“三角函数”中考试题分类汇编(含答案)
中考数学锐角三角函数(大题培优)含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为AC 上的动点,且10cos B =. (1)求AB 的长度;(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.【答案】(1) 10AB ;(2) 10AD AE ⋅=;(3)证明见解析.【解析】【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10BF B == (2)连接DG ,∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG ,连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3,∴FG=13,∴AD•AE=AF•AG=AF•(AF+FG)=3×10=10;3(3)连接CD,延长BD至点N,使DN=CD,连接AN,∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,∴∠ADC=∠ADN,∵AD=AD,CD=ND,∴△ADC≌△ADN,∴AC=AN,∵AB=AC,∴AB=AN,∵AH⊥BN,∴BH=HN=HD+CD.【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.3.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.【答案】(1)∠BME=15°;(2BC=4;(3)h≤2时,S=﹣h2+4h+8,当h≥2时,S=18﹣3h.【解析】试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.试题解析:解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4;(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,∵CD=4,DE=4,AC=h,AN=NM,∴CN=4﹣FM,AN=MN=4+h﹣FM,∵△CMN∽△CED,∴,∴,解得FM=4﹣,∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.考点:1、三角形的外角定理;2、相似;3、解直角三角形4.兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长为152米,主塔处桥面距地面7.9米(CD的长),试求出主塔BD的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】主塔BD的高约为86.9米.【解析】【分析】根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】在Rt△ABC中,∠ACB=90°,sin BCAAB=.∴sin152sin311520.5279.04BC AB A︒=⨯=⨯=⨯=.79.047.986.9486.9BD BC CD=+=+=≈(米)答:主塔BD的高约为86.9米.【点睛】本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.5.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.理由见解析.【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,∴CH=BE,∴EH FH FHAB BE CH==;在Rt△FEH中,tan∠FCN=8463 FH EHCH AB===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.6.如图,正方形OABC的顶点O与原点重合,点A,C分别在x轴与y轴的正半轴上,点A的坐标为(4,0),点D在边AB上,且tan∠AOD=12,点E是射线OB上一动点,EF⊥x轴于点F,交射线OD于点G,过点G作GH∥x轴交AE于点H.(1)求B,D两点的坐标;(2)当点E在线段OB上运动时,求∠HDA的大小;(3)以点G为圆心,GH的长为半径画⊙G.是否存在点E使⊙G与正方形OABC的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E的坐标.【答案】(1)B(4,4),D(4,2);(2)45°;(3)存在,符合条件的点为(8﹣42,8﹣42)或(8+42,8+42)或42164216,⎛⎫++ ⎪⎪⎝⎭或16421642,77⎛⎫-- ⎪ ⎪⎝⎭,理由见解析 【解析】 【分析】(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 12得AD=12OA=2,据此可得点D 坐标; (2)由1tan 2GF GOF OF ∠==知GF=12OF ,再由∠AOB=∠ABO=45°知OF=EF ,即GF=12EF ,根据GH ∥x 轴知H 为AE 的中点,结合D 为AB 的中点知DH 是△ABE 的中位线,即HD ∥BE ,据此可得答案;(3)分⊙G 与对角线OB 和对角线AC 相切两种情况,设PG=x ,结合题意建立关于x 的方程求解可得. 【详解】解:(1)∵A (4,0), ∴OA =4,∵四边形OABC 为正方形, ∴AB =OA =4,∠OAB =90°, ∴B (4,4),在Rt △OAD 中,∠OAD =90°, ∵tan ∠AOD =12, ∴AD =12OA =12×4=2, ∴D (4,2);(2)如图1,在Rt △OFG 中,∠OFG =90°∴tan∠GOF=GFOF =12,即GF=12OF,∵四边形OABC为正方形,∴∠AOB=∠ABO=45°,∴OF=EF,∴GF=12EF,∴G为EF的中点,∵GH∥x轴交AE于H,∴H为AE的中点,∵B(4,4),D(4,2),∴D为AB的中点,∴DH是△ABE的中位线,∴HD∥BE,∴∠HDA=∠ABO=45°.(3)①若⊙G与对角线OB相切,如图2,当点E在线段OB上时,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2x,OF=EF=2x,∵OA=4,∴AF=4﹣2,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣2)=22,则x=22x,解得:x=22,∴E(8﹣2,8﹣2如图3,当点E在线段OB的延长线上时,x=2x﹣2,解得:x=2+2,∴E(8+42,8+42);②若⊙G与对角线AC相切,如图4,当点E在线段BM上时,对角线AC,OB相交于点M,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2,OF=EF=2x,∵OA=4,∴AF=4﹣2,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣2)=22,过点G作GQ⊥AC于点Q,则GQ=PM=3x﹣2∴3x﹣2=22x,∴227x=,∴42164216,77E⎛⎫⎪ ⎪⎝⎭;如图5,当点E在线段OM上时,GQ=PM=22﹣3x,则22﹣3x=2﹣2x,解得422x-=,∴16421642,77E⎛⎫--⎪ ⎪⎝⎭;如图6,当点E在线段OB的延长线上时,3x﹣22x﹣2,解得:4227x=(舍去);综上所述,符合条件的点为(8﹣2,8﹣2)或(2,2)或42164216++⎝⎭或16421642--⎝⎭.【点睛】本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.7.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO)的距离为120米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为5秒且∠APO=60°,∠BPO=45°.(1)求A、B之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数≈≈).据:2 1.414,3 1.73【答案】【小题1】73.2【小题2】超过限制速度.【解析】AB=-73.2 (米).…6分解:(1)100(31)(2) 此车制速度v==18.3米/秒8.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm.【解析】【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ=BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP =AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.9.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形10.如图,AB 为O 的直径,C 、D 为O 上异于A 、B 的两点,连接CD ,过点C作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O 的切线.②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】 解:(1)AB 是O 的直径,且D 为O 上一点,90ADB ∴∠=︒, CE DB ⊥, 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =,12∴∠=∠. 312∠=∠+∠, 321∴∠=∠.42BDC ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠, //OC DB ∴. CE DB ⊥, OC CF ∴⊥.又OC 为O 的半径, CF ∴为O 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠, 3tan tan 4BAD F ∴∠==,34BD AD ∴=. 6BD =483AD BD ∴==,10AB ∴==,5OB OC ==.OC CF ⊥, 90OCF ∴∠=︒,3tan 4OC F CF ∴==,解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.。
初三数学三角函数(含答案)

则电线杆的高度为 ( A.9 米 B.28 米
)
C. 7 3米
D. 14 2 3 米
19、如图 6,两建筑物的水平距离为 am,从 A 点测得 D 点的俯角为 a,测得 C 点的
俯角为β,则较低建筑物 CD 的高为 ( )
A.a m
B.(a·tanα)m
C. a m tan
D.a(tanα-tanβ)m
24、已知 Rt△ABC 的斜边 AB 的长为 10cm , sinA、sinB 是方程 m(x2-2x)+5(x2+x)+12=0 的两根。 (1)求 m 的值 (2)求 Rt△ABC 的内切圆的面积
25、如图,△ABC 是等腰三角形,∠ACB=90°,过 BC 的中点 D 作 DE⊥AB,垂足为 E,连结 CE,求 sin∠ACE 的值.
