、定义域、最值(值域)、单调性

三角函数的图象、定义域、最值(值域)、单调性
三角函数的图象、定义域、最值(值域)、单调性
[学习要求] 1.能画出 y = sin x , y = cos x , y =tan x 的图象. 2.理解
正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小
值、图象与 x 轴的交点等). 3.理解正切函数在区间
π
π
− ,
2
2
上的性质.
π
π
− <<
2
2
由题意得 y = cos x ·|tan x |=ቐ
的大致图象是(
sin,0 ≤
π
< ,
2
π
−sin, − <
2
所以其图象的大致形状如选项C所示.
< 0,
C )
2. 已知函数 f ( x )= sin x +2| sin x |, x ∈[0,2π],若直线 y = k
与其仅有两个不同的交点,则 k 的取值范围为
, k ∈Z,
2
2
π
π
π
+ ≥ + 2π,
4
2
所以ቐ 2
k ∈Z,
π

π+ ≤ + 2π,
4
2
1
5
解得4 k + ≤ω≤2 k + , k ∈Z.
2
4
1
5
5
又由4 k + - 2+ ≤0, k ∈Z,且2 k + >0, k ∈Z,解得 k =0,
2
4
4
1
5
所以ω∈ , .
2
4
方法总结
A. [-1,1]
令 sin x = t , t ∈[-1,1],
则 y = t 2+ t -1=
1 2

三角函数的增减性和极值

三角函数的增减性和极值

三角函数的增减性和极值三角函数是数学中最常见的函数之一,包括正弦函数、余弦函数和正切函数等。

在解决实际问题以及数学推导中,了解三角函数的增减性和极值非常重要。

本文将分别讨论正弦函数、余弦函数和正切函数的增减性以及寻找其极值的方法。

一、正弦函数的增减性和极值正弦函数是周期性函数,其图像在每个周期内重复出现。

我们先来讨论正弦函数的增减性。

根据正弦函数的定义可知,其定义域为实数集,即所有实数都可作为正弦函数的自变量。

在一个周期内,正弦函数的值在[-1, 1]之间变化。

我们可以通过求导数的方法来判断正弦函数的增减性。

对于正弦函数f(x) = sin(x),其导数f'(x) = cos(x)。

根据导数的正负性可以判断函数的增减性,当导数大于零时,函数递增;当导数小于零时,函数递减。

接下来我们研究正弦函数的极值。

由于正弦函数的周期性,我们只需关注一个周期内的极值。

正弦函数在区间[-π/2, π/2]内取得最大值为1,最小值为-1。

在区间[π/2, 3π/2]内,正弦函数的最大值为1,最小值为-1。

因此,正弦函数的极值为±1。

二、余弦函数的增减性和极值余弦函数也是周期性函数,和正弦函数一样,在一个周期内的值在[-1, 1]之间变化。

我们同样使用导数的方法来研究余弦函数的增减性。

对于余弦函数f(x) = cos(x),其导数f'(x) = -sin(x)。

当导数大于零时,函数递减;当导数小于零时,函数递增。

接下来我们研究余弦函数的极值。

余弦函数在区间[0, π]内取得最大值为1,在区间[π, 2π]内取得最小值为-1。

因此,余弦函数的极值为±1。

三、正切函数的增减性和极值正切函数的定义域为所有不是π/2 + kπ(k为整数)的实数。

由于正切函数的特点,其图像在每个π的间隔内重复出现。

对于正切函数f(x) = tan(x),其导数f'(x) = sec^2(x)。

我们可以发现,正切函数在定义域内都递增。

三角函数最值问题(典型题型)

三角函数最值问题(典型题型)

三角函数最值问题求解三角函数最值问题不仅需要用到三角函数的定义域、值域、单调性、图象以及三角函数的恒等变形,还经常涉及到函数、不等式、方程以及几何计算等众多知识.这类问题往往概念性较强,具有一定的综合性和灵活性,下面结合例子给出几种求最值的方法,供大家学习时参考。

1、利用三角函数的单调性求最值例1:求函数x x x x x f 44sin cos sin 2cos )(-⋅-= ⎢⎣⎡⎥⎦⎤∈2,0πx 的最值 解:x x x x x x x x f 2sin 2cos 2sin )sin )(cos sin (cos )(2222-=--+=)42cos(2π+=x 45424,20ππππ≤+≤∴≤≤x x ,由余弦函数的单调性及图像知: 当442ππ=+x , 即0=x 时 ,)42cos(π+x 取最大值22; 当ππ=+42x ,即83π=x 时,)42cos(π+x 取最小值-1; 故2)(,1)(min max -==x f x f方法评析:本题虽然含有的三角函数的项的次数不尽相同,但最终能通过变形变为形如θθcos sin b a +的形式,再用辅助角公式)sin(cos sin 22ϕθθθ++=+b a b a 化为标准形式结合三角函数的单调性加以解决,这是一种最常见的求最值的方法。

2、利用三角函数的有界性或数形结合求最值例2:求1cos 2sin --=x x y 的最小值 解:(方法一)由1cos 2sin --=x x y 得:y x y x -=-2cos sin ,y x y -=-+∴2)sin(12ϕ 即212)sin(y yx +-=-ϕ,故11212≤+-≤-y y ,解之得43≥y , 故y 的最小值为43 方法评析:通过变形,借助三角函数的有界性求函数最值是一种很常见的方法,一般在分式型且对自变量无特殊限制条件下使用。

(方法二)设),(),sin ,(cos 21M x x P ,则1cos 2sin --=x x y 表示单位圆上的动点P 与平面内定点M 连线的斜率,当斜率存在时,设过P 、M 两点的直线方程为)1(2-=-x k y ,由距离公式得1122=+-k k ,解之得43=k ,结合图形可知函数的最小值为43。

三角函数的单调性与最值经典练习及答案

三角函数的单调性与最值经典练习及答案

[基础巩固]1.函数y =sin 2x 的单调减区间是( )A .⎣⎡⎦⎤π2+2k π,32π+2k π(k ∈Z ) B.⎣⎡⎦⎤k π+π4,k π+34π(k ∈Z ) C .[π+2k π,3π+2k π](k ∈Z ) D.⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z ) 解析 令π2+2k π≤2x ≤3π2+2k π,k ∈Z , 得π4+k π≤x ≤3π4+k π,k ∈Z , 则y =sin 2x 的单减区间是⎣⎡⎦⎤π4+k π,3π4+k π(k ∈Z ). 答案 B2.下列函数,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin ⎝⎛⎭⎫2x +π2 B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫x +π2 D .y =cos ⎝⎛⎭⎫x +π2 解析 因为函数周期为π,所以排除C ,D.又因为y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符合.故选A .答案 A3.已知a =sin 160°,b =cos 50°,c =tan 110°,则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b解析 ∵sin 160°=sin 20°,cos 50°=sin 40°,∵sin 40°>sin 20°>0,∴b >a >0,∵c =tan 110°<0,∴c <a <b .答案 C4.函数y =sin ⎝⎛⎭⎫x 2-π3取最大值时自变量的取值集合是________.解析 当x 2-π3=π2+2k π,k ∈Z , 即x =5π3+4k π,k ∈Z 时,函数取最大值. 答案 ⎩⎨⎧⎭⎬⎫x |x =5π3+4k π,k ∈Z 5.sin 1,sin 2,sin 3按从小到大排列的顺序为______________________.解析 ∵1<π2<2<3<π, sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2.答案 sin 3<sin 1<sin 26.已知函数f (x )=2cos ⎝⎛⎭⎫3x +π4. (1)求f (x )的单调递增区间;(2)求f (x )的最小值及取得最小值时相应的x 值.解析 (1)令-π+2k π≤3x +π4≤2k π,k ∈Z , 可得-5π12+23k π≤x ≤-π12+23k π,k ∈Z , 故f (x )的单调递增区间是⎣⎡⎦⎤-5π12+23k π,-π12+23k π,k ∈Z . (2)当3x +π4=-π+2k π, 即x =-5π12+23k π(k ∈Z )时,f (x )的最小值为-2. [能力提升]7.(多选)已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2(x ∈R ),下列结论正确的是( ) A .函数f (x )的最小正周期为πB .函数f (x )是偶函数C .函数f (x )的图象关于直线x =π4对称 D .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 解析 f (x )=sin ⎝⎛⎭⎫2x +3π2=-cos 2x ,最小正周期为π,故A 正确; 易知函数f (x )是偶函数,故B 正确;由函数f (x )=-cos 2x 的图象可知,C 错误,D 正确.答案 ABD8.函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的最大值和最小值之和等于( )A .4π3B .8π3C .2πD .4π 解析 作出y =sin x 的一个简图, 如图所示,∵函数的值域为⎣⎡⎦⎤-1,12,且sin π6=sin 5π6=12,sin 3π2=-1, ∴定义域[a ,b ]中b -a 的最小值为3π2-5π6=2π3, 定义域[a ,b ]中b -a 的最大值为2π+π6-5π6=4π3, 故可得,最大值与最小值之和为2π.答案 C9.已知α,β为锐角三角形的两个内角,则cos α与sin β的大小关系是________. 解析 因为α,β是锐角三角形的两个内角,故α+β>π2, ∴α>π2-β,α∈⎝⎛⎭⎫0,π2,π2-β∈⎝⎛⎭⎫0,π2, 所以cos α<cos ⎝⎛⎭⎫π2-β=sin β.答案 cos α<sin β10.求函数y =cos 2x -sin x 的值域.解析 y =cos 2x -sin x =-sin 2x -sin x +1=-⎝⎛⎭⎫sin x +122+54. ∵sin x ∈[-1,1],∴当sin x =-12时,y max =54; 当sin x =1时,y min =-1.∴函数y =cos 2x -sin x 的值域为⎣⎡⎦⎤-1,54. [探索创新]11.已知函数f (x )=sin(2x +φ),其中φ为实数,且|φ|<π.若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),求f (x )的单调递增区间.解析 由f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立知, 2·π6+φ=2k π±π2(k ∈Z ). ∴φ=2k π+π6或φ=2k π-5π6(k ∈Z ). ∵|φ|<π,得φ=π6或φ=-5π6, 又∵f ⎝⎛⎭⎫π2>f (π),∴φ=-5π6,故f (x )=2sin ⎝⎛⎭⎫2x -5π6 由2k π-π2≤2x -5π6≤2k π+π2(k ∈Z ). 得f (x )的单调递增区间是⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ).。

三角函数的定义域值域与单调性

三角函数的定义域值域与单调性

三角函数的定义域值域与单调性三角函数是数学中重要的概念之一,它在几何学、物理学以及其他许多领域中都有着广泛的应用。

三角函数包括正弦函数、余弦函数和正切函数,它们的定义域、值域以及单调性是我们研究它们的重要方面。

本文将以一种合适的格式来论述三角函数的定义域、值域和单调性。

1. 正弦函数的定义域、值域与单调性三角函数正弦函数的定义域是实数集R,因为它可以接受任何实数作为自变量。

正弦函数的值域是闭区间[-1, 1],也就是说,对于任意的x,-1 ≤ sin(x) ≤ 1。

正弦函数在区间[0, π]上是单调递增的,在区间[π, 2π]上是单调递减的。

2. 余弦函数的定义域、值域与单调性余弦函数的定义域也是实数集R。

与正弦函数不同的是,余弦函数的值域也是闭区间[-1, 1],也就是说,-1 ≤ cos(x) ≤ 1。

余弦函数在区间[0, π/2]上是单调递减的,在区间[π/2, π]上是单调递增的,在区间[π,3π/2]上是单调递减的,在区间[3π/2, 2π]上是单调递增的。

