三角函数单调递增区间公式

合集下载

三角函数的值域

三角函数的值域

通 过 变 形 可 得 : f ( x) = 1 a2 + b2 sin (2x + j ) , 所 以 最 大 值 为 1 a2 + b2 = 1 , 即
2
2
2
a2
+ b2
= 1 ①,再利用
f
æp çè 3
ö ÷ø
=
3 可得: - 1 a -
4
4
3b= 4
3
②,通过①②可解得:
4
ìa íîb
= =

4:设函数
f
(x)
=
sin x
+
cos 2x
,若
x
Î
éêë-
p 6
,
p 2
ù úû
,则函数
f
( x) 的最小值是______
思路:同例 4 考虑将解析式中的项统一,cos 2x = 1 - 2sin2 x = 1 - 2 sin x 2 ,进而可将 sin x
作为一个整体,通过换元来求值域。
解: f ( x) = sin x + cos 2x = sin x + 1 - 2 sin x 2
三角函数。观察可得 cos x 次数较低,所以不利于转化,而 sin2 x,cos 2x 均可以用 cos x 进
( ) ( ) 行表示,确定核心项为 cos x ,解析式变形为 y = cos x -
1 - cos2 x
-
2cos2 x - 1
7 +,
4
化简后为
y
=
- cos2
x
+
cos x
+
7 4
=
cos

三角函数公式表

三角函数公式表

三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系: 平方关系: tan α ²cot α=1 sin α ²csc α=1 cos α ²sec α=1sin α/cos α=tan α=sec α/csc αcos α/sin α=cot α=csc α/sec α sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”) 诱导公式(口诀:奇变偶不变,符号看象限。

) sin (-α)=-sin αcos (-α)=cos α tan (-α)=-tan α cot (-α)=-cot αsin (π/2-α)=cos αcos (π/2-α)=sin αtan (π/2-α)=cot αcot (π/2-α)=tan αsin (π+α)=-sin αcos (π+α)=-cos αtan (π+α)=tan α cot (π+α)=cot αsin (2π-α)=-sin αcos (2π-α)=cos α tan (2π-α)=-tan α cot (2π-α)=-cot α两角和与差的三角函数公式 万能公式sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin βtan (α+β)=(tanα+tanβ)/(1-tanα ·tanβ) tan (α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 半角的正弦、余弦和正切公式 三角函数的降幂公式 sinα=(2tan(α/2) )/(1+tan2(α/2)) cosα=(1-tan2(α/2))/(1+tan2(α/2)) tanα=(2tan(α/2))/(1-tan2(α/2))二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α tan2α=2tanα/(1-tan2α) sin3α=3sinα-4sin3α cos3α=4cos3α-3cosαtan3α=(3tanα-tan3α)/( 1-3tan2α)三角函数的和差化积公式 三角函数的积化和差公式sin (π/2+α)=cosα cos (π/2+α)=-sinα tan (π/2+α)=-cotα cot (π/2+α)=-tanα sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα cot (π-α)=-cotα sin (3π/2-α)=-cosα cos (3π/2-α)=-sinα tan (3π/2-α)=cotα cot (3π/2-α)=tanαsin (3π/2+α)=-cosα cos (3π/2+α)=sinα tan (3π/2+α)=-cotα cot (3π/2+α)=-tanα sin (2kπ+α)=sinα cos (2kπ+α)=cosα tan (2kπ+α)=tanα cot (2kπ+α)=cotα (其中k ∈Z) cos (α+β)=cos αcos β-sin αsin β cos (α-β)=cos αcos β+sin αsin βsin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) sin(a)−sin(b)=2cos((a+b)/2)sin((a -b)/2) cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)化asin α ±b cos α为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合 简单逻辑任一x∈A x∈B,记作A B A B ,B A A =BA B ={x|x∈A,且x∈B} A B ={x|x∈A,或x∈B}card (A B )=card (A )+card (B )-card (A B ) (1)命题原命题 若p 则q 逆命题 若q 则p 否命题 若 p 则 q 逆否命题 若 q ,则 p (2)四种命题的关系(3)A B ,A 是B 成立的充分条件 B A ,A 是B 成立的必要条件 A B ,A 是B 成立的充要条件函数的性质 指数和对数(1)定义域、值域、对应法则 (2)单调性对于任意x1,x2∈D若x1<x2 f (x1)<f (x2),称f (x )在D 上是增函数 若x1<x2 f (x1)>f (x2),称f (x )在D 上是减函数 (3)奇偶性对于函数f (x )的定义域内的任一x ,若f (-x )=f (x ),称f (x )是偶函数 若f (-x )=-f (x ),称f (x )是奇函数 (4)周期性对于函数f (x )的定义域内的任一x ,若存在常数T ,使得f (x+T )=f(x),则称f (x )是周期函数 (1)分数指数幂 正分数指数幂的意义是 负分数指数幂的意义是(2)对数的性质和运算法则 loga (MN )=logaM+logaN logaMn =nlogaM (n∈R) 指数函数 对数函数(1)y =ax (a >0,a≠1)叫指数函数 (2)x∈R,y >0 图象经过(0,1)a >1时,x >0,y >1;x <0,0<y <1 0<a <1时,x >0,0<y <1;x <0,y >1 a > 1时,y =ax 是增函数0<a <1时,y =ax 是减函数 (1)y =logax (a >0,a≠1)叫对数函数 (2)x >0,y∈R 图象经过(1,0)a >1时,x >1,y >0;0<x <1,y <0 0<a <1时,x >1,y <0;0<x <1,y >0 a >1时,y =logax 是增函数 0<a <1时,y =logax 是减函数sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]指数方程和对数方程 基本型logaf(x)=b f (x )=ab (a >0,a≠1) 同底型logaf (x )=logag (x ) f (x )=g (x )>0(a >0,a≠1) 换元型 f (ax )=0或f (logax)=0数列数列的基本概念 等差数列(1)数列的通项公式an =f (n ) (2)数列的递推公式(3)数列的通项公式与前n 项和的关系 an+1-an =dan =a1+(n -1)da ,A ,b 成等差 2A =a+b m+n =k+l am+an =ak+al等比数列 常用求和公式 an =a1qn _1a ,G ,b 成等比 G2=ab m+n =k+l aman =akal不等式不等式的基本性质 重要不等式 a >b b <aa >b ,b >c a >c a >b a+c >b+c a+b >c a >c -b a >b ,c >d a+c >b+d|a|-|b|≤|a±b|≤|a|+|b| 证明不等式的基本方法 比较法(1)要证明不等式a >b (或a <b ),只需证明 a -b >0(或a -b <0=即可(2)若b >0,要证a >b ,只需证明 , 要证a <b ,只需证明综合法 综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