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的 边和角。
依据:①边的关系: a2 b2 c2 ;②角的关系:A+B=90°;③边角关系:三角函
数的定义。(注意:尽量避免使用中间数据和除法)
2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
铅垂线
视线
A.(cosα,1)
B.(1,sinα) C.(sinα,cosα)
D.(cosα,sinα)
14、如图 4,在△ABC 中,∠C=90°,AC=8cm,AB 的垂直平分线 MN 交 AC 于 D,
连结 BD,若 cos∠BDC= 3 ,则 BC 的长是(
5
A、4cm
B、6cm C、8cm
) D、10cm
tan A cotB cot A tanB tan A 1 (倒数)
初三《三角函数》经典习题汇编(易错题、难题)

初三《三角函数》经典习题汇编(易错题、
难题)
初三《三角函数》经典题汇编(易错题、难题)
概述
本文档以初三数学学科的《三角函数》为主题,整理了一些经
典的题,主要包括易错题和难题。
这些题旨在帮助学生加深对三角
函数的理解和应用能力。
题目列表
1. 题目:已知直角三角形的一条直角边为5,斜边为13,求另
一条直角边的长度。
难度:易错题
答案:12
2. 题目:已知角A的正弦值为1/2,求角A的度数。
难度:易错题
答案:30°
3. 题目:已知角B的余弦值为3/5,求角B的度数。
难度:易错题
答案:53.13°
4. 题目:已知角C的正切值为2,求角C的度数。
难度:难题
答案:63.43°
5. 题目:已知直角三角形的一条直角边为8,角A的正弦值为3/4,求斜边的长度。
难度:难题
答案:10
6. 题目:已知角A的弧度为π/6,求角A的正弦值。
难度:难题
答案:1/2
7. 题目:已知角B的弧度为5π/6,求角B的正切值。
难度:难题
答案:√3
结论
通过解答这些经典习题,学生可以巩固对三角函数的基本概念和相关计算方法的掌握。
这些题目既包括易错题,帮助学生强化知识记忆,又包括难题,提高学生的解题能力。
建议学生针对这些题目进行练习,加深对三角函数的理解和应用能力,从而在考试中取得好成绩。
2024年10月三角函数、解三角形大题汇编(解析版)

2024年9~10月三角函数、解三角形大题汇编知识点一:基本定理公式(1)正余弦定理:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理公式a sin A=b sin B =csin C =2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R;cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab.(2)面积公式:S ΔABC =12ab sin C =12bc sin A =12ac sin BS ΔABC =abc 4R=12(a +b +c )⋅r (r 是三角形内切圆的半径,并可由此计算R ,r .)知识点二:相关应用(1)正弦定理的应用①边化角,角化边⇔a :b :c =sin A :sin B :sin C ②大边对大角大角对大边a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos B③合分比:a +b +csin A +sin B +sin C =a +b sin A +sin B =b +c sin B +sin C =a +c sin A +sin C =a sin A=b sin B =csin C =2R(2)△ABC 内角和定理:A +B +C =π①sin C =sin (A +B )=sin A cos B +cos A sin B ⇔c =a cos B +b cos A 同理有:a =b cos C +c cos B ,b =c cos A +a cos C .②-cos C =cos (A +B )=cos A cos B -sin A sin B ;③斜三角形中,-tan C =tan (A +B )=tan A +tan B1-tan A ⋅tan B⇔tan A +tan B +tan C =tan A ⋅tan B ⋅tan C④sin A +B 2 =cos C 2;cos A +B 2 =sin C2⑤在ΔABC 中,内角A ,B ,C 成等差数列⇔B =π3,A +C =2π3.知识点三:实际应用(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).【解题方法总结】1、方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b a ≤b解的个数一解两解一解一解无解2、在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有a ,b ,c 的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A +B +C =π.3、三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .【题型分类汇编】1.(湖南省长沙市2025届高三六校九月大联考解析第15题)记ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(3b -a )sin A =(b +c )(sin B -sin C ).(1)求角C ;(2)若ΔABC 外接圆的半径为2,求ΔABC 面积的最大值.方法提供与解析:(1)解析:由已知及正弦定理可得(3b -a )a =(b +c )(b -c ),整理得a 2+b 2-c 2=3ab ,∴cos C =a 2+b 2-c 22ab=32,∵C ∈(0,π),∴C =π6.(2)解析:∵ΔABC 外接圆的半径为2,∴csin C=4,得c =2,∴a 2+b 2=4+3ab ,又a 2+b 2≥2ab ,∴ab ≤4(2+3),当且仅当a =b =6+2时,等号成立,∴S ΔABC =12ab sin C ≤12×4(2+3)×12=2+3,即ΔABC 面积的最大值为2+ 3.2.(辽宁省沈阳市郊联体2024年高三上学期开学联考解析第16题)已知函数f (x )=23cos 2x -2025π2+2sin (x -2024π)cos x - 3.(1)求曲线y =f (x )的对称轴;(2)已知25f m -π6=14,m ∈2π3,5π6,求sin2m 的值.解析:(1)f (x )=23cos 2x -2025π2+2sin (x -2024π)cos x -3,=23sin 2x +2sin x cos x -3=2sin x cos x -31-2sin 2x ,=sin2x -3cos2x =2sin 2x -π3,由2x -π3=π2+k π(k ∈Z ),得曲线y =f (x )的对称轴为x =5π12+k π2(k ∈Z );(2)由题意可得f m -π6 =1425,即sin 2m -2π3 =725,又m ∈2π3,5π6 ,则2m -2π3∈2π3,π ,即cos 2m -2π3<0,所以cos 2m -2π3 =-1-sin 22m -2π3 =-2425,故sin2m =sin 2m -2π3 +2π3 =sin 2m -2π3 cos 2π3+cos 2m -2π3 sin 2π3=725×-12 +-2425 ×32=-7+24350.3.(福建泉州市2025届高中毕业班模拟检测(一)解析第15题)记ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a cos 2C 2+c cos 2A 2=32b .(1)证明:sin A +sin C =2sin B ;(2)若b =2,AB ⋅AC=3,求ΔABC 的面积.方法提供与解析:(1)解析:因为a cos 2C 2+c cos 2A 2=32b ,则a (1+cos C )+c (1+cos A )2=32b ,即a +c +a cos C +c cos A =3b ,由正弦定理可得3sin B =sin A +sin C +(sin A cos C +cos A sin C )=sin A +sin C +sin (A +C )=sin A +sin C +sin (π-B )=sin A +sin C +sin B ,因此sin A +sin C =2sin B .(2)解析:因为sin A +sin C =2sin B ,由正弦定理可得a +c =2b =4,由平面向量数量积的定义可得AB ⋅AC =cb cos A =3,所以2c ⋅b 2+c 2-a 22bc=4+c 2-a 22=3,可得c 2-a 2=2,即(c -a )(c +a )=4(c -a )=2,所以c -a =12,则c =94,a =74,所以cos A =3bc =32×94=23,则A 为锐角,得sin A =1-cos 2A =1-23 2=53,因此S ΔABC =12bc sin A =12=12×2×94×53=354.4.(长沙市雅礼中学2025届高三上学期(9月)综合自主测试解析第16题)在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ΔABC 的面积为S ,433S =b 2sin (2A +B )sin B+1 .(1)求角A ;(2)若ΔABC 的面积为33,a =13,D 为边BC 的中点,求AD 的长.