3. 正切函数的定义域、值域与单调性正切函数的定义域是实数集R,除了π/2的倍数除外,即x ≠ (2n + 1)π/2,其中n为整数。

正切函数的值域是全体实数,也就是对于任意的y,都存在一个实数x使得tan(x) = y。

正切函数在区间(-π/2, π/2)上是单调递增的,而在其他区间上是周期性的。

总结:正弦函数的定义域是实数集R,值域是闭区间[-1, 1]。

其在区间[0, π]上是单调递增的,而在区间[π, 2π]上是单调递减的。

余弦函数的定义域也是实数集R,值域同样是闭区间[-1, 1]。

其在区间[0, π/2]上是单调递减的,而在区间[π/2, π]上是单调递增的,以此类推。

正切函数的定义域是实数集R,除了π/2的倍数除外。

值域是全体实数。

正切函数在区间(-π/2, π/2)上是单调递增的,其余区间上是周期性的。

通过研究三角函数的定义域、值域以及单调性,我们能够更好地理解三角函数的性质与特点,在解决数学和实际问题中起到重要的作用。

专题52 高中数学正、余弦函数的单调性与最值专题(原卷版)

专题52 高中数学正、余弦函数的单调性与最值专题(原卷版)

专题52 正、余弦函数的单调性与最值一.正弦函数、余弦函数的图象和性质[-1,1][-1,1](1)形如y =a sin x (或y =a cos x )型,可利用正弦函数、余弦函数的有界性,注意对a 正负的讨论.(2)形如y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )型,可先由定义域求得ωx +φ的范围,然后求得sin(ωx +φ)(或cos(ωx +φ))的范围,最后求得最值.(3)形如y =a sin 2x +b sin x +c (a ≠0)型,可利用换元思想,设t =sin x ,转化为二次函数y =at 2+bt +c 求最值.t 的范围需要根据定义域来确定.题型一 正弦函数、余弦函数的单调性 类型一 求单调区间1.已知函数f (x )=2sin ⎝⎛⎭⎫π4+2x +1,求函数f (x )的单调递增区间.2.已知函数y =cos ⎝⎛⎭⎫π3-2x ,则它的单调减区间为________.3.函数y =1-sin 2x 的单调递增区间.4.求函数y =3sin ⎝⎛⎭⎫π3-2x 的单调递减区间.5.求下列函数的单调区间.(1)y =cos2x ;(2)y =2sin ⎝⎛⎭⎫π4-x ;(3) y =cos ⎝⎛⎭⎫x 2+π36.函数y =sin ⎝⎛⎭⎫3x +π6,x ∈⎣⎡⎦⎤-π3,π3的单调递减区间为________.7.函数y =2sin ⎝⎛⎭⎫x -π3(x ∈[-π,0])的单调递增区间是( ) A.⎣⎡⎦⎤-π,-5π6 B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0 D.⎣⎡⎦⎤-π6,08.求函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π4的单调增区间.9.函数f (x )=sin ⎝⎛⎭⎫x +π6的一个递减区间是( ) A.⎣⎡⎦⎤-π2,π2 B .[-π,0] C.⎣⎡⎦⎤-2π3,2π3 D.⎣⎡⎦⎤π2,2π310.函数y =sin ⎝⎛⎭⎫2x +π3在区间[0,π]的一个单调递减区间是( ) A.⎣⎡⎦⎤0,5π12 B.⎣⎡⎦⎤π12,7π12 C.⎣⎡⎦⎤5π12,11π12D.⎣⎡⎦⎤π6,π2 11.求下列函数的单调递增区间.(1)y =13sin ⎝⎛⎭⎫π6-x ,x ∈[0,π];(2)y =log 12sin x .12.函数y =log 2⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π3的单调递增区间是________.13.求下列函数的单调递增区间(3)y =log 12sin ⎝⎛⎭⎫2x +π4;14.函数f (x )=⎝⎛⎭⎫13|cos x |在[-π,π]上的单调递减区间为( )A.⎣⎡⎦⎤-π2,0 B.⎣⎡⎦⎤π2,πC.⎣⎡⎦⎤-π2,0及⎣⎡⎦⎤π2,π D.⎣⎡⎦⎤-π2,0∪⎣⎡⎦⎤π2,π15.求函数y =1+sin ⎝⎛⎭⎫-12x +π4,x ∈[-4π,4π]的单调减区间.16.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin ⎝⎛⎭⎫2x +π2 B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫x +π2 D .y =cos ⎝⎛⎭⎫x +π217.下列函数中,以π2为周期且在区间⎝⎛⎭⎫π4,π2单调递增的是( ) A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x |18.下列函数中,既为偶函数又在(0,π)上单调递增的是( )A .y =cos|x |B .y =cos|-x |C .y =sin ⎝⎛⎭⎫x -π2 D .y =-sin x219.下列函数在⎣⎡⎦⎤π2,π上是增函数的是( )A .y =sin xB .y =cos xC .y =sin2xD .y =cos2x20.设函数f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4(ω>0,|φ|<π2)的最小正周期为π,且是偶函数,则( ) A .f (x )在⎝⎛⎭⎫0,π2单调递减 B .f (x )在⎝⎛⎭⎫π4,3π4单调递减 C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增21.函数y =2sin ⎝⎛⎭⎫ωx +π4(ω>0)的周期为π,则其单调递增区间为( ) A.⎣⎡⎦⎤k π-3π4,k π+π4(k ∈Z) B.⎣⎡⎦⎤2k π-3π4,2k π+π4(k ∈Z) C.⎣⎡⎦⎤k π-3π8,k π+π8(k ∈Z) D.⎣⎡⎦⎤2k π-3π8,2k π+π8(k ∈Z)22.已知函数f (x )=sin(2x +φ),其中φ为实数,且|φ|<π.若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),求f (x )的单调递增区间.类型二 利用单调性求参1.函数y =cos x 在区间[-π,a ]上为增函数,则a 的取值范围是________.2.若函数f (x )=sin ωx (0<ω<2)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于___.3.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π3在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________.4.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6. (1)求函数f (x )图象的对称轴方程;(2)解不等式:f ⎝⎛⎭⎫x +π12≥32.5.若函数f (x )=2sin ⎝⎛⎭⎫ωx +π3(ω>0),且f (α)=-2,f (β)=0,|α-β|的最小值是π2,则f (x )的单调递增区间是() A.⎣⎡⎦⎤2k π-5π6,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) C.⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z )6.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)为R 上的偶函数,其图象关于点M (34π,0)对称,且在区间[0,π2]上是单调函数,求φ和ω的值.题型二 利用三角函数的单调性比较大小1.sin250°与sin260°;(2)cos 15π8与cos 14π9.2.比较下列各组数的大小.(1)cos ⎝⎛⎭⎫-π8与cos 13π7;(2)sin194°与cos160°;(3) cos ⎝⎛⎭⎫-7π8与cos 6π73.利用三角函数的单调性,比较下列各组数的大小.(1)sin ⎝⎛⎭⎫-π18与sin ⎝⎛⎭⎫-π10;(2)sin 196°与cos 156°;(3)cos ⎝⎛⎭⎫-235π与cos ⎝⎛⎭⎫-174π.4.比较下列各组数的大小:①cos 15π8,cos 14π9;②cos 1,sin 1.5.比较下列各组数的大小.(1)sin ⎝⎛⎭⎫-376π与sin ⎝⎛⎭⎫493π;(2)cos 870°与sin 980°.6.sin 2π7________sin ⎝⎛⎭⎫-15π8(填“>”或“<”).7.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°8.sin1,sin2,sin3按从小到大排列的顺序为__________.9.将cos 150°,sin 470°,cos 760°按从小到大排列为_________.10.下列不等式中成立的是( )A .sin ⎝⎛⎭⎫-π8>sin ⎝⎛⎭⎫-π10 B .sin 3>sin 2 C .sin 75π>sin ⎝⎛⎭⎫-25π D .sin 2>cos 111.(1)已知α,β为锐角三角形的两个内角,则以下结论正确的是( )A .sin α<sin βB .cos α<sin βC .cos α<cos βD .cos α >cos β12.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-4,-3]上是增函数,α,β是锐角三角形的两个内角,则f (sin α)与f (cos β)的大小关系是________.题型三 正弦函数、余弦函数的最值问题1.函数y =1-2cos π2x 的最小值,最大值分别是( )A .-1,3B .-1,1C .0,3D .0,12.函数y =2-sin x 的最大值及取最大值时x 的值分别为( )A .y max =3,x =π2B .y max =1,x =π2+2k π(k ∈Z)C .y max =3,x =-π2+2k π(k ∈Z)D .y max =3,x =π2+2k π(k ∈Z)3.y =2cos x 2的值域是( )A .[-2,2]B .[0,2]C .[-2,0]D .R4.y =a cos x +1的最大值为5,则a =________.5.设函数f (x )=A +B sin x ,当B <0时,f (x )的最大值是32,最小值是-12,则A =________,B =________.6.函数f (x )=sin(π6+x )+cos(π3-x )的最大值为( )A .1 B.32C. 3 D .27.函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65 B .1 C.35 D.158.函数y =2sin ⎝⎛⎭⎫π3-x -cos ⎝⎛⎭⎫π6+x (x ∈R)的最小值等于( ) A .-3 B .-2 C .-1 D .- 59.函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域是( )A.⎣⎡⎦⎤-32,12 B.⎣⎡⎦⎤-12,32 C.⎣⎡⎦⎤32,1D.⎣⎡⎦⎤12,110.求函数y =3-4cos ⎝⎛⎭⎫2x +π3,x ∈⎣⎡⎦⎤-π3,π6的最大值、最小值及相应的x 值.11.求下列函数的最大值和最小值. f (x )=sin ⎝⎛⎭⎫2x -π6,x ∈⎣⎡⎦⎤0,π212.求下列函数的值域:y =sin ⎝⎛⎭⎫2x -π3,x ∈⎣⎡⎦⎤0,π2;13.求函数y =3+2cos ⎝⎛⎭⎫2x +π3的最值.14.已知函数y =a -b cos ⎝⎛⎭⎫2x +π6(b >0)的最大值为32,最小值为-12. (1)求a ,b 的值;(2)求函数g (x )=-4a sin ⎝⎛⎭⎫bx -π3的最小值并求出对应x 的集合.15.已知函数f (x )=a sin ⎝⎛⎭⎫2x -π3+b (a >0).当x ∈⎣⎡⎦⎤0,π2时,f (x )的最大值为3,最小值是-2,求a 和b 的值.16.求下列函数的最值y =-sin 2x +3sin x +54.17.函数y =cos 2x +2sin x -2,x ∈R 的值域为________.18.求下列函数的最大值和最小值. y =-2cos 2x +2sin x +3,x ∈⎣⎡⎦⎤π6,5π6.19.求函数y =cos 2x -sin x 在x ∈⎣⎡⎦⎤-π4,π4上的最大值和最小值.20.求函数y =2sin 2x +2sin x -12,x ∈⎣⎡⎦⎤π6,5π6的值域.21.求下列函数的值域: y =cos 2x -4cos x +5.22.求函数y =cos 2x +4sin x 的最值及取到最大值和最小值时的x 的集合.23.若f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________.24.设函数f (x )=2sin ⎝⎛⎭⎫π2x +π5.若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( )A .4B .2C .1D .1225.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是________.26.函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的最大值是________.27.已知函数f (x )=2a sin ⎝⎛⎭⎫2x +π6+a +b 的定义域是⎣⎡⎦⎤0,π2,值域是[-5,1],求a ,b 的值.。

