高数 函数的极限及性质 知识点与例题精讲
大一高数知识点与例题讲解
大一高数函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →-- 【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311lim lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):解:()()00233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'-○连续函数穿越定理(复合函数的极限求解)(★★)(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦【题型示例】求值:93lim 23--→x x x【求解示例】3x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x eee e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1U U U U U U U e +-2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim20++++→【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim ,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性 ○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=xa e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续; 2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ)4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第一章 导数与微分 第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则 ○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★) 【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y e x a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛⎫ ⎝第四节 高阶导数○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★)【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dx t ϕ'⎛⎫⎪⎝⎭='第六节 变化率问题举例及相关变化率(不作要求) 第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第二章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★)【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立, 又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+; 2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★)1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解:(一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】 200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法) 【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln lim ln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y x x x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法)【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 002000202200011,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln limlimlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★)【题型示例】试确定函数()3229123f x x x x =-+-的单调区间【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩+4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; ⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值 ○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= 3.(三行表)4.又∵()()12,12,318f f f -=-==-∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第三章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求221dx a x+⎰【求解示例】222211111arctan 11x x dx dx d C a x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctanxt a=,则原式可化为sec a t ; ⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsinxt a=,则原式可化为cos a t ; bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C C t =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=)⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果);b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式 ○有理函数(真分式)不定积分的求解思路(★) ⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<); 即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+⎪⎝⎭,则参数na m=- 22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a== ⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k l P x P x P x Q x x a x px q =+-++ 其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出 ⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第四章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()bbaaf x dx f u du =⎰⎰⑵()0a af x dx =⎰ ⑶()()bba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212bb baa a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()bbaaf x dxg x dx ≤⎰⎰;(推论二)()()bbaaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()221100cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x --'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰ 【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足:a .,αβ∃,使得()(),ab ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求4⎰【求解示例】()2210,43220,1014,332332311132213111332223522933解:t t x x t x t t dx tt t dt t dt t x t =-====+−−−−−−→+⎛⎫=⋅⋅=+=+ ⎪⎝⎭=-=⎰⎰⎰⎰ ⑶(分部积分法)()()()()()()()()()()()()bba ab bb aaau x v x dx u x v x v x u x dxu x dv x u x v x v x du x ''=-=-⎡⎤⎣⎦⎰⎰⎰⎰○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0aaf x dx -=⎰如:不定积分公式21arctan 1dx x C x =++⎰的证明。
大一高数极限知识点总结
大一高数极限知识点总结一、定义和性质高等数学中,极限是一种重要的概念,被广泛应用于微积分和数学分析。
理解和熟练掌握极限的定义和性质对于学习高等数学至关重要。
1. 无穷小量和无穷大量在研究极限时,无穷小量和无穷大量是两个常用的概念。
2. 极限的定义设函数 f(x) 在点 x0 的某个去心邻域内有定义,如果对于任意给定的正数ε,都存在正数δ,使得当 x 由点 x0 接近时,不等式 0 < |x-x0| < δ 总是成立,那么就称函数 f(x) 在点 x0 处极限存在,记为lim┬(x→x0)〖f(x)=A〗。
3. 极限的性质极限具有一系列重要的性质,包括唯一性、四则运算性质、和函数复合性质等。
二、极限的计算方法掌握极限的计算方法是学好高等数学的关键之一。
1. 用直接代入法计算极限当函数在极限点附近有定义时,可以通过直接将极限点代入函数来计算极限。
2. 用夹逼准则计算极限如果一个函数在某个点的附近被两个函数夹住,并且这两个函数的极限都为 A,那么待求函数的极限也是 A。
3. 分段函数的极限计算对于分段函数,我们可以分别计算每一段的极限,然后综合起来得到整个函数的极限。
三、常见的极限在高等数学中,有一些常见的极限形式是我们必须掌握的。
1. 无穷大与无穷小当 x 趋向于正无穷或负无穷时,函数 f(x) 的极限可能为无穷大或无穷小。
2. 0/0 型极限当直接代入法计算极限时,如果得到的结果是 0/0 型,那么我们通常要进一步进行简化或者换一种计算方法来求解。
3. ∞/∞ 型极限当直接代入法计算极限时,如果得到的结果是∞/∞ 型,那么我们通常需要进行一些数学变换或者化简来求解。
四、高阶极限除了一阶极限外,高阶极限也是高等数学中的重要内容。
1. 一阶无穷小与高阶无穷小一阶无穷小是指函数 f(x) 在某一点处的极限等于 0,而高阶无穷小是指函数 f(x) 在该点的极限为 0,且比一阶无穷小更快地趋近于 0。
高数上1.4函数极限与性质
只要取 , 则当 0 x 1 时,
就有
x2 1 x1
2
,
lim x2 1 2. x1 x 1
此例说明函数 f (x) x2 1虽然在x 1处没有定义 , x 1
但它在x 1处存在极限。
这就是为什么在函数的 极限定义中要求要有
“0 x x0 ”这个作为条件的原因 ,因为在
| f (x) a | 的过程。方法如下:
对任给出的 0,将x限制在某一范围
0 | x x | c内讨论,适当放大 | f (x) a |, 使之 0
变形为| f (x) a | (x ) | x x |
0
0
取 min{c, / (x )},则当0 | x x | 时,此时
0
0
就有 | f (x) a | ,从而验证了极限的存在。
x x0
0, 0,
使当 0 | x x0 | 时, 恒有 | f ( x) A | .
