第4讲 利用轴对称破解最短路径问题

合集下载

轴对称——最短路径问题

轴对称——最短路径问题

.优学小班——提分更快、针对更强、时效更高名师堂学校优学小班讲义轴对称——最短路径问题现在的数学教学遵循《标准》的理念,以“生活• 数学”, “活动• 思考”为主线展开课程内容,注重体现生活与数学的联系,其中最短路径问题就是这一方面知识与能力的综合运用,其原型来自于“饮马问题”、“造桥选址问题”,出题背景有角、三角形、平行四边形、坐标轴、抛物线等。

下面就对上述类型做一个简单的归纳。

例1.如图,牧童在A 处放马,其家在B 处,A 、B 到河岸的距离分别为AC 和BD ,且AC=BD ,若点A 到河岸CD 的中点的距离为500米,则牧童从A 处把马牵到河边饮水再回家,最短距离是多少米?分析:根据轴对称的性质和“两点之间线段最短”,连接 A′B,得到最短距离为A′B,再根据全等三角形的性质和 A 到河岸CD 的中点的距离为500米,即可求出A'B 的值. A′B=1000米. 故最短距离是1000米.例2.如图,正方形ABCD ,AB 边上有一点E ,AE=3,EB=1,在AC 上有一点P ,使EP+BP 为最短.求:最短距离EP+BP .分析:此题中,点E 、B 的位置就相当于例1中的点A 、B ,动点P 所在有直线作为对称轴相当于例1中的小河。

故根据正方形沿对角线的对称性,可得无论P 在什么位置,都有PD=PB ;故均有EP+BP=PE+PD 成立;所以原题可以转化为求PE+PD 的最小值问题,分析易得连接DE 与AC ,求得交点就是要求的点的位置例3.如图,∠XOY 内有一点P ,在射线OX 上找出一点M ,在射线OY 上找出一点N ,使PM+MN+NP 最短.名师堂 校区地址: 南充 咨询电话:分析:此题的出题背景就是角。

本题主要利用了两点之间线段最短的性质通过轴对称图形的性质确定三角形的另两点.分别以直线OX、OY为对称轴,作点P的对应点P1与P2,连接P1P2交OX于M,交OY于N,则PM+MN+NP最短.例4.如图,荆州古城河在CC′处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:DD′,EE′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A、B在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使ADD′E′EB的路程最短,这个最短路程是多少米?分析:由于含有固定线段“桥”,导致不能将ADD′E′EB通过轴对称直接转化为线段,常用的方法是构造平行四边形,将问题转化为平行四边形的问题解答.这就是“造桥选址问题”解:作AF⊥CD,且AF=河宽,作BG⊥CE,且BG=河宽,连接GF,与河岸相交于E′、D′.作DD′、EE′即为桥.证明:由作图法可知,AF∥DD′,AF=DD′,则四边形AFD′D为平行四边形,于是AD=FD′,同理,BE=GE′,由两点之间线段最短可知,GF最小;即当桥建于如图所示位置时,ADD′E′EB最短.例5.(2008•内江)如图,当四边形PABN的周长最小时,a= 。

完整版利用轴对称求最短距离问题

完整版利用轴对称求最短距离问题

利用轴对称求最短距离问题基此题引入 : 如图( 1),要在公路道 a 上修建一个加油站,有A,B两人要去加油站加油。

加油站修在公路道的什么地方,可使两人到加油站的总行程最短?你可以在 a 上找几个点试一试, 能发现什么规律?·B·B·B ·A·A·Aa a a·A′ MN·A′M图 1图 2图 3思路解析:如图 2,我们可以把公路 a 近似看作一条直线,问题就是要在 a 上找一点 M,使 AM与 BM的和最小。