三角函数的单调性

三角函数的单调性

三角函数的单调性1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,题型5:三角函数的单调性 1.求下列函数的单调区间.(1) ⎪⎭⎫ ⎝⎛-=324sin 21x y π (2) ⎪⎭⎫ ⎝⎛+-=4cos πx y解:(1).原函数变形为⎪⎭⎫⎝⎛--=432sin 21πx y 令432π-=x u ,则只需求u y sin =的单调区间即可.2243222sin πππππ+≤-=≤-=k x u k u y 在 ,(Z k ∈)上 即893833ππππ+≤≤-k x k ,(Z k ∈)上单调递增, u y sin =在)(,23243222Z k k x u k ∈+≤-=≤+πππππ,上 即)(,8213893Z k k x k ∈+≤≤+ππππ,上单调递减 故⎪⎭⎫ ⎝⎛-=324sin 21x y π的递减区间为:,893,833⎥⎦⎤⎢⎣⎡+-ππππk k ()k Z ∈ 递增区间为:)(,8213,893Z k k k ∈⎥⎦⎤⎢⎣⎡++πππ.(2)原函数的增减区间即是函数⎪⎭⎫ ⎝⎛+=4cos πx y 的减增区间,令4π+=x u由函数u y cos =的图象可知:周期π=T 且 u y cos =在,42ππππk x u k ≤+=≤-上,即Z k k x k ∈-≤≤-,443ππππ上递增, 在24ππππ+≤+=≤k x u k 即在Z k k x k ∈+≤≤-,44ππππ上递减故所求的递减区间为⎥⎦⎤⎢⎣⎡--4,43ππππk k ,递增区间为,44k k ππππ⎡⎤-+⎢⎥⎣⎦(Z k ∈) 2.函数y =2sin x的单调增区间是( ) A .[2k π-2π,2k π+2π](k ∈Z )B .[2k π+2π,2k π+23π](k ∈Z ) C .[2k π-π,2k π](k ∈Z ) D .[2k π,2k π+π](k ∈Z )解析:A ;函数y =2x为增函数,因此求函数y =2sin x的单调增区间即求函数y =sin x 的单调增区间。