注意:
1. 函数极限与 f ( x)在点 x0 处是否有定义无关;
2. 与任意给定的正数 有关.
定义的几何解释:
当x在x0的去心邻域时,函数y f (x)
图形完全落在以直线y A为中心线,
X
ln
1
ln 2
,
则当
x X
时,
1 2
x
0
恒成立.
所以
lim x
1 2
x
0.
注 :同理可证:当 0 q 1 时,lim q x 0. x
而当 q 1 时, lim q x 0. x
例3
证明
lim
x
1 x x1
1.
证
由
1 x x1
高等数学极限知识点讲解
高等数学极限知识点讲解在数学的学习过程中,极限是一项非常重要且基础的概念。
它是研究函数和数列的性质时经常用到的一个数学工具。
本文将对高等数学中的极限知识点进行系统的讲解,帮助读者更好地理解和掌握这一部分内容。
极限的概念在数学中,极限是研究函数在某一点附近的性质时的重要概念。
简而言之,当自变量趋于某一值时,函数的取值趋于一个确定的值或者无穷大,这个值就是极限。
通常用符号$\\lim$表示,表示当自变量趋于某一点时,函数的极限值。
一元函数的极限对于一元函数f(f)而言,其在f=f处的极限定义如下:$$ \\lim_ {x \\to a} f(x) = L $$其中f是一个常数,表示当f接近f时,f(f)的值趋近于f。
极限的性质重要性质1.极限的唯一性:函数在某一点的极限值唯一。
2.有界性:如果函数在某一点有极限,那么该函数在该点附近是有界的。
3.保号性:如果函数在某一点的左右极限值不相等,那么函数在该点不连续。
极限的运算1.一元函数极限的四则运算法则:两个可导函数的极限和、差、积、商的性质。
2.复合函数的极限:复合函数的极限等于内层函数的极限乘以外层函数的极限。
极限存在的条件极限存在的条件包括分式函数在极限点处不为零、边界点无穷远点等情况。
极限的计算方法无穷小与无穷大的比较当f趋于无穷大时,无穷小量与无穷大量的比较的方法。
夹逼准则夹逼准则是求解一些复杂极限的有效方法,通过找到比所求函数更简单的两个函数界,求出极限。
单调有界准则单调有界准则是判断函数是否有极限的一种方法,如果函数单调有界,那么函数一定有极限。
结语通过本文的讲解,读者应该对高等数学中极限的一些重要知识点有所理解。
极限是数学中的基础概念,对于理解函数的性质和数列的收敛性都有重要的意义。
希望读者能够认真学习并掌握这些知识,为后续的学习打下坚实的基础。
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,〔i 〕假设A 0>,那么有0>δ,使得当δ<-<||00x x 时,0)(>x f ; 〔ii 〕假设有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:〔i 〕数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a 〞〔ii 〕A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((iv)单调有界准那么〔v 〕两边夹挤准那么〔夹逼定理/夹逼原理〕〔vi 〕柯西收敛准那么〔不需要掌握〕。
极限)(lim 0x f x x →存在的充分必要条件是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。
只能在乘除..时候使用。
例题略。
2.洛必达〔L’ho spital 〕法那么〔大题目有时候会有暗示要你使用这个方法〕它的使用有严格的使用前提。
首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假设告诉f 〔x 〕、g 〔x 〕,没告诉是否可导,不可直接用洛必达法那么。
另外,必须是“0比0〞或“无穷大比无穷大〞,并且注意导数分母不能为0。
洛必达法那么分为3种情况:〔i 〕“00〞“∞∞〞时候直接用 (ii)“∞•0〞“∞-∞〞,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
高三数学重点难点函数的极限
第三节 函数的极限一、知识归纳 1、知识精讲:1)当x →∞时函数f(x)的极限:当自变量x 取正值并且无限增大时,如果函数f(x)无限趋近于一个常数a,就说当x 趋向于正无穷大时, 函数f(x)的极限是a,记作a x f x =+∞→)(lim ,(或x →+∞时,f(x)→a)当自变量x 取负值并且无限增大时,如果函数f(x)无限趋近于一个常数a,就说当x 趋向于负无穷大时, 函数f(x)的极限是a,记作a x f x =-∞→)(lim ,(或x →-∞时,f(x)→a)注:自变量x →+∞和x →-∞都是单方向的,而x →∞是双向的,故有以下等价命题=+∞→)(lim x f x a x f x =-∞→)(lim ⇔a x f x =∞→)(lim2)当x →x 0时函数f(x)的极限:当自变量x 无限趋近于常数x 0(但x ≠x 0)时,如果函数f(x)无限趋近于一个常数a ,就说当x 趋向于x 0时, 函数f(x)的极限是a,记作a x f x x =→)(lim 0,(或x →x 0时,f(x)→a)注:a x f x x =→)(lim 0与函数f (x )在点x 0处是否有定义及是否等于f (x 0)都无关。
3)函数f(x)的左、右极限:如果当x 从点x=x 0左侧(即x <x 0)无限趋近于x 0时,函数f(x)无限趋近于常数a 。
就说a 是函数f(x)的左极限,记作a x f x x =-→)(lim 0。
如果当x 从点x=x 0右侧(即x >x 0)无限趋近于x 0时,函数f(x)无限趋近于常数a 。
就说a 是函数f(x)的右极限,记作a x f x x =+→)(lim 0。