三角函数讲义

三角函数讲义

三角函数讲义的周期相等,则4.(1)要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向 平移 个单位5.已知函数)0,)(4sin()(>∈+=w R x wx x f π的最小正周期为π,将)(x f y =的图像向左平移||ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是 ( )A 2π B 83π C 4πD 8π6.将函数 y = 3 cos x -sin x 的图象向左平移 m (m > 0)个单位,所得到的图象关于y 轴对称,则 m 的最小正值是 ( )A. π6B. π3 C. 2π3D. 5π67.函数f (x )=cos x (x )(x ∈R)的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为 ( )A.2πB.πC.-πD.-2π8.将函数y=f (x )sinx 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y=1-2sin 2x 的图象,则 f (x )是 ( )A .cosxB .2cosxC .SinxD .2sinx9.若函数()θ+=x y sin 2的图象按向量)2,6(π平移后,它的一条对称轴是4π=x ,则θ的一个可能的值是A .125π B .3π C .6πD .12π七.图象1.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤⎢⎥⎣⎦,的简图是 ( )2 在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4 3.已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=A. 1B. 2ABC. 1/2D. 1/34. 下列函数中,图象的一部分如右图所示的是 ( )(A )sin 6y x π⎛⎫=+ ⎪⎝⎭ (B )sin 26y x π⎛⎫=- ⎪⎝⎭(C )cos 43y x π⎛⎫=- ⎪⎝⎭ (D )cos 26y x π⎛⎫=- ⎪⎝⎭6. 为了得到函数y =sin ⎝⎛⎭⎪⎫2x -π3的图象,只需把函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象 ( ) A .向左平移π4个长度单位 B .向右平移π4个长度单位 C .向左平移π2个长度单位 D .向右平移π2个长度单位7.已知函数y =sin ⎝ ⎛⎭⎪⎫x -π12cos ⎝ ⎛⎭⎪⎫x -π12,则下列判断正确的是 ( )A .此函数的最小正周期为2π,其图象的一个对称中心是⎝ ⎛⎭⎪⎫π12,0B .此函数的最小正周期为π,其图象的一个对称中心是⎝⎛⎭⎪⎫π12,0C .此函数的最小正周期为2π,其图象的一个对称中心是⎝⎛⎭⎪⎫π6,0D .此函数的最小正周期为π,其图象的一个对称中心是⎝⎛⎭⎪⎫π6,0八..综合1. 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为2. 函数f(x)22sin sin 44f x x x ππ=+--()()()是 ( ) A .周期为π的偶函数 B .周期为π的奇函数C . 周期为2π的偶函数D ..周期为2π的奇函数3. 已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 ( ) A. 函数)(x f 的最小正周期为2π B. 函数)(x f 在区间[0,2π]上是增函数C.函数)(x f 的图象关于直线x =0对称D. 函数)(x f 是奇函数4. 函数)32sin(3)(π-=x x f 的图象为C , 如下结论中正确的是①图象C 关于直线π1211=x 对称; ②图象C 关于点)0,32(π对称;③函数125,12()(ππ-在区间x f )内是增函数;。

高中数学第五章三角函数4.2第二课时正余弦函数的单调性与最值课件新人教A版必修第一册

高中数学第五章三角函数4.2第二课时正余弦函数的单调性与最值课件新人教A版必修第一册

1.判断正误.(正确的画“√”,错误的画“×”) (1)正弦函数y=sin x在R 上是增函数. (2)余弦函数y=cos x的一个减区间是[0,π]. (3)∃x∈[0,2π]满足sin x=2. (4)当余弦函数y=cos x取最大值时,x=π+2kπ,k∈Z . 答案:(1)× (2)√ (3)× (4)×
函数单调递减,故函数的单调递减区间是
4kπ-23π,4kπ+43π
(k∈Z ).
(2)∵y=2sinπ4 -x=-2sinx-π4 ,
∴函数y=-2sinx-π4 的单调增区间、单调减区间分别由下面的不等式确定.
2kπ+π2 ≤x-π4 ≤2kπ+3π2 (k∈Z ),

ππ
π
2kπ- 2 ≤x- 4 ≤2kπ+ 2 (k∈Z ).
知识点 正、余弦函数的单调性与最值 正弦函数
图象
值域
_[-__1_,__1_]
ห้องสมุดไป่ตู้
余弦函数 _[-__1_,__1_]
正弦函数
余弦函数

增区间 __-_π_2_+__2_k_π__,___π2__+_2_k_π___, [_π__+__2k_π__,__2_π__+__2_kπ__]_,_

__k_∈_Z____
所以sinπ5 <sin2π 5 ,
所以sin215π<425π.
答案:<
4.求函数f(x)=sin2x-π4 在0,π2 上的单调递增区间.
π
π
π
解:令2kπ- 2 ≤2x- 4 ≤2kπ+ 2 ,k∈Z ,
解得kπ-π8 ≤x≤kπ+3π8 ,k∈Z ,又0≤x≤π2 ,
所以f(x)在0,π2 上的单调递增区间是0,3π 8 .

高中数学《三角函数的单调性与最值》教学课件

高中数学《三角函数的单调性与最值》教学课件

1.思考辨析(正确的画“√”,错误的画“×”)
(1)正弦函数、余弦函数在 R 上都是单调函数. ( )
(2)存在 x∈R 满足 cos x=1.2.( )
(3)函数 y=-12sin x,x∈0,π2的最大值为 0.(
)
[答案] (1)× (2)× (3)√
第2课时 单调性与最值
1
2
3
4
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 课后素养落实
第2课时 单调性与最值
1
2
3
4
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 课后素养落实
由 z∈2kπ-π2,2kπ+π2(k∈Z),
得 x-π3∈2kπ-π2,2kπ+π2(k∈Z),
即 x∈2kπ-π6,2kπ+56π(k∈Z),
故函数 y=2sinx-π3的单调递增区间为2kπ-π6,2kπ+56π(k∈Z). 同 理 可 求 函 数 y = 2sin x-π3 的 单 调 递 减 区 间 为
cos-147π=cos147π=cos4π+π4=cosπ4. ∵0<π4<35π<π,且 y=cos x 在[0,π]上是单调递减的,
∴cos35π<cosπ4,
即 cos-253π<cos-147π.
第2课时 单调性与最值
1
2
3
4
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 课后素养落实
提醒:复合函数的单调性遵循“同增异减”的规律.
第2课时 单调性与最值
1
2
3
4
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 课后素养落实
[跟进训练] 1.(1)函数 y=sin3x+π6,x∈-π3,π3的单调递减区间为________. (2)已知函数 y=cos3π-2x,则它的单调递减区间为________.

