三角函数的计算PPT教学课件

合集下载

2024年度高中数学必修四三角函数PPT课件

2024年度高中数学必修四三角函数PPT课件

建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式

《三角函数的有关计算》直角三角形的边角关系PPT课件4教学课件

《三角函数的有关计算》直角三角形的边角关系PPT课件4教学课件

用科学计算器求锐角的三角函数值,要用到三个键:
sin cos tan 例如,求sin16°,cos42°, tan85°和sin72° 38′25″ 的按键盘顺序如下:
按键的顺序
显示结果
Sin160 sin 1 6
=
0.275635355
Cos420 cos 4 2
=
0.743144825
tan850 tan 8 5
解:如图,根据题意,可知 BC=300 m,BA=100 m, ∠C=40°,∠ABF=30°.
在Rt△CBD中,BD=BCsin40°≈300×0.6428 =192.8(m)
在Rt△ABF中,AF=ABsin30° =100× 1 =50(m).
2
所以山高AE=AF+BD=192.8+50=242.8(m).
好不能直射室内,求挡板AC的宽度.(结果精确到0.01 m)
解:因为tan80°= AB
AC
所以AC=
AB tan 80
≈ 1 .8 5 . 671
=0.317≈0.32(m).
所以水平挡板AC的宽度应为0.32米.
中考 试题
1.用计算器计算cos 44°的结果(精确到0.01)是( )
A 0.90 B 0.72 C 0.69 D 0.66
∴tanB= AC 6.3 ≈0.642 9
BC 9.8
∴∠B≈ 32 4413 因此,射线与皮肤的夹角约为 3 24413 。
北京师范大学出版社 九年级 | 下册
3、如图,工件上有一V形槽,测得它的上口宽20mm,深19.2mm, 求V形角( ∠ACB)的大小。(结果精确到1°)
解:∵tan∠ACD = AD 10 ≈0.520 8

《三角函数的概念》PPT教学课件(第1课时三角函数的概念)

《三角函数的概念》PPT教学课件(第1课时三角函数的概念)

象限.
(2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最
后判断乘积的符号.
栏目导航
25
(1)C
[因为点P在第四象限,所以有tan cos
α>0, α<0,
由此可判断角α终边
在第三象限.]
(2)[解] ①∵145°是第二象限角,
∴sin 145°>0,
∵-210°=-360°+150°,
终边关于
x
轴对称,若
sin
α=15,则
交于点P(x,y), 则角β的终边与单位圆相交于点
sin β=________.
Q(x,-y),
由题意知y=sin α=15,所以sin β
=-y=-15.]
栏目导航
4.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos253π+tan-154π. [解] (1)sin 180°+cos 90°+tan 0°=0+0+0=0. (2)cos253π+tan-154π =cos8π+π3+tan-4π+π4 =cosπ3+tanπ4=12+1=32.
栏目导航
24
三角函数值符号的运用
【例 2】 (1)已知点 P(tan α,cos α)在第四象限,则角 α 终边在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
(2)判断下列各式的符号:
①sin 145°cos(-210°);②sin 3·cos 4·tan 5.
[思路点拨] (1)先判断 tan α,cos α 的符号,再判断角 α 终边在第几
5.公式一
sin α cos α tan α
8
栏目导航
1.sin(-315°)的值是( )

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版

归纳法等方法推导出诱导公式。
03
诱导公式的应用
在解三角函数的方程、求三角函数的值、证明三角恒等式等方面有广泛
应用。例如,利用诱导公式可以简化计算过程,提高解题效率。
恒等式及其证明方法
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变量 取何值,等式都成立。
拓展延伸:反三角函数简介
01
02
03
04
反三角函数的定义
反正弦、反余弦、反正切等反 三角函数的定义及性质。
反三角函数的图像
反正弦、反余弦、反正切函数 的图像及其与对应三角函数的
关系。
反三角函数的应用
在几何、物理等领域中的应用, 如角度计算、长度测量等。
反三角函数的计算
利用计算器或数学软件进行计 算,求解三角方程等问题。
高中数学课件三角函 数ppt课件完整版
REPORTING
目录
• 三角函数基本概念与性质 • 三角函数诱导公式与恒等式 • 三角函数的加减乘除运算 • 三角函数在解三角形中的应用 • 三角函数在数列和概率统计中的应用 • 总结回顾与拓展延伸
PART 01
三角函数基本概念与性质
REPORTING
三角函数的定义及性质
PART 05
三角函数在数列和概率统 计中的应用
REPORTING
三角函数在数列求和中的应用
利用三角函数的周期 性,将数列求和转化 为定积分计算
结合三角函数的图像 和性质,分析数列的 收敛性和求和结果
通过三角函数的和差 化积公式,简化数列 求和过程
三角函数在概率统计中的应用
利用三角函数表示周期性随机 变量的概率密度函数