设A′是 A 的对称点,本问题也就是要使A′M与 BM的和最小。

在连接 A′ B 的线中,线段 A′ B 最短。

因此,线段 A′ B 与直线 a 的交点 C 的地址即为所求。

如图 3,为了证明点 C 的地址即为所求,我们不如在直线 a 上别的任取一点 N,连接 AN、BN、 A′ N。

因为直线 a 是 A, A′的对称轴,点M,N 在 a 上,因此AM= A′ M,AN= A′N。

∴AM+BM= A′ M+BM= A′ B在△ A′BN中,∵A′ B< A′ N+BN∴AM+BM< AN+BN即 AM+BM最小。

议论:经过复习学生茅塞顿开、面露微笑,不一会很多学生就利用轴对称知识将上一道中考题解决了。

思路以下:②∵ BC= 9(定值),∴△ PBC的周长最小,就是 PB+ PC最小 . 由题意可知,点 C关于直线 DE 的对称点是点 A,显然当 P、 A、 B 三点共线时 PB+ PA 最小 . 此时 DP= DE,PB+PA= AB.由∠ ADF=∠ FAE,∠ DFA=∠ ACB= 90°,得△ DAF∽△ ABC. EF∥ BC,得 AE= BE=1AB=15,EF=9. ∴ AF∶ BC= AD∶ AB,即 6∶ 9= AD∶ 15. ∴AD= 10. Rt △ ADF 222中, AD= 10, AF= 6,∴ DF=8. ∴ DE=DF+ FE=8+9= 25. ∴当 x=25时,△ PBC的周长222最小, y 值略。

初二数学上册:利用轴对称求解最短路径问题

初二数学上册:利用轴对称求解最短路径问题

初二数学上册:利用轴对称求解最短路径问题一、知识重点1、最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.2、运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.3、利用平移确定最短路径选址解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.二、经典例子解析【例一】有两棵树位置如图,树脚分别为A,B.地上有一只昆虫沿A—B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置.解:如图,作D关于AB的对称点D′,连接CD′交AB于点E,则点E就是所求的点.【例二】如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点解:如图,【例三】如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短。

解:先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B【例四】在图中直线l上找到一点M,使它到A,B两点的距离和最小解:如图,作点B关于直线l的对称点B′;连接AB′交直线l于点M.则点M即为所求的点.【例五】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A 村与B村供水。

轴对称之最短路径

轴对称之最短路径

轴对称之最短路径【知识点】解决一条直线同侧的两点到直线上一点的距离和最小问题,就是作一点关于直线的对称点,连接这个对称点和另一点,与直线的交点就是所求.利用对称性是解决这类距离之和最小问题的常用方法.【练习题】1.如图,点P在∠AOB内,M、N分别是点P关于AO、BO的对称点,MN分别交AO、BO于点E,F.若∠PEF的周长等于20 cm,求MN的长.2.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA,OB于点E,F.(1)若MN=20 cm,求∠PEF的周长;(2)若∠AOB=35°,求∠EPF的度数.3.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当∠AEF的周长最小时,求∠EAF的度数4.如图,在∠ABC中,BA=BC,BP,CQ是∠ABC的两条中线,M是BP上的一个动点,则下列线段的长等于AM+QM最小值的是线段5.如图,在∠ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是6.如图,在∠OAB中,AB=AO=BO=4,∠AOB=∠ABO=∠OAB,∠OA'B'与∠OAB关于l对称,M为线段OB'上一动点,则AM+BM的最小值是答案1.解:因为M,N分别是点P关于AO,BO的对称点,所以ME=PE,NF=PF.又因为∠PEF的周长为20 cm,所以PE+EF+PF=20 cm.所以ME+EF+FN=20 cm,即MN=20 cm.2.解:因为点M,N分别是点P关于直线OA,OB的对称点,所以ME=PE,NF=PF.所以PE+EF+PF=ME+EF+NF=MN=20 cm,即∠PEF的周长是20 cm.解:如图,设MP与OA相交于点R,PN与OB相交于点T.由(1)知ME=PE,PF=NF,所以∠M=∠EPM,∠N=∠FPN.所以∠PEF=2∠M,∠PFE=2∠N.因为∠PRE=∠PTF=90°,所以在四边形OTPR中,∠MPN+∠AOB=180°.因为∠MPN+∠M+∠N=180°,所以∠M+∠N=∠AOB=35°.所以∠EPF=180°-(∠PEF+∠PFE)=180°-2(∠M+∠N)=180°-35°×2=110°3.图,作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为∠AEF的周长的最小值.连接AC因为∠ABC+∠BCA+∠BAC=180°,∠ADC+∠DCA+∠DAC=180°,∠ABC=90°,∠ADC=90°,∠BCA+∠DCA=50°,所以∠BAC+∠DAC=130°,即∠DAB=130°.所以∠A′+∠A″=180°-∠DAB=50°.因为∠A′=∠EAA′,∠FAD=∠A″,所以∠EAA′+∠A″AF=50°.所以∠EAF=130°-50°=80°4.CQ5.9.66.8。