数学三角函数公式大全

数学三角函数公式大全

三角函数1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββο②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|οββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|οοββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90|οββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|οοββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则=αsin rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 x x k x x k xx k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ公式组三x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2x tan x ·cot x =1 1+cot 2x =csc 2x =1(3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:公式组四 x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ公式组五xx x x xx x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ公式组六xx x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan 2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= ()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-2tan 12tan2tan 2ααα-=42675cos 15sin -==οο, ,3275cot 15tan -==οο,. 3215cot 75tan +==οο 42615cos 75sin +==οο2sin2cos2sin sin βαβαβα-+=-2cos 2cos2cos cos βαβαβα-+=+2sin2sin 2cos cos βαβαβα-+-=-ααπcos )21sin(=+ααπcot )21tan(-=+注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tan xy =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T )x y cos =是周期函数(如图);x y cos =为周期函数(π=T ); 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如:R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。

三角函数公式表

三角函数公式表

三角函数公式表三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin———·cos———2 2α+βα-βsinα-sinβ=2cos———·sin———2 2α+βα-βcosα+cosβ=2cos———·cos———2 2α+βα-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合简单逻辑任一x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}c ard(A B)=card(A)+card(B)-card(A B)(1)命题原命题若p则q逆命题若q则p否命题若 p则 q逆否命题若 q,则 p(2)四种命题的关系(3)A B,A是B成立的充分条件B A,A是B成立的必要条件A B,A是B成立的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数(3)奇偶性对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f (x)是偶函数若f(-x)=-f(x),称f(x)是奇函数(4)周期性对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga(MN)=logaM+logaNlogaMn=nlogaM(n∈R)指数函数对数函数(1)y=ax(a>0,a≠1)叫指数函数(2)x∈R,y>0图象经过(0,1)a>1时,x>0,y>1;x<0,0<y<10<a<1时,x>0,0<y<1;x<0,y>1a> 1时,y=ax是增函数0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数(2)x>0,y∈R图象经过(1,0)a>1时,x>1,y>0;0<x<1,y<00<a<1时,x>1,y<0;0<x<1,y>0a>1时,y=logax是增函数0<a<1时,y=logax是减函数指数方程和对数方程基本型logaf(x)=b f(x)=ab(a>0,a≠1)同底型logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)换元型 f(ax)=0或f (logax)=0数列数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1-an=dan=a1+(n-1)da,A,b成等差 2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比 G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b b<aa>b,b>c a>ca>b a+c>b+ca+b>c a>c-ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 ac<bca>b>0,c>d>0 ac<bda>b>0 dn>bn(n∈Z,n>1)a>b>0 >(n∈Z,n>1)(a-b)2≥0a,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或a<b),只需证明a-b>0(或a-b<0=即可(2)若b>0,要证a>b,只需证明,要证a<b,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

三角函数的图象、定义域、最值(值域)、单调性

三角函数的图象、定义域、最值(值域)、单调性
三角函数的图象、定义域、最值(值域)、单调性
[学习要求] 1.能画出 y = sin x , y = cos x , y =tan x 的图象. 2.理解
正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小
值、图象与 x 轴的交点等). 3.理解正切函数在区间
π
π
− ,
2
2
上的性质.
π
π
− <<
2
2
由题意得 y = cos x ·|tan x |=ቐ
的大致图象是(
sin,0 ≤
π
< ,
2
π
−sin, − <
2
所以其图象的大致形状如选项C所示.
< 0,
C )
2. 已知函数 f ( x )= sin x +2| sin x |, x ∈[0,2π],若直线 y = k
与其仅有两个不同的交点,则 k 的取值范围为
, k ∈Z,
2
2
π
π
π
+ ≥ + 2π,
4
2
所以ቐ 2
k ∈Z,
π