2 第2课时 正、余弦函数的单调性与最值

2 第2课时 正、余弦函数的单调性与最值

第2课时 正、余弦函数的单调性与最值问题导学预习教材P204-P207,并思考以下问题:1.正、余弦函数的单调区间相同吗?它们分别是什么? 2.正、余弦函数的最值分别是多少?正弦、余弦函数的图象和性质正、余弦函数不是定义域上的单调函数,如说“正弦函数在第一象限是增函数”也是错误的,因为在第一象限的单调递增区间有无穷多个,在每个单调增区间上,y =sin x 都是从0增加到1,但不能看作一个单调区间.判断正误(正确的打“√”,错误的打“×”) (1)函数y =12sin x 的最大值为1.( )(2)∃x 0∈[0,2π],满足cos x 0= 2.( )(3)正弦函数、余弦函数在定义域内都是单调函数.( ) 答案:(1)× (2)× (3)×在下列区间中,使函数y =sin x 为增函数的是( ) A .[0,π] B.⎣⎡⎦⎤π2,3π2C.⎣⎡⎦⎤-π2,π2 D .[π,2π]答案:C函数y =1-2cos π2x 的最小值、最大值分别是( )A .-1,3B .-1,1C .0,3D .0,1 答案:A函数y =sin x (π3≤x ≤2π3)的值域为________.答案:[32,1]函数y =-cos x 的单调递减区间是____________; 单调递增区间是____________. 答案:[-π+2k π,2k π](k ∈Z ) [2k π,2k π+π](k ∈Z )正、余弦函数的单调性求下列函数的单调递减区间:(1)y =12cos ⎝⎛⎭⎫2x +π3;(2)y =2sin ⎝⎛⎭⎫π4-x .【解】 (1)令z =2x +π3,而函数y =cos z 的单调递减区间是[2k π,2k π+π](k ∈Z ).所以当原函数单调递减时,可得2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ).所以原函数的单调递减区间是⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)y =2sin ⎝ ⎛⎭⎪⎫π4-x =-2sin ⎝ ⎛⎭⎪⎫x -π4.令z =x -π4,则y =-2sin z ,求y =-2sin z 的单调递减区间,即求sin z 的单调递增区间.所以-π2+2k π≤z ≤π2+2k π,k ∈Z .即-π2+2k π≤x -π4≤π2+2k π,k ∈Z .所以-π4+2k π≤x ≤3π4+2k π,k ∈Z .所以函数y =2sin ⎝ ⎛⎭⎪⎫π4-x 的单调递减区间是⎣⎢⎡⎦⎥⎤-π4+2k π,3π4+2k π(k ∈Z ).求正、余弦函数的单调区间的策略(1)结合正、余弦函数的图象,熟记它们的单调区间.(2)在求形如y =A sin(ωx +φ)(A >0,ω>0)的函数的单调区间时,应采用“换元法”整体代换,将“ωx +φ”看作一个整体“z ”,即通过求y =A sin z 的单调区间而求出原函数的单调区间.求形如y =A cos(ωx +φ)(A >0,ω>0)的函数的单调区间同上.1.函数y =sin ⎝⎛⎭⎫x +π2,x ∈R 在( )A.⎣⎡⎦⎤-π2,π2上是增函数 B .[0,π]上是减函数 C .[-π,0]上是减函数 D .[-π,π]上是减函数解析:选B.因为y =sin ⎝ ⎛⎭⎪⎫x +π2=cos x ,所以在区间[-π,0]上是增函数,在[0,π]上是减函数. 2.求函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π4的单调增区间.解:设x +π4=u ,y =|sin u |的大致图象如图所示,函数的周期是π.当u ∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )时,函数y =|sin u |递增.函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π4的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ).比较三角函数值的大小比较下列各组数的大小. (1)sin1017π与sin 1117π; (2)cos ⎝⎛⎭⎫-7π8与cos 6π7;(3)sin 194°与cos 160°.【解】 (1)因为函数y =sin x 在⎣⎢⎡⎦⎥⎤π2,π上单调递减,且π2<1017π<1117π<π,所以sin 1017π>sin 1117π. (2)cos ⎝ ⎛⎭⎪⎫-7π8=cos 7π8,因为0<6π7<7π8<π,y =cos x 在(0,π)上是减函数,所以cos7π8<cos 6π7. 所以cos ⎝ ⎛⎭⎪⎫-7π8<cos 6π7.(3)由于sin 194°=sin(180°+14°)=-sin 14°, cos 160°=cos(180°-20°)=-cos 20°=-sin 70°, 又0°<14°<70°<90°,而y =sin x 在[]0°,90°上单调递增, 所以sin 14°<sin 70°,-sin 14°>-sin 70°, 即sin 194°>cos 160°.比较三角函数值大小的步骤(1)异名函数化为同名函数;(2)利用诱导公式把角转化到同一单调区间上; (3)利用函数的单调性比较大小.1.sin 470°________cos 760°(填“>”“<”或“=”).解析:sin 470°=sin 110°=cos 20°>0,cos 760°=cos 40°>0且cos 20°>cos 40°, 所以cos 760°<sin 470°. 答案:>2.比较下列各组数的大小. (1)sin ⎝⎛⎭⎫-376π与sin ⎝⎛⎭⎫493π; (2)cos 870°与sin 980°. 解:(1)sin ⎝⎛⎭⎫-376π =sin ⎝ ⎛⎭⎪⎫-6π-π6=sin ⎝ ⎛⎭⎪⎫-π6,sin ⎝⎛⎭⎫493π=sin ⎝⎛⎭⎪⎫16π+π3=sin π3, 因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,所以sin ⎝ ⎛⎭⎪⎫-π6<sin π3,即sin ⎝⎛⎭⎫-376π<sin 493π. (2)cos 870°=cos(720°+150°) =cos 150°,sin 980°=sin(720°+260°) =sin 260°=sin(90°+170°)=cos 170°, 因为0°<150°<170°<180°, 且y =cos x 在[0°,180°]上是减函数,所以cos 150°>cos 170°,即cos 870°>sin 980°.正、余弦函数的最值(值域)求下列函数的最值. (1)y =3+2cos ⎝⎛⎭⎫2x +π3;(2)y =-sin 2x +3sin x +54.【解】 (1)因为-1≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1,所以当cos ⎝ ⎛⎭⎪⎫2x +π3=1时,y max =5;当cos ⎝⎛⎭⎪⎫2x +π3=-1时,y min =1.(2)y =-sin 2x +3sin x +54=-(sin x -32)2+2.因为-1≤sin x ≤1,所以当sin x =32时,函数取得最大值,y max =2;当sin x =-1时,函数取得最小值,y min =14- 3.(变条件)在本例(1)中,若x ∈⎣⎡⎦⎤-π6,π12,则函数y =3+2cos ⎝⎛⎭⎫2x +π3的最大、最小值分别是多少?解:因为x ∈⎣⎢⎡⎦⎥⎤-π6,π12,所以0≤2x +π3≤π2,所以0≤cos ⎝⎛⎭⎪⎫2x +π3≤1,所以当cos ⎝ ⎛⎭⎪⎫2x +π3=1时,y max =5;当cos ⎝⎛⎭⎪⎫2x +π3=0时,y min =3.所以函数y =3+2cos ⎝ ⎛⎭⎪⎫2x +π3,x ∈⎣⎢⎡⎦⎥⎤-π6,π12的最大值为5,最小值为3.三角函数最值问题的求解方法(1)形如y =a sin x (或y =a cos x )型,可利用正弦函数、余弦函数的有界性,注意对a 正负的讨论.(2)形如y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )型,可先由定义域求得ωx +φ的范围,然后求得sin(ωx +φ)(或cos(ωx +φ))的范围,最后求得最值.(3)形如y =a sin 2x +b sin x +c (a ≠0)型,可利用换元思想,设t =sin x ,转化为二次函数y =at 2+bt +c 求最值.t 的范围需要根据定义域来确定.1.函数y =cos(x +π6),x ∈[0,π2]的值域是( )A .(-32,12) B .[-12,32]C .[32,1] D .[12,1]解析:选B.由0≤x ≤π2,得π6≤x +π6≤2π3,所以-12≤cos(x +π6)≤32,故选B.2.求函数y =cos 2x +4sin x 的最值及取到最大值和最小值时的x 的集合.解:y =cos 2x +4sin x =1-sin 2x +4sin x =-sin 2x +4sin x +1 =-(sin x -2)2+5.所以当sin x =1,即x =2k π+π2,k ∈Z 时,y max =4;当sin x =-1,即x =2k π-π2,k ∈Z 时,y min =-4.所以y max =4,此时x 的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =2k π+π2,k ∈Z ; y min =-4,此时x 的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =2k π-π2,k ∈Z .1.下列函数中,在区间⎝⎛⎭⎫π2,π上恒正且是增函数的是( )A .y =sin xB .y =cos xC .y =-sin xD .y =-cos x解析:选D.作出四个函数的图象,知y =sin x ,y =cos x 在⎝ ⎛⎭⎪⎫π2,π上单调递减,不符合;而y =-sin x 的图象虽满足在⎝ ⎛⎭⎪⎫π2,π上单调递增但其值为负,所以只有D 符合,故选D.2.函数y =3cos ⎝⎛⎭⎫12x -π4在x =________时,y 取最大值.解析:当函数取最大值时,12x -π4=2k π(k ∈Z ),x =4k π+π2(k ∈Z ).答案:4k π+π2(k ∈Z )3.sin 21π5________sin 425π(填“>”或“<”).解析:sin 215π=sin(4π+π5)=sin π5,。

