幂函数教学设计(共7篇)

合集下载

幂函数 教学设计

幂函数  教学设计

幂函数教学设计一、教学目标通过本节课的学习,使学生掌握幂函数的性质和图像,能够正确画出幂函数的图像并解决与之相关的问题。

二、教学重点和难点教学重点1.幂函数的定义和性质2.幂函数图像的绘制和分析教学难点1.幂函数图像与参数之间的关系理解2.幂函数特殊情况的讨论三、教学过程1. 导入与引入通过提问的方式,让学生回顾一下之前学过的函数,引导他们思考函数与方程的联系。

2. 引入幂函数的概念通过给出一个幂函数的定义,让学生了解并理解幂函数的概念。

幂函数定义为y=x n,其中 n 是常数,x 是任意实数。

3. 幂函数的性质3.1 定义域和值域引导学生通过思考自变量和函数值的关系,帮助他们找到这个幂函数的定义域和值域。

由于幂函数中的指数是常数,所以定义域为所有实数,而值域的情况与指数的正负关系有关。

3.2 奇偶性分析让学生思考幂函数的奇偶性。

当指数 n 为偶数时,幂函数是偶函数;当指数 n 为奇数时,幂函数是奇函数。

3.3 单调性分析引导学生通过观察不同指数的幂函数图像,发现指数 n 的正负关系对其单调性的影响。

当指数 n > 0 时,幂函数是递增函数;当指数 n < 0 时,幂函数是递减函数。

3.4 渐近线讨论让学生思考幂函数图像的渐近线问题。

当指数 n > 0 时,幂函数的图像与 x 轴有一个水平渐近线;当指数 n < 0 时,幂函数的图像与 y 轴有一个垂直渐近线。

4. 幂函数图像的绘制和分析4.1 确定坐标轴和尺度让学生根据定义域和值域,决定合适的坐标轴范围和尺度。

4.2 确定关键点让学生通过代入一些关键点的 x 值,计算出相应的 y 值,确定幂函数图像上的关键点。

4.3 画出图像让学生根据已经确定的关键点,使用平滑线连接的方法,画出幂函数的图像。

4.4 分析图像通过观察图像,引导学生分析幂函数图像的特点,与指数 n 的值进行对比,进一步加深对幂函数性质的理解。

5. 幂函数的应用通过解决一些幂函数相关的问题,让学生将幂函数的概念和性质应用到实际问题中,提高他们对幂函数的应用能力。

幂函数 优秀教案

幂函数 优秀教案

幂函数优秀教案幂函数教学目标】1.知识与技能:1) 理解幂函数的概念,能够画出幂函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像。

2) 根据常见的幂函数图像,理解幂函数图像的变化情况和性质,并能进行简单的应用。

2.过程与方法:1) 通过观察、总结幂函数的性质,培养学生的识图能力和概括能力。

2) 使学生进一步体会数形结合的思想方法。

3.情感态度与价值观:1) 通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的研究兴趣。

2) 利用计算机,了解幂函数图像的变化规律使学生认识到现代技术在数学认识过程中的作用,从而激发学生的研究欲望。

教学重点】从五个具体幂函数中认识幂函数的一些性质。

教学难点】画五个具体幂函数的图像并由图像概括其性质,体会图像的变化规律。

教法】启发、引导教学过程】一、创设情景,引入新课通过观察几个例子的函数模型,引入新课。

二、互动探究,讲解新课1.幂函数的定义:一般地,函数y=x^α叫做幂函数,其中x为自变量,α为常数。

练:判断下列函数是否为幂函数?1) y=x^4 (2) y=2x^2 (3) y=-x^3 (4) y=2.常见幂函数的图像与性质:自主探究]分别作出函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像并观察函数图像,将你发现的结论写在下表内:定义域。

|。

值域。

|。

奇偶性。

|。

单调性。

|。

定点。

|R。

|。

R+。

|。

奇函数。

|。

增函数。

|。

(1,1)。

|R。

|。

R+。

|。

偶函数。

|。

增函数。

|。

(0,0)。

|R。

|。

R。

|。

奇函数。

|。

增函数。

|。

(0,0)。

|R*。

|。

R*。

|。

奇函数。

|。

减函数。

|。

(1,1)。

|R+。

|。

R+。

|。

无奇偶性。

|。

增函数。

|。

(0,0)。

|合作探究]根据上表的内容并结合图像,试总结函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的共同性质。

归纳:1) 函数y=x,y=x^2,y=x^3,y=x^-1和y=x^2的图像都通过点(1,1)。

2023年高中数学幂函数教学教案(7篇)

2023年高中数学幂函数教学教案(7篇)

2023高中数学幂函数教学教案(7篇)高中数学必修1《幂函数》教案篇一1、教学目标学问目标:(1)把握幂函数的形式特征,把握详细幂函数的图象和性质。

(2)能应用幂函数的图象和性质解决有关简洁问题。

力量目标:培育学生发觉问题,分析问题,解决问题的力量。

情感目标:(1)加深学生对讨论函数性质的根本方法和流程的阅历。

(2)渗透辨证唯物主义观点和方法论,培育学生运用详细问题详细分析的方法分析问题、解决问题的力量。

2、教学重点:从详细函数归纳熟悉幂函数的一些性质并简洁应用。

教学难点:引导学生概括出幂函数的性质。

3、教学方法和教学手段:探究发觉法和多媒体教学4、教学过程:问题情境问题1写出以下y关于x的函数解析式:①正方形边长x、面积y②正方体棱长x、体积y③正方形面积x、边长y④某人骑车x秒内匀速前进了1m,骑车速度为y⑤一物体位移y与位移时间x,速度1m/s问题2是否为指数函数?上述函数解析式有什么共同特征?(教师将解析式写成指数幂形式,以启发学生归纳,)板书课题并归纳幂函数的定义。

(二)新课讲解幂函数的定义:一般地,我们把形如的函数称为幂函数(powerfunction),其中是自变量,是常数。

为了加深对定义的理解,请同学们判别以下函数中有几个幂函数?①y=②y=2x2我们了解了幂函数的概念以后我们一起来讨论幂函数的性质。

问题3幂函数具有哪些性质?用什么方法讨论这些性质的呢?我们请同学们回忆一下在前面学习指数函数、对数函数我们一起讨论了哪些性质呢?(学生争论,教师引导)(引发学生作图讨论函数性质的兴趣。