注:=-→)(lim 0x f x x a x f x x =+→)(lim 0⇔a x f x x =→)(lim 0。
并且可作为一个判断函数在一点处有无极限的重要工具。
注:极限不存在的三种形态:①左极限不等于右极限≠-→)(lim 0x f x x )(lim 0x f xx +→; ②0x x→时,()±∞→x f ,③0x x →时,()→x f 的值不唯一。
高中数学函数极限的概念及相关题目解析
高中数学函数极限的概念及相关题目解析在高中数学中,函数极限是一个重要的概念。
它不仅在高中数学中占有重要地位,而且在大学数学中也是一个基础和重要的概念。
理解和掌握函数极限的概念对于学生们来说至关重要。
本文将从函数极限的定义、性质以及相关题目解析等方面进行讲解,帮助高中学生和家长更好地理解和应用函数极限。
一、函数极限的定义函数极限是指当自变量趋于某个特定值时,函数的取值趋于某个确定的值。
具体来说,对于函数f(x),当x趋于无穷大或者某个特定值a时,如果存在一个常数L,使得当x趋于无穷大或者a时,f(x)趋于L,那么我们就称函数f(x)在x趋于无穷大或者a时的极限为L。
二、函数极限的性质1. 函数极限的唯一性:如果函数f(x)在x趋于无穷大或者a时的极限存在,那么它是唯一的。
2. 函数极限的有界性:如果函数f(x)在x趋于无穷大或者a时的极限存在,那么它是有界的。
3. 函数极限的保号性:如果函数f(x)在x趋于无穷大或者a时的极限存在且大于(或小于)0,那么它的函数值在某个邻域内都大于(或小于)0。
三、函数极限的计算方法在计算函数极限时,我们常常会遇到一些特殊的极限形式,如0/0、无穷大/无穷大等。
下面通过具体的题目来说明函数极限的计算方法。
例题1:计算极限lim(x→0)(sinx/x)。
解析:当x趋于0时,sinx/x的极限形式为0/0,这是一个不定型。
我们可以利用泰勒展开或洛必达法则来计算这个极限。
首先,我们可以使用泰勒展开将sinx 展开成x的幂级数,即sinx=x-x^3/3!+x^5/5!-...,那么sinx/x=(x-x^3/3!+x^5/5!-...)/x=1-x^2/3!+x^4/5!-...。
当x趋于0时,高次项的幂都趋于0,因此我们只需要保留x的一次幂的项,即lim(x→0)(sinx/x)=lim(x→0)(1)=1。
例题2:计算极限lim(x→∞)(x/(x+1))。
解析:当x趋于无穷大时,x/(x+1)的极限形式为∞/∞,这也是一个不定型。
高数函数的极限知识点
高数函数的极限知识点一、极限的定义1. 数列极限数列 $\{a_n\}$ 极限为 $L$,记作 $\lim_{n \to \infty} a_n = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正整数 $N$,使得当 $n > N$ 时,不等式 $|a_n - L| < \epsilon$ 成立。
2. 函数极限函数 $f(x)$ 当 $x \to c$ 时的极限为 $L$,记作 $\lim_{x \to c} f(x) = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正数 $\delta$,使得当 $0 < |x - c| < \delta$ 时,不等式 $|f(x) - L| < \epsilon$ 成立。
二、极限的性质1. 唯一性如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} f(x) = M$ 都成立,则 $L = M$。
2. 局部有界性如果 $\lim_{x \to c} f(x) = L$,则 $f(x)$ 在 $c$ 的某个邻域内有界。
3. 局部保号性如果 $\lim_{x \to c} f(x) = L$ 且 $L > 0$,则存在 $c$ 的一个邻域,使得在这个邻域内 $f(x) > 0$。
三、极限的计算1. 极限的四则运算如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} g(x) = M$ 都存在,则:- $\lim_{x \to c} [f(x) + g(x)] = L + M$- $\lim_{x \to c} [f(x) - g(x)] = L - M$- $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M$- $\lim_{x \to c} [f(x) / g(x)] = L / M$,当 $M \neq 0$。
高数1.2极限的定义与性质
的值任意地接近常数A,
则称当
时函数
于是在例1.1.8中
定理1.2.2 .
例1.1.9 设
求
解
如图
所以不Leabharlann 在。有一类特别地、重要的极限
定义1 .2.4. 若
时 , 函数
则称函数
为
时的无穷小 .
例1.1.10 因为
故当
时函数
为无穷小 .
例1.1.11 因为
故当
时函数
为无穷小 .
例1.1.12 如图
2.001
1.001
1.999
0.999
2.01
1.01
1.99
0.99
2.1
1.1
1.9
0.9
一般地,我们有
定义1.2.1 设函数
在点
的某去心邻域内有定义 ,
或
反之,
若不存在这样的常数 A,
则称当
时
没有极限或极限不存在。
则例1.2.1可表示为
的值任意地接近常数A,
函数
如果当x充分接近
时,
则称
定义1.2.2 设函数
在点
右(或左)邻域内有定义 ,
(或
函数
如果当x从
的右侧(左侧)充分接近
时,
的值任意地接近常数A,
则称
在
处的右(或左)
函数
记作
极限为A,
有时记为
(或
例1.2.6. 设函数
讨论
时
的左右极限是否存在 .