方法提供与解析:(1)解析:由题意得433S =sin2A cos B +cos2A sin Bsin B+1 ⋅b 2=2sin A cos A cos B +2cos 2A sin B sin B ⋅b 2=2cos A sin (A +B )sin B b 2=2cos A sin C sin B b 2,由正弦定理,得433S =2c cos A b⋅b 2,即433×12bc sin A =2bc cos A ,所以tan A = 3.又A ∈(0,π),所以A =π3.(2)解析:因为ΔABC 的面积为33,所以12bc sin π3=33,所以bc =12.因为a =13,所以b 2+c 2-2bc cos π3=13,即b 2+c 2-bc =13,所以b 2+c 2=25.因为D 是边BC 的中点,所以AD =12(AC +AB),所以|AD |2=14b 2+c 2+2bc cos A =14b 2+c 2+bc =374,所以|AD |=372,所以AD 的长为372.5.(山东省日照市2024-2025学年高三上学期开学校际联考解析第16题)记ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A =π3,a =2.(1)若sin B -sin C =12,求b ;(2)若sin B +sin C =2sin A ,求ΔABC 的面积.方法提供与解析:(1)解析:(正余弦定理)由正弦定理可得,b sin B =c sin C =a sin A =2sin π3=433,则sin B =34b ,sin C =34c ,由sin B -sin C =12,可得34b -34c =12,即b -c =233由余弦定理可得,a 2=b 2+c 2-2bc cos A ,即4=b 2+c 2-bc ,即4=(b -c )2+bc ,解得bc =83,联立bc =83b -c =233,解得b =433c =233 .(2)解析:(正余弦定理)因为sin B +sin C =2sin A ,由正弦定理的边角互化可得,b +c =2a =4,由余弦定理可得,a 2=b 2+c 2-2bc cos A ,即4=b 2+c 2-bc ,所以4=(b +c )2-3bc ,解得bc =4,则S ΔABC =12bc sin A =12×4×32= 3.6.(黄冈市2024年高三年级9月调研考试解析第16题)函数f (x )=sin ωx ⋅cos ωx +cos 2ωx ,ω>0,函数的最小正周期为π.(1)求函数f (x )的单调递增区间以及对称中心;(2)将函数f (x )的图象先向右平移π8个单位,再向下平移12个单位,得到函数g (x )的图象,在函数g (x )图象上从左到右依次取点A 1,A 2,⋯,A 2024,该点列的横坐标依次为x 1,x 2,⋯,x 2024,其中x 1=π4,x n +1-x n =πn ∈N * ,求g x 1 +g x 2 +⋯+g x 2024 .方法提供与解析:(1)解析:f(x)=12sin2ωx+1+cos2ωx2=12+22sin2ωx+π4,因为f(x)的最小正周期为π,故2π2ω=π,即ω=1,所以f(x)=12+22sin2x+π4,令2kπ-π2≤2x+π4≤2kπ+π2,k∈Z,故kπ-3π8≤x≤kπ+π8,k∈Z,故f(x)的增区间为kπ-3π8,kπ+π8,k∈Z.令2x+π4=lπ,l∈Z,则x=lπ2-π8,l∈Z,故f(x)图象的对称中心为lπ2-π8,12,l∈Z.(2)解析:由题设有g(x)=12-12+22sin2x-π4+π4=22sin2x,则g(x)的周期为π,而x n+3-x n=π3×3=π,故g x n+3=g x n,而g x1=22,g x2=gπ4+π3=22sinπ2+2π3=-24,g x3 =gπ4+2π3=22sinπ2+4π3=-24,故g x1+g x2+⋯+g x2024=g x1+g x2+674g x1+g x2+g x3=22-24+67422-24-24=24.7.(黄冈市2024年高三年级9月调研考试解析第18题)在ΔABC中,角A,B,C所对的边分别为a,b,c.(1)证明:tan A2=1-cos Asin A=sin A1+cos A;(2)若a,b,c成等比数列.(i)设ba=q,求q的取值范围;(ii)求tan A2tan C2的取值范围.方法提供与解析:(1)解析:1-cos Asin A =1-1-2sin2A22sin A2cos A2=2sin2A22sin A2cos A2=tan A2,sin A 1+cos A =2sin A2cos A21+2cos2A2-1=2sin A2cos A22cos2A2=tan A2,故tan A2=1-cos Asin A=sin A1+cos A.(2)解析:(i)由题意设b=aq,c=aq2,由三角形三边关系知q>0a+aq>aq2a+aq2>aqaq+aq2>a,解之得:q∈5-12,5+12.(ii)由(1)的结论可知:tan A2tan C2=sin A1+cos A⋅1-cos Csin C=sin Asin C⋅1-cos C1+cos A=ac⋅1-a2+b2-c22ab1+b2+c2-a22bc=a+c-b a+c+b =a+aq2-aqa+aq2+aq=1+q2-q1+q2+q=1+q2+q-2q1+q2+q=1-2q1+q2+q=1-2q+1q+1∈13,3-52,故tan A2tan C2的取值范围为13,3-52.8.(福建省漳州市2025届高三毕业班第一次教学质量检测解析第15题)在ΔABC 中,A ,B ,C 的对边分别为a ,b ,c ,且满足.请在①(a -b )sin (A +C )=(a -c )(sin A +sin C );②sin π6-C cos C +π3=14,这两个中任选一个作为条件,补充在横线上,并解答问题.(1)求C ;(2)若ΔABC 的面积为53,D 为AC 的中点,求BD 的最小值.方法提供与解析:(1)解析:选择条件①,(a -b )sin (A +C )=(a -c )(sin A +sin C ),则(a -b )sin B =(a -c )(sin A +sin C ),由正弦定理可得(a -b )b =(a -c )(a +c ),即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab=12,由C ∈(0,π),所以C =π3.选择条件②,sin π6-C cos C +π3 =14,即sin π2-π3+C cos C +π3 =14,所以cos 2C +π3 =14,由C ∈(0,π),π3<C +π3<4π3,则cos C +π3 =-12,所以C +π3=2π3,则C =π3.(2)解析:由S =12ab sin C =12ab ×32=53,解得ab =20.又BD =BC +CD ,所以BD 2=(BC +CD )2=BC 2+2BC ⋅CD +CD2=a 2+2a ×12b ×-12 +12b 2=a 2+b 24-12ab ≥ab -12ab =12ab =10,所以|BD|≥10,当且仅当a =10,b =210时等式成立,所以BD 的最小值是10.9.(唐山市2024-2025学年度高三年级摸底考试解析第15题)已知ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3sin2A +cos2A =2,b =2a .(1)求B ;(2)若B 为锐角,AC 边上的高为2+6,求ΔABC 的周长.方法提供与解析:(1)解析:易知3sin2A +cos2A =2sin 2A +π6=2⇒sin 2A +π6=1,所以2A +π6=π2+2k π⇒A =π6+k π(k ∈Z ),因为ΔABC 中A ,B ,C ∈(0,π),所以A =π6,而b =2a ⇒sin B =2sin A =22,则B =π4或B =3π4.(2)解析:由上可知A =π6,B =π4,则C =π-π6-π4=7π12,如图BD ⊥AC ,则BD =2+6,∠BCD =5π12,∠CBD =π12,所以sin A =BD AB⇒AB =22+26,cos ∠CBD =cos π4-π6 =22×32+22×12=6+24=BDBC,则BC =4,AC =42,所以ΔABC 的周长为C ΔABC =AB +BC +AC =22+26+4+42=62+26+4.10.(山东百师联盟2025届高三开学摸底联考解析第15题)已知ΔABC的内角A,B,C的对边分别为a,b,c,C=π3,6b=ab+6c cos A.(1)求b的值;(2)若c=19,求ΔABC的面积.方法提供与解析:(1)解析:因为6b=ab+6c cos A,由正弦定理得6sin B=b sin A+6sin C cos A,即6sin(A+C)=b sin A+6sin C cos A,可得6sin A cos C+6cos A sin C=b sin A+6sin C cos A,整理得6sin A cos C=b sin A,因为A∈(0,π),可得sin A≠0,所以b=6cos C,又因为C=π3,所以b=3.(2)解析:由余弦定理,可得c2=b2+a2-2ab cosπ3,因为b=3,c=19,代入得a2-3a-10=0,解得a=5或a=-2(舍),所以ΔABC的面积S=12ab sin C=12×3×5×sinπ3=1534.11.(2024年9月嘉兴市高三基础测试解析第15题)已知ΔABC的内角A,B,C的对边分别为a,b,c,已知(b+c-a)(b+c+a)=bc.(1)求A;(2)若D为BC边上一点,∠BAD=3∠CAD,AC=4,AD=3,求sin B.