《三角函数的有关计算》直角三角形的边角关系PPT课件2教学课件

《三角函数的有关计算》直角三角形的边角关系PPT课件2教学课件
A
45° 60°

C
D
B
2008沈阳中考
14.如图所示,某河堤的横断面是梯形ABCD,
BC∥AD,迎水坡AB长13米,且tan∠BAE= 12,则
河堤的高BE为
米.
5
BC
2009沈阳中考
AE
D
16.如图,市政府准备修建一座高AB=6m的过街天
桥,已知天桥的坡面AC与地面BC的夹角∠ACB的正
弦值为 3 ,则坡面AC的长度为
AB
C
∴AD=AB·sinB
=2×sin45°= 2
2
2
2
∵在Rt△ACD中,∠C=30°
∴AC=2AD = 2 2
知识的运用
4.如图,∠D=90°,∠B=30°,∠ACD=45°,
BC=4cm,求AD.
A
解:在Rt△ACD中,∠BDA=45°
∴CD=AD
x
在Rt△ABD中,∠B=30°
∴tan30°=怎A样D做?
CA
∴tan60°=
AD
∴CA= 3 3 ∴BC=CA-BA=( 3 3 -3)米
答:路况显示牌BC的高度是( 3 3 -3)米
6.一个人先爬了一段45o的山坡300m后,又爬 了一段60o的山坡200m,恰好到达山顶。你能 计算出山的高度吗?
C 解:过B作BE⊥CD于E,
BF⊥AD于F.
200m
∠A
∠A
∠A
sinA 1 2
300
sinA
3 2
600
sinA
2 2
450
cos A
1 2
600
cos A 2 2
450
cos A

三角函数的计算课件

三角函数的计算课件

2
B. 2 cos 5 5 0 =
C. 2 cos 5 5 =
1
D. 2
5 5 cos=
(来自《典中点》)
知1-练 2 利用计算器求sin 30°时,依次按键sin30°′″=,则计算器上显示的结果是( )
A.0.5 B.0.707 C.0.866 D.1
(来自《典中点》)
知识点
2 用计算器求已知三角函数值的对应角
4
1 C.0°<α<60°
2
3 , D.60°<α<90° 2
知3-练
(来自《典中点》)
1.利用计算器可求锐角的三角函数值,按键顺序:先按 sin键或cos键或tan键,再按角度值,最后按=键,就 可求出相应的三角函数值.
2.已知锐角三角函数值也可求相应的锐角,按键顺序: 先按SHIFT键,再按sin键或cos键或tan键,然后输入 三角函数值,最后按=键,就可求出相应角度.
,
∴0°<β≤60°.
2
知3-讲
1. 2
(来自《点拨》)
总结
解方程,由特殊角的三角函数值可知α的度数,再 利用锐角与其余弦值的关系,通过比较得到β的取值范 围.
知3-讲
(来自《点拨》)
1 在Rt△ABC中,∠C=90°,下列各式中正确的是
()
A.sin A=sin B
B.tan A=tan B
C.sin A=cos B
知3-练
(来自《典中点》)
3 用计算器求sin 15°,sin 25°,sin 35°,sin 45°,
sin 55°,sin 65°,sin 75°,sin 85°的值,研究
sin α的值随锐角变化的规律,根据这个规律判断:

九年级数学北师大版初三下册--第一单元1.3《三角函数的计算》课件

 九年级数学北师大版初三下册--第一单元1.3《三角函数的计算》课件

1.用计算器求下列各式的值: (1)tan320;(2)sin24.530; (3)sin62011′;(4)tan39039′39″.
102..6如24图9,2物0华.9大09厦7离30小.8伟84家4640m0,.小82伟91
从自家的窗中眺望大厦,并测得大厦顶
部仰角是450,而大厦底部的俯角是370
当缆车继续从点B到达点D时,它又
走过了200m.缆车由点B到点D的行驶
路线与水平面的夹角为∠β=420,由
E
此你不能计算什么?
如图, 水平宽度BE或上升高度DE
BE 148.63m DE 133.83m
老师提示:用计算器求三角函数值时,结果一般有10个数位. 本书约定,如无特别声明,计算结果一般精确到万分位.
求(结该果大精厦确的到的0高.1度m).大厦高约105.2m
结束寄语
• 一个人就好象一个分数,他的实 际才干就好比分子,而他对自己 的估计就好比分母,分母越大, 则分数的值就越小.
BAC
1000,
BC
46.6,
AC
38.76SABC
D
381.65.
A
7 如图,根据图中已
知数据,求AD. AD 13.85
250 550┌
B 20 C
D
随堂练习
真知在实践中诞生
8 如图,根据图中已知数据,
A
求△ABC其余各边的长,各角 a
的度数和△ABC的面积.
B
α┍ D
β
C
BD a cos, AD a sin , DC a sin , AC a sin ,
A
又 tan 450 AD , AC
AC AD 2 6 2 2. tan 450

《三角函数的有关计算》直角三角形的边角关系ppt课件

《三角函数的有关计算》直角三角形的边角关系ppt课件

• 用计算器由锐角三角函数值求相应锐角的 大小。
• [师]已知三角函数求角度,要用到键的第二 功能 、 、 ”和 键。
• 键的第二功能 “sin-1,cos-1,tan-1”和 键” 例如:已知sinA=0.9816,求锐角A,
• 已知cosA=0.8607,求锐角A; • 已知tanA:0.1890,求锐角A; • 已知tanA=56.78,求锐角A。
学习永远不晚。 JinTai College
• [例2]如图,一名
• 患者体内某重要
• 器官后面有一肿
• 瘤。在接受放射性
• 治疗时,为了最大限度地保证疗效,并且 防止伤害器官,射线必须从侧面照射肿瘤。 已知肿瘤在皮下6.3 cm的A处,射线从肿瘤 右侧9.8cm的B处进入身体,求射线的入射 角度,
• 2.某段公路每前进100米,路面就升高4米, 求这段公路的坡角。
.解:设坡角为α,根据题意, sinα==0.04,α=2°17′33″。 所以这段公路的坡角为2°17′33″。
• .运用计算器辅助解决含三角函数值计 • 算的实际问题。多媒体演示 • [例1]如图,工件上有 • -V形槽。测得它的上口 • 宽加20 mm深19.2mm。求 • V形角(∠ACB)的大 • 小。(结果精确到1°)
第一章 直角三角形的边角关系
三角函数的有关计算
教学目标
(一)教学知识点 1.经历用计算器由三角函数值求相应锐角的过程,进一步体会三
角函数的意义。 2.能够利用计算器进行有关三角函数值的计算。 3.能够运用计算器辅助解决含三角函数值计算的实际问题。 (二)能力训练要求 1.借助计算器,解决含三角函数的实际问题,提高用现代工具解
• 分析:根据题意,可知AB=20 mm, CD⊥AB,AC=BC,CD=19.2 mm,要求 ∠ACB,只需求出∠ACD(或∠DCB)即可。