轴对称—最短路径问题-完整版课件

轴对称—最短路径问题-完整版课件
一个பைடு நூலகம்型
人教版数学学科中考复习专题
轴对称—最短路径问题
情境引入
王二小在A处放牛,要把牛牵到河边喝水,喝完水后还要牵 回B处关在牛棚里面。河边任何地方都可以让牛喝水。王二小牵 牛在河边哪个位置喝水,再牵到B处走的总路程最短?
B A
合作探究
如图,点A,B 在直线l 的同侧,点P是直线上的一个动点,当 点P 在l 的什么位置时,AP 与BP的和最小?
上的一动点,求BN+MN的最小值。
解:因为四边形ABCD为正方形,所以点B 与点D关于直线AC对称。
连结DM交直线AC于点N,即点N为所求作点
。 则BN+MN=DN+MN=DM,因为两点之间
A ,线段最短,所以BN+MN=DM为最小值。
B
M
N
N
D
C
即BN+MN的最小值为10.
变中思本
本节课你印象化最折深为的直是什么地方?
A MP
数学模型:两点在一条直线同侧
B
化折为直

l
B/
小试牛刀
2
分析:
(1)求PB+PC的最小值
关键是找到点P位于直 线MN的什么位置.
(2)PB+PC=PA+PB=AB.
(4)PB+PC =AB =2.
M
P P A 30
N
化折为直
B
1
C
小试牛刀
2.如图,正方形ABCD边长为8,M在BC上,BM=2,N为AC

运用“轴对称”解决最短路径问题

运用“轴对称”解决最短路径问题
C H U Z H o N G S H EN G S H l Jl E
运 用“ 轴对称’ ’ 解决最短路径问题
刘 军
在学 习 “ 轴 对 称 图形 ” 时, 我 们 经 常 会 枞 Q + Q B 与AP + P B的大 小 , 并 说 明理 由. 遇 到 与 最 短 路 径 有 关 的 问题 , 同学 们 往 往
Cl


【 变 式 训 练 】已知
点P 、 Q是 AA BC的 边
AB、 AC 上 的点 , 你 能在
BC上 确 定 一 点 R。 使
△P Q 的 周 长 最 短 吗 ?
图4
【 点拨 】 AP Q R 的周长等于P Q + P R + Q R,
因 为P p 的长 度 不 变 ,所 以 只要 线 f  ̄ t . P R + Q R 的 和最 小 , 就 能 使 △ R的周 长 最 短 .
= 、 已知 一 点在 两 条 相 交直 线 的 内部 例 2 如 图5 , O A、 O B是 两 条 相 交 的 公
( 作者单位 : 江 苏省 无 锡 市 天一 实验 学校 )
6 0
T n t e … g e n t ma t h e ma t i c s
1 ■ 慧数 掌
点P l 、 P 2 , P 1 P 2 分别 交 O A、 O B 于 点 E、 F , 由轴
Hale Waihona Puke 路 一 恫 市 交 汇 于 点 O, 在
D B 的 内 部 C、 D
图5
平 分 线 以及 C D的 垂 直平分线 , 交 点 即是 P 点 的位 置 .