方法提供与解析:(1)解析:(b+c-a)(b+c+a)=(b+c)2-a2=b2+2bc+c2-a2=bc,则b2+c2-a2=-bc,所以cos A=b2+c2-a22bc=-12,因为0<A<π,所以A=2π3.(2)解析::由(1)得,A=2π3,因为∠BAD=3∠CAD,所以∠CAD=π6,在ΔACD中,由余弦定理CD2=AD2+AC2-2AD⋅AC cos∠DAC=3+16-23×4×32=7,即CD=7,在ΔACD中由正弦定理CDsin∠DAC=ADsin C,即712=3sin C,所以sin C=327,因为0<C<π3,故cos C=1-sin2C=527,在ΔABC中sin B=sin(A+C)=sin A cos C+cos A sin C=32×527-12×327=217.12.(江西省红色十校2025届高三上学期第一次联考解析第15题)已知ΔABC中,内角A,B,C所对的边分别为a,b,c,且a(1-3cos C)=3c cos A.(1)求ba的值;(2)若c=2,求B最大时ΔABC的面积.方法提供与解析:(1)解析:因为a(1-3cos C)=3c cos A,由正弦定理得sin A(1-3cos C)=3sin C cos A,得sin A=3sin A cos C+3cos A sin C=3sin(A+C)=3sin B,由正弦定理得a=3b,所以ba=13.(2)解析:由余弦定理得cos B=a2+c2-b22ac =9b2+4-b212b=2b3+13b≥22b3⋅13b=223,当且仅当2b3=1,即b =22时取等号,当cos B 取最小值时,B 最大,此时a =3b =322,c =2,sin B =1-cos 2B =13,ΔABC 的面积为12ac sin B =12×322×2×13=22.13.(河北省邯郸市2024-2025学年高三第一次调研解析第15题)设ΔABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且(b +a )(sin ∠ABC -sin ∠BAC )=c (sin ∠ABC -sin C ),BC 、AC 边上的两条中线AD 、BE 相交于点P .(1)求∠BAC ;(2)若AD =7,BE =2,cos ∠DPE =714,求ΔABC 的面积.方法提供与解析:解析:(1)因为(b +a )(sin ∠ABC -sin ∠BAC )=c (sin ∠ABC -sin C ),所以由正弦定理得b 2+c 2-a 2=bc ,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc=12,又0<∠BAC <π,所以∠BAC =π3.(2)因为P 是BC ,AC 边上的两条中线AD ,BE 的交点,所以点P 是ΔABC 的重心.又AD =7,BE =2,∠APB =∠DPE ,所以在ΔABP 中,由余弦定理c 2=AB 2=P A 2+PB 2-2P A ⋅PB cos ∠APB=273 2+43 2-2×273×43×714=4,所以c =2,又BE =2,∠BAC =π3,所以AE =BE =2,所以b =2AE =4,所以ΔABC 的面积为12×4×2×sin π3=2 3.14.(湘豫名校联考2024-2025学年新高考适应性调研考试解析第15题)在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知c =2,a 2+c 2-b 2=23-2cos A bc .(1)求b 的值;(2)设∠BAC 的平分线交BC 于点D ,若ΔABC 的面积为33,求线段AD 的长.方法提供与解析:(1)解析:在ΔABC 中,由余弦定理得2bc cos A =b 2+c 2-a 2,代入已知条件,得a 2+c 2-b 2=23bc -b 2+c 2-a 2 .整理,得2c 2=23bc ,所以b =3c =6.(2)解析:由于S ΔABC =12bc sin ∠BAC .所以sin ∠BAC =2S ΔABC bc=32.又∠BAC ∈(0,π),所以∠BAC =π3或2π3.所以sin 12∠BAC =12或32,由点D 在∠BAC 的平分线上,知点D 到边AB 和边AC 的距离相等.设这个距离为d ,则S ΔABC =12(b +c )d ,所以d =2S ΔABC b +c =2×332+6=334,所以AD =d sin 12∠BAC=332或32.15.(山东省2024年9月高三七校联考解析第15题)已知锐角ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a -c =2c cos B .(1)证明:B =2C ;(2)若a=2,求cos Cb +1c的取值范围.方法提供与解析:(1)解析:因为a-c=2c cos B,由正弦定理得sin A-sin C=2sin C cos B,所以sin B cos C+sin C cos B-sin C=2sin C cos B,所以sin B cos C-sin C cos B=sin C⇔sin(B-C)=sin C,而0<B<π,0<C<π,则B-C=C或B-C+C=π,即B=2C或B=π(舍去),故B=2C.(2)解析:因为ΔABC是锐角三角形,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4,所以cos C的取值范围是22<cos C<32,由正弦定理可得:bc=sin Bsin C,则b=sin Bsin C⋅c=sin2Csin C⋅c=2cos C⋅c,所以cos Cb=12c,所以cos Cb+1c=32c,因为a-c=2c cos B,所以2-c=2c cos2C,所以2-c=2c cos2C,所以c=22cos2C+1,所以cos Cb+1c=32c=342cos2C+1=3(2cos2C+1)4=34cos2C-14,因为cos C∈22,32,所以4cos2C-1∈(1,2),所以cos Cb+1c=34cos2C-14的取值范围是34,32.16.(T8联考解析第16题)在ΔABC中,三个内角A,B,C所对的边分别为a,b,c,4cos C+cos(A-B)=3,c=3.(1)求证:a+b=2c;(2)若点M是边AB上靠近点B的三等分点,求CM的最小值.方法提供与解析:(1)解析:由题意得1+cos(A-B)=4[1+cos(A+B)],即2cos2A-B2=4⋅2cos2A+B2,即cos A-B2=2cos A+B2=2sin C2,∵sin A+sin B=sin A+B2+A-B2+sin A+B2-A-B2,即sin A+sin B=2sin A+B2cos A-B2=2sinπ-C2⋅2sin C2=4sin C2cos C2=2sin C,由正弦定理可得a+b=2c.(2)解析:设CM=x,∠CMB=θ,由题可知AM=2,BM=1,在ΔACM中,由余弦定理,得cos(π-θ)=x2+4-b24x,在ΔBCM中,由余弦定理,得cosθ=x2+1-a22x,两式相加得3x2+6=2a2+b2=2a2+(6-a)2=3(a-2)2+24≥24,解得x≥6,∴CM的最小值是6,当且仅当a=2,b=4,c=3时取等号.17.(重庆市南开中学校2025届高三上学期第一次质量检测解析第15题)在ΔABC中,角A,B,C的对边分别为a,b,c,a sin A=b-c 2sin B+c-b2sin C.(1)求A;(2)若ΔABC的面积为3,周长为8,求a.方法提供与解析:(1)解析:(正弦定理)由正弦定理可得:a2=b-c 2b+c-b2c,整理得a2=b2+c2-bc∴cos A=b2+c2-a22bc=bc2bc=12,∴A=π3(2)解析:(余弦定理)由SΔABC=12bc sin A=3可得bc=4,∴a2=b2+c2-bc=(b+c)2-12又a+b+c=8,∴a2=(8-a)2-12,解得a=13 4.。
“三角函数”中考试题分类汇编(含答案)

1、锐角三角函数要点一:锐角三角函数的基本概念 一、选择题1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan α的值是( )A .35B .43 C .34 D .452.(2008·威海中考)在△ABC 中,∠C =90°,tan A =13,则sin B =( )A .1010 B .23C .34D .310103.(2009·齐齐哈尔中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .434.(2009·湖州中考)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A .3sin A =B .1tan 2A = C .3cosB = D .tan 3B =5.(2008·温州中考)如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( )A .23B .32C .34D .436.(2007·泰安中考)如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( )(A )2 (B )22 (C )63(D )33二、填空题7.(2009·梧州中考)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是 cm . .(2009·孝感中考)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .9.