高考数学复习三角函数的单调性与最值

高考数学复习三角函数的单调性与最值

第4讲 三角函数的图象与性质最新考纲考向预测1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性. 命题趋势以考查三角函数的性质为主,题目涉及单调性、周期性、最值、零点.考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识.题型既有选择题和填空题,又有解答题,中档难度. 核心素养 直观想象、逻辑推理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质 函数y =sin xy =cos xy =tan x图象定义 域 R R {x |x ≠k π+π2,k ∈Z } 值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数单调递增区间[-π2+2kπ,π2+2kπ],k∈Z[-π+2kπ,2kπ],k∈Z(-π2+kπ,π2+kπ),k∈Z续表函数y=sin x y=cos x y=tan x单调递减区间[π2+2kπ,3π2+2kπ],k∈Z[2kπ,π+2kπ],k∈Z无对称性对称中心(kπ,0),k∈Z⎝⎛⎭⎪⎫kπ+π2,0,k∈Z⎝⎛⎭⎪⎫kπ2,0,k∈Z 对称轴x=kπ+π2,k∈Zx=kπ,k∈Z无对称轴零点kπ,k∈Z kπ+π2,k∈Zkπ,k∈Z常用结论1.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.2.与三角函数的奇偶性相关的结论(1)若y=A sin(ωx+φ)为偶函数,则有φ=kπ+π2(k∈Z);若为奇函数,则有φ=kπ(k∈Z).(2)若y=A cos(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+π2(k ∈Z ).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ). 常见误区1.对于y =tan x 不能认为其在定义域上为增函数,而是在每个开区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 2.求函数y =A sin(ωx +φ)的单调区间时要注意A 和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.1.判断正误(正确的打“√”,错误的打“×”) (1)y =cos x 在第一、二象限内是减函数.( ) (2)若y =k sin x +1,x ∈R ,则y 的最大值是k +1.( )(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )(4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ).( ) (5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(易错点)函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠kx +π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z 解析:选D.由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,所以y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π2+π4,k ∈Z . 3.(多选)下列函数中,最小正周期为π的偶函数有( ) A .y =tan xB .y =|sin x |C .y =2cos xD .y =sin ⎝ ⎛⎭⎪⎫π2-2x解析:选BD.对于A 选项,函数y =tan x 为奇函数,不符合题意;对于B 选项,函数y =|sin x |是最小正周期为π的偶函数,符合题意;对于C 选项,函数y =2cos x 的最小正周期为2π,不符合题意;对于D 选项,函数y =sin ⎝ ⎛⎭⎪⎫π2-2x =cos 2x ,是最小正周期为π的偶函数,符合题意.故选BD.4.函数y =cos ⎝ ⎛⎭⎪⎫2x -π4的单调递减区间为________.解析:由y =cos ⎝ ⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ), 解得k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z )5.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4+φ是奇函数,当φ∈⎣⎢⎡⎦⎥⎤-π2,π2时,φ的值为________.解析:由已知得π4+φ=k π(k ∈Z ),所以φ=k π-π4(k ∈Z ).又因为φ∈⎣⎢⎡⎦⎥⎤-π2,π2,所以当k =0时,φ=-π4符合条件.答案:-π4第1课时 三角函数的单调性与最值求三角函数的单调区间(1)函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)函数f (x )=tan(2x +π3)的单调递增区间是________.【解析】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). (2)由k π-π2<2x +π3<k π+π2(k ∈Z ),得k π2-5π12<x <k π2+π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ).【答案】 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ) 【引申探究】1.(变条件、变问法)若本例(1)f (x )变为:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3,求f (x )的单调递增区间.解:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3=-cos ⎝ ⎛⎭⎪⎫2x -π3,欲求函数f (x )的单调递增区间, 只需求y =cos ⎝ ⎛⎭⎪⎫2x -π3的单调递减区间.由2k π≤2x -π3≤2k π+π,k ∈Z , 得k π+π6≤x ≤k π+2π3,k ∈Z .故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ).2.(变条件、变问法)本例(1)f (x )变为:f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,试讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解:令z =2x -π3,易知函数y =sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z .由-π2+2k π≤2x -π3≤π2+2k π, 得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎨⎧⎭⎬⎫x |-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以,当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,又因为π4-⎝ ⎛⎭⎪⎫-π4=π2<T ,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的图象,结合图象求它的单调区间.[提醒] 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定要先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.1.函数y =|cos x |的一个单调递增区间是( ) A .[-π2,π2] B .[0,π] C .[π,3π2]D .[3π2,2π]解析:选D.将y =cos x 的图象位于x 轴下方的图象关于x 轴对称翻折到x 轴上方,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A .函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B .函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C .函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减D .函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增解析:选C.由x ∈⎣⎢⎡⎦⎥⎤-π2,0得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,所以f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,所以f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,所以f (x )先减后增.三角函数单调性的应用 角度一 利用三角函数的单调性比较大小已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .b <c <a【解析】 a =f ⎝ ⎛⎭⎪⎫π7=2sin 10π21,b =f ⎝ ⎛⎭⎪⎫π6=2sin π2=2,c =f ⎝ ⎛⎭⎪⎫π3=2sin 2π3=2sinπ3,因为y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上单调递增,且π3<10π21<π2,所以c <a <b .【答案】 B利用函数的单调性比较大小(1)比较同名三角函数的大小,首先把三角函数转化为同一单调区间上的三角函数,利用单调性,由自变量的大小确定函数值的大小;(2)比较不同名三角函数的大小,应先化成同名三角函数,再进行比较.角度二 利用三角函数的单调性求值域(最值)(1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A.⎣⎢⎡⎦⎥⎤-32,32 B.⎣⎢⎡⎦⎥⎤-32,3 C.⎣⎢⎡⎦⎥⎤-332,332 D.⎣⎢⎡⎦⎥⎤-332,3 (2)函数y =sin x -cos x +sin x cos x的值域为_________________________________.【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, 故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.(2)设t =sin x -cos x ,则-2≤t ≤2,t 2=sin 2x +cos 2x -2sin x cos x ,则sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2. 所以函数y 的值域为[-12-2,1]. 【答案】 (1)B (2)[-12-2,1] 【引申探究】1.(变条件)若本例(1)中函数f (x )的解析式变为:f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6,则f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.解析:当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,1, 故f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-332,3. 答案:⎣⎢⎡⎦⎥⎤-332,3 2.(变条件)若本例(2)中x ∈[0,π],则函数f (x )的值域为________. 解析:设t =sin x -cos x ,则t =2sin ⎝ ⎛⎭⎪⎫x -π4,又x ∈[0,π],所以t ∈[-1,2]. t 2=sin 2x +cos 2x -2sin x cos x , 即sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时,y min =-1. 所以函数y 的值域为[-1,1]. 答案:[-1,1]三角函数值域的求法(1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域.(3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域.1.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168° B .sin 168°<sin 11°<cos 10° C .sin 11°<sin 168°<cos 10° D .sin 168°<cos 10°<sin 11°解析:选C.因为sin 168°=sin(180°-12°)=sin 12°,cos 10°=sin(90°-10°)=sin 80°,由正弦函数y =sin x 在0°≤x ≤90°上是增函数,得sin 11°<sin 12°<sin 80°,所以sin 11°<sin 168°<cos 10°,故选C.2.已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B.⎣⎢⎡⎦⎥⎤-π6,0 C.⎣⎢⎡⎦⎥⎤-π3,π6 D.⎣⎢⎡⎦⎥⎤-π6,π3 解析:选B.记t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,则函数f (x )可转化为g (t )=-10t 2-10t-12=-10⎝ ⎛⎭⎪⎫t +122+2.因为函数的最大值为2,显然此时t =-12. 令g (t )=-12,得t =-1或t =0,由题意知x ∈⎣⎢⎡⎦⎥⎤-π2,m ,当x =-π2时,t =-1,g (-1)=-12,结合g (t )的图象及函数的值域为⎣⎢⎡⎦⎥⎤-12,2,可得-12≤sin m ≤0,解得-π6≤m ≤0.故选B.根据三角函数的单调性确定参数(一题多解)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D.13【解析】 方法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,所以⎩⎪⎨⎪⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.故选B.方法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎪⎨⎪⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16.故选B. 【答案】 B已知函数单调性求参数—— 明确一个不同,掌握两种方法(1)明确一个不同.“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)掌握两种方法.已知函数在区间M 上单调求解参数问题,主要有两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.1.若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A .π4 B .π2 C .3π4D .π解析:选A.f (x )=cos x -sin x =-2sin ⎝ ⎛⎭⎪⎫x -π4,当x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,即x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2时, y =sin ⎝ ⎛⎭⎪⎫x -π4单调递增,则f (x )=-2sin ⎝ ⎛⎭⎪⎫x -π4单调递减.因为函数f (x )在[-a ,a ]上是减函数, 所以[-a ,a ]⊆⎣⎢⎡⎦⎥⎤-π4,3π4,所以0<a ≤π4,所以a 的最大值为π4.2.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析:因为f (x )=sin ωx (ω>0)过原点, 所以当0≤ωx ≤π2,即0≤x ≤π2ω时, y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由已知得π2ω=π3,解得ω=32. 答案:32[A 级 基础练]1.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( ) A.⎣⎢⎡⎭⎪⎫0,π2 B.⎝ ⎛⎦⎥⎤π2,π C.⎣⎢⎡⎭⎪⎫π,3π2 D.⎝ ⎛⎦⎥⎤3π2,2π 解析:选C.方法一:由题意得⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],x ≠k π+π2,k ∈Z ,所以函数y 的定义域为⎣⎢⎡⎭⎪⎫π,3π2.故选C. 方法二:当x =π时,函数有意义,排除A ,D ;当x =5π4时,函数有意义,排除B.故选C.2.下列关于函数y =4sin x ,x ∈[-π,π]的单调性的叙述,正确的是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2及⎣⎢⎡⎦⎥⎤π2,π上是减函数C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π及⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数解析:选B.函数y =4sin x 在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上单调递减,在⎣⎢⎡⎦⎥⎤-π2,π2上单调递增.故选B.3.(2020·武汉市学习质量检测)已知函数f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3,则f (x )的最小值为( )A.12 B.14 C.34D.22解析:选 A.f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3=sin 2x +⎝ ⎛⎭⎪⎫12sin x +32cos x 2=54sin 2x +34cos 2x +32sin x cos x =34+1-cos 2x 4+34sin 2x =1+12⎝ ⎛⎭⎪⎫32sin 2x -12cos 2x =1+12sin ⎝ ⎛⎭⎪⎫2x -π6≥1-12=12,故选A. 4.(2020·贵阳市第一学期监测考试)已知函数f (x )=sin(2x +φ),其中φ∈(0,2π),若f (x )≤f ⎝ ⎛⎭⎪⎫π6对于一切x ∈R 恒成立,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析:选B.因为f (x )≤f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6为函数f (x )的最大值,即2×π6+φ=2k π+π2(k ∈Z ),则φ=2k π+π6(k ∈Z ),又φ∈(0,2π),所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).故选B.5.(2020·昆明市三诊一模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B.⎣⎢⎡⎦⎥⎤32,3 C.⎣⎢⎡⎦⎥⎤3,72 D.⎣⎢⎡⎦⎥⎤52,72 解析:选B.通解:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,ω>0,所以ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )∈⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3,故选B. 优解:当ω=2时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,满足题意,故排除A ,C ,D ,选B.6.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10.解析:因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数且-π18>-π10>-π2,故sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.答案:>7.已知函数f (x )=4sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈[-π,0],则f (x )的单调递增区间是________.解析:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ), 得-π12+k π≤x ≤5π12+k π(k ∈Z ), 又因为x ∈[-π,0],所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,0.答案:⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,08.若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值为1,则ω=________.解析:因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,则f (x )max =f ⎝ ⎛⎭⎪⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12.答案:129.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.10.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的单调性并求出其值域.解:令-π2≤2x -π6≤π2,则-π6≤x ≤π3. 令π2≤2x -π6≤32π,则π3≤x ≤5π6. 因为-π12≤x ≤π2,所以函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π12,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减.当x =π3时,f (x )取得最大值为1.因为f ⎝ ⎛⎭⎪⎫-π12=-32<f ⎝ ⎛⎭⎪⎫π2=12, 所以当x =-π12时,f (x )min =-32. 所以f (x )的值域为⎣⎢⎡⎦⎥⎤-32,1.[B 级 综合练]11.(2020·湖北八校第一次联考)若函数f (x )=sin x +3cos x 在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,则函数g (x )=cos x -3sin x 在区间[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值2D .可以取得最小值-2解析:选 D.f (x )=sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,g (x )=cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3=2sin ⎝ ⎛⎭⎪⎫x +π2+π3.f (x )在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,不妨令a +π3=π2,b +π3=3π2,则a +π2+π3=π,b +π2+π3=2π,故g (x )在[a ,b ]上既不是增函数,也不是减函数,g (x )在[a ,b ]上可以取得最小值-2,故选D.12.(多选)关于函数f (x )=sin|x |-|cos x |,下列结论正确的是( ) A .f (x )是偶函数B .f (x )在区间⎝ ⎛⎭⎪⎫π2,π上单调递减C .f (x )的最大值为 2D .当x ∈⎝ ⎛⎭⎪⎫-π4,π4时,f (x )<0恒成立解析:选ABD.因为f (-x )=sin|-x |-|cos(-x )|=sin|x |-|cos x |=f (x ),所以f (x )为偶函数,故A 正确;当x ∈⎝ ⎛⎭⎪⎫π2,π时,f (x )=sin|x |-|cos x |=sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,又x ∈⎝ ⎛⎭⎪⎫π2,π,所以令t =x +π4,则t ∈⎝ ⎛⎭⎪⎫3π4,5π4,y =2sin t 单调递减,所以B 正确;因为f (x )为偶函数,所以求函数f (x )的最大值可只考虑当x ≥0时的情况,又易知当x ≥0时,2π是其一个周期,所以只需研究x ∈[0,2π]时的情况,则f (x )=sin x -|cos x |=⎩⎪⎨⎪⎧sin x -cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2∪⎝ ⎛⎦⎥⎤3π2,2πsin x +cos x ,x ∈⎝ ⎛⎦⎥⎤π2,3π2=⎩⎪⎨⎪⎧2sin ⎝ ⎛⎭⎪⎫x -π4,x ∈⎣⎢⎡⎦⎥⎤0,π2∪⎝ ⎛⎦⎥⎤3π2,2π2sin ⎝ ⎛⎭⎪⎫x +π4,x ∈⎝ ⎛⎦⎥⎤π2,3π2,则函数f (x )的值域为[-2,1],因此C 错误;当x ∈⎣⎢⎡⎭⎪⎫0,π4时,f (x )=sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π4,则x -π4∈⎣⎢⎡⎭⎪⎫-π4,0,所以sin ⎝ ⎛⎭⎪⎫x -π4<0,即f (x )<0在x ∈⎣⎢⎡⎭⎪⎫0,π4上恒成立,因为f (x )为偶函数,所以x ∈⎝ ⎛⎭⎪⎫-π4,π4时,f (x )<0恒成立,故D 正确.综上可知,正确结论是ABD. 13.已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x .(1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.解:(1)f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x=32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3,所以T =2π2=π.(2)证明:令t =2x +π3,因为-π4≤x ≤π4, 所以-π6≤2x +π3≤5π6,因为y =sin t 在⎣⎢⎡⎦⎥⎤-π6,π2上单调递增,在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减,且sin ⎝ ⎛⎭⎪⎫-π6<sin 5π6, 所以f (x )≥sin ⎝ ⎛⎭⎪⎫-π6=-12,得证.14.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合. 