函数单调性的推断,既可以使用定义,也可以通过图象解决,直观,易理解。

)在初中我们已经学习了幂函数的图象和性质,请同学们在同一坐标系中画出它们的图象。

依据你的学习经受,你能在同一坐标系内画出函数的图象吗?(学生作图,教师巡察。

将学生作图用实物投影仪演示,指出优点和错误之处。

教师利用几何画板演示,通过超级链接几何画板演示。

幂函数教案

幂函数教案

幂函数教案幂函数教学设计一、教学内容:本节课主要讲解幂函数的基本概念、性质以及解题方法。

二、教学目标:1. 掌握幂函数的定义及其一般形式。

2. 了解幂函数的图像特点及其变化规律。

3. 能够解决与幂函数相关的实际问题。

三、教学过程:步骤一:导入新课1. 引导学生回顾一元二次函数的知识,并帮助学生发现一元二次函数与平方函数之间的关系。

2. 引导学生思考,如果给定的方程中含有类似于x^n(n为自然数)的项,该如何解决?(请学生回顾类似的方程,并尝试解题)步骤二:讲解幂函数的定义1. 运用幂函数的定义引导学生进行思考:什么样的方程是幂函数?2. 引导学生猜想幂函数的一般形式,即f(x)=x^n,其中n为实数。

3. 张绘制幂函数的图像,并引导学生发现其特点,如:当n>1时,图像呈现递增趋势;当n=1时,图像为直线,并由坐标原点经过;当0<n<1时,图像在原点附近缓慢上升。

步骤三:讲解幂函数的性质1. 解释幂函数的定义域和值域,即当n为偶数时,定义域为R,值域为[0,+∞);当n为奇数时,值域为R。

2. 引导学生发现幂函数与幂函数之间的比较关系,即当0<n<m时,幂函数f(x)=x^n的图像位于幂函数g(x)=x^m的图像之下。

3. 引导学生探究幂函数的奇偶性,即当n为整数时,该幂函数的奇偶性与n的奇偶性一致。

比如,当n为偶数时,函数f(x)=x^n是偶函数;当n为奇数时,函数f(x)=x^n是奇函数。

步骤四:解决幂函数相关的实际问题1. 给学生提供一些实际应用题,如求一块长方形的面积与宽度的关系等,引导学生使用幂函数解决问题。

2. 引导学生分析问题,并运用幂函数的性质进行求解。

3. 鼓励学生自主解决问题,引导学生独立思考并找到解决问题的方法。

四、教学检查及评价:1. 教师可以通过课堂练习、小组讨论等方式进行教学检查,及时发现学生的问题并给予指导。

2. 教师可以根据学生的思考能力和解题情况,评价学生的学习情况,及时提供帮助和改进措施。

《幂函数》教学设计(精品)

《幂函数》教学设计(精品)

幂函数(一)教学目标 1.知识与技能(1)理解幂函数的概念,会画幂函数y =x ,y =x 2,y =x 3,y =x -1,y =x 21的图象. (2)结合这几个幂函数的图象,理解幂函数图象的变化情况和性质. 2.过程与方法(1)通过观察、总结幂函数的性质,培养学生概括抽象和识图能力. (2)使学生进一步体会数形结合的思想. 3. 情感、态度、价值观(1)通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的学习兴趣.(2)利用计算机,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望.(二)教学重点、难点重点:常见幂函数的概念、图象和性质. 难点:幂函数的单调性及比较两个幂值的大小. (三)教学方法采用师生互动的方式,由学生自我探索、自我分析,合作学习,充分发挥学生的积极性与主动性.利用实物投影仪及计算机辅助教学. (四)教学过程教学环节教学内容师生互动设计意图复习引入(多媒体显示以下5个问题,同时附注相关图象,每个问题的结论由学生说出,然后再在多面体屏幕上弹出)问题1:如果张红购买了每千克1元的蔬菜w千克,那么她需要付的钱数p=w元,这里p是w的函数.问题2:如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数.问题3:如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数.问题4:如果正方形场地的面积为S,那么正方形的边长a=S21,这里a是S的函数.问题5:如果某人t s内骑车行进了1 km,那么他骑车的平均速度v=t-1 km/s,这里v是t的函数.学生阅读、思考、交流、口答,教师板演.师:观察上述例子中函数模型,这几个函数表达式有什么共同特征?生:解析式的右边都是指数式,且底数都是变量. 变量在底数位置,解析式右边又都是幂的形式,我们把这种函数叫做幂函数.(引入新课,书写课题)培养学生的观察、归纳、概括能力,形成概念幂函数的定义一般地,形如y xα=(x∈R)的函数称为幂函数,其中x是自变量,α师:请同学们举出几个具体的幂函数.理解幂函数的定义.是常数.生:如11234,,y x y x y x-===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.深化概念1.研究幂函数的图像(1)y x=(2)12y x=(3)2y x=(4)1y x-=(5)3y x=2.通过观察图像,填P86探究中的表格y x=2y x=定义域R R奇偶性奇奇在第Ⅰ象限单调增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增定点(1,1)(1,1)3y x=12y x=1y x-=R {}|0x x≥{}|0x x≠奇非奇非偶奇引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像.让学生通过观察图像,分组讨论,探究幂函数的性质和图像的变化规律,教师注意引导学生用类比研究指数函数,对函数的方法研究幂函数的性质.探究幂函数的性质和图像的变化规律,y x=12y x=y=x3y=x-1在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递减(1,1) (1,1) (1,1) 3.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x =);(2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).特别地,当x >1,x >1时,x ∈(0,1),2y x =的图象都在y x =图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?) 当0<α<1时,x ∈(0,1),y x α=的图象都在y x =的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 在第一家限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x慢慢地变大时,图象在x 轴上方并无限逼近x轴的正半轴.应用举例例1 求下列幂函数的定义域,并指出其奇偶性、单调性.(1)y=x52;(2)y=x43-;(3)y=x-2.例1分析:解决有关函数求定义域的问题时,可以从以下几个方面来考虑,列出相应不等式(组),解不等式(组)即可得到所求函数的定义域.①若函数解析式中含有分母,分母不能为0;②若函数解析式中含有根号,要注意偶次根号下非负;③0的0次幂没有意义;④若函数解析式中含有对数式,要注意对数的真数大于0.解:(1)函数y=x52,即y=52x,其定义域为R,是偶函数,它在[0,+∞)上单调递增,在(-∞,0]上单调递减.(2)函数y=x43-,即y=431x,其定义域为(0,+∞),它既不是奇函数,也不是偶函数,它在(0,+∞)上单调递减.(3)函数y=x-2,即y=21x,其定掌握幂函数知识的应用.4.幂函数f (x )=ax mm82-(m ∈Z )的图象与x 轴和y 轴均无交点,并且图象关于原点对称,求a 和m .的数比较大小,可以转化为比较同一幂函数的不同函数值的大小问题,根据函数的单调性,只要比较自变量的大小就可以了. (2)当底和指数都不同,插入一个中间数,综合利用幂函数和指数函数的单调性来比较.课堂练习答案: 1. C 2. D3. D4. a =1,m =1,3,5,7.归纳 总结1.幂函数的概念以及它和指数函数表达式的区别.2.常见幂函数的图象和性质.3.幂值的大小比较方法.学生先自回顾反思,教师点评完善.形成知识体系.课后 作业作业:2.3 第一课时 习案 学生独立完成 巩固新知 提升能力备选例题例1 已知221(22)23m y m m x n -=+-+-是幂函数,求m ,n 的值.【解析】由题意得⎪⎪⎩⎪⎪⎨⎧=-≠-=-+0320112222n m m m ,解得⎪⎩⎪⎨⎧=-=233n m , 所以23,3=-=n m . 【小结】做本题时,常常忽视m 2 + 2m – 2 = 1且2n – 3 = 0这些条件. 表达式y =αx (x ∈R )的要求比较严格,系数为1,底数是x ,α∈R 为常数,如221-==x xy ,y = 1 = x 0为幂函数,而如y = 2x 2,y = (x – 1)3等都不是幂函数.例2 比例下列各组数的大小. (1)8787)91(8---和;(2)(–2)–3和(–2.5)–3; (3)(1.1)–0.1和(1.2)–0.1; (4)533252)9.1()8.3(,)1.4(--和. 【解析】(1)8787)81(8-=--,函数87x y =在(0, +∞)上为增函数,又9181>,则8787)91()81(>,从而8787)91(8-<--.(2)幂函数y = x –3在(–∞, 0)和(0, +∞)上为减函数, 又∵–2>–2.5,∴(–2)–3<(–2.5)–3. (3)幂函数y = x –0.1在(0, +∞)上为减函数, 又∵1.1<1.2,∴1.1–0.1>1.2–0.1. (4)52)1.4(>521= 1;0<32)8.3(-<321-= 1;53)9.1(-<0, ∴53)9.1(-<32)8.3(-<52)1.4(.【小结】比较大小题,要综合考虑函数的性质,特别是单调性的应用,更善于用“搭桥”法进行分组,常数0和1是常用的“桥梁”.。