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形ACBD的面积= cm 2.答案:60 三、解答题10.(2009·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE =1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干? 【11.(2009·綦江中考)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值.12.(2008·宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.DABCEFOEC D14.(2007·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.要点二、特殊角的三角函数值 一、选择题1.(2009·钦州中考)sin30°的值为( )A .32B .22C .12D .33答案:C2.(2009·长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .2,B .2),C .211),D .(121),答案:C3.(2009·定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .3 C 83米 D 43米4.(2008·宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒805.(2008·毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .1323⎛⎫- ⎪ ⎪⎝⎭,B .3323⎛⎫- ⎪ ⎪⎝⎭,C .1323⎛⎫-- ⎪ ⎪⎝⎭, D .1322⎛⎫- ⎪ ⎪⎝⎭, 6.(2007·襄樊中考)计算:2cos 45tan 60cos30+等于( )(A )1 (B )2 (C )2 (D )3 二、填空题7. (2009·荆门中考)104cos30sin 60(2)(20092008)-︒︒+---=______.答案:238.(2009·百色中考)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).答案:439.(2008·江西中考)计算:(1)1sin 60cos302-= . 答案:1410.(2007·济宁中考)计算sin 60tan 45cos30︒-︒︒的值是 。
备战中考数学综合题专题复习【锐角三角函数】专题解析附答案解析

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(215-+;(3758+【解析】试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,∴AB BC BD CD =,即111x x +=, 整理得:x 2+x-1=0,解得:x 1=15-+,x 2=15--(负值,舍去),则x=15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=154-+, 在Rt △ABE 中,cosA=cos36°=151514151AE AB -+++==-++ 在Rt △BCE 中,cosC=cos72°=1515414EC BC -+-+==, 则cos36°-cos72°=51+=15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.4.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为 cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.【解析】试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).∵点E为CD边上的中点,∴AE=DC=cm.(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去).∴点D′到BC边的距离为cm.考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.6.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.BE【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC , ∴∠GEC =∠GCE =45°, ∴∠BEG =∠GCF =135°, 由平移的性质得:BE =CF ,在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ), ∴BG =GF ,∵G 在正方形ABCD 对角线上, ∴BG =DG , ∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =2在Rt △DHG 中,∵∠AGD =60°, ∴GH 33236,∴DG =2GH =6, ∴DF 2DG =3 在Rt △DCF 中,CF ()22436-3∴BE =CF =3.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.7.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在C A′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ=72;(3)存在,S四边形PA'B′Q=33【解析】【分析】(1)由旋转可得:AC=A'C=2,进而得到BC3=∠A'BC=90°,可得cos∠A'CB3'BCA C==∠A'CB=30°,∠ACA'=60°;(2)根据M为A'B'的中点,即可得出∠A=∠A'CM,进而得到PB3=32=,依据tan∠Q=tan∠A32=BQ=BC3=2,进而得出PQ=PB+BQ72=;(3)依据S四边形PA'B'Q=S△PCQ﹣S△A'CB'=S△PCQ3-S四边形PA'B'Q最小,即S△PCQ最小,而S△PCQ12=PQ×BC3=,利用几何法即可得到S△PCQ的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB 7=,AC =2,∴BC 3=. ∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'BC A C ==,∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 3=,∴PB 3=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.在Rt △ABC 中,∠ACB =90°,CD 是AB 边的中线,DE ⊥BC 于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果∠A =30°,①如图1,∠DCB 等于多少度;②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且∠A =α(0°<α<90°),连结DP ,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,∴△CDB为等边三角形.∴∠CDB=60°∵线段DP绕点D逆时针旋转60°得到线段DF,∵∠PDF=60°,DP=DF,∴∠FDB=∠CDP,在△DCP和△DBF中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.9.如图,正方形ABCD+1,对角线AC 、BD 相交于点O ,AE 平分∠BAC 分别交BC 、BD 于E 、F ,(1)求证:△ABF ∽△ACE ;(2)求tan ∠BAE 的值;(3)在线段AC 上找一点P ,使得PE+PF 最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB=2﹣1;(3)PE+PF的最小值为 .22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x 即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;【详解】(1)证明:∵四边形ABCD是正方形,∴∠ACE=∠ABF=∠CAB=45°,∵AE平分∠CAB,∴∠EAC=∠BAF=22.5°,∴△ABF∽△ACE.(2)解:如图1中,作EH⊥AC于H.∵EA平分∠CAB,EH⊥AC,EB⊥AB,∴BE=EB,∵∠HCE=45°,∠CHE=90°,∴∠HCE=∠HEC=45°,∴HC=EH,∴BE=EH=HC,设BE=HE=HC=x,则EC2,∵BC2+1,∴x+x2+1,∴x=1,在Rt△ABE中,∵∠ABE=90°,∴tan ∠EAB =1221BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =22, ∵AC =22AB BC +=2+2,∴OA =OC =OB =12AC =22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •(2﹣1)=22, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+..【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.10.小明坐于堤边垂钓,如图①,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.。