π+ ≤ + 2π,
4
2
1
5
解得4 k + ≤ω≤2 k + , k ∈Z.
2
4
1
5
5
又由4 k + - 2+ ≤0, k ∈Z,且2 k + >0, k ∈Z,解得 k =0,
2
4
4
1
5
所以ω∈ , .
2
4
方法总结
A. [-1,1]
令 sin x = t , t ∈[-1,1],
则 y = t 2+ t -1=
1 2

三角函数公式表

三角函数公式表

三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsi n3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2sin———·cos———2 2α+β α-βsinα-sinβ=2cos———·sin———2 2α+β α-βcosα+cosβ=2cos———·cos———2 2α+β α-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合简单逻辑任一x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}c ard(A B)=card(A)+card(B)-card(A B)(1)命题原命题若p则q逆命题若q则p否命题若 p则 q逆否命题若 q,则 p(2)四种命题的关系(3)A B,A是B成立的充分条件B A,A是B成立的必要条件A B,A是B成立的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数(3)奇偶性对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数若f(-x)=-f(x),称f(x)是奇函数(4)周期性对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga(MN)=logaM+logaNlogaMn=nlogaM(n∈R)指数函数对数函数(1)y=ax(a>0,a≠1)叫指数函数(2)x∈R,y>0图象经过(0,1)a>1时,x>0,y>1;x<0,0<y<10<a<1时,x>0,0<y<1;x<0,y>1a> 1时,y=ax是增函数0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数(2)x>0,y∈R图象经过(1,0)a>1时,x>1,y>0;0<x<1,y<00<a<1时,x>1,y<0;0<x<1,y>0a>1时,y=logax是增函数0<a<1时,y=logax是减函数指数方程和对数方程基本型logaf(x)=b f(x)=ab(a>0,a≠1)同底型logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)换元型 f(ax)=0或f (logax)=0数列数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1-an=dan=a1+(n-1)da,A,b成等差 2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比 G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b b<aa>b,b>c a>ca>b a+c>b+ca+b>c a>c-ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 ac<bca>b>0,c>d>0 ac<bda>b>0 dn>bn(n∈Z,n>1)a>b>0 >(n∈Z,n>1)(a-b)2≥0a,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或a<b),只需证明a-b>0(或a-b<0=即可(2)若b>0,要证a>b,只需证明,要证a<b,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

正、余弦函数的单调性与最值

正、余弦函数的单调性与最值

函数 名称
图象与 性质
性质分类
定义域 相

值域
处 周期性
y=sinx
(-∞,+∞) [-1,1] T=2π
y=cosx
(-∞,+∞) [-1,1] T=2π
正、余弦函数的所有性质都是针对自变量x本身而言 的.正弦函数y=sinx(x∈R)的图象关于原点成中心对称, 其图象在对称中心和对称轴处对应的分别为函数的零点和 最值点.正弦函数有单调区间,但并不是定义域上的单调 函数,即:它在整个定义域内并不单调.
求函数y=Asin(ωx+φ)(A>0,ω≠0)或y=Acos(ωx+ φ)(A>0,ω≠0)的单调区间,一般将ωx+φ视作整体,代入y =sinx或y=cosx相关的单调区间所对应的不等式,解之即 得.这里实际上采用的是整体的思想,这是研究三角函数 性质的重要数学思想,一般地,ω<0时,y=Asin(ωx+ φ)(Aω≠0)变形为y=-Asin(-ωx-φ),y=Acos(ωx+ φ)(Aω≠0)变形为y=Acos(-ωx-φ),再求函数的单调区 间.所有的这些变形都是为了使x前面的系数为正值.同 时要注意A<0时单调区间的变化.
【名师点拨】
(1)对于形如y=a+bsinx或y=a+bcosx类型的函数求 值域时,主要是利用三角函数的图象求解,在解题时一定 要注意函数的定义域.
(2)对于形如y=Asin2x+Bsinx+C或y=Acos2x+Bcosx +C类型的函数求值域时,可采用换元法求解.
已知函数 y=2acos2x-3π+b 的定义域是 0,π2,值域是[-5,1],求 a,b 的值.
【名师点拨】
求三角函数y=Asin(ωx+φ)(A、ω≠0)或y=Acos(ωx+ φ)(Aω≠0)的单调区间,一定要注意到函数中A与ω的符 号.如果ω<0,一般利用诱导公式将x的系数化为正数, 再求解.