解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1, 由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 可得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z . (2)当x =π6时,f (x )取得最大值4,即f ⎝ ⎛⎭⎪⎫π6=2sin π2+a +1=a +3=4,所以a =1.(3)由f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+2=1,可得sin ⎝ ⎛⎭⎪⎫2x +π6=-12,则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z ,即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π],解得x =-π2,-π6,π2,5π6, 所以x的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6. [C 级 创新练]15.(2020·贵阳市适应性考试)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象在区间[0,1]上恰有3个最高点,则ω的取值范围为( )A .⎣⎢⎡⎭⎪⎫19π4,27π4B .⎣⎢⎡⎭⎪⎫9π2,13π2C .⎣⎢⎡⎭⎪⎫17π4,25π4D .[4π,6π)解析:选C.因为x ∈[0,1],ω>0,所以ωx +π4∈⎣⎢⎡⎦⎥⎤π4,ω+π4. 因为f (x )的图象在区间[0,1]上恰有3个最高点,所以4π+π2≤ω+π4<6π+π2,解得17π4≤ω<25π4.16.如图,角α的始边与x 轴的非负半轴重合,终边与单位圆交于点A (x 1,y 1),角β=α+2π3的终边与单位圆交于点B (x 2,y 2),记f (α)=y 1-y 2.若角α为锐角,则f (α)的取值范围是________.解析:由题意可知y 1=sin α,y 2=sin β=sin ⎝ ⎛⎭⎪⎫α+2π3,所以f (α)=y 1-y 2=sin α-sin ⎝ ⎛⎭⎪⎫α+2π3=sin α+12sin α-32cos α=32sin α-32cos α=3sin ⎝ ⎛⎭⎪⎫α-π6.又因为α为锐角,即0<α<π2,所以-π6<α-π6<π3,所以-12<sin ⎝ ⎛⎭⎪⎫α-π6<32,则-32<f (α)<32,即f (α)的取值范围是⎝ ⎛⎭⎪⎫-32,32.答案:⎝ ⎛⎭⎪⎫-32,32第4讲 三角函数的图象与性质最新考纲考向预测1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性. 命题趋势以考查三角函数的性质为主,题目涉及单调性、周期性、最值、零点.考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识.题型既有选择题和填空题,又有解答题,中档难度. 核心素养 直观想象、逻辑推理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质 函数y =sin xy =cos xy =tan x图象定义 域 R R {x |x ≠k π+π2,k ∈Z } 值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数单调递增区间[-π2+2kπ,π2+2kπ],k∈Z[-π+2kπ,2kπ],k∈Z(-π2+kπ,π2+kπ),k∈Z续表函数y=sin x y=cos x y=tan x单调递减区间[π2+2kπ,3π2+2kπ],k∈Z[2kπ,π+2kπ],k∈Z无对称性对称中心(kπ,0),k∈Z⎝⎛⎭⎪⎫kπ+π2,0,k∈Z⎝⎛⎭⎪⎫kπ2,0,k∈Z 对称轴x=kπ+π2,k∈Zx=kπ,k∈Z无对称轴零点kπ,k∈Z kπ+π2,k∈Zkπ,k∈Z常用结论1.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.2.与三角函数的奇偶性相关的结论(1)若y=A sin(ωx+φ)为偶函数,则有φ=kπ+π2(k∈Z);若为奇函数,则有φ=kπ(k∈Z).(2)若y=A cos(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+π2(k ∈Z ).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ). 常见误区1.对于y =tan x 不能认为其在定义域上为增函数,而是在每个开区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 2.求函数y =A sin(ωx +φ)的单调区间时要注意A 和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.1.判断正误(正确的打“√”,错误的打“×”) (1)y =cos x 在第一、二象限内是减函数.( ) (2)若y =k sin x +1,x ∈R ,则y 的最大值是k +1.( )(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )(4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ).( ) (5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(易错点)函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠kx +π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z 解析:选D.由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,所以y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π2+π4,k ∈Z . 3.(多选)下列函数中,最小正周期为π的偶函数有( ) A .y =tan xB .y =|sin x |C .y =2cos xD .y =sin ⎝ ⎛⎭⎪⎫π2-2x解析:选BD.对于A 选项,函数y =tan x 为奇函数,不符合题意;对于B 选项,函数y =|sin x |是最小正周期为π的偶函数,符合题意;对于C 选项,函数y =2cos x 的最小正周期为2π,不符合题意;对于D 选项,函数y =sin ⎝ ⎛⎭⎪⎫π2-2x =cos 2x ,是最小正周期为π的偶函数,符合题意.故选BD.4.函数y =cos ⎝ ⎛⎭⎪⎫2x -π4的单调递减区间为________.解析:由y =cos ⎝ ⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ), 解得k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z )5.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4+φ是奇函数,当φ∈⎣⎢⎡⎦⎥⎤-π2,π2时,φ的值为________.解析:由已知得π4+φ=k π(k ∈Z ),所以φ=k π-π4(k ∈Z ).又因为φ∈⎣⎢⎡⎦⎥⎤-π2,π2,所以当k =0时,φ=-π4符合条件.答案:-π4第1课时 三角函数的单调性与最值求三角函数的单调区间(1)函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)函数f (x )=tan(2x +π3)的单调递增区间是________.【解析】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). (2)由k π-π2<2x +π3<k π+π2(k ∈Z ),得k π2-5π12<x <k π2+π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ).【答案】 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ) 【引申探究】1.(变条件、变问法)若本例(1)f (x )变为:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3,求f (x )的单调递增区间.解:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3=-cos ⎝ ⎛⎭⎪⎫2x -π3,欲求函数f (x )的单调递增区间, 只需求y =cos ⎝ ⎛⎭⎪⎫2x -π3的单调递减区间.由2k π≤2x -π3≤2k π+π,k ∈Z , 得k π+π6≤x ≤k π+2π3,k ∈Z .故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ).2.(变条件、变问法)本例(1)f (x )变为:f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,试讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解:令z =2x -π3,易知函数y =sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z .由-π2+2k π≤2x -π3≤π2+2k π, 得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎨⎧⎭⎬⎫x |-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以,当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,又因为π4-⎝ ⎛⎭⎪⎫-π4=π2<T ,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的图象,结合图象求它的单调区间.[提醒] 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定要先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.1.函数y =|cos x |的一个单调递增区间是( ) A .[-π2,π2] B .[0,π] C .[π,3π2]D .[3π2,2π]解析:选D.将y =cos x 的图象位于x 轴下方的图象关于x 轴对称翻折到x 轴上方,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A .函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B .函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C .函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减D .函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增解析:选C.由x ∈⎣⎢⎡⎦⎥⎤-π2,0得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,所以f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,所以f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,所以f (x )先减后增.三角函数单调性的应用 角度一 利用三角函数的单调性比较大小已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .b <c <a【解析】 a =f ⎝ ⎛⎭⎪⎫π7=2sin 10π21,b =f ⎝ ⎛⎭⎪⎫π6=2sin π2=2,c =f ⎝ ⎛⎭⎪⎫π3=2sin 2π3=2sinπ3,因为y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上单调递增,且π3<10π21<π2,所以c <a <b .【答案】 B利用函数的单调性比较大小(1)比较同名三角函数的大小,首先把三角函数转化为同一单调区间上的三角函数,利用单调性,由自变量的大小确定函数值的大小;(2)比较不同名三角函数的大小,应先化成同名三角函数,再进行比较.角度二 利用三角函数的单调性求值域(最值)(1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A.⎣⎢⎡⎦⎥⎤-32,32 B.⎣⎢⎡⎦⎥⎤-32,3 C.⎣⎢⎡⎦⎥⎤-332,332 D.⎣⎢⎡⎦⎥⎤-332,3 (2)函数y =sin x -cos x +sin x cos x的值域为_________________________________.【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, 故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.(2)设t =sin x -cos x ,则-2≤t ≤2,t 2=sin 2x +cos 2x -2sin x cos x ,则sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2. 所以函数y 的值域为[-12-2,1]. 【答案】 (1)B (2)[-12-2,1] 【引申探究】1.(变条件)若本例(1)中函数f (x )的解析式变为:f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6,则f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.解析:当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,1, 故f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-332,3. 答案:⎣⎢⎡⎦⎥⎤-332,3 2.(变条件)若本例(2)中x ∈[0,π],则函数f (x )的值域为________. 解析:设t =sin x -cos x ,则t =2sin ⎝ ⎛⎭⎪⎫x -π4,又x ∈[0,π],所以t ∈[-1,2]. t 2=sin 2x +cos 2x -2sin x cos x , 即sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时,y min =-1. 所以函数y 的值域为[-1,1]. 答案:[-1,1]三角函数值域的求法(1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域.(3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域.1.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168° B .sin 168°<sin 11°<cos 10° C .sin 11°<sin 168°<cos 10° D .sin 168°<cos 10°<sin 11°解析:选C.因为sin 168°=sin(180°-12°)=sin 12°,cos 10°=sin(90°-10°)=sin 80°,由正弦函数y =sin x 在0°≤x ≤90°上是增函数,得sin 11°<sin 12°<sin 80°,所以sin 11°<sin 168°<cos 10°,故选C.2.已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B.⎣⎢⎡⎦⎥⎤-π6,0 C.⎣⎢⎡⎦⎥⎤-π3,π6 D.⎣⎢⎡⎦⎥⎤-π6,π3 解析:选B.记t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,则函数f (x )可转化为g (t )=-10t 2-10t-12=-10⎝ ⎛⎭⎪⎫t +122+2.因为函数的最大值为2,显然此时t =-12. 令g (t )=-12,得t =-1或t =0,由题意知x ∈⎣⎢⎡⎦⎥⎤-π2,m ,当x =-π2时,t =-1,g (-1)=-12,结合g (t )的图象及函数的值域为⎣⎢⎡⎦⎥⎤-12,2,可得-12≤sin m ≤0,解得-π6≤m ≤0.故选B.根据三角函数的单调性确定参数(一题多解)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D.13【解析】 方法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,所以⎩⎪⎨⎪⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.故选B.方法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎪⎨⎪⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16.故选B. 【答案】 B已知函数单调性求参数—— 明确一个不同,掌握两种方法(1)明确一个不同.“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)掌握两种方法.已知函数在区间M 上单调求解参数问题,主要有两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.1.若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A .π4 B .π2 C .3π4D .π解析:选A.f (x )=cos x -sin x =-2sin ⎝ ⎛⎭⎪⎫x -π4,当x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,即x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2时, y =sin ⎝ ⎛⎭⎪⎫x -π4单调递增,则f (x )=-2sin ⎝ ⎛⎭⎪⎫x -π4单调递减.因为函数f (x )在[-a ,a ]上是减函数, 所以[-a ,a ]⊆⎣⎢⎡⎦⎥⎤-π4,3π4,所以0<a ≤π4,所以a 的最大值为π4.2.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析:因为f (x )=sin ωx (ω>0)过原点, 所以当0≤ωx ≤π2,即0≤x ≤π2ω时, y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由已知得π2ω=π3,解得ω=32. 答案:32[A 级 基础练]1.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( ) A.⎣⎢⎡⎭⎪⎫0,π2 B.⎝ ⎛⎦⎥⎤π2,π C.⎣⎢⎡⎭⎪⎫π,3π2 D.⎝ ⎛⎦⎥⎤3π2,2π 解析:选C.方法一:由题意得⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],x ≠k π+π2,k ∈Z ,所以函数y 的定义域为⎣⎢⎡⎭⎪⎫π,3π2.故选C. 方法二:当x =π时,函数有意义,排除A ,D ;当x =5π4时,函数有意义,排除B.故选C.2.下列关于函数y =4sin x ,x ∈[-π,π]的单调性的叙述,正确的是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2及⎣⎢⎡⎦⎥⎤π2,π上是减函数C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π及⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数解析:选B.函数y =4sin x 在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上单调递减,在⎣⎢⎡⎦⎥⎤-π2,π2上单调递增.故选B.3.(2020·武汉市学习质量检测)已知函数f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3,则f (x )的最小值为( )A.12 B.14 C.34D.22解析:选 A.f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3=sin 2x +⎝ ⎛⎭⎪⎫12sin x +32cos x 2=54sin 2x +34cos 2x +32sin x cos x =34+1-cos 2x 4+34sin 2x =1+12⎝ ⎛⎭⎪⎫32sin 2x -12cos 2x =1+12sin ⎝ ⎛⎭⎪⎫2x -π6≥1-12=12,故选A. 4.(2020·贵阳市第一学期监测考试)已知函数f (x )=sin(2x +φ),其中φ∈(0,2π),若f (x )≤f ⎝ ⎛⎭⎪⎫π6对于一切x ∈R 恒成立,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析:选B.因为f (x )≤f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6为函数f (x )的最大值,即2×π6+φ=2k π+π2(k ∈Z ),则φ=2k π+π6(k ∈Z ),又φ∈(0,2π),所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).故选B.5.(2020·昆明市三诊一模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B.⎣⎢⎡⎦⎥⎤32,3 C.⎣⎢⎡⎦⎥⎤3,72 D.⎣⎢⎡⎦⎥⎤52,72 解析:选B.通解:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,ω>0,所以ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )∈⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3,故选B. 优解:当ω=2时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,满足题意,故排除A ,C ,D ,选B.6.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10.解析:因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数且-π18>-π10>-π2,故sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.答案:>7.已知函数f (x )=4sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈[-π,0],则f (x )的单调递增区间是________.解析:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ), 得-π12+k π≤x ≤5π12+k π(k ∈Z ), 又因为x ∈[-π,0],所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,0.答案:⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,08.若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值为1,则ω=________.解析:因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,则f (x )max =f ⎝ ⎛⎭⎪⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12.答案:129.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.10.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的单调性并求出其值域.解:令-π2≤2x -π6≤π2,则-π6≤x ≤π3. 令π2≤2x -π6≤32π,则π3≤x ≤5π6. 因为-π12≤x ≤π2,所以函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π12,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减.当x =π3时,f (x )取得最大值为1.因为f ⎝ ⎛⎭⎪⎫-π12=-32<f ⎝ ⎛⎭⎪⎫π2=12, 所以当x =-π12时,f (x )min =-32. 所以f (x )的值域为⎣⎢⎡⎦⎥⎤-32,1.[B 级 综合练]11.(2020·湖北八校第一次联考)若函数f (x )=sin x +3cos x 在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,则函数g (x )=cos x -3sin x 在区间[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值2D .可以取得最小值-2解析:选 D.f (x )=sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,g (x )=cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3=2sin ⎝ ⎛⎭⎪⎫x +π2+π3.f (x )在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,不妨令a +π3=π2,b +π3=3π2,则a +π2+π3=π,b +π2+π3=2π,故g (x )在[a ,b ]上既不是增函数,也不是减函数,g (x )在[a ,b ]上可以取得最小值-2,故选D.12.(多选)关于函数f (x )=sin|x |-|cos x |,下列结论正确的是( ) A .f (x )是偶函数B .f (x )在区间⎝ ⎛⎭⎪⎫π2,π上单调递减C .f (x )的最大值为 2D .当x ∈⎝ ⎛⎭⎪⎫-π4,π4时,f (x )<0恒成立解析:选ABD.因为f (-x )=sin|-x |-|cos(-x )|=sin|x |-|cos x |=f (x ),所以f (x )为偶函数,故A 正确;当x ∈⎝ ⎛⎭⎪⎫π2,π时,f (x )=sin|x |-|cos x |=sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,又x ∈⎝ ⎛⎭⎪⎫π2,π,所以令t =x +π4,则t ∈⎝ ⎛⎭⎪⎫3π4,5π4,y =2sin t 单调递减,所以B 正确;因为f (x )为偶函数,所以求函数f (x )的最大值可只考虑当x ≥0时的情况,又易知当x ≥0时,2π是其一个周期,所以只需研究x ∈[0,2π]时的情况,。