解:
如图
例1.2.7 设函数
求
解
如图,
和
由这两个例子,得一般地
大一高数函数与极限知识点
大一高数函数与极限知识点函数与极限是高等数学中的重要基础知识,它们在数学和其它科学领域中有着广泛的应用。
本文将介绍大一高数中与函数与极限相关的几个重要知识点。
一、函数的概念与性质函数是一种特殊的关系,对于一个定义域内的每一个自变量,它都有唯一对应的因变量。
函数的定义域、值域、图像以及函数的性质都是我们需要了解的内容。
1.1 函数的定义域和值域函数的定义域是指所有使函数有意义的自变量的取值范围,而值域是函数在定义域内可能取到的所有因变量的值。
在确定定义域时,需要避开函数中会导致分母为零或根号内出现负数的取值。
1.2 函数的图像函数的图像是在直角坐标系中表示函数的一种方式,横坐标表示自变量,纵坐标表示因变量。
通过观察函数的图像,我们可以了解函数的增减性、奇偶性等性质。
二、极限的概念与运算规则极限是函数与自变量无限接近某个值时的性质,它在数学中应用广泛,尤其是在微积分中发挥着重要作用。
2.1 极限的定义对于一个函数,当自变量无限接近某个值时,如果因变量的取值可以无限接近于一个确定的常数L,那么我们就说该函数的极限为L。
用数学符号表示为lim(f(x))=L。
2.2 极限的运算规则极限具有一些运算规则,如常数与函数的极限相乘、函数相加的极限等,可以方便地求解复杂的极限问题。
三、常见的函数与极限在大一高数中,我们常常遇到一些基本的函数与极限,包括多项式函数、指数函数、对数函数以及三角函数的极限等。
3.1 多项式函数的极限多项式函数是由常数项、幂次项以及它们的和、差、积构成的函数。
求解多项式函数的极限可以通过代入法、化简或者利用极限的运算规则等方法进行。
3.2 指数函数和对数函数的极限指数函数与对数函数也是我们常见的函数类型,求解它们的极限需要运用一些特定的方法,如利用指数函数与对数函数的反函数关系、换元法等。
3.3 三角函数的极限三角函数在数学和物理中有着重要的地位,求解三角函数的极限需要掌握一些基本的极限公式,如sinx/x的极限等。
函数极限与连续性知识点及典例
函数极限与连续性知识点及典例函数的极限与连续性是微积分中的重要概念,它们在数学分析、物理学等领域都有广泛的应用。
本文将从定义、性质以及典型例题角度来介绍函数的极限与连续性。
1.函数的极限函数的极限描述了当自变量无限接近一些特定值时,函数的取值趋于的一些值的情况。
函数的极限有以下两种情况:(1)函数的极限存在若当自变量x趋于一些值a时,函数f(x)的取值无限接近一些常数L,则称函数f(x)在x=a处的极限为L。
数学符号表示为:lim(x→a) f(x) = L(2)函数的极限不存在若当自变量x趋于一些值a时,函数f(x)的取值无穷大或者没有定义,则称函数f(x)在x=a处的极限不存在。
函数极限的计算方法有很多,常见的有直接代入法、夹逼法、无穷小量法、洛必达法则等。
下面我们通过一些典型例题来说明这些方法的应用。
例题1:计算lim(x→0) (sin 5x / x)解:直接代入法当 x 无限趋近于 0 时,分子 sin 5x 和分母 x 都趋于 0,所以可以尝试直接代入。
lim(x→0) (sin 5x / x) = sin 0 / 0 = 0/0 (不确定型)对于这种不确定型的情况,我们需要采用其他的方法来计算。
夹逼法由于 sin x / x 是一个已知极限为 1 的函数,所以可以使用夹逼法来求解。
-1 ≤ sin 5x / 5x ≤ 1当x趋近于0时,5x也会趋近于0,所以可以得到:lim(x→0) (sin 5x / x) = lim(x→0) (5x) * lim(x→0) (sin 5x) = 0 * 1 = 0所以函数在x=0处的极限为0。
2.函数的连续性函数的连续性描述了函数在一些点处的左右极限存在且与函数值相等的性质。
函数的连续性有以下三种情况:(1)第一类间断点若函数在其中一点x=a处的极限存在,但与该点的函数值不相等,则称函数在x=a处有第一类间断点。
(2)第二类间断点若函数在其中一点x=a处的左右极限存在,但两个极限不相等,则称函数在x=a处有第二类间断点。
《高等数学》函数考点精讲与例题解析
《高等数学》函数考点精讲与例题解析 第一部分 函数 极限 连续函数是微积分的研究对象,极限是微积分的理论基础,而连续性是可导性与可积性的重要条件。
它们是每年必考的内容之一。
第一节 函 数内容考点一、函数的定义给定两个非空数集D 和M ,若有对应法则f ,使得对于D 内的每一个x ,都有唯一确定的M y ∈与之对应,则称f 是定义在数集D 上的函数,记作)(x f y =,D x ∈,数集D 成为函数的定义域,)(D)(M f ⊂称为值域。
【考点一】会求函数的定义域及其表达式,特别是复合函数的定义域。
二、函数的奇偶性(1)首先必须要求函数的定义域关于原点对称。
例如,)(x f y =的定义域为),(a a -)0(>a 关于原点对称。
(2)验证对于任),(a a x -∈,都有)()(x f x f =-,称)(x f 为偶函数;偶函数)(x f 的图形关于y 轴对称。
(3)验证若对于任),(a a x -∈都有)()(x f x f -=-,称)(x f 为奇函数;奇函数)(x f 的图形关于坐标原点对称。