关于幂函数的教案范文

关于幂函数的教案范文

关于幂函数的教案范文教案:幂函数一、教学目标:1.理解幂函数的定义及其特点;2.掌握幂函数的图像特点及变化规律;3.运用幂函数解决实际问题。

二、教学重点与难点:1.理解幂函数的定义及其特点;2.掌握幂函数的图像特点及变化规律。

三、教学准备:1.幂函数相关的教学资料;2.黑板、粉笔;3.幂函数的图像示例。

四、教学过程:Step 1:导入新知(5分钟)1.先导入知识,激发学生的学习兴趣。

可以提问:“你们有没有见过幂函数?”或者“你们对幂函数有什么了解?”2.引导学生思考,引出幂函数的定义。

Step 2:幂函数的定义(10分钟)1.讲解幂函数的定义及其一般形式:y=x^a(a为非零实数,x为正数)。

2.分析幂函数的定义,强调底数为正数,指数为非零实数。

3.提问:“当a为正数、负数和零时,幂函数的图像有什么特点?”解答问题并总结。

Step 3:幂函数的图像特点及变化规律(30分钟)1.通过具体数据的计算,构造幂函数的函数表,并画出函数图像。

2.分析不同指数下的幂函数图像的特点及变化规律。

3.提醒学生关注幂函数图像在定义域内的变化趋势,以及图像与坐标轴的关系。

Step 4:练习与巩固(30分钟)1.完成课本上的练习题,帮助学生熟练掌握幂函数的相关知识。

2.出示一些实际问题,引导学生运用幂函数解决实际问题。

Step 5:拓展与应用(20分钟)1.出示一些拓展问题,让学生运用所学知识解答问题。

2.引导学生对幂函数的应用进行思考和探索,例如:利用幂函数解决生活中的问题,如投资收益的计算等。

五、课堂小结(5分钟)总结本节课所学内容,强调幂函数的定义及其特点,并鼓励学生多进行实际问题的思考与解决。

六、作业布置1.完成课堂上未完成的练习题;2.思考并准备一个幂函数的实际问题,并运用所学知识解答。

七、教学反思通过这节课的教学,学生对幂函数的定义及其图像特点有了更深入的理解,并能运用所学知识解决相关实际问题。

需要注意的是,在教学过程中要注重学生的思维活动,灵活运用教学资源,让学生充分参与到课堂教学中来,提高学习效果。

幂函数教案

幂函数教案

幂函数教案1. 了解幂函数的定义与性质2. 掌握幂函数的图像特征和变化规律3. 能够应用幂函数解决实际问题教学重点:1. 幂函数的基本定义2. 幂函数的图像特征和变化规律3. 幂函数的应用教学难点:1. 幂函数的变化规律和推导过程2. 如何将幂函数应用于实际问题的解决教学方法:讲授、演示、模拟、探究、归纳、实践等多种教学方法相结合。

教学手段:多媒体教学手段、问答互动、小组合作等手段相结合。

教学过程:Step 1 引入新知1. 教师可以通过多媒体展示一些日常生活或工作中与幂函数相关的实例,如身高、电话费等,引发学生对幂函数的兴趣。

2. 教师可以让学生在小组内讨论幂函数的定义与性质,并让几位同学发表自己的理解和看法。

Step 2 探究幂函数的定义与性质1. 定义幂函数:f(x)=x^a (其中,a为常数,x为变量,且a≠0)2. 讲解幂函数的图像特征:a>1 时,是一条向上的单调增函数;a=1 时,是一条过原点的直线;0<a<1 时,是一条向下的单调增的函数;a<0 时,分为两种情况:a=-1时,是一条过原点的直线;a<-1时,是一条向下的单调减函数。