图 6

处 各 有 一 个 工厂 . 现 要 修 建 一 个 货 站 P, 使 货 站 P到 两 条

轴对称中的最短路径问题

轴对称中的最短路径问题

分析:此题的出题背景就是角。

此题主要利用了两点之间线段最短的性质通过轴对称图形的性质确定三角形的另两点.
分别以直线OX、OY为对称轴,作点P的对应点P1与P2,连接P1P2交OX于M,交OY于N,那么PM+MN+NP最短.
例4.如图,荆州古城河在CC′处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:DD′,EE′〔桥宽不计〕,设护城河以及两座桥都是东西、南北方向的,A、B在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使ADD′E′EB的路程最短,这个最短路程是多少米?
分析:
这就是“造桥选址问题〞
解:作AF⊥CD,且AF=河宽,
作BG⊥CE,且BG=河宽,
连接GF,与河岸相交于E′、D′.
作DD′、EE′即为桥.
证明:由作图法可知,AF∥DD′,AF=DD′,
那么四边形AFD′D为平行四边形,
于是AD=FD′,
同理,BE=GE′,
由两点之间线段最短可知,GF最小;
即当桥建于如下图位置时,ADD′E′EB最短.
例5.如图,当四边形PABN的周长最小时,a= 。

分析:
此题中的PN就相当于“造桥选址问题〞中的桥,其思路与上题是一样的。

通过构造平行四边形和轴对称将折线转之和最短转化为两点之间线段最短.
至于“抛物线〞“折〞转“直〞,再利用“两点之间线段最短〞这一性质来解决。

利用图形的对称性(轴对称)求最短路径问题

利用图形的对称性(轴对称)求最短路径问题

利用图形的对称性(轴对称)求最短路径问题一、已知两点求一点例1设A,B两点在直线L的异侧,图-1,在L上找一点M使AM+BM最小。

说明理由。

BLMA图-1例2设A,B两点在直线L的同侧,图-2,在L上找一点M使AM+BM最小。

方法:寻找对称点,运用定理,两点之间直线最短。

ABLMA’图--2二、已知两点求两点例3 设A,B两点位于两相交直线L1、L2所形成的某一夹角内。

图-3,求作M,N使得M,N分别在两相交直线L1、L2上且满足AN+MN+BM最小。

L1B’. AM . BL2NA’图--3例4 设P,Q两点位于锐角 ABC的BC边上,有两动点M,N分别位于另外两边上,图-4,求作M,N使四边形PQNM的周长最短。

P’ BM PQCA N图--4Q’三、已知一点求两点例5 点P位于三角形的某一边上,动点M,N分别位于另外两边上。

图-5,试作M,N使得❒PMN周长最短。

P’ BPMA N CP’’图—5例6 点P位于两相交直线L1,L2所形成的夹角内,动点M,N分别位于两直线上。

图-6,试作M,N使得❒PMN周长最短。

L2PML1N图-6我们将这些情况放在直角坐标系下考虑。

第一种情况:设A,B两点都在第一象限,直线L与X轴重合,M点在X轴上,且使AM+BM最小。

求(1)M点的坐标。

(2)AM+BM的长度。

第二种情况设A,B两点,B点在第Ⅰ象限,M,N分别在Y轴,X轴上,A点分别在第Ⅰ象限,第Ⅱ象限,第Ⅲ象限,第Ⅳ象限时,试求(1)M,N的坐标,使得AM+MN+BN最小,并求出最小值。