【考点二】会判定函数)(x f 的奇偶性,不管)(x f 的具体形式是什么,都需要计算)(x f -的值。
如果)()(x f x f =-,则由定义知)(x f 为偶函数;如果)()(x f x f -=-,则由定义知)(x f 为奇函数。
三、函数的周期性对函数)(x f y =,若存在常数0>T ,使得对于定义域的每一个x ,T x +仍在定义域内,且有)()(x f T x f =+,则称函数)(x f y =为周期函数,T 称为)(x f 的周期。
【考点三】判断函数是否为周期函数,主要方法是根据周期函数的定义,要先找到一个非零常数T ,计算是否有等式)()(x f T x f =+成立。
特别要求掌握三角函数的周期性四、函数的有界性设函数)(x f y =在数集X 上有定义,若存在正数M ,使得对于每一个X x ∈,都有M x f ≤)( 成立,称)(x f 在X 上有界,否则,即这样的M 不存在,称)(x f 在X 上无界。
大一高数每个知识点的例题
大一高数每个知识点的例题一、函数与极限1. 函数的定义与性质例题:已知函数$f(x)=-2x^2+3x+1$,求函数$f(x)$的定义域。
2. 极限的定义与基本性质例题:求极限$\lim_{x \to 1}\frac{x^2-1}{x-1}$。
二、导数与微分1. 导数的定义与基本性质例题:已知函数$y=3x^2-2x+1$,求函数$y$在$x=2$处的导数。
2. 高阶导数与函数的凹凸性例题:已知函数$f(x)=x^3-3x^2+2$,求$f(x)$的凹凸区间。
三、微分中值定理与泰勒展开1. 罗尔定理与拉格朗日中值定理例题:证明函数$f(x)=e^x-x-1$在区间$(0,1)$内存在唯一根。
2. 泰勒展开与麦克劳林展开例题:求函数$f(x)=\cos x$的部分麦克劳林展开式。
四、不定积分与定积分1. 不定积分的基本性质与常见公式例题:求不定积分$\int 2x^2+3x-1 \,dx$。
2. 定积分的定义与性质例题:计算定积分$\int_0^2 (x^2+1) \,dx$。
五、常微分方程1. 一阶常微分方程的可分离变量与线性方程例题:求解微分方程$\frac{dy}{dx}=x^2+y$。
2. 高阶常微分方程与特征方程例题:求解微分方程$y''-2y'+y=e^x$。
六、多元函数与偏导数1. 多元函数的定义与性质例题:判断函数$z=2x^2+3y^2-xy$的单调性。
2. 偏导数的定义与计算例题:求函数$f(x,y)=2x^2+3xy-1$的偏导数$\frac{\partialf}{\partial x}$和$\frac{\partial f}{\partial y}$。
七、重积分与曲线积分1. 重积分的定义与计算例题:计算二重积分$\iint_{D} (x^2+y^2) \,dxdy$,其中$D$为由曲线$y=x^2$和$y=2x$所围成的区域。
2. 曲线积分的定义与计算例题:计算曲线积分$\int_{C} y \,dx + x \,dy$,其中曲线$C$为$x^2+y^2=1$上从点$(1,0)$到点$(0,1)$的一段弧。
高等数学(函数与极限)完全归纳笔记
目录:函数与极限 (1)1、集合的概念 (1)2、常量与变量 (2)2、函数 (3)3、函数的简单性态 (4)4、反函数 (4)5、复合函数 (5)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
大一高数极限基本知识点
大一高数极限基本知识点在大一的高等数学课程中,极限是一个非常重要的概念。
它不仅在数学的领域内具有广泛的应用,还在其他学科中具有重要的地位。
本文将介绍大一高数课程中的一些极限基本知识点,包括极限的定义、性质,以及一些常见的求解方法。
一、极限的定义在数学中,极限可以理解为一个函数在某个点或某个方向上的趋势。
具体来说,对于函数 f(x),当自变量 x 趋于某个特定的值 a 时,如果函数 f(x) 的取值无限接近于一个常数 L,那么我们就说函数 f(x) 在 x 趋于 a 的过程中的极限是 L。
用数学符号来表示,即为:lim(x→a) f(x) = L。
二、极限的性质1. 唯一性:函数 f(x) 在 x 趋于 a 的过程中的极限是唯一的。
即一个函数在某个点或某个方向上的趋势只能有一个确定的极限值。
2. 有界性:如果一个函数在 x 趋于 a 的过程中的极限存在,那么该函数在 a 的某个邻域内必然是有界的。
3. 保序性:如果函数 f(x) 在某个点的左侧和右侧分别有极限 L1 和 L2,且 L1 < L2,则函数 f(x) 在该点处的极限不存在。
三、常见的求解方法1. 代入法:当函数在某个点 a 处连续时,可以通过直接代入x=a 求得函数在该点处的极限。
2. 夹逼法:当函数在某个点 a 的附近存在两个函数 g(x) 和 h(x),且满足g(x)≤f(x)≤h(x)(对任意 x),并且lim(x→a) g(x) = lim(x→a) h(x) = L,那么可以得出lim(x→a) f(x) = L。
3. 分段函数的极限求解:对于一个分段函数,可以分别求解其不同分段上的极限,然后判断整体的极限是否存在。
除了以上几种常见的求解方法外,还有一些特殊的函数和极限情况需要使用其他的技巧和方法来求解。