3. 幂函数的性质:偶函数、奇函数、单调性Step 3 探究幂函数的变化规律1. 讲解如何利用幂函数的图像,通过a的变化推导幂函数的特点和变化规律。

2. 让学生模拟实验,通过手工计算,验证幂函数的变化规律。

Step 4 应用幂函数解决实际问题1. 讲解如何将所学的幂函数应用于实际问题的解决。

2. 教师给出一些与幂函数相关的应用题,让学生在小组内讨论,并找到解题的有效方法。

Step 5 总结与拓展1. 用幂函数的概念总结一遍所学的知识点。

2. 教师可以适时地推出一些与幂函数相关的拓展问题,以拓展课堂思维。

3. 课堂评价:通过问答、小组讨论、实习演绎等方式,对学生的课堂表现进行评价。

教学反思:幂函数是高中数学中的一种基本函数,对于理解其他函数、解决实际问题等方面都具有很重要的作用。

数学《幂函数》教案

数学《幂函数》教案

数学《幂函数》教案【导语】幂函数是一类特殊的函数,它们都以x为自变量,y为因变量,且y是x的某个非负整数次方的函数(指数函数)。

【预习任务】1.回忆函数概念、函数图像的基本性质;2.了解指数函数与幂函数的区别;3.预习本课幂函数的概念、性质和应用。

【学习目标】1.了解幂函数的基本概念和基本性质;2.掌握幂函数的绘制和变换;3.应用幂函数解决实际问题。

【学习重点】1.幂函数的概念及表达式;2.幂函数的图像及其特征;3.幂函数的应用。

【学习难点】1.幂函数的绘制和变换;2.在实际问题中应用幂函数。

【教学方法】1.理论讲解法;2.示例分析法。

【教学步骤】一、引入新知识教师介绍幂函数的概念和特点,与指数函数的区别,并通过举例进行说明,引起学生兴趣。

二、讲解幂函数的定义和表达式1.定义:y=x^n,其中n为正整数;2.表达式的含义及其特点:表达式中n表示幂指数,当n=1时,即为一次函数;当n>1时,在x>0时为增函数,x<0时为减函数,n<0时为奇函数,n>0时为偶函数。

三、掌握幂函数的图像及其特征1.绘制幂函数y=x^n (n=1,2,3,4)的图像;2.分析幂函数的图像及其特征:幂指数n的大小直接影响曲线的陡峭程度和开口的方向;当n为偶数时,曲线在y轴的正半轴上下对称,当n为奇数时,曲线在原点对称。

四、掌握幂函数的基本变换1.沿x轴方向平移:y=x^n+a (a>0时向上平移,a<0时向下平移);2.纵向伸缩:y=kx^n (k>1时向上伸缩,0<k<1时向下壁缩);3.横向伸缩:y=(x/a)^n (a>1时横向压缩,0<a<1时横向伸展);4.掌握幂函数的基本变换规律。

五、应用幂函数解决实际问题1.通过幂函数解决实际问题;2.对几个幂函数的实例进行讲解。

六、巩固练习练习幂函数的绘制和变换,独立解决实际问题。

【教学反思】本节课主要介绍了幂函数的概念和性质,包括幂函数图像的绘制、基本变换和应用。

幂函数教案

幂函数教案

幂函数教案一、教学目标1. 理解幂函数的定义和性质,能够正确运用幂函数的相关概念;2. 掌握幂函数的图像、性质以及变化规律;3. 能够解决幂函数相关的实际问题。

二、教学重点1. 幂函数的定义和性质;2. 幂函数的图像及其变化规律;3. 幂函数在实际问题中的应用。

三、教学难点1. 幂函数的概念和性质的理解与运用;2. 幂函数图像的绘制及变化规律的总结;3. 幂函数在实际问题中的应用解决。

四、教学过程1. 幂函数的引入(10分钟)教师通过列举一些实际问题,引导学生思考实际问题中的变化规律,并与幂函数进行对比,引入幂函数的概念。

2. 幂函数的定义和性质(20分钟)教师给出幂函数的定义,并介绍幂函数的性质,如定积分的计算、导数的运算规则等。

学生通过课堂讨论和练习题的完成,掌握幂函数的定义和性质。

3. 幂函数的图像及其变化规律(30分钟)教师通过几个具体的例子,演示绘制幂函数的图像,并引导学生总结幂函数图像的特点、变化规律和性质。

4. 幂函数的应用(20分钟)教师给出一些实际问题,引导学生运用所学的幂函数知识解决实际问题。

学生通过讨论和解决问题,加深对幂函数应用的理解和运用。

5. 综合练习与讨论(20分钟)教师布置一些综合练习题,让学生进行个人或小组讨论,并进行答案讲解和讨论。

通过综合练习,巩固所学知识并提高解题能力。

6. 课堂小结(10分钟)教师对本节课的内容进行小结,并强调学生在课后的复习重点和需要注意的问题。

五、教学辅助用具1. 纸笔,用于绘制幂函数的图像。

2. 幂函数的例题和练习题,用于学生的讨论和练习。

六、教学评价与反思在教学过程中,教师应注重激发学生的学习兴趣,通过引入实际问题,让学生主动思考和运用所学知识解决问题。

在练习环节,应鼓励学生进行个人或小组讨论,培养学生的合作能力和解决问题的能力。

同时,教师在讲解过程中,要注重总结幂函数的性质和变化规律,并将其应用到实际问题中,帮助学生理解和运用幂函数知识。

幂函数教案

幂函数教案

幂函数教案幂函数教案一. 教学目标:1. 了解幂函数的定义和性质。

2. 掌握幂函数的图像及其平移、缩放和翻折等变换规律。

3. 学会通过观察和分析,对给定的幂函数进行图像绘制。

4. 理解幂函数的增减性、单调性和奇偶性。

5. 能够解决与幂函数相关的实际问题。

二. 教学内容:1. 幂函数的定义和性质。

2. 幂函数的图像及其平移、缩放和翻折等变换规律。

3. 幂函数的增减性、单调性和奇偶性。

4. 实际问题解决。

三. 教学步骤:步骤一:导入新知识通过一个问题引入幂函数的概念,例如:小明家附近有一块广告牌,它上面的字体每年放大或缩小4倍,求第几年后字体的大小会超过原来的10倍。

步骤二:讲解幂函数的定义和性质1. 引导学生回顾指数的概念,理解幂函数的定义。

2. 讲解幂函数的性质,例如幂函数的函数图像都经过点(0,1),幂函数的增长速度由底数决定等。

步骤三:绘制幂函数的图像及变换规律1. 通过绘制几个幂函数的图像来说明幂函数的变化规律。

2. 引导学生发现幂函数的平移、缩放和翻折等变换规律。

3. 练习绘制给定幂函数的图像。

步骤四:讲解幂函数的增减性、单调性和奇偶性1. 引导学生通过观察图像,探讨幂函数的增减性。

2. 引导学生通过观察图像,探讨幂函数的单调性。

3. 引导学生通过观察图像和计算函数值,探讨幂函数的奇偶性。

步骤五:解决实际问题给学生提供一些与幂函数相关的实际问题,让学生运用所学的知识解决问题,例如:一个小球从高处自由下落,第n次落地时的高度是多少?四. 教学方法1. 探究式教学法:通过引导学生观察、分析、绘制图像等方式,让学生主动探索幂函数的性质和规律。