(2)两动点M,N到达何处时,四边形AMNB周长最短。

Y训练题1.已知,AB是圆O的直径,P、Q是圆O上的两点,且直线PQ//AB,M是直径AB是上动点,试问:∆PQM周长最短时,M点处于何处?并证明。

A B【思路】由于三角形∆PQM的一边PQ是定长,因此要使它的周长最短就是要求动点M到点P、Q的距离之和最短。

利用图形的对称性,作Q关于直线AB的对称点Q’,连接PQ’,它与AB相交于M即为所求。

运用“轴对称”解决最短路径问题

运用“轴对称”解决最短路径问题

龙源期刊网 运用“轴对称”解决最短路径问题作者:刘军来源:《初中生世界·八年级》2014年第10期在学习“轴对称图形”时,我们经常会遇到与最短路径有关的问题,同学们往往在处理这类问题时感到困难. 这类问题通常会转化成“两点之间,线段最短”来解决,而轴对称的性质是实现这一转化的有效方法之一. 只要我们能把握轴对称的性质,那么问题便迎刃而解.在苏科版八(上)“轴对称图形”一章的课后习题中就有这样一个问题:如图1,点A、B在直线l同侧,点B′是点B关于l的对称点,AB′交l于点P. (1)AB′与AP+PB相等吗?为什么?(2)在l上再取一点Q,并连接AQ和QB,比较AQ+QB与AP+PB的大小,并说明理由.【解析】(1)由点B与点B′关于直线l成轴对称可知PB=PB′,则AB′=AP+PB′=AP+PB. (2)利用“三角形任意两边之和大于第三边”及(1)的结论可知,AQ+QB>AB′=AP+PB.这个问题还可以进一步说明直线l上的点P能使得线段PA+PB的和最小.下面再通过对几个最短路径问题的分析,帮助同学们熟悉并掌握这类问题的解题策略,真正能做到融会贯通,一通百通.一、已知两点在一条直线的同一侧例1 (将军饮马)古希腊一位将军要从A地出发到河边(如下图MN)去饮马,然后再回到驻地B. 问怎样选择饮马地点P,才能使路程最短?【点拨】分别作点A、B关于OM、ON的对称点A1、B1,连接A1B1,分别交OM、ON于点C、D,即得点C、D就是所求的两点.利用“轴对称”解决最短路径问题的关键是根据轴对称的性质,将不在一条直线的线段转化到同一条直线上,然后用“两点之间,线段最短”来解决. 解决这类问题,还需要认真审题,不仅要注意图形,而且要重视问题的要求,才能够有效地解决此类问题.(作者单位:江苏省无锡市天一实验学校)。

最短路径问题 说课稿

最短路径问题 说课稿

13.4课题学习最短路径问题说课稿各位评委老师大家好!我今天说课的课题是人民教育出版社八年级上册第13章第4节:课题学习最短路径问题。

一.教材分析最短路径问题是我们现实生活中常常遇到的问题,本节课通过一个实际问题的引入,让学生把实际问题抽象成数学问题,并建立数学模型,学会用数学的眼光观察现实世界,初步了解利用图形变换的方法,体会用数学思维思考现实世界。

从本章节的内容来看,本节课是在学习了轴对称之后,进一步的对“两点之间,线段最短”以及“三边关系”的应用。

它是13章轴对称知识的运用和拓展。

从初中数学的角度来看,也是中考数学的热点问题之一。

本章节的教学内容是实现中考最短路径综合问题解决的基础,因此有着非常重要的作用。

所以本节课的重点是:利用轴对称将最短路径问题转化为“两点之间,线段最短”的问题。

学情分析作为八年级的学生,已经学习了轴对称相关的简单知识,掌握了两点之间线段最短的相关理论,具备一定的动手操作能力和小组合作意识,思维活跃,敢于尝试IS此之外,他们很少涉及到最值问题,在解决这方面的经验不足。

尤其是将在“同侧”转化到“异侧”的过程中。

为什么需要这样转化?一些学生存在理解和操作上的困难。

因此,本节课的难点是:思考用什么样的方法将最短路径问题转换为“两点之间,线段最短”的问题。

以及如何证明此路径最短。

Ξ.教学目标基于以上分析,我确定我的教学目标是:1.通过轴对称变换解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,渗透转化思想。

2.通过实际问题的提出,学生能抽象为数学问题,并建立数学模型,利用所学过的知识完成严谨的推理过程,然后再以此为据解决实际问题。

体会数学在实际生活中的价值。

四,教法学法分析教学活动中,教师应把学生看做一个能动的个体,让他们自己感受获得知识的过程,丰富数学活动经验,因此我选择用三种方法来展开教学1∙启发式教学。

通过搭建台阶,让学生先探究“异侧”容易解决的问题,然后适时的点拨学生通过图形的变化把“同侧”难解决的问题转换为“异侧”容易解决的问题。

轴对称解决实际问题(最短路程)(超经典、超全)

轴对称解决实际问题(最短路程)(超经典、超全)