这些将在高等数学的后续课程中进行更加详细的讲解。
四、总结大一高数课程中的极限基本知识点包括了极限的定义、性质,以及一些常见的求解方法。
大一高数极限知识点
大一高数极限知识点大一高数中,极限是一个非常重要的概念。
极限在微积分学中具有重要的地位,是求导和积分的基础。
下面将介绍大一高数中极限的基本概念、性质以及一些常见的求解方法,希望对你的学习有所帮助。
1.极限的定义:极限的定义是通过数列的极限的概念引出来的。
对于函数f(x),当x无限接近于其中一点时,可以通过数列的极限来刻画这一过程。
如果存在一个数L,对于任意给定的ε>0,总存在一些δ>0,使得当0<,x - a,<δ时,有,f(x) - L,<ε,那么就说函数f(x)在x趋近于a时,极限是L,记作lim(x→a) f(x) = L。
2.极限的性质:(1)唯一性:如果函数f(x)在x趋近于a时存在极限,那么极限是唯一的,即极限值只有一个。
(2)有界性:如果函数f(x)在x趋近于a时存在极限,那么函数f(x)在x趋近于a的一些领域内是有界的。
(3)局部有界性:如果函数f(x)在x趋近于a时存在极限,那么函数f(x)在x趋近于a的一些领域内是局部有界的,即存在一个领域使得函数在该领域内有界。
(4)保号性:如果函数f(x)在x趋近于a时存在极限,且极限不为0,那么函数f(x)在x趋近于a的一些领域内的符号与极限的符号相同。
3.极限的计算方法:(1)代入法:对于简单的求极限问题,可以直接将x的值代入函数中计算得出极限。
(2)夹逼法:当函数f(x)无法直接计算得出极限时,可以通过夹逼法求出极限。
夹逼法基于夹逼定理:若对于x在(a,b)内的点,有g(x)≤f(x)≤h(x),且lim(x→a) g(x) = lim(x→a) h(x) = L,那么lim(x→a) f(x) = L。
(3)无穷小代换法:当函数f(x)在x趋近于一些点a时,计算得到的极限形式为“0/0”或“∞/∞”时,可以通过无穷小代换法求极限。
无穷小代换法主要有以下几种常见形式:a. a^x - 1 ≈ xlna(当a大于0且不等于1时)b. 1 - cosx ≈ (1/2)x^2(当x趋近于0时)c. ln(1 + x) ≈ x(当x趋近于0时)4.极限运算法则:在大一高数中,还有许多极限运算的法则可以简化计算的过程。
高数竞赛辅导之函数的极限1
3
9.
求极限
lim
n→∞
(
n n2 +
1
+
n2
n +
22
+
n2
n +
n2
)
∑ 解:
原式
1n = lim
n n→∞ i=1
1 1 + (i / n)2
∫ =
1 0
1 1+ x2
dx
= arctan x |10
= 4
11.设 f ( x ) 连续,且 f (0) = 0
求
I
=
lim
f
ln[1 + (
e2
x
2e2
lim
x0
2 x(1
x)
e2
e2 e2
0
2
7. 求极限 lim (1 x) x e2(1 ln(1 x))
x0
x
2
解: I = lim (1 x) x e2(1 ln(1 x)) x→0 x 2
= lim (1 x) x e2 e2 ln(1 x) x→0 2x
=
lim
x→0
(1
x)x
e2
lim
e2
ln(1
x)Leabharlann xx0x2
=
lim (1
x→0
x)x
e2
e2
x
8. 求极限 lim n( n n - 1) n→∞ 1
解:
lim
x
x( x
x
1)
=
lim
x→+∞
xx
-1
1 -
1
x2
大一高数极限知识点归纳
大一高数极限知识点归纳一、定义和基本性质高等数学中的极限是一种重要的数学概念,其定义如下:设函数 f(x) 在某一点 a 的某一邻域内有定义,如果存在一个常数 L,对于任意给定的正数ε,无论它多么小,总存在正数δ,当0 < |x - a| < δ 时,使得 |f(x) - L| < ε 成立,则称函数 f(x) 当 x 趋于 a 时的极限为 L,记作lim(x→a) f(x) = L。
极限具有以下基本性质:1. 唯一性:如果极限存在,则极限值唯一。
2. 局部有界性:若函数在某一点的邻域内有极限,则函数在该点的某一邻域内有界。
3. 夹逼定理:如果函数 f(x) 在点 a 的某一邻域内,除点 a 外的其他点的函数值都被两个函数 g(x) 和 h(x) 夹住,即g(x) ≤ f(x) ≤ h(x),并且lim(x→a) g(x) = lim(x→a) h(x) = L,则函数 f(x) 在点 a 处的极限也存在,且等于 L。
二、常见极限公式1. 基本极限公式:- 常值函数极限:lim(x→a) c = c,其中 c 为常数。
- 自变量 x 的幂函数极限:lim(x→a) x^n = a^n,其中 n 为正整数。
- 指数函数极限:lim(x→a) a^x = a^a,其中 a 为正实数。
- 对数函数极限:lim(x→a) logₐ x = logₐ a,其中 a 为正实数,且a ≠ 1。
2. 三角函数极限公式:- 正弦函数极限:lim(x→0) sinx = 0。
- 余弦函数极限:lim(x→0) cosx = 1。
- 正切函数极限:lim(x→0) tanx = 0。
- 余切函数极限:lim(x→0) cotx = ∞。
3. 指数函数与对数函数极限公式:- 自然对数函数极限:lim(x→0) ln(1+x) = 0。