2. 实践教学法:通过解决实际问题的方式,提高学生对所学知识的应用能力。

3. 演示教学法:通过绘制幂函数的图像等示范,让学生更好地理解幂函数的变换规律。

五. 教学资源1. 幂函数的图像和相关实例。

2. 计算器或电脑及相关数学软件。

3. 实际问题解决的练习题。

幂函数教案

幂函数教案

幂函数教案一、教学目标1. 理解幂函数的基本概念和特点;2. 掌握幂函数的图像、定义域、值域、单调性和奇偶性等性质;3. 学会利用幂函数求解实际问题。

二、教学重点1. 幂函数的定义和基本性质;2. 幂函数图像的绘制;3. 幂函数的应用。

三、教学难点1. 幂函数图像的绘制和分析;2. 幂函数在实际问题中的应用。

四、教学准备1. 教师准备:教案、教材、黑板、彩色粉笔;2. 学生准备:课本、笔记本。

五、教学过程Step 1:导入引入(1)教师出示一道数学问题:“一个物体的温度随时间变化的规律可以表示为:T(t) = a * t^b,其中,a和b为常数。

请问,这种规律描述中的T(t)是哪种函数?”引导学生思考和回答。

(2)教师解释幂函数的定义:“幂函数就是以自变量为底数的幂运算,通常表示为y = ax^b,其中a和b为常数,a不等于0。

”Step 2:讲解幂函数的基本性质(1)教师讲解幂函数的定义域和值域:“幂函数的定义域为实数集,值域为正实数集。

”(2)教师讲解幂函数的单调性:“当b大于0时,幂函数是递增的;当b小于0时,幂函数是递减的;当b等于0时,幂函数是常数函数。

”(3)教师讲解幂函数的奇偶性:“当b为偶数时,幂函数是偶函数;当b为奇数时,幂函数是奇函数。

”Step 3:绘制幂函数的图像(1)教师带领学生绘制y = 2x^2的图像,并让学生观察和分析:图像是开口朝上的抛物线,对称轴是y轴,图像在第一象限递增。

(2)教师带领学生绘制y = 1/3x^3的图像,并让学生观察和分析:图像是开口朝上的抛物线,对称轴是y轴,图像在第一象限递增。

(3)教师带领学生绘制y = -4x^4的图像,并让学生观察和分析:图像是开口朝下的抛物线,对称轴是y轴,图像在第一象限递减。

Step 4:幂函数的应用(1)教师出示一道实际问题:“假设一辆小汽车以恒定的速度在一条笔直的道路上行驶,车辆的里程数与行驶时间的关系可以表示为:M(t) = a * t^3,其中,M(t)表示里程数(单位:公里),t表示时间(单位:小时),a为常数。

《幂函数》教案

《幂函数》教案

《幂函数》教案一.学习目标1.通过实例,了解幂函数的概念、图象和性质.会求幂函数的定义域,会应用幂函数的图象与性质比较数或代数式的大小.2.通过幂函数图象的学习,加深学生对幂函数性质的理解,使学生体会通过观察、分析函数图象来研究函数性质的方法.3.通过引导学生主动参与作图、分析图象的过程,培养学生的探索精神,增强学生对数学图形美的认识,并在研究函数变化的过程中渗透辨证唯物主义的观点.二.重点难点本节的教学重点是幂函数的概念、图象和性质,难点是将函数图象的直观特点上升到理性知识,归纳、概括成函数的性质.三.教学内容1.从学生已经掌握的最简单的函数y x =,2y x =,1y x =出发引入幂函数的定义:一般地,形如()y x R αα=∈的函数称为幂函数,其中α为常数.其本质特征是以幂的底x 为自变量,指数α为常数,这是判断一个函数是否为幂函数的重要依据和唯一标准.应当注意并不是任意的一次函数、二次函数都是幂函数,如1y x =+,22y x x =-等都不是幂函数.2.引导学生作出五个具体的幂函数y x =,2y x =,3y x =,1y x =,12y x =的图象:先列出对应值表,再用描点法画图.列出对应值表是描点法画图的关键,列表之后要引导学生耐心地,力求准确地画出图象,教师可以先用实物投影仪有选择地展示学生的作品,然后再用计算机展示各个函数的图象.3.先引导学生通过观察上述五个幂函数的图象,归纳、概括出幂函数在第一象限的性质,再引导学生探索“思考与讨论”中的三个问题,即当α为正偶数、α为正奇数时幂函数的主要性质,以及当1α>与01α<<时图象的区别.要培养学生的看图、析图能力,培养学生的归纳、概括能力,要让学生自主探索,主动学习.4.处理课本例题(1).对例1的分析:①要比较的两个代数式有什么相同点和不同点?答:都是幂的形式,且指数相同,但底数不同.因此我们想通过构造一个幂函数来解决这个问题.②构造一个什么样的幂函数?③要比较的两个代数式与所构造的幂函数有何关系?④利用幂函数在(0,)+∞上的单调性可以比较两个代数式值的大小.(2)对例2的分析:①在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论.②对于幂函数()y x R αα=∈的研究,首先应该分析函数的定义域、值域和奇偶性,由此可以确定图象的位置,即所在的象限.③只需弄清楚幂函数在第一象限的图象,再借助于奇偶函数的图象性质,即可画出整个函数的图象.5.让学生回忆本节收获,然后师生共同完成本节小结,巩固本节学习成果,使学生逐步养成爱总结、善总结、会总结的习惯和能力.。

幂函数优秀教案

幂函数优秀教案

幂函数优秀教案教案:幂函数一、教学目标:1.理解幂函数的概念及其特点;2.能够画出幂函数图像;3.掌握幂函数的基本性质和运算法则。

二、教学重点:1.幂函数的概念及其特点;2.幂函数的图像;三、教学难点:1.幂函数的性质和运算法则;2.幂函数的应用问题。

四、教学方法:1.课堂讲授法;2.小组合作学习法;3.案例分析法。

五、教学过程:时间内容活动方式教学资源(分钟)1课堂导入1.教师简单介绍幂函数的定义和基本概念,并提出问题,引起学生思考。

幂函数的定义和基本概念2.学生积极回答问题,激发学习兴趣。

10幂函数的定义及其1.学生自愿回答问题,教师进行点拨和引导,帮助学生理解幂函数的定义;幂函数的定义及其特点特点2.教师介绍幂函数的特点:定义域、值域、单调性和奇偶性。

10幂函数图像的1.教师讲解幂函数图像的画法和注意事项;幂函数图像的画法和注意事项画法2.学生跟随教师步骤,画出幂函数的图像。

10幂函数图像的分1.学生分组合作,讨论幂函数图像的特点;幂函数图像的特点析及其特点2.教师引导学生分析幂函数图像的特点,如单调性、奇偶性等。

10幂函数的性质与1.教师讲解幂函数的性质和运算法则;幂函数的性质和运算法则运算法则2.学生积极参与讨论,提出问题,与教师共同探讨幂函数的性质和运算法则。

10幂函数的应用问题1.教师以实例为背景,引导学生解决幂函数的应用问题;幂函数的应用问题2.学生自主思考,带着问题探索解决方法。

10小结与评价1.教师对本节课的内容进行小结,重点强调幂函数图像的特点和性质;无六、教学反思:在本节课中,我采用了多种教学方法和手段,如课堂讲授、小组合作学习和案例分析,以提高学生的学习兴趣和参与度。