三角函数试题及答案初中

三角函数试题及答案初中一、选择题(每题3分,共30分)1. 若sinα=1/2,则α的度数是()A. 30°B. 60°C. 90°D. 120°2. cos30°的值是()A. 1/2B. √3/2C. √2/2D. 13. 已知tan45°=1,则sin45°的值是()A. 1/√2B. √2/2C. √2D. 14. 如果sinβ=3/5,且β为锐角,则cosβ的值是()A. 4/5B. -4/5C. 3/5D. -3/55. 根据三角函数的定义,下列哪个选项是错误的()A. sin0°=0B. cos90°=0C. tan60°=√3D. sin180°=-16. 已知sinA=1/2,那么cos2A的值是()A. 1/4B. 1/2C. 3/4D. 07. 在直角三角形中,如果一个锐角的正弦值是1/3,那么它的余弦值是()A. 2√2/3B. √2/3C. √6/3D. 3√2/38. 根据三角函数的周期性,sin(360°+α)等于()A. sinαB. -sinαC. co sαD. -cosα9. 一个角的正切值是-√3,那么这个角的度数是()A. 60°B. 120°C. 240°D. 300°10. 根据三角函数的和角公式,sin(α+β)=sinαcosβ+cosαsinβ,那么cos(α+β)的值是()A. cosαcosβ-sinαsinβB. cosαcosβ+sinαsinβC. sinαcosβ-cosαsinβD. -cosαcosβ-sinαsinβ二、填空题(每题4分,共20分)1. sin60°的值是______。
2. 一个角的余弦值是-1/2,那么这个角的正弦值是______。
3. 已知tanA=2,则sinA的值是______。
中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)命题点分类集训命题点1 特殊角的三角函数值【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分).【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现.1. sin 60°的值等于( ) A . 12B .22 C . 32D . 3 1. C2. 下列式子错误..的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30°2. D 【解析】逐项分析如下:选项 逐项分析正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1tan75°×tan75°=1√ C sin 2A +cos 2A =1√ D∵sin60°=32,2sin30°=2×12=1,∴sin60°≠2sin30° ×3. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =12,tan β =1,又因为α、β均为锐角,则α=30°,β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值.【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注.4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34B . 43C . 35D . 454. D 【解析】如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.5. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( )A . 6 cmB . 7 cmC . 8 cmD . 9 cm5. C 【解析】∵sin A =BC AB =45,∴设BC =4a ,则AB =5a ,AC =(5a )2-(4a )2=3a ,∴3a =6,即a =2,故BC =4a =8 cm.6. 已知:如图,在锐角△ABC 中,AB =c ,BC =a ,AC =b ,AD ⊥BC 于D. 在Rt △ABD 中,sin ∠B =ADc ,则AD =c sin ∠B ;在Rt △ACD 中,sin ∠C =________,则AD =________. 所以c sin ∠B =b sin ∠C ,即bsin B =csin C , 进一步即得正弦定理:asin A =b sin B =c sin C.(此定理适合任意锐角三角形) 参照利用正弦定理解答下题:在△ABC 中,∠B =75°,∠C =45°,BC =2,求AB 的长.6. 解:∵sin C =AD AC =ADb ,∴AD =b sin C ,由正弦定理得:BC sin A =ABsin C ,∵∠B =75°, ∠C =45°, ∴∠A =60°, ∴2sin 60°=ABsin 45°,∴AB =2×22÷32=263.命题点3 锐角三角函数的实际应用【命题规律】1.考查内容:主要考查利用几何建模思想,将实际问题抽象为几何中的直角三角形的有关问题,并根据直角三角形的边角关系解决实际问题.2.考查形式:①仰角、俯角问题;②方位角问题;③坡度、坡角问题;④测量问题等.【命题预测】锐角三角函数的实际应用是将实际问题转化为几何问题并加以解决的数学建模题型,是全国命题的趋势.7. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等,小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1米,则旗杆PA 的高度为( )A .11-sin α B . 11+sin α C . 11-cos α D . 11+cos α7. A 【解析】在Rt △PCB ′中,sin α=PCPB ′,∴PC =PB ′·sin α,又∵B ′D =AC =1,则PB ′·sin α+1=P A ,而PB ′=P A ,∴P A =11-sin α.8. 如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为________cm (参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766.结果精确到0.1 cm ,可用科学计算器).8. 14.1 【解析】如解图 ,过点B 作BE ⊥CD 于点E ,∵BC =BD =15 cm ,∠CBD =40°,∴∠CBE =20°,在Rt △CBE 中,BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm).第8题图 第9题图 第10题图9. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)9. 11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B =PM PB ,∴0.8=9PB ,∴PB ≈11海里.10. 如图,在一次数学课外实践活动中,小聪在距离旗杆10 m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1 m ,则旗杆高BC 为__________m .(结果保留根号)10. 103+1 【解析】如解图,过点A 作AE ⊥BC ,垂足为点E ,则AE =CD =10 m ,在Rt △AEB 中,BE =AE·tan 60°=10×3=10 3 m ,∴BC =BE +EC =BE +AD =(103+1)m . 11. 如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B 、C 、E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B 、C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)11. 解:如解图,过点D 作DF ⊥AB ,垂足为点F ,则四边形FBED 为矩形,∴FD =BE ,BF =DE =10,FD ∥BE ,由题意得:∠FDC =30°,∠ADF =45°,∵FD ∥BE , ∴∠DCE =∠FDC =30°, 在Rt △DEC 中,∠DEC =90°,DE =10,∠DCE =30°, ∵tan ∠DCE =DE CE ,∴CE =10tan 30°=103,在Rt △AFD 中,∠AFD =90°,∠ADF =∠FAD =45°, ∴FD =AF ,又∵AB =80,BF =10,∴FD =AF =AB -BF =80-10=70,∴BC =BE -CE =FD -CE =70-103≈52.7(m ). 答:障碍物B 、C 两点间的距离约为52.7 m .12.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.12. 解:(1)∵新坡面AC 的坡度为1∶3,∴tan α=13=33, ∴α=30°.答:新坡面的坡角α的度数为30°.(2)原天桥底部正前方8米处的文化墙PM 不需要拆除. 