- 指数函数极限:lim(x→0) (a^x - 1) / x = ln a,其中 a 为正实数,且a ≠ 1。
高中数学中的函数极限计算详细解析与计算
高中数学中的函数极限计算详细解析与计算函数极限在高中数学学习中占据非常重要的地位。
它不仅是理解数学概念的基础,还在应用数学和其他学科中起到重要的作用。
本文将详细解析和计算高中数学中的函数极限,帮助读者深入理解和掌握相关知识。
1. 极限的定义函数极限是指当自变量趋于某一值时,函数值的变化趋势。
根据定义,对于函数 f(x),它的极限可以用以下方式表示:lim(x→a)f(x) = L其中,x→a表示x趋近于a,L表示函数f(x)在x趋近于a时的极限值。
2. 极限的性质函数极限具有以下基本性质:- 唯一性:函数在某一点的极限是唯一确定的。
- 有界性:如果函数在某一点的极限存在,则函数在该点附近有界。
- 保号性:如果函数在某一点的极限为正(负),则函数在该点的右邻域(左邻域)内的函数值也为正(负)。
3. 极限的计算方法在计算函数极限时,可以运用以下的计算方法:- 直接代入法:当函数在某一点连续时,可以直接将该点的值代入函数并计算函数值,得到极限值。
- 合并因子法:将复杂的函数分解为简单的因子,然后运用极限的性质进行化简和计算。
- 夹逼准则法:对于一个函数,如果它夹在两个极限已知的函数之间,那么它的极限也可以简单地确定。
- 等价无穷小代换法:当函数的极限形式无法直接计算时,可以通过等价无穷小的代换将其转化为可以计算的形式。
4. 函数极限的应用函数极限在图像的分析和应用问题中有着重要的作用。
以下是一些常见的应用:- 导数和微分的计算:导数的定义本质上就是一个函数极限,通过计算函数在某一点的极限,可以得到该点的导数。
- 泰勒展开和函数逼近:利用函数的极限,可以将一个复杂的函数逼近为一个多项式函数,用于简化计算和分析。
- 无穷级数和收敛性分析:通过函数的极限,可以判断无穷级数是否收敛,并计算其收敛值。
5. 实例解析为了更好地理解函数极限的计算和应用,我们通过以下实例进行解析。
例题:计算函数lim(x→2)(3x^2 - 8x + 4) / (x - 2)解析:首先,我们可以应用直接代入法。
高数3函数极限定义性质及无穷大小
若f (x)为无穷小量
( f ( x ) 0 ), 则
1 f ( x)
为无穷大量
.
四、无穷小量的运算定理
定理3:有限个无穷小量的代数和为无穷小量. 定理4: 若(x)是某极限过程中的无穷小量, f (x) 是该过程的有界量, 则f (x)(x)为该过程 的无穷小量.即, 有界量与无穷小量之积
如图
y a+ a a
X
o
X
x
比如, 由 y = arctan x 的图象
可知 , lim arctan x
x
y
,
x
lim arctan x
2
2
,
o
2
y = arctg x x
2
而 lim arctan x 不存在 .
x
二、当x x0时, f (x)的极限
有两种变化形式. (1) x, (2) xx0 (有限
数).
并且, x不是离散变化的, 而是连续变化的.
一、x时, f(x)的极限
定义1. 设f (x)在(M, +)(或())内有定义, 若 >0, X >0, 当x>X (或x<X)时, 相应的函数值f (x)满足| f (x)a |<.
若当x x0时, 对应的函数值f (x)a, 则称
a是f (x)当x x0时的极限, 语言刻划这一事实? f (x)a可用| f (x) a |< 刻划, 而x x0则 可用 |x x0 |< 刻划. 如何用精确的数学
定义3.设f (x)在x0的某个去心邻域Û(x0)内有定义,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则 0 , 当 x U ( x 0 , )时 , f ( x ) 0 ( 或 f ( x ) 0 ).
推论
若 lim
x x0
f ( x ) A , 且 0 , 当 x U ( x 0 , )时 ,
0
f ( x ) 0 ( 或 f ( x ) 0 ), 则 A 0 ( 或 A 0 ).
定理 2 : lim
x
f (x) A .
f ( x) A.
f ( x ) A lim
x
f ( x ) A 且 lim
x
四、函数极限的性质
1.有界性
定理 1 若在某个过程下, f ( x ) 有极限, 则存在 过程的一个时刻,在此时刻以后 f ( x ) 有界.
0 成立 , lim C C .
例3
证
证明
lim
x x0
x x0.
任给 0 ,
取 ,
f (x) A x x0 ,
当 0 x x 0 时 ,
f ( x ) A x x 0 成立 ,
lim x x 0 .
机动
目录
上页
下页
返回
结束
例5. 设函数
y
x0 x 1, 1 f ( x) 0 , x0 o 1 y x1 x 1 , x 0 讨论 x 0 时 f ( x ) 的极限是否存在 .
y x1
x
解: 利用定理 3 . 因为
lim
x 0
f ( x ) lim ( x 1 ) 1
2、在无限远处的另两种情形:
1 . x 情形 :
0
x
lim
f (x) A
0 , X 0 , 使当 x X 时 , 恒有
f (x) A .