三角函数的单调性与极值

三角函数的单调性与极值

三角函数的单调性与极值三角函数是数学中常见且重要的函数之一,它涵盖了正弦函数、余弦函数和正切函数等多种函数。

在学习三角函数时,我们需要研究它们的单调性和极值,这对我们理解和应用三角函数有着重要的意义。

本文将探讨三角函数的单调性和极值,并分别对正弦函数、余弦函数和正切函数进行讨论。

一、正弦函数的单调性与极值正弦函数是一个周期函数,它的定义域为实数集,值域为闭区间[-1, 1]。

我们可以通过观察正弦函数的图像来研究其单调性和极值。

正弦函数的图像在每个周期内呈现周期性变化,从图像上观察,我们可以得出以下结论:1. 正弦函数在定义域内是振荡函数,没有整体的单调性;2. 在每个周期内,正弦函数先增后减,在0到π的区间上,正弦函数单调递增;3. 在π到2π的区间上,正弦函数单调递减;4. 正弦函数在特定角度处达到极值,即在0、π、2π等处取得最大值1和最小值-1。

综上所述,正弦函数的单调性为在每个周期内先递增后递减,且在特定角度处取得极值。

二、余弦函数的单调性与极值余弦函数也是一个周期函数,它的定义域为实数集,值域为闭区间[-1, 1]。

我们同样可以通过观察余弦函数的图像来研究其单调性和极值。

余弦函数的图像同样呈现周期性变化,在观察图像的基础上,我们可以得出以下结论:1. 余弦函数在定义域内是振荡函数,没有整体的单调性;2. 在每个周期内,余弦函数先减后增,在0到π的区间上,余弦函数单调递减;3. 在π到2π的区间上,余弦函数单调递增;4. 余弦函数在特定角度处达到极值,即在0、π、2π等处取得最大值1和最小值-1。

综上所述,余弦函数的单调性为在每个周期内先递减后递增,且在特定角度处取得极值。

三、正切函数的单调性与极值正切函数是一个奇函数,它的定义域为实数集,值域为整个实数集。

我们同样可以通过观察正切函数的图像来研究其单调性和极值。

正切函数的图像呈现周期性变化,从图像上我们可以得出以下结论:1. 正切函数在定义域内是振荡函数,没有整体的单调性;2. 在每个周期内,正切函数存在无穷多个间断点,因此无法具体判断其单调性;3. 正切函数在特定角度处取得极值。

人教A版必修1第5章三角函数:4.2 第2课时 正弦函数、余弦函数的单调性与最值

人教A版必修1第5章三角函数:4.2 第2课时 正弦函数、余弦函数的单调性与最值

人教A版必修1第5章三角函数:4.2 第2课时正弦函数、余弦函数的单调性与最值(同步讲义)(教师独具内容)课程标准:1.掌握正弦函数、余弦函数的最大值与最小值,并会求简单三角函数的值域和最值.2.掌握正弦函数、余弦函数的单调性,并能利用单调性比较大小.3.会求函数y=A sin(ωx+φ)及y=A cos(ωx+φ)的单调区间.教学重点:正弦函数、余弦函数的单调性和最值.教学难点:利用正弦函数、余弦函数的周期性来研究它们的单调性及最值.【知识导学】知识点正弦函数、余弦函数的性质【新知拓展】(1)正弦函数、余弦函数有单调区间,但都不是定义域上的单调函数,即正弦函数、余弦函数在整个定义域内不单调.(2)正弦曲线(余弦曲线)的对称轴一定过正弦曲线(余弦曲线)的最高点或最低点,即此时的正弦值(余弦值)取最大值或最小值.(3)正弦曲线(余弦曲线)的对称中心一定是正弦曲线(余弦曲线)与x 轴的交点,即此时的正弦值(余弦值)为0.1.判一判(正确的打“√”,错误的打“×”)(1)正弦函数、余弦函数在定义域内都是单调函数.( )(2)存在x ∈R 满足sin x = 2.( )(3)在区间[0,2π]上,函数y =cos x 仅当x =0时取得最大值1.( )答案 (1)× (2)× (3)×2.做一做(1)在下列区间中,函数y =sin x 单调递增的是( )A .[0,π] B.⎣⎡⎦⎤π2,3π2C.⎣⎡⎦⎤-π2,π2 D .[π,2π](2)函数y =2-sin x 的最大值及取最大值时x 的值为( )A .y max =3,x =π2B.y max =1,x =π2+2k π(k ∈Z ) C .y max =3,x =-π2+2k π(k ∈Z ) D .y max =3,x =π2+2k π(k ∈Z ) (3)函数y =13sin ⎝⎛⎭⎫π6-x (x ∈[0,π])的单调递增区间为________. 答案 (1)C (2)C (3)⎣⎡⎦⎤2π3,π题型一 正弦函数、余弦函数的单调区间【例1】求下列函数的单调递增区间:(1)y =1-sin x 2;(2)y =sin ⎝⎛⎭⎫-2x +π3; (3)y =log 12sin ⎝⎛⎭⎫2x +π4;(4)y =cos2x . [解] (1)由题意可知函数y =sin x 2的单调递减区间即为y =1-sin x 2的单调递增区间, 由2k π+π2≤x 2≤2k π+3π2(k ∈Z ),得 4k π+π≤x ≤4k π+3π(k ∈Z ),所以函数y =1-sin x 2的单调递增区间为[4k π+π,4k π+3π](k ∈Z ). (2)y =sin ⎝⎛⎭⎫-2x +π3=-sin ⎝⎛⎭⎫2x -π3. 由π2+2k π≤2x -π3≤3π2+2k π(k ∈Z ), 解得5π12+k π≤x ≤11π12+k π(k ∈Z ), 故函数y =sin ⎝⎛⎭⎫-2x +π3的单调递增区间为 ⎣⎡⎦⎤5π12+k π,11π12+k π(k ∈Z ). (3)由对数函数的定义域和复合函数的单调性,可知⎩⎨⎧ sin ⎝⎛⎭⎫2x +π4>0,2k π+π2≤2x +π4≤2k π+3π2(k ∈Z ),解得2k π+π2≤2x +π4<2k π+π(k ∈Z ), 即k π+π8≤x <k π+3π8(k ∈Z ), 故所求单调递增区间为⎣⎡⎭⎫k π+π8,k π+3π8(k ∈Z ). (4)函数y =cos2x 的单调递增区间由下面的不等式确定:2k π-π≤2x ≤2k π,k ∈Z ,∴k π-π2≤x ≤k π,k ∈Z , ∴函数y =cos2x 的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z . 金版点睛求正弦函数、余弦函数单调区间的技巧求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)的函数的单调区间时,若ω为负数,则要先把ω化为正数.当A >0时,把ωx +φ整体放入y =sin x 或y =cos x 的单调增区间内,求得的x 的范围即函数的增区间;整体放入y =sin x 或y =cos x 的单调减区间内,可求得函数的单调减区间.当A <0时,上述方法求出的区间是其单调性相反的区间.最后,需将最终结果写成区间形式.【跟踪训练1】求下列函数的单调区间:(1)y =cos ⎝⎛⎭⎫x 2+π3;(2)y =3sin ⎝⎛⎭⎫π4-2x . 解 (1)当2k π-π≤x 2+π3≤2k π,k ∈Z 时,函数单调递增,故函数的单调递增区间是⎣⎡⎦⎤4k π-8π3,4k π-2π3,k ∈Z . 当2k π≤x 2+π3≤2k π+π,k ∈Z 时, 函数单调递减,故函数的单调递减区间是⎣⎡⎦⎤4k π-2π3,4k π+4π3,k ∈Z . (2)y =3sin ⎝⎛⎭⎫π4-2x =-3sin ⎝⎛⎭⎫2x -π4, 令z =2x -π4,则y =-3sin z . 要取y =-3sin z 的增区间即取y =sin z 的减区间,即2k π+π2≤2x -π4≤2k π+3π2(k ∈Z ),∴k π+3π8≤x ≤k π+7π8(k ∈Z ), ∴函数y =3sin ⎝⎛⎭⎫π4-2x 的单调递增区间为⎣⎡⎦⎤k π+3π8,k π+7π8(k ∈Z ). 要取y =-3sin z 的减区间即取y =sin z 的增区间,即2k π-π2≤2x -π4≤2k π+π2(k ∈Z ), ∴k π-π8≤x ≤k π+3π8(k ∈Z ). ∴函数y =3sin ⎝⎛⎭⎫π4-2x 的单调递减区间为⎣⎡⎦⎤k π-π8,k π+3π8(k ∈Z ). 题型二 比较三角函数值的大小【例2】比较下列各组数的大小:(1)cos ⎝⎛⎭⎫-23π5与cos ⎝⎛⎭⎫-17π4;(2)sin194°与cos160°; (3)sin1,sin2,sin3.[解] (1)cos ⎝⎛⎭⎫-23π5=cos ⎝⎛⎭⎫-6π+7π5=cos 7π5, cos ⎝⎛⎭⎫-17π4=cos ⎝⎛⎭⎫-6π+7π4=cos 7π4, ∵π<7π5<7π4<2π,∴cos 7π5<cos 7π4, 即cos ⎝⎛⎭⎫-23π5<cos ⎝⎛⎭⎫-17π4. (2)sin194°=sin(180°+14°)=-sin14°,cos160°=cos(180°-20°)=-cos20°=-sin70°.∵0°<14°<70°<90°,∴sin14°<sin70°.从而-sin14°>-sin70°,即sin194°>cos160°.(3)∵1<π2<2<3<π, 又sin(π-2)=sin2,sin(π-3)=sin3.0<π-3<1<π-2<π2, 而y =sin x 在⎝⎛⎭⎫0,π2上单调递增, ∴sin(π-3)<sin1<sin(π-2),即sin3<sin1<sin2.金版点睛比较三角函数值大小的方法(1)比较两个同名三角函数值的大小,先利用诱导公式把两个角化为同一单调区间内的角,再利用函数的单调性比较.(2)比较两个不同名的三角函数值的大小,一般应先化为同名的三角函数,后面步骤同上.【跟踪训练2】(1)两个数cos ⎝⎛⎭⎫-7π8和cos 7π6的大小关系是________; (2)按由小到大的顺序排列下列数:cos 32,sin 110,-cos 74.写在横线上为________________. 答案 (1)cos ⎝⎛⎭⎫-7π8<cos 7π6(2)cos 32<sin 110<-cos 74解析 (1)cos ⎝⎛⎭⎫-7π8=cos 7π8=cos ⎝⎛⎭⎫π-π8=-cos π8,而cos 7π6=-cos π6,∵0<π8<π6<π2,∴cos π8>cos π6,∴-cos π8<-cos π6,∴cos ⎝⎛⎭⎫-7π8<cos 7π6.(2)sin 110=cos ⎝⎛⎭⎫π2-110≈cos1.47,-cos 74=cos ⎝⎛⎭⎫π-74≈cos1.39,而y =cos x 在[0,π]上单调递减,∴cos1.5<cos ⎝⎛⎭⎫π2-110<cos ⎝⎛⎭⎫π-74,即cos 32<sin 110<-cos 74.题型三 正弦函数、余弦函数的最值问题【例3】求下列函数的值域:(1)y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2;(2)y =cos 2x -4cos x +5.[解] (1)由y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2,可得x +π6∈⎣⎡⎦⎤π6,2π3,函数y =cos x 在区间⎣⎡⎦⎤π6,2π3上单调递减,所以函数的值域为⎣⎡⎦⎤-12,32. (2)令t =cos x ,则-1≤t ≤1.∴y =t 2-4t +5=(t -2)2+1,∴当t =-1时,y 取得最大值10,当t =1时,y 取得最小值2.所以y =cos 2x -4cos x +5的值域为[2,10].[条件探究] (1)将本例(1)改为y =cos ⎝⎛⎭⎫x -π6,x ∈⎣⎡⎦⎤0,π2,再求值域; (2)若将本例(1)改为y =sin ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2,值域又如何? 解 (1)y =cos ⎝⎛⎭⎫x -π6, ∵x ∈⎣⎡⎦⎤0,π2,∴x -π6∈⎣⎡⎦⎤-π6,π3, 由余弦函数的图象及其单调性可知cos ⎝⎛⎭⎫x -π6∈⎣⎡⎦⎤12,1. ∴所求函数的值域为⎣⎡⎦⎤12,1.(2)y =sin ⎝⎛⎭⎫x +π6,∵x ∈⎣⎡⎦⎤0,π2, ∴x +π6∈⎣⎡⎦⎤π6,2π3, 由正弦函数的图象及其单调性可知sin ⎝⎛⎭⎫x +π6∈⎣⎡⎦⎤12,1, ∴所求函数的值域为⎣⎡⎦⎤12,1.金版点睛三角函数最值问题的三种常见类型及求解方法(1)形如y =a sin x (或y =a cos x )型,可利用正弦函数,余弦函数的有界性,注意对a 正负的讨论.(2)形如y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )型,可先由定义域求得ωx +φ的范围,然后求得sin(ωx +φ)(或cos(ωx +φ))的范围,最后求得最值.(3)形如y =a sin 2x +b sin x +c (a ≠0)型,可利用换元思想,设t =sin x ,转化为二次函数y =at 2+bt +c 求最值.t 的范围需要根据定义域来确定.附:形如y =A sin x +B C sin x +D 或y =A cos x +B C cos x +D(A 2+C 2≠0)的最大值最小值可解出sin x 或cos x 后利用其有界性来求. 【跟踪训练3】(1)已知函数f (x )=2a sin x +b 的定义域为⎣⎡⎦⎤-π3,2π3,函数的最大值为1,最小值为-5,求a 和b 的值;(2)求函数y =cos 2x -sin x 在x ∈⎣⎡⎦⎤-π4,π4上的最大值和最小值. 解 (1)因为x ∈⎣⎡⎦⎤-π3,2π3, 所以sin x ∈⎣⎡⎦⎤-32,1. ⎩⎪⎨⎪⎧ 2a ×⎝⎛⎭⎫-32+b =-5,2a +b =1或⎩⎪⎨⎪⎧2a +b =-5,2a ×⎝⎛⎭⎫-32+b =1, 解得⎩⎨⎧ a =12-63,b =-23+123或⎩⎨⎧a =-12+63,b =19-12 3.(2)y =cos 2x -sin x =1-sin 2x -sin x =-⎝⎛⎭⎫sin x +122+54.因为-π4≤x ≤π4,-22≤sin x ≤22, 所以当x =-π6,即sin x =-12时,函数取得最大值,y max =54; 当x =π4,即sin x =22时,函数取得最小值,y min =12-22. 随堂水平达标1.函数y =sin 2x +sin x -1的值域为( )A .[-1,1]B.⎣⎡⎦⎤-54,-1C.⎣⎡⎦⎤-54,1 D.⎣⎡⎦⎤-1,54 答案 C解析 y =sin 2x +sin x -1=⎝⎛⎭⎫sin x +122-54,当sin x =-12时,y min =-54;当sin x =1时,y max =1,故选C. 2.下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°答案 C解析 ∵sin168°=sin(180°-12°)=sin12°,cos10°=sin(90°-10°)=sin80°,由函数y =sin x 的单调性,得sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.3.函数y =|sin x |的一个单调递增区间是( )A.⎝⎛⎭⎫-π4,π4 B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π答案 C解析 由y =|sin x |的图象,易得函数y =|sin x |的单调递增区间为⎝⎛⎭⎫k π,k π+π2,k ∈Z .当k =1时,得⎝⎛⎭⎫π,3π2为函数y =|sin x |的一个单调递增区间.4.函数y =2sin ⎝⎛⎭⎫2x +π3⎝⎛⎭⎫-π6≤x ≤π6的值域是________. 答案 [0,2]解析 ∵-π6≤x ≤π6,∴0≤2x +π3≤2π3, ∴0≤sin ⎝⎛⎭⎫2x +π3≤1,∴y ∈[0,2]. 5.若f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为2,求ω的值. 解 由题意可知f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上单调递增且2sin π3ω=2,即sin π3ω=22, 所以有π3ω=2k π+π4(k ∈Z ),即ω=6k +34(k ∈Z ), 因为0<ω<1,所以ω=34.。