通过引入问题、让学生自由讨论等方式,激发了学生的思维,提高了他们对幂函数的理解和运用能力。

同时,通过幂函数的图像,我帮助学生更直观地理解了幂函数的特点和性质。

在下节课中,我将注重培养学生的实际应用能力,希望能够更好地引导学生解决实际问题,提高他们的数学思维水平。

高中数学教案《幂函数》

高中数学教案《幂函数》

教学计划:《幂函数》一、教学目标1.知识与技能:学生能够理解幂函数的概念,掌握幂函数的一般形式及其图像特征;能够识别并绘制基本幂函数的图像;理解幂函数在特定区间内的单调性、奇偶性等基本性质。

2.过程与方法:通过观察、分析幂函数的图像,引导学生发现幂函数的性质;通过小组合作、讨论交流,培养学生探究问题的能力和团队合作精神;通过实例分析,提高学生运用幂函数解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的观察力和数学思维能力;通过幂函数的学习,让学生体会数学中的对称美、变化美,增强对数学美的感受力;培养学生的严谨治学态度和科学探索精神。

二、教学重点和难点●教学重点:幂函数的概念、一般形式及其图像特征;幂函数的基本性质(如单调性、奇偶性)及其判断方法。

●教学难点:理解幂函数图像与性质之间的关系,能够准确判断幂函数在特定区间内的性质;运用幂函数性质解决实际问题。

三、教学过程1. 引入新课(约5分钟)●情境创设:通过生活中的实例(如细胞分裂、面积与边长的关系等)引出幂的概念,进而引出幂函数的概念。

●问题导入:提出“这些关系能否用函数来表示?它们具有怎样的图像特征?”等问题,激发学生的好奇心和探究欲。

●明确目标:介绍本节课的学习目标,即掌握幂函数的概念、图像特征及基本性质。

2. 讲授新知(约15分钟)●定义讲解:详细讲解幂函数的概念和一般形式,强调底数为常数且不为0,指数为自变量。

●图像特征:利用多媒体展示基本幂函数(如y=x, y=x², y=x³, y=√x, y=1/x等)的图像,引导学生观察并总结它们的共同特征和不同点。

●性质阐述:结合图像,阐述幂函数在特定区间内的单调性、奇偶性等基本性质,并给出判断方法。

3. 观察探究(约10分钟)●图像分析:引导学生分组观察并分析更多幂函数的图像,记录它们的特征,并尝试从图像中判断幂函数的性质。

●小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究幂函数性质的图像表示方法。

2024年《幂函数》教案

2024年《幂函数》教案

《幂函数》教案《幂函数》教案1一、教材分析幂函数是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。

是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域、值域、图像、奇偶性、单调性)研究一个函数的意识。

因而本节课更是一个对学生研究函数的方法和能力的综合提升。

从概念到图象( ),利用这五个函数的图象探究其定义域、值域、奇偶性、单调性、公共点,概括、归纳幂函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。

从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。

二、教学目标分析依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:[知识与技能] 使学生了解幂函数的定义,会画常见幂函数的图象,掌握幂函数的图象和性质,初步学会运用幂函数解决问题,进一步体会数形结合的思想。

[过程与方法] 引入、剖析、定义幂函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;通过运用多媒体的教学手段,引领学生主动探索幂函数性质,体会学习数学规律的方法,体验成功的乐趣;对幂函数的性质归纳、总结时培养学生抽象概括和识图能力;运用性质解决问题时,进一步强化数形结合思想。

[情感、态度与价值观] 通过生活实例引出幂函数概念,使学生体会生活中处处有数学,激发学生的学习兴趣。

通过本节课的学习,使学生进一步加深研究函数的规律和方法;提高学生的学习能力;养成积极主动,勇于探索,不断创新的学习习惯和品质;树立学科学,爱科学,用科学的精神。

三、重、难点分析[教学重点](1)幂函数的定义与性质;(2)指数α的变化对幂函数y=xα(α∈R)的影响。

从知识体系看,前面有指数函数与对数函数的学习,后面有其他函数的研究,本节课的学习具有承上启下的作用;就知识特点而言,蕴涵丰富的数学思想方法;就能力培养来说,通过学生对幂函数性质的归纳,可培养学生类比、归纳概括能力,运用数学语言交流表达的能力。

幂函数教案

幂函数教案

幂函数教案幂函数教案一、教学目标:1. 知识与技能:了解幂函数的定义和性质,掌握幂函数的图像、单调性和奇偶性,理解幂函数与一次函数、指数函数的关系。

2. 过程与方法:采用问题导入、示例分析和练习等多种方式,培养学生的探究和解决问题的能力。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生的数学思维能力和创新意识,培养学生的自信心和团队合作精神。

二、教学重点与难点:1. 教学重点:培养学生对幂函数的理解和应用能力,掌握幂函数的图像、单调性和奇偶性。

2. 教学难点:理解幂函数与一次函数、指数函数的关系,掌握幂函数的特殊性质。

三、教学过程:1. 问题导入:设计一个问题,引入幂函数的概念和性质。

例如:有一个人每天跑步的速度都是原来的2倍,如果他第一天跑2公里,第二天跑4公里,第三天跑8公里,那么第n天他会跑多少公里?2. 概念解释:引导学生通过问题的思考,引出幂函数的定义和性质。

解释幂函数的定义和符号表示方法,以及幂函数的图像和性质。

3. 示例分析:给出一个具体的幂函数的例子,分析其图像、单调性和奇偶性。

让学生根据定义和性质来判断函数的特点,并画出函数的图像。

4. 性质总结:总结幂函数的性质,包括幂函数的单调性和奇偶性。

让学生通过观察和总结来归纳这些性质,并讲解幂指数的不同取值对函数的影响。

5. 幂函数与一次函数、指数函数的关系:通过比较幂函数的图像与一次函数和指数函数的图像的异同,让学生理解幂函数与这两种函数的关系。

讲解幂函数与一次函数和指数函数的对应关系,以及幂指数为正整数、分数和负数时函数的特殊性质。

6. 练习与拓展:设计一些练习题和拓展问题,让学生巩固所学的知识并拓展思维。

鼓励学生自主解决问题,并进行讨论和交流。

四、教学反思:通过问题导入、示例分析和练习等多种方式,帮助学生理解幂函数的定义和性质,掌握幂函数的图像、单调性和奇偶性。

通过比较幂函数与一次函数和指数函数的图像的异同,让学生理解幂函数与这两种函数的关系。

幂函数教学设计范文

幂函数教学设计范文

幂函数教学设计范文作为一位优秀的人民教师,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。

教案要怎么写呢?记得网为您带来了7篇《幂函数教学设计》,希望能够对困扰您的问题有一定的启迪作用。

2023高中数学幂函数教学教案篇一教学目标:通过实例,理解幂函数的概念;能区分指数函数与幂函数;会用待定系数法求幂函数的解析式。

教学重难点:重点从五个具体幂函数中认识幂函数的一些特征。

难点指数函数与幂函数的区别和幂函数解析式的求解。

教学方法与手段:1、采用师生互动的方式,在教师的引导下,学生通过思考、交流、讨论,理解幂函数的定义,体验自主探索、合作交流的学习方式,充分发挥学生的积极性与主动性。