理由如下:如解图所示,过点C 作CD ⊥AB ,垂足为点D , ∵坡面BC 的坡度为1∶1, ∴BD =CD =6米,∵新坡面AC 的坡度为1∶3, ∴CD ∶AD =1∶3, ∴AD =63米,∴AB =AD -BD =(63-6)米<8米,故正前方的文化墙PM 不需拆除. 答:原天桥底部正前方8米处的文化墙PM 不需要拆除.13.如图,某无人机于空中A 处探测到目标B ,D ,从无人机A 上看目标B ,D 的俯角分别为30°,60°,此时无人机的飞行高度AC 为 60 m ,随后无人机从A 处继续水平飞行30 3 m 到达A′处. (1)求A ,B 之间的距离;(2)求从无人机A′上看目标D 的俯角的正切值.13. 解:(1)如解图,过点D 作DE ⊥AA′于点E ,由题意得,AA ′∥BC ,∴∠B =∠FAB =30°, 又∵AC =60 m ,在Rt △ABC 中,sin B =AC AB ,即12=60AB,∴AB =120 m .答:A ,B 之间的距离为120 m .(2)如解图,连接A′D ,作A′E ⊥BC 交BC 延长线于E , ∵AA ′∥BC ,∠ACB =90°, ∴∠A ′AC =90°,∴四边形AA′EC 为矩形, ∴A ′E =AC =60 m , 又∵∠ADC =∠FAD =60°, 在Rt △ADC 中,tan ∠ADC =AC CD ,即5=60CD,∴CD =20 3 m ,∴DE =DC +CE =AA′+DC =303+203=50 3 m , ∴tan ∠AA ′D =tan ∠A ′DE =A′E DE =60503=235,答:从无人机A′上看目标D 的俯角的正切值为235.中考冲刺集训一、选择题1.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是10° B . 斜坡AB 的坡度是tan 10°C . AC =1.2tan 10° 米D . AB = 1.2cos 10°米第1题图 第2题图 第3题图2.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A . (sin α,sin α)B . (cos α,cos α)C . (cos α,sin α)D . (sin α,cos α)3.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度1米,则地毯的面积至少需要( )A . 4sin θ 米2B . 4cos θ 米2C . (4+4tan θ) 米2 D . (4+4tan θ) 米24.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A . 12B . 1C . 3D . 2第4题图 第5题图 第6题图5.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1∶3,则大楼AB 的高度约为(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)( )A . 30.6B . 32.1C . 37.9D . 39.46. 如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转到AC′的位置,此时露在水面上的鱼线B ′C ′为3 3 m ,则鱼竿转过的角度是( )A . 60°B . 45°C . 15°D . 90°二、填空题7. 如图,点A(3,t)在第一象限,射线OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是________.第7题图 第8题图 第9题图8. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为______米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73) 9. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)三、解答题10. 如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°. 已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号......)(2)求旗杆CD的高度.11. 图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm.温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73).12. 阅读材料:关于三角函数还有如下的公式:sin (α±β)=sin αcos β±cos αsin β tan (α±β)=tan α±tan β1∓tan α tan β利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-1×33=2+ 3 根据以上阅读材料,请选择适当的公式计算下列问题: (1)计算sin 15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C 处,在D 点测得纪念碑碑顶的仰角为75°,DC 为 3 米,请你帮助李三求出纪念碑的高度.答案与解析:1. B第2题解图2. C 【解析】如解图,过点P 作PC ⊥OB 于点C ,则在Rt △OPC 中,OC =OP ·cos ∠POB =1×cos α=cos α,PC =OP ·sin ∠POB =1×sin α=sin α,即点P 的坐标为(cos α,sin α).3. D 【解析】在Rt △ABC 中,∠BAC =θ,CA =4米,∴BC =CA ·tan θ=4tan θ.地毯长为(4+4tan θ)米,宽为1米,其面积为(4+4tan θ)×1=(4+4tan θ)米2.4. D 【解析】如解图,将AB 平移到PE 位置,连接QE, 则PQ =210,PE =22,QE =42,∵△PEQ 中,PE 2+QE 2=PQ 2,则∠PEQ =90°,∴tan ∠QMB =tan ∠P =QEPE=2.第4题解图第5题解图5. D 【解析】如解图,设AB 与DC 的延长线交于点G ,过点E 作EF ⊥AB 于点F ,过点B 作BH ⊥ED 于点H ,则可得四边形GDEF 为矩形.在Rt △BCG 中,∵BC =12,i BC =BG CG =33,∴∠BCG =30°,∴BG =6,CG =63,∴BF =FG -BG =DE -BG =15-6=9,∵∠AEF =α=45°,∴AF =EF =DG =CG +CD =63+20,∴AB =BF +AF =9+20+63≈39.4(米).6. C 【解析】∵sin ∠CAB =BC AC =326=22,∴∠CAB ′=45°,∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°,∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.第7题解图7. 92【解析】如解图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限,∴OB =3,AB =t ,在11 Rt △ABO 中,tan α=AB OB =t 3=32,解得t =92. 8. 2.9 【解析】在Rt △AMD 中,DM =tan ∠DAM ×AM =tan 45°×4=4米,在Rt △BMC 中,CM =tan ∠MBC ×BM =tan 30°×12=4 3 米,故CD =CM -DM =43-4≈2.9米.9. 208 【解析】在Rt △ABD 中,BD =AD·tan ∠BAD =90×tan 30°=303,在Rt △ACD 中,CD =AD·tan ∠CAD =90×tan 60°=903,BC =BD +CD =303+903=1203≈208(米).10. 解:(1)∵在教学楼B 点处观测旗杆底端D 处的俯角是30°,∴∠ADB =30°,在Rt △ABD 中,∠BAD =90°,∠ADB =30°,AB =4(米),∴AD =AB tan ∠ADB =4tan 30°=43(米). 答:教学楼与旗杆的水平距离是4 3 米.(也可先求∠ABD =60°,利用tan 60°去计算得到结论)(2)∵在Rt △ACD 中,∠ADC =90°,∠CAD =60°,AD =4 3 米,∴CD =AD·tan 60°=43×3=12(米).答:旗杆CD 的高度是12米.11. 解:∵tan ∠OBC =tan 30°=OC BC =33, ∴OC =33BC , ∵sin ∠OAC =sin 75°=OC OA≈0.97, ∴33BC 40≈0.97, ∴BC ≈67.1(cm ).12. 解:(1)sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30° =22×32-22×12 =6-24. (2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3, ∴ BE =14+73,又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),答:纪念碑的高度是(14+83)米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、锐角三角函数
要点一:锐角三角函数的基本概念 一、选择题
1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan α的值是( )
A .