轴对称解决实际问题(最短路程问题)(1)利用轴对称解决几何极值问题仅仅是轴对称应用的一个方面,比较典型的是平面镜成像、光的反射等问题也经常用到轴对称。

(2)解决实际问题的关键是把这个实际问题抽象或转化为一个数学模型,然后通过对这个数学模型的研究来解决这个实际问题。

(3)在证明最大、最小这类问题时,常常采用任意另选一个,通过与要求证的那个“最大”或“最小”的量进行比较来证明。

问题1(分析1)如何用数学的方法解决这个问题?把这条河抽象为一条直线,而把将军的出发地(山脚)和宿营地分别看作直线同侧的两个点,建立几何模型,(如图①)把实际问题转换成“在已知直线上找一点,使它到直线同侧的两点的距离之和最小”的数学问题。

(分析2)连结AB ,作AB 的垂直平分线交直线a 于P 点,根据线段的垂直平分线的性质定理有PA =PB ,此时PA +PB 是否最短?(如图②) (用几何画板的度量及计算功能否定这种作法)(分析3)作A 点关于直线a 的对称点A ′连结P A ′,由轴对称的性质知PA =PA ′,那么PA +PB =PA ′+PB ,P 点在何处PA ′+PB 最短?(如图③)由一名学生上讲台拖动P 点,显然当B 、P 、A ′三点共线时PA ′+PB 最短。

探索得出作法:(如图④)(1)作A 点关于直线a 的对称点A ′. (2)连结BA ′,交直线a 于P 点. P 点即为所求。

如何证明? (分析4)在直线a 上另取一点P ′,连结PA 、A P ′、B P ′、 P ′A ′,(如图⑤)要证PA +PB 最小,由任意性, 只要证 :PA +PB <A P ′+B P ′, 由对称性可知:PA =PA ′, P ′A =P ′A ′只要证:PA ′+PB <P ′A ′+B P ′只要证: A ′B <P ′A ′+B P ′而△BA ′P ′中,有三角形两边之和大于第三边,问题得证。

a · · B A 图① a · · B A 图② P a · · B A 图③ A ′ · · P a · · B A 图④ A ′ · P a · ·B A 图⑤A ′ · P P ′问题2、如图,已知牧马营地在P 处,牧童每天要赶着马群先到河边饮水,再到草地吃草,然后回到营地,试设计出最短的放牧路线。

将军饮马(利用轴对称解决最短路径)说课课件

将军饮马(利用轴对称解决最短路径)说课课件

将军从军营A地出发,牵着马到河边P处饮水后, 沿着河边散步100米到达Q处,再到军营B地, 问:点P在什么位置才能使将军所走的路程最短?
6
模型变式
造桥选址 如图,甲、乙两个单位分别位于一条河流的两边A处和B 处,现准备合作修建一座桥,桥建在何处才能使由甲到 乙的路线最短?请做出示意图。(注意:桥必须与河流 两旁垂直,桥宽忽略不计)
建立模型
解决问题
4
模型总结
5
模型应用
6
模型变式
三角形周长
如图,已知将军营地在A处,将军每天牵着马先 到河边B地饮水,再到草地C地吃草,然后回到 营地,试设计出最短的路线。
6
模型变式
四边形周长
点P、Q是∠MON内的两点,分别在OM、ON上 作点A、B,使四边形PABQ的周长最小。
6
模型变式
饮水散步
中考专题复习之
将军饮马
利用轴对称解决最短路径
05
教学反思 教学设计
04
03
学情分析
02
目标分析
01
内容分析
1
地位 作用
内容分析
为了解决生产、经营中省时省力省钱而希 望寻求最佳方案产生了最短路径问题。 近几年来,最短路径问题是中考的热点, 且经常用“将军饮马”中的对称思想解决一类最 小值问题,还多以压轴题的形式出现。 本专题内容就是对数学史中的一个经典 问题—“将军饮马”问题为载体进行变式设计, 开展对“最短路径问题”的探究,让学生经历将 实际问题抽象为数学的线段和最小问题,再 利用轴对称、平移将线段和最小问题转化为 “两点之间,线段最短”的问题。
6
模型变式
垂线段最短
在∠MON的内部有一点A,在OM上找一点B, 在ON上找一点C,使得AB+BC最短。