5.4第二课时三角函数单调性与最值 高中数学人教A版必修第一册

5.4第二课时三角函数单调性与最值 高中数学人教A版必修第一册
构建直观模型,重点提升学生的直观想象、数学抽象、逻辑推理、 数学运算素养.
内容 索引
问题导学预习教材
01
必备知识探究
互动合作研析题型
02
关键能力提升
拓展延伸分层精练
03
核心素养达成
WEN TI DAO XUE YU XI JIAO CAI BI BEI ZHI SHI TAN JIU
问题导学预习教 材 必备知识探究
二次函数的单调性求值域(最值).
训练 3 已知函数 y=a-bcos2x+π6(b>0)的最大值为32,最小值为-12.
(1)求a,b的值;
解 易知-1≤cos2x+π6≤1. 因为 b>0,所以-b<0, 所以ymax=b+a=32,
ymin=-b+a=-12. 所以 a=21,b=1.
(2)求函数 g(x)=-4asinbx-π3的最小值,并求出对应的 x 的取值集合. 解 由(1)知 g(x)=-2sinx-π3, 因为 sinx-π3∈[-1,1],
A.32π,52π
B.π2,32π
C.-π2,π2
D.[π,2π]
解析 y=sin x 的单调增区间是2kπ-π2,2kπ+π2,k∈Z,
取 k=0,得区间-π2,π2;
取 k=1,得区间32π,52π.
二、正弦、余弦函数的最值 1.问题 观察下图中的正弦曲线和余弦曲线,回答问题:
正弦曲线:
余弦曲线:
一、正弦、余弦函数的单调性 1.问题 观察正弦函数 y=sin x,x∈-π2,32π的图象,回答问题:
(1)函数图象有什么特征?函数值是怎样变化的? 提示 当 x 由-π2增大到π2时,曲线逐渐上升,sin x 的值由-1 增大到 1. 当 x 由π2增大到32π时,曲线逐渐下降,sin x 的值由 1 减小到-1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的单调性和最值问题
例1已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求:
(I) 函数()f x 的最大值及取得最大值的自变量x 的集合;
(II) 函数()f x 的单调增区间.
解(I)1cos 23(1cos 2)()sin 21sin 2cos 22)224
x x f x x x x x π-+=++=++=++
∴当2242x k π
ππ+=+,即()8x k k Z π
π=+∈时, ()f x 取得最大值2+函数()f x 的取得最大值的自变量x 的集合为{/,()}8x x R x k k Z ππ∈=+
∈.
(II) ()2)4f x x π=++
由题意得: 222()242k x k k Z πππππ-
≤+≤+∈ 即: 3()88
k x k k Z ππππ-≤≤+∈ 因此函数()f x 的单调增区间为3[,]()88
k k k Z ππππ-
+∈.
例2 已知函数f (x )=π24x ⎛⎫+ ⎪⎝⎭+6sin x cos x -2cos 2x +1,x ∈R . (1)求f (x )的最小正周期;
(2)求f (x )在区间π0,2
⎡⎤
⎢⎥⎣⎦
上的最大值和最小值. (3)求f (x )在区间π0,2⎡⎤⎢⎥⎣⎦
的单调区间和值域。

解:(1)f (x )=sin 2x ·ππcos sin 44
x ⋅+3sin 2x -cos 2x
=2sin 2x -2cos 2x =π24x ⎛⎫- ⎪⎝
⎭. 所以,f (x )的最小正周期T =2π2
=π. (2)因为f (x )在区间3π0,8⎡⎤⎢⎥⎣⎦上是增函数,在区间3ππ,82⎡⎤⎢⎥⎣⎦
上是减函数.又f (0)=-2,3π
8f ⎛⎫= ⎪⎝⎭,π22f ⎛⎫= ⎪⎝⎭,故函数f (x )在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为2.
练习题
练习1.已知函数),,0(cos 2)2sin(sin 3sin )(22R x x x x x x f ∈>+++=ωωπωωω在y 轴右侧的第一个最高点的横坐标为
6
π. (Ⅰ)求ω的值; (Ⅱ)若将函数)(x f 的图象向右平移
6π个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g 的最大值及单调递减区间.
练习2.设函数)(2sin cos 2)(2R a a x x x f ∈++=
(I)求函数f (x)的最小正周期和单调递增区间;
(Ⅱ)当]6,
0[π∈x 时,
f (x)的最大值为2,求a 的值,并求出()()R x x f y ∈=的对称轴方程.
练习3.已知函数44sin cos cos y x x x x =+-
(1)求函数()f x 最小正周期;
(2)若[]0,x π∈,求出该函数在[0,]π上的单调递增区间和最值。

练习4.已知函数2()=sin (2+)+sin(2)+2cos 133f x x x x π
π
--,x R ∈.
(Ⅰ)求函数()f x 的最小正周期;
(Ⅱ)求函数()f x 在区间[,]44ππ-
上的最大值和最小值.。

相关文档
最新文档