三角函数的单调区间

三角函数的单调区间

三角函数的图像及性质1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。

4.对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+;对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。

类型一:三角函数的定义域、单调性及值域 例题1.求下列函数的定义域:(5)3tan y x =-例题2.求下列函数的单调增区间(1)sin(21)y x =+;(2)sin(2)y x =-;(3)12log sin y x =;(4)12log tan y x =例题3.(2010重庆文)下列函数中,周期为π,且在[,]42ππ上为减函数的是(A )sin(2)2y x π=+ (B )cos(2)2y x π=+(C )sin()2y x π=+ (D )cos()2y x π=+例题4.(12全国理) 已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

三角函数总结大全附记忆口诀

三角函数总结大全附记忆口诀

三角函数总结大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,三角函数是数学中属于初等函数中的超越函数的函数。

它们的本质是任何角的集合与一个比值的集合的变量之间的映射。

通常的三角函数是在平面直角坐标系中定义的。

其定义域为整个实数域。

另一种定义是在直角三角形中,但并不完全。

现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。

而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。

下面为大家整理的三角函数公式大全:(一)任意角的三角函数及诱导公式1.任意角概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。

旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。

为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。

如果一条射线没有做任何旋转,我们称它形成了一个零角。

2.象限角、终边相同的角、区间角角的顶点与原点重合,角的始边与x轴的非负半轴重合。

那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。

要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。

终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2kπ(k∈Z),即β∈{β|β=2kπ+α,k∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。

区间角是介于两个角之间的所有角,如α∈{α|6π≤α≤65π}=[6π,65π]。

3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。

最全高中三角函数总结

最全高中三角函数总结

三角函数做题技巧与方法总结知识点梳理1.正弦函数、余弦函数、正切函数的图像2、三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3、三角函数的诱导公式sin (2kπ+α)=sinα sin (π+α)=-sinα sin (-α)=-sinαcos (2kπ+α)=cosα cos (π+α)=-cosα cos (-α)=cosαtan (2kπ+α)=tanα tan (π+α)=tanα tan (-α)=-tanαsin (π-α)=sinα sin (π/2+α)=cosα sin (π/2-α)=cosαcos (π-α)=-cosα cos (π/2+α)=-sinα cos (π/2-α)=sinαtan (π-α)=-tanα tan (π/2+α)=-cotα tan (π/2-α)=cotαsin 2(α)+cos 2(α)=14、两角和差公式5、 二倍角的正弦、余弦和正切公式sin (α+β)=sinαcosβ+cosαsinβ sin2α=2sinαcosαsin (α-β)=sinαcosβ-cosαsinβ cos2α=cos 2(α)-sin 2(α)=2cos 2(α)-1=1-2sin 2(α)cos (α+β)=cosαcosβ-sinαsinβ tan2α=2tanα/(1-tan 2(α)) cos (α-β)=cosαcosβ+sinαsinβ tan (α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan (α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 6、半角公式:2cos 12sinαα-±=; 2cos 12cos αα+±=; αααααααsin cos 1cos 1sin cos 1cos 12tan-=+=+-±=7、函数Bx A y ++=)sin(ϕω),(其中00>>ωA 最大值是B A +,最小值是A B -,周期是ωπ2=T ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心 8、由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