2 . x 情形 :
0
x
lim
f (x) A
0 , X 0 , 使当 x X 时 , 恒有
x0
lim
x 0
f ( x ) lim ( x 1 ) 1
x 0
显然 f ( 0 ) f ( 0 ) , 所以 lim f ( x ) 不存在 .
x 0
f ( x ) A f ( x0 0) f ( x0 0) A.
又 lim x n x 0 且 x n x 0 ,
n
对上述 0 , N 0 , 使当 n N 时 , 恒有 0 xn x0 .
从而有 f ( xn ) A ,
故 lim f ( x n ) A .
n
例如, lim
sin x x 1 n
0 x x0
f ( x ) A 任意小 ;
表示 x x 0的过程 .
x0
点 x 0的去心 邻域 ,
x0
x0
x
体现 x 接近 x 0 程度 .
1、定义:
定义 2 如果对于任意给定的正数 (不论它多 么小),总存在正数 ,使得对于适合不等式
0 x x 0 的一切 x ,对应的函数值 f ( x ) 都
2.2、2.3 函数的极限及性质
自变量变化过程的六种形式:
本节内容 : 一、自变量趋于无穷大时函数的极限
二、自变量趋于有限值时函数的极限 三、函数的单侧极限 四、函数极限的性质
一、自变量趋向无穷大时函数的极限
观察函数 sin x x 当 x 时的变化趋势 .
播放
问 题 :函 数 y f ( x )在 x 的 过 程 中 , 对 应 函 数 值 f ( x )无 限 趋 近 于 确 定 值 A.
点 a 叫做这邻域的中心 , 叫做这邻域的半径
.
U ( a , ) { x a x a } x
x a
a
点 a 的去心的
a
=(a ,a+)
a
x
邻域 ,
记作 U ( a , ).
0
U (a , ) { x
0
A
A
x0
x0
宽为 2 的带形区域内
o
x0
x
显然 , 找到一个
后 , 越小越好
.
例2 证明 lim C C , ( C 为常数 ).
x x0
证
任给 0 ,
任取 0 ,
当 0 x x0 时 ,
x x0
f (x) A C C
4.子列收敛性 (函数极限与数列极限的关系)
定义
有数列 设在过程 x a ( a 可以是 x 0 , x 0 , 或 x 0 )中
x n ( a ), 使得 n 时 x n a .则称数列 f (x)
f
( x n ) , 即 f ( x 1 ), f ( x 2 ), , f ( x n ), 为函数 .
证
取
x n
1 , n
y sin
1 x
lim x n 0 ,
n
且 x n 0;
取
x n
1 , lim x 0, n 4n 1 n 2
且 x 0; n
而 lim sin
n
例6: 验证 lim 证
lim x x
x x
x 0
不存在 .
y
x 0
lim
x x
1
x 0
lim ( 1 ) 1
x 0
o
1
x
lim
x 0
x x
lim
x 0
x x
lim 1 1
x 0
f ( x ) 不存在 . 左右极限存在但不相等, lim x 0
当 x a 时的子列
定理4
若 lim f ( x ) A , 数列 f ( x n ) 是 f ( x )当 x a
x a
时的一个子列
, 则有 lim f ( x n ) A .
n
证
lim
x x0
f (x) A
0 , 0 , 使当 0 x x 0 时 , 恒有 f ( x ) A .
推论
设 lim
x x0
f ( x ) A , lim g ( x ) B , 且 A B
x x0 0
则 0 , x U ( x 0 , ), 有 f ( x ) g ( x ).
定理3(保号性)
若 lim
0
x x0
f ( x ) A , 且 A 0 ( 或 A 0 ),
x 从左侧无限趋近 x 从右侧无限趋近
x 0 , 记作 x x 0 0 ; 或 x 0
x 0 , 记作 x x 0 ; 或 x 0 0
左极限与右极限 左极限 : f
( x0 )
lim
x x0
f ( x) A
0 , 0 , 当x ( x 0 , x 0 )
x x0
例4
证
证明 lim
x
2
1
x1
x 1
2.
函数在点x=1处没有定义.
x
2
f (x) A
要使
1
x 1
2 x 1
任给 0 ,
f ( x ) A , 只要取 ,
当 0 x x 0 时 , 就有
x
2
1
lim
恒有
f ( x ) A .
注意:
1 .函数极限与
f ( x ) 在点 x 0 是否有定义无关
;
2 . 与任意给定的正数
有关 .
2、几何解释:
当 x 在 x 0 的去心 邻 域时 , 函数 y f ( x ) 图形完全落在以直 线 y A 为中心线 , .
A
y
y f (x)
x
0 , X 0 , 使当 x X 时 , 恒有
f ( x ) A .
2、几何解释:
y
A
sin x x
X
X
当 x X 或 x X 时 , 函数 y f ( x )图形完全落在以 直线 y A 为中心线 , 宽为 2 的带形区域内 .
1 n
x 0
1
y
sin x x
lim n sin
n
1,
lim
n
n sin
1 , lim
n
2
n
n 1
sin
n 1 n
2
1
函数极限与数列极限的关系
函数极限存在的充要条件是它的任何子列的极 限都存在,且相等.
例7:证明 lim sin
x 0
1 x
不存在 .
x
2
1
x 1
2 ,
x1
x 1
2.
三、函数的单侧极限:
1、在有限点的左右情况
1 x, 设 f (x) 2 x 1, 证明 lim f ( x ) 1 .
x 0
y y 1 x
x 0 x 0
1
y x 1
2
o
x