2、利用投影仪及计算机辅助教学。

教学过程:函数的完美追求:对于式子如果一定,N随的变化而变化,我们建立了指数函数;如果一定,随N的变化而变化,我们建立了对数函数。

设想:如果一定,N随的变化而变化,是不是也应该确定一个函数呢?创设情境请大家看以下问题:思考:以上问题中的函数有什么共同特征?引导学生分析归纳概括得出:(1)都是以自变量x为底数;(2)指数为常数;(3)自变量x前的系数为1;(4)只有一项。

上述问题中涉及的函数,都是形如的函数。

探究新知一、幂函数的定义一般地,形如的函数称为幂函数,其中是自变量,是常数。

中前面的系数是1,后面没有其它项。

小试牛刀判断下列函数是否为幂函数:(1)思考:幂函数与指数函数有什么区别?二、幂函数与指数函数的对比高中数学必修1《幂函数》教案篇二教学目标1、使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性。

2、通过函数单调性概念的教学,培养学生分析问题、认识问题的能力。

通过例题培养学生利用定义进行推理的逻辑思维能力。

3、通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育。

教学重点与难点教学重点:函数单调性的概念。

教学难点:函数单调性的判定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数教学设计〔共7篇〕第1篇:幂函数教学设计《幂函数》教学设计一、设计构思设计理念注重开展学生的创新意识。

学生的数学学习活动不应只限于承受、记忆、模拟和练习,倡导学生积极主动探究、动手理论与互相合作交流的数学学习方式。

这种方式有助于发挥学生学习主动性,使学生的学习过程成为在老师引导下的“再创造”过程。

我们应积极创设条件,让学生体验数学发现和创造的历程,开展他们的创新意识。

注重进步学生数学思维才能。

课堂教学是促进学生数学思维才能开展的主阵地。

问题解决是培养学生思维才能的主要途径。

所设计的问题应有利于学生主动地进展观察、实验、猜测、验证、推理与交流等教学活动。

内容的呈现应采用不同的表达方式,以满足多样化的学习需求。

伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学”的余味,学生学习的积极性与主动性在教学中便自发生成。

本节主要安排应用类比法进展讨论,加深学生对类比法的体会与应用。

注重学生多层次的开展。

在问题解决的探究过程中应表达“以人为本”,充分表达“人人学有价值的数学,人人都能获得必需的数学”,“不同的人在数学上得到不同的开展”的教学理念。

有意义的数学学习必须建立在学生的主观愿望和知识经历根底之上,而学生的根底知识和学习才能是多层次的,所以设计的问题也应有层次性,使各层次学生都得到开展。

注重信息技术与数学课程的整合。

高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进展探究和发现。

另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。

教材分析^p幂函数是江苏教育出版社普通高中课程标准实验教科书数学第二章第四节的内容。

该教学内容在人教版试验修订本中已被删去。

标准将该内容重新提出,正是考虑到幂函数在实际生活的应用。

故在教学过程及后继学习过程中,应可以让学生体会其实际应用。

《标准》将幂函数限定为五个详细函数,通过研究它们来理解幂函数的性质。

其中,学生在初中已经学习了y=x、y=x2、y=x-1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识。

如今明确提出幂函数的概念,有助于学生形成完好的知识构造。

学生已经理解了函数的根本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了根本思路和方法。

因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外应让学生理解利用信息技术来探究函数图象及性质是一个重要途径。

该内容安排一课时。

教学目的确实定鉴于上述对教材的分析^p 和新课程的理念确定如下教学目的:⑴掌握幂函数的形式特征,掌握详细幂函数的图象和性质。

⑵能应用幂函数的图象和性质解决有关简单问题。

⑶加深学生对研究函数性质的根本方法和流程的经历。

⑷培养学生观察、分析^p 、归纳才能。

理解类比法在研究问题中的作用。

⑸浸透辨证唯物观点和方法论,培养学生运用详细问题详细分析^p 的方法分析^p 问题、解决问题的才能。

教学方法和教具的选择基于对课程理念的理解和对教材的分析^p ,运用问题情境可以使学生较快的进入数学知识情景,使学生对数学知识构造作主动性的扩展,通过问题的导引,学生对数学问题探究,进展数学建构,并能运用数学知识解决问题,让学生有运用数学成功的体验。

本课采用老师在学生原有的知识经历和方法上,引导学生提出问题、解决问题的教学方法,表达以学生为主体,老师主导作用的教学思想。

教具:多媒体。

制作多媒体以进步教学效率。

教学重点和难点重点是从详细幂函数归纳认识幂函数的一些性质并作简单应用。

难点是引导学生概括出幂函数性质。

教学流程基于新课程理念在教学过程中的表达,教学流程的基线为:考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经历和根本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的根本内容和方法为暗线,教学过程中同时展开。

明线:暗线:二、施行方案问题导引师生活动设计意图问题情境⑴写出以下y关于x的函数解析式:①正方形边长x、面积②正方体棱长x、体积③正方形面积x、边长④某人骑车x秒内匀速前进了1,骑车速度为⑤一物体位移y与位移时间x,速度1/s学生口答,老师板书答案。