三角函数的单调性

三角函数的单调性

1 2
cosx
1 2
π
5π 2π 3
x
5π ∴在 kπ + ,2kπ +π ]或 kπ + ,2kπ + 2π ](k ∈Z)上y单调递增, [2 [2 3 3 5π π 在 kπ,2kπ + ]或 kπ +π ,2kπ + ](k ∈Z)上y单调递减. [2 [2 3 3
π
3、函数y = log 1 sin(2 x + )的单调递减区间是( 4 2 4 π 3π C.(kπ − , kπ + ) 8 8
x
∴ 在每个[2kπ −
, 2kπ + ]k ∈ Z 上单调递增, 2 2 π 3π 在每个[2kπ + , 2kπ + ]k ∈ Z 上单调递减. 2 2
π
π
2、y = cos 2 x − cos x + 2
1 2 7 解 : y = (cos x − ) + , 2 4
y
o
y 1 ∴当cos x ≥ 时, y与cos x的单调性相同; 1 2 1 o π 当cos x ≤ 时, y与cos x的单调性相反. 3 2
π
1 3π π 8、函数y = lg[sin( − x)]的递增区间为(4kπ − ,4kπ − ]. 4 2 2 2 π 1 1 π (法2) ∵ t = sin( − x) = − sin( x − ). 4 2 2 4 1 π ∴ 只需求使 sin( x − ) < 0且为减函数的区间, 2 4 1 π 3π 5π 7π ∴ 2kπ + π < x − ≤ 2kπ + 即4kπ + < x ≤ 4kπ + , 2 4 2 2 2 π 1 ∴函数y = lg sin( − x)的单调递增区间为 4 2 5π 7π (4kπ + , 4kπ + ](k ∈ Z ). 2 2 事实上, 令k = m − 1得递增区间为 π 3π (4kπ − , 4kπ − ](k ∈ Z )与法1相同. 2 2

三角函数公式表

三角函数公式表

三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ²cotα=1sinα ²cscα=1cosα ²secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ²tanβtanα-tanβtan(α-β)=——————1+tanα ²tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin———²cos———2 2α+βα-βsinα-sinβ=2cos———²sin———2 2α+βα-βcosα+cosβ=2cos———²cos———2 2α+βα-βcosα-cosβ=-2sin———²sin———2 2 1sinα ²cosβ=-[sin(α+β)+sin(α-β)]21cosα ²sinβ=-[sin(α+β)-sin(α-β)]21cosα ²cosβ=-[cos(α+β)+cos(α-β)]21sinα ²sinβ=— -[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合简单逻辑任一x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}card(A B)=card(A)+card(B)-card(A B)(1)命题原命题若p则q逆命题若q则p否命题若 p则 q逆否命题若 q,则 p(2)四种命题的关系(3)A B,A是B成立的充分条件B A,A是B成立的必要条件A B,A是B成立的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数(3)奇偶性对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数若f(-x)=-f(x),称f(x)是奇函数(4)周期性对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga(MN)=logaM+logaNlogaMn=nlogaM(n∈R)指数函数对数函数(1)y=ax(a>0,a≠1)叫指数函数(2)x∈R,y>0图象经过(0,1)a>1时,x>0,y>1;x<0,0<y<10<a<1时,x>0,0<y<1;x<0,y>1a> 1时,y=ax是增函数0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数(2)x>0,y∈R图象经过(1,0)a>1时,x>1,y>0;0<x<1,y<00<a<1时,x>1,y<0;0<x<1,y>0a>1时,y=logax是增函数0<a<1时,y=logax是减函数指数方程和对数方程基本型logaf(x)=b f(x)=ab(a>0,a≠1)同底型logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)换元型 f(ax)=0或f (logax)=0数列数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1-an=dan=a1+(n-1)da,A,b成等差 2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比 G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b b<aa>b,b>c a>ca>b a+c>b+ca+b>c a>c-ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 ac<bca>b>0,c>d>0 ac<bda>b>0 dn>bn(n∈Z,n>1)a>b>0 >(n∈Z,n>1)(a-b)2≥0a,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或a<b),只需证明a-b>0(或a-b<0=即可(2)若b>0,要证a>b,只需证明,要证a<b,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

三角函数增减区间公式

三角函数增减区间公式

三角函数增减区间公式
对于正弦函数和余弦函数,它们的增减性质是相同的,都满足以下规律:
1.增加区间:在第二象限和第一象限内,函数值随着自变量的增加而递增。

2.减少区间:在第三象限和第四象限内,函数值随着自变量的增加而递减。

具体而言,正弦函数和余弦函数的增减区间为:
正弦函数:
增加区间:kπ < x < (k+1)π (k∈Z)
减少区间:(k+1/2)π < x < (k+3/2)π (k∈Z)
余弦函数:
增加区间:(k+1/2)π < x < (k+3/2)π (k∈Z)
减少区间:kπ < x < (k+1)π (k∈Z)
对于正切函数和余切函数,它们的增减性质也是相同的,都满足以下规律:
1.增加区间:在相邻两个奇数倍π之间,函数值随着自变量的增加而递增。