三角函数的概念 完整版PPT课件

三角函数的概念 完整版PPT课件
通常将它们记为: 正弦函数 y sin x, x R
余弦函数 y cosx, x R
正切函数 y tanx, x k (k Z )
2
注意:
y
的终边
(1)正弦就是交点的纵坐标, 余弦就是交点的横坐标 正切就是交点的纵坐标与横坐标的比值.
(x, y)
x o
(2) 正弦函数、余弦函数总有意义.当α 的终边在y 轴上时,点P 的
单位圆半径不变,点P的横、纵坐标只与α的大小有关, α确定时,p的坐标能唯一确定。
任意角的三角函数定义
设 α是一个任意角, R ,它的终边与单位圆交于点 P(x, y)
那么:(1) y 叫做 α的正弦函数,记作 sin α 即 y = sin α
(2) x 叫做 α的余弦函数,记作 cos α 即 x = cos α
.
证明:如图,设角 的终边与单位圆交于点 P0 (x0 , y0 )
分别过点P, P0 作 x 轴的垂线PM , P0M 0 ,垂足分别为 M , M0
则 | P0M0 || y0 |,| PM || y |,| OM0 || x0 |,| OM || x |,
OMP ∽ OM0P0
于是,| P0M 0 | | PM
P c
b
O
a
M
b
sin c
a
cos c
b
tan a
问题引入
问题:匀速圆周运动是现实生活中周期现象的代表,在前面的 学习中,我们知道函数是描述客观世界变化规律的重要数学模 型,那么匀速圆周运动的运动规律该用什么函数模型刻画呢?
新课学习
如图,以单位圆的圆心O 为坐标原点,以射线OA为 x轴的非负半轴,建立直角坐标系 xOy,点 A的坐标是

《三角函数——三角函数的概念》数学教学PPT课件(5篇)

《三角函数——三角函数的概念》数学教学PPT课件(5篇)




提示:sin α=y,cos α=x,tan α= .这一结论可以推广到α是任意角.



2.填空如图,α是任意角,以α的顶点O为坐标原点,以α的始边为x轴的正半轴,建立平面直角坐标系.设P(x,y)是α的终边与单位圆的交点.(1)把点P的纵坐标y叫做α的正弦函数,记作sin α,即y=sin α;(2)把点P的横坐标x叫做α的余弦函数,记作cos α,即x=cos α;(3)把点P的纵坐标与横坐标的比值 叫做α的正切,记作tan α,即 =tan α(x≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.3.填空
探究一
探究二
探究三
思维辨析
随堂演练
判断三角函数值的符号A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角(2)判断下列各式的符号:分析:(1)由已知条件确定出sin α,cos α的符号即可确定角α的象限;(2)先判断每个因式的符号,再确定积的符号.
探究一
探究二
探究三
思维辨析
随堂演练
(1)解析:由sin αtan α<0可知sin α,tan α异号,从而α为第二、第三象限角.由 可知cos α,tan α异号,从而α为第三、第四象限角.综上可知,α为第三象限角,故选C.答案:C(2)解:①∵105°,230°分别为第二、第三象限角,∴sin 105°>0,cos 230°<0.于是sin 105°·cos 230°<0.
探究一
探究二
探究三
思维辨析
随堂演练
反思感悟 三角函数符号的判定:对三角函数符号的判定,首先要判断角是第几象限角,然后根据规律:“一全正、二正弦、三正切、四余弦”,即可确定三角函数的符号.

三角函数的计算 PPT课件

三角函数的计算 PPT课件
(C)45°<∠A≤ 60 ° (D) 60°<∠A≤ 90 °
已知三角函数值求角度,要用到sin,Cos,tan的第 二功能健“sin-1 Cos-1,tan-1”健例如:已知 sinα=0.2974,求锐角α.按健顺序为:
SHIFT 9
按键的顺序 sin 0 · 2
7
4
=
显示结果 17.30150783
值( B )
(A)小于
2 2
(C) 小于 3
2
(B)大于
2 2
(D)大于 3
2
2. 当锐角A>30°时,cosA的
值( C )
(A)小于
1 2
(C) 小于 3
2
(B)大于
1 2
(D)大于 3
2
☆ 应用练习
1.已知角,求值 2.已知值,求角 3. 确定值的范围 4. 确定角的范围
确定角的范围
3. 当∠A为锐角,且tanA的
B
∠A的对边
sinA
斜边
斜边
∠A的对边 cosA
∠A的邻边 斜边
A
∠A的邻边
C
tanA
∠A的对边 ∠A的邻边
siA ncoBsa, c
coAssiB nb, c
a
tanA=
b
tanAsinA. coAs
互余两角之间的三角函数关:
sinA=cosB,tanA.tanB=1.
A
B
c
a

b
C
同角之间的三角函数关系: sin2A+cos2A=1.
DMS
即∠ α=17018’5.43”
显示结果
170 18’5.43”
例如,根据下面的条件,求锐角β的大小(精确 到1” (1)sinβ=0.4511;(2)cosβ=0.7857; (3) tanβ=1.4036 按键盘顺序如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档