35
B .
43 C .34 D .4
5
2.(2008·威海中考)在△ABC 中,∠C =90°,tan A =1
3
,则sin B =( )
A .
1010 B .23
C .
3
4
D .
310
10
3.(2009·齐齐哈尔中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为
3
2
,2AC =,则sin B 的值是( )
A .
23 B .32 C .34 D .43
4.(2009·湖州中考)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A .3sin A =
B .1
tan 2
A = C .3cos
B = D .tan 3B =
5.(2008·温州中考)如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,
3AC =,则sin B 的值是( )
A .
2
3
B .
32
C .
34
D .
43
6.(2007·泰安中考)如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,
32AB =,则tan BCD ∠的值为( )
(A )2 (B )2
2 (C )63
(D )
3
3
二、填空题
7.(2009·梧州中考)在△ABC 中,∠C =90°, BC =6 cm ,5
3sin =
A ,则A
B 的长是 cm . .(2009·孝感中考)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .
9.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3
sin 5
A =
,则这个菱形A
C
B
D
的面积= cm 2.
答案:60 三、解答题
10.(2009·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE =
12
13
.
(1)求半径OD ;
(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干? 【
11.(2009·綦江中考)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .
(1)求证:ABE △DFA ≌△;
(2)如果10AD AB =,=6,求sin EDF ∠的值.
12.(2008·宁夏中考)如图,在△ABC 中,∠C =90°,sin A =5
4
,AB =15,求△ABC 的周长和tan A 的值.
D
A
B
C
E
F
O
E
C D
14.(2007·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,
(1) 求证:AC=BD ; (2)若12
sin 13
C =,BC =12,求A
D 的长.
要点二、特殊角的三角函数值 一、选择题
1.(2009·钦州中考)sin30°的值为( )
A .
3
2
B .
22
C .
12
D .
33
答案:C
2.(2009·长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,
452AOC OC ∠==°,,则点B 的坐标为( )
A .2,
B .2),
C .211),
D .(121),
答案:C
3.(2009·定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .3 C 83
米 D 43米
4.(2008·宿迁中考)已知α为锐角,且2
3
)10sin(=
︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒80
5.(2008·毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )
A .1323⎛⎫- ⎪ ⎪⎝⎭,
B .3323⎛⎫- ⎪ ⎪⎝⎭,
C .1323⎛⎫
-- ⎪ ⎪⎝⎭, D .1322⎛⎫- ⎪ ⎪⎝⎭
, 6.(2007·襄樊中考)计算:2
cos 45tan 60cos30+等于( )
(A )1 (B )2 (C )2 (D )3 二、填空题
7. (2009·荆门中考)104cos30sin 60(2)(20092008)-︒︒+---=______.答案:
2
3
8.(2009·百色中考)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).
答案:43
9.(2008·江西中考)计算:(1)1
sin 60cos302
-= . 答案:
14
10.(2007·济宁中考)计算
sin 60tan 45cos30︒
-︒︒
的值是 。
答案:0 三、解答题
11.(2009·黄石中考)计算:3-
1+(2π-1)0-
3
3
tan30°-tan45° 12.(2009·崇左中考)计算:0
200912sin 603tan 30(1)3⎛⎫
-++- ⎪⎝⎭
°°.
13.(2008·33602cos 458-+
要点三、解直角三角形在实际问题中的运用
三、解答题
12.(2009·庆阳中考)如图(1),一扇窗户打开后用窗钩AB可将其固定.如图(2)是如图
(1)中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点
≈,结果精确到整数)
B到OA边的距离.(3 1.7
13.(2009·郴州中考)如图,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角
仪AB的高度为1.5米,测得仰角 为30,点B到电灯杆底端N的距离BN为10米,求路灯的高度MN是多少米?(取2=1.414,3=1.732,结果保留两位小数)
【
14.(2009·眉山中考)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海
船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45方向,求此时灯塔B到C处的距离。
【解析】如图,过B点作BD⊥AC于D
∴∠DAB =90°-60°=30°,∠DCB =90°-45°=45° 设BD =x ,在Rt △ABD 中,AD =x ⋅tan30°=3x 在Rt △BDC 中,BD =DC =x BC =2x
又AC =5×2=10 ∴310+=x x , 得5(31)x =-, ∴25(31)5(62)BC =
⋅-=-(海里)
答:灯塔B 距C 处5(62)-海里
15.(2009·常德中考)如图,某人在D 处测得山顶C 的仰角为30o ,向前走200米来到山脚A 处,测得山坡AC 的坡度为i=1∶0.5,求山的高度(不计测角仪的高度,3 1.73≈,结果保留整数).
【
16.(2008·广安中考)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º
降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上. (1)改善后滑滑板会加长多少?(精确到0.01)
(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由。
(236 2.449=== )。