2.减少区间:在相邻两个偶数倍π之间,函数值随着自变量的增加而递减。

具体而言,正切函数和余切函数的增减区间为:
正切函数:
增加区间:kπ < x < (k+1)π/2 (k∈Z)
减少区间:(k+1/2)π < x < (k+1)π (k∈Z)
余切函数:
增加区间:(k+1/2)π < x < (k+1)π (k∈Z)
减少区间:kπ < x < (k+1)π/2 (k∈Z)
需要注意的是,在一些特殊情况下,例如函数存在间断点或无穷点时,以上公式可能会有所改变。

需要仔细审题,结合具体情况进行分析。

三角函数单调区间w为负数 复合函数

三角函数单调区间w为负数 复合函数

【文章标题】深入探讨三角函数单调区间与复合函数1.引言在数学领域里,三角函数和复合函数都是非常重要且常见的概念。

三角函数是代表角度关系的函数,而复合函数则是由一个函数和另一个函数结合而成的新函数。

本文将深入探讨三角函数的单调区间和复合函数的相关知识,帮助读者更好地理解这两个概念之间的联系和应用。

2.三角函数单调区间的概念在数学中,单调性是指函数图像的走势是否是单调上升或者单调下降的。

而三角函数则是以角度为自变量的函数。

要求三角函数的单调区间首先需要了解三角函数的图像走势。

以正弦函数为例,它的单调递增区间是在\[2kπ,(2k+1)π\],单调递减区间是在\[(2k+1)π,(2k+2)π\],其中k为整数。

而余弦函数的单调递增区间是在\[(2k+1)π/2,(2k+3)π/2\],单调递减区间是在\[(2k-1)π/2,(2k+1)π/2\],其中k为整数。

3.三角函数单调区间w为负数三角函数单调区间与w为负数之间的联系在于w的取值对角度的影响。

当w为负数时,求出的角度与w的取值有关。

在三角函数中,角度并不仅限于180度内,而是可以通过周期性关系,延伸至整个实数轴上。

当w为负数时,三角函数的单调区间也会相应地发生变化。

需要特别注意的是,在求解三角函数单调区间时,对w的取值要进行严谨的分析和计算,以确保得出准确的单调区间。

4.复合函数的概念复合函数是由两个或者多个函数按照一定顺序组合而成的新函数。

这个概念的提出,是为了更好地描述和分析多项式函数、三角函数及其他函数之间的复杂关系。

在实际问题中,很多情况下都需要用到复合函数的概念,以便更好地处理和分析复杂的函数关系。

5.深入探讨三角函数单调区间与复合函数的关系三角函数单调区间和复合函数在某种程度上是相关的。

当我们要求解复合函数的单调区间时,有时需要用到三角函数的单调区间知识。

尤其是当复合函数中涉及到三角函数的情况,更需要对三角函数的单调区间进行全面的分析和理解。

三角函数的单调区间公式

三角函数的单调区间公式

三角函数的单调区间公式三角函数的单调区间公式1、在0°~90°,正弦函数y=sin x从0递增到1:2、在90°~180°,正弦函数y=sin x从1递减到0:3、在180°~270°,正弦函数y=sin x从0递减到-1:4、在270°~360°,正弦函数y=sin x从-1递增到0:5、在0°~90°,余弦函数y=cos x从1递增到0:6、在90°~180°,余弦函数y=cos x从0递减到-1:7、在180°~270°,余弦函数y=cos x从-1递增到0:8、在270°~360°,余弦函数y=cos x从0递增到1:9、在0°~90°,正切函数y=tan x从0递增到无穷大:10、在90°~180°,正切函数y=tan x从无穷大递减到0:11、在180°~270°,正切函数y=tan x从0递减到无穷大负值:12、在270°~360°,正切函数y=tan x从无穷负大增动0:在数学中,三角函数是一组非常重要的函数,它们需要更具体的说明,即相应的函数的单调区间的范围。