(完整版)利用轴对称求最短距离

(完整版)利用轴对称求最短距离

利用轴对称求最短距离一、问题引入:1、以以下列图,在直线异侧各有点 A、 B, 在直线上找一点 p,使PA+PB最小。

2、以以下列图,在直线同侧各有点 A、 B, 在直线上找一点 p,使PA+PB最小。

解析:依照“两点之间线段最短〞,可知:连接 AB,与直线的交点即为 P 点 . 此根本种类为:一线〔直线〕两定点〔点 A、 B〕。

解析:作点 A 关于直线的对称点 A′,连接 AA′,那么直线就是线段 AA′的垂直均分线,依照“垂直均分线上一点到线段两端点的距离相等〞可得,直线上任一点到点 A 的距离都等于到点A′的距离。

事实上,这个问题就可以转变为:在直线异侧各有点A′、 B, 在直线上找一点 p,使 PA′ +PB 最小。

即:一线两定点的问题。

由〔 1〕得,连接 BA′,与直线的交点即为点P。

解析:由题意知:第一找二、典型例题:点 B 也许点 M关于 AC所〔1〕、以菱形为媒介的最短距离问题:在直线的对称点。

由菱形以以下列图,菱形 ABCD中,∠ BAD=60°, AB=4,点 M是 AB中点,的轴对称性不难发现:点P 是对角线 AC上的一个动点,那么 PM+PB的最小值是多少?D即是点 B 关于直线 AC的对称点,那么连接DM 与线段 AC 的交点即为P 点。

那么 PM+PB的最小值实质上就是线段 DM的长度解析:由题意知:第一找〔2〕、以正方形为媒介的最短距离问题:点 D 也许点 E 关于 AC 所以以下列图,正方形 ABCD 边长为 2,△ ABE为等边三角形,且点 E 在直线的对称点。

由正方在正方形ABCD内部,在对角线 AC上找一点 P,使 PD+PE最小,形的轴对称性不难发现:那么这个最小值为多少?点 B 即是点 D关于直线 AC的对称点,那么连接BE 与线段 AC的交点即为P 点。

那么 PD+PE的最小值实质上就是线段BE 的长度,BE=2。

〔3〕、以圆为媒介的最短距离问题:以以下列图,⊙ O的半径为2,点 A、 B、 C 在⊙ O上,OA⊥ OB,∠AOB=60°, P 是 OB上一动点,求PA+PC的最小值解析:由题意知:第一找点 A也许点 C关于 OB所在直线的对称点。

轴对称--最短路径

轴对称--最短路径

轴对称--最短路径问题
解题思路:(1)作两点任意一点的对称点
(2)将对称点与另一点进行连线,连线与原直线的交点为动点的位置
(3)对称点与另一点连线的线段长度是所求线段之和的最小值(依据是“两点间线段最短”和“垂直平分线上的点到线段两端点的距离相等”)
一、两点在直线同侧模型
例题1..如图,A为马棚,B为帐篷,牧马人某一天要从马棚牵出马,到河边给马喝水,然后回到帐篷请你帮助他确定这一天的最短路线。

变式1.(2008•深圳)要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是.
变式2..如图,在正方形ABCD中,AD=8,DM=2,N是AC上一动点,求DN+MN的最小值
变式3.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.
变式4.(2009•陕西)如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.。

第4讲利用轴对称破解最短路径问题

第4讲利用轴对称破解最短路径问题

第一章平移、对称与旋转第4讲利用轴对称破解最短路径问题一、学习目标1. 理解“直线上同一侧两点与此直线上一动点距离和最小”问题通过轴对称的性质与作图转化为“两点之间,线段最短”问题求解。

2.能将实际问题或几何问题(对称背景图)中有关最短路径(线段之差最大值)问题借助轴对称转化为两点之间,线段最短问题分析与求解。

二、基础知识·轻松学与轴对称有关的最短路径问题关于最短距离,我们有下面几个相应的结论:(1)在连接两点的所有线中,线段最短(两点之间,线段最短);(2)三角形的两边之和大于第三边,两边之差小于第三边;(3)在三角形中,大角对大边,小角对小边。

(4)垂直平分线上的点到线段两端点的距离相等;【精讲】一般说来,线段和最短的问题,往往把几条线段连接成一条线段,利用“两点之间线段最短”或者“三角形两边之和大于第三边”加以证明,关键是找相关点关于直线的对称点实现“折”转“直”。