幻灯片演示问题。

由详细问题入手,从熟悉的情景引入,进步学生的参与程度。

符合学生认识特点。

数学建构⑵上述函数解析式有什么共同特征?是否为指数函数?学生互相讨论,必要时,老师将解析式写成指数幂形式,以启发学生归纳。

投影演示定义。

引导学生观察,训练学生归纳才能。

并与前面知识进展区分,以进一步帮助学生明晰概念。

⑶判别以下函数中有几个幂函数?①y=②y=2x2③y=x④y=x2+x⑤y=-x3学生独立考虑,答复。

学生鉴别。

幻灯片演示题目。

稳固概念,强化学生对概念形式特征的把握。

⑷幂函数具有哪些性质?研究函数应该是哪些方面的内容。

前面指数函数、对数函数研究了哪些内容?学生讨论,老师引导。

学生答复。

引导学生回想前面学习指数函数与对数函数的研究内容和过程。

启发学生用类比思想进展研究幂函数。

⑸幂函数的定义域是否与对数函数、指数函数一样,具有一样的定义域?学生小组讨论,得到结论。

引导学生举例研究。

结论:幂指数不同,定义域并不完全一样,应区别对待。

激发学生讨论的欲望,进步学生主动参与程度。

⑹写出以下函数的定义域,并指出它们的奇偶性:①y=x②y=③y=x④y=x学生解答,并归纳解决方法。

引导学生与指数函数、对数函数对照比拟。

引导学生详细问题详细分析^p ,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。

幂函数的奇偶性也应详细分析^p 。

⑺上述函数的单调性如何?如何判断?学生考虑:作图引发学生作图研究函数性质的兴趣。

函数单调性的判断,既可以使用定义,也可以通过图象解决,直观,易理解。

⑻在同一坐标系内作出上述函数的图象。

学生作图,老师巡视。

将学生作图用实物投影仪演示,指出优点和错误之处。

老师利用几何画板演示通过超级链接几何画板演示。

训练学生作图的根本功,加强学生的理论,让学生在自己的经历中认识幂函数的图象。

防止老师直接使用计算机演示图象,剥夺学生动手的时机。

⑼上述函数图象有哪些共同点?学生讨论,总结。

老师引导。

可将学生已熟悉的函数y=,y=x一同投影,帮助学生观察。

训练学生观察分析^p 才能。

⑽答复第7个问题。

学生考虑,答复。

老师注意学生表达的严密。

训练学生的语言表达才能。

再次体会与指数函数、对数函数性质的区别。

体会幂指数的不同情况对函数单调性的影响。

⑾图象之间有什么区别?特别是在分布上。

与常数有什么联络?老师通过几何画板演示图象在象限内的变化规律,以验证学生猜测。

通过超级链接几何画板演示。

这是较高要求,可以让学生自由猜测和发言。

进一步进步学生观察,归纳才能。

数学应用⑿稳固练习写出以下函数的定义域,并指出它们的奇偶性和单调性:①y=x②y=x③y=x。

学生独立考虑并答复。

训练学生自觉运用幂函数图象性质的根本规律。

⒀简单应用1:比拟以下各组中两个值的大小,并说明理由:①0.75,0.76;②,;③0.23,0.24;④0.31,0.31学生考虑,作答,老师引导学生表达语言的逻辑性。

训练学生用函数性质进展解释,强化学生逻辑意识。

其中第④小题是利用指数函数性质解决,注意区别。

⒁请学生考虑可以如何验证上述答案的正确。

学生理论。

使用计算器验证,进步学生使用学习工具的意识。

⒂简单应用2:幂函数y=x在区间上是减函数,求的值。

学生考虑,作答。

老师板演。

对幂函数定义进一步稳固,对函数性质作初步应用。

同时训练学生对初步答案进展挑选。

⒃简单应用2:学生考虑,作答。

老师板演。

训练学生灵敏使用性质解题。

数学交流⒄小结:今天的学习内容和方法有哪些?你有哪些收获和经历?学生考虑、小组讨论,老师引导。

让学生回忆,小结,将对学生形成知识系统产生积极影响。

数学再现⒅布置作业:课本p.732、3、4、考虑5考虑5作为训练学生应用数学于实际的较好例子,应让才能较好学生得到充分开展。

几点说明:⑴本节课开场时要注意用相关熟悉例子引入新课。

⑵画函数图象时,假如学生已可以运用计算器或相关计算机软件作图,可以让学生自己操作,以进步学生探究问题的兴趣和才能,并进步教学效率。

⑶由于课程标准对幂函数的研究范围有相对限制,故第11个问题要求较高,建议视详细情况选择教学。

⑷本设计相关采用PoerPoint演示文稿,其中局部使用超级链接至几何画板进展演示。

附图1附图2幂函数在象限内的变化规律演示第2篇:幂函数教学设计及反思幂函数教学设计及反思一.教学目的1.知识技能:理解幂函数定义,掌握一些常见幂函数的图像及性质和一般幂函数第一象限内图像特点2.过程与方法:通过形式来定义幂函数,比拟幂函数和指数函数得出其特有的形式特点,观察图像归纳总结出其函数性质,数形结合找规律3.情感、态度和价值观:函数图像直接反响函数性质,同样由函数性质也能大致画出其图像,对图像与性质之间的关系进展探究体会二.重难点重点:幂函数的定义,常见幂函数的图像和性质,一般幂函数第一象限的大致图像再利用其性质得到整体图像难点:其一般的性质分析^p ,再由性质得到一般图像三.教学方法和用具方法:归纳总结,数形结合,分析^p 验证用具:幻灯片,几何画板,黑板四.教学过程〔幻灯片见附件〕1.设置问题情境,找出所得函数的共同形式,由形式给出幂函数的定义〔幻灯片1 幻灯片2〕〔板书〕2.从形式上比拟指数函数和幂函数的异同〔幻灯片3〕3.利用定义的形式,判断所给函数是否是幂函数,并得出判断根据〔幻灯片4〕4.画常见的三种幂函数的图像,再让学生用描点法画另两种,并用几何画板验证〔幻灯片5〕〔几何画板〕5.用几何画板画出这五个幂函数的图像,观察图像完成书中幂函数的函数性质的表格,并分析^p 得出更一般的结论〔板书〕〔几何画板〕6.直观观察五个幂函数的图像,寻求第一象限幂函数图像的大致走向〔幻灯片6〕7.任意给出几个幂函数,利用所得规律直接画出第一象限图像,再利用其定义域,奇偶性画出整体大致图像,并用几何画板验证〔板书〕〔几何画板〕8.例题1比拟幂值大小〔幻灯片7〕例题2利用幂函数定义和性质〔幻灯片8〕例题3证明详细一个幂函数的增减性〔幻灯片9〕9.小结〔幻灯片10〕五.教学反思1.要注意课堂上学生的反响,老师要迅速对其作出判断。

例如:判断y=x +x是不是幂函数,学生说不是,因为它是二次函数。

这时老师就应该迅速反响,要反驳学生,二次函数y=x 也是幂函数。

2.教学中屡次用到几何画板画图或验证,有时过多使得课堂时间不够,有时又显得有些多余。

例如:已经得到了一般幂函数图像先利用得出的规律画出第一象限大致的图像再利用其性质画整个的图像,给出几个幂函22数做练习,但随后在黑板上画完大致图像后又用几何画板验证,此时有些多余了,根本就不用验证,因为学生也不太理解几何画板,既然已经画出图像,就要让学生确信自己的答案。

相关文档
最新文档