这些单调区间的范围,也就是函数y = sin x, y = cos x和y = tan x的单调区间是其中三种最常见的三角函数。

关于三角函数的单调区间的公式有一对数学的一对概念,它们是:1、函数的单调性:2、函数的极值点:具体到三角函数,它们的单调性指的是它们在某一区间上在增加或减小,而极值点指的是在某一区间上他们的值没有继续增加或减少了。

根据上述概念,三角函数的单调区间可以总结为:1、在0°~90°,正弦函数y=sin x从0递增到1:2、在90°~180°,正弦函数y=sin x从1递减到0:3、在180°~270°,正弦函数y=sin x从0递减到-1:4、在270°~360°,正弦函数y=sin x从-1递增到0:5、在0°~90°,余弦函数y=cos x从1递增到0:6、在90°~180°,余弦函数y=cos x从0递减到-1:7、在180°~270°,余弦函数y=cos x从-1递增到0:8、在270°~360°,余弦函数y=cos x从0递增到1:9、在0°~90°,正切函数y=tan x从0递增到无穷大:10、在90°~180°,正切函数y=tan x从无穷大递减到0:11、在180°~270°,正切函数y=tan x从0递减到无穷大负值:12、在270°~360°,正切函数y=tan x从无穷负大增动0:由于三角函数的单调性和极值点的关系,所以可以用来推导各种需要求解三角函数的实际问题中依据函数计算出函数值。

高中数学三角函数公式大全

高中数学三角函数公式大全

第一部分 集合1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ; 2.数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.〔1〕含n 个元素的集合的子集数为2n ,真子集数为2n -1;非空真子集的数为2n -2;〔2〕;B B A A B A B A =⇔=⇔⊆ 注意:讨论的时候不要遗忘了φ=A 的情况。

4.φ是任何集合的子集,是任何非空集合的真子集。

第二部分 函数与导数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义〔斜率、距离、绝对值的意义等〕;⑧利用函数有界性〔xa 、x sin 、x cos 等〕;⑨导数法 3.复合函数的有关问题 〔1〕复合函数定义域求法:① 假设f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出② 假设f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x ∈[a,b]时,求g(x)的值域。

〔2〕复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

4.分段函数:值域〔最值〕、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....; ⑵)(x f 是奇函数⇔f(-x)=-f(x);)(x f 是偶函数⇔f(-x)= f(x) ⑶奇函数)(x f 在原点有定义,则0)0(=f ;⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;⑸假设所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 6.函数的单调性 ⑴单调性的定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <;②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >;⑵单调性的判定① 定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号; ②导数法〔见导数部分〕;③复合函数法;④图像法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数单调递增区间公式
如果你想知道三角函数单调递增区间公式是什么,那么你来对地方。

三角函数单调递增区间公式可以帮助我们确定一个函数是单调递增的。

下面就让我们来了解一下它是怎样工作的:
1. 三角函数单调递增区间的基本公式
三角函数单调递增区间的基本公式由两个端点表示,相邻的两组端点
定义一个单调递增的区间。

每一个单调递增的区间的定义如下:
- 如果函数是奇函数,则端点为:(n-1/2)π -- (n+1/2)π;
- 如果函数是偶函数,则端点为:nπ -- (n+1)π。

其中n 为任意整数。

2. 三角函数单调递增区间的更进一步实现
在确定三角函数单调递增区间的时候,如果需要更进一步实现,可以
将相邻两个端点间的值分别记为x1,x2。

然后根据以下公式计算x1、x2:
x1 = nπ + (-1)^n * (1/2)π
x2 = (n+1)π + (-1)^n * (1/2)π
其中n 为任意整数,(-1)^n 是以指数的形式表达的一元二次函数。

3. 三角函数单调递增图象的描绘
通过以上公式,我们可以将三角函数从数学角度上表达出来,然后在图上更加直观的描绘出三角函数的单调递增区间。

在描绘的时候,可以使用两个不同颜色的典型实例线性绘制对应区间。

最后,三角函数单调递增区间公式通过解决关于三角函数诸多函数概念的数学现象,使人们能够更加真实的解答问题。

总之,三角函数单调递增区间的计算主要使用上述的基本公式,此公式可以帮助我们确定一个函数是单调递增的,并且基于此可以更进一步实现更多的概念,从而更加准确地描绘出三角函数单调递增图象。

相关文档
最新文档