另外,在平移线段的时候,一般要用到平行四边形的判定和性质。

(判定:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形;性质:平行四边形的对边相等。

)三、重难疑点·轻松破最短路径问题在平面图形中要解决最短路径问题,自然离不开构建与转化“两点之间,线段最短”的数学公理,通常将涉及到的两点中的任一点作出关于直线的对称点,从而运用两点之间,线段最短解决实际问题.在日常生活、工作中,经常会遇到有关行程路线的问题。

“最短路径问题”的原型来自于“饮马问题”、“造桥选址问题”,出题通常以直线、角、等腰(边)三角形、长方形、正方形、坐标轴等对称图形为背景。

(1)“一线同侧两点”问题例1 如图,点A、B在直线m的同侧,点B′是点B关于m的对称点,AB′交m于点P.(1)AB′与AP+PB相等吗?为什么?(2)在m上再取一点N,并连接AN与NB,比较AN+NB与AP+PB的大小,并说明理由.解析:(1)∵点B′是点B关于m的对称点,∴PB=PB′,∵AB′=AP+PB′,∴AB′=AP+PB.(2)如图:连接AN,BN,B′N,∵AB′=AP+PB,∴AN+NB=AN+NB′>AB′,∴AN+NB>AP+PB.点评:两条线段之和最短,往往利用对称的思想,把两条线段的和变为一条线段来研究,利用两点之间的线段最短得出结果。

轴对称——最短路线问题

轴对称——最短路线问题

如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为_____.
解析:连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.
解:连接BD,DE,
∵四边形ABCD是正方形,
∴点B与点D关于直线AC对称,
∴DE的长即为BQ+QE的最小值,
∵DE=BQ+QE===5,
∴△BEQ周长的最小值=DE+BE=5+1=6.
故答案为:6.
典型例题:
例1·如图,边长为8的正方形ABCD中,E为CD边上一点,且DE=2,M是对角线AC上的一个动点,则DM+EM的最小值为_____.
例2:如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=()
A.30°
B.45°
C.60°
D.90°
例3:如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,若AE=2,求EM+BM的最小值.。

如何利用对称轴原理,解决最短路径问题

如何利用对称轴原理,解决最短路径问题

如何利用对称轴原理,解决最短路径问题大家好,这里是周老师数学课堂,欢迎来到头条号学习!今天是星期六,我想分享一篇八年级的内容:如何利用轴对称知识解决最短路径问题。

最短路径问题一般有两种情况。

1.求已知直线上一点与直线异侧两点所连线段的和的最短问题:这类问题,我们只要连接这两点,根据两点之间直线最短的原理,所得线段与直线的交点,即为所要确定的点。

如图,点A,B分别是直线l异侧的两个点,在直线l上找一个点C,使CA+CB最短,这时的点C为直线l与线段AB的交点2.求已知直线上一点与直线同侧两点所连线段的和的最短问题:只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得的线段与该直线的交点即为所要确定的点。

如图,点A,B分别是直线l同侧的两个点,在直线l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B',连接AB',AB'与直线l的交点即为所求的点C;或者先作点A关于直线l的对称点A',连接BA’,BA'与直线l的交点即为所求的点C.我们在解决最短路径问题时,通常利用轴对称、平移等变换将不在一条直线上的两条线段转化到一条直线上,从而作出最短路径。

下面举例说明轴对称变换在解决距离和最短问题时的应用,解这些题的关键是要把握好“两点之间,线段最短”的原理。

例1.[解析](1)因为AB在EF同侧,作点A关于EF的对称点A';(2)连接A'B交EF于点C,则点C为所求的点,此时,△ABC的周长最短.由于AB为定长,问题转化为在EF上求一点C,使AC+BC最短。

[解答]例2.[解析]要使总路程最短,需要将三条线段设法转化到一条线段上,根据轴对称确定最短路线问题,作A关于公路l1的对称点A,作B关于公路Ⅰ2的对称点B',连接AB与公路Ⅰ1、Ⅰ2分别相交于点C、D,然后沿A→C→D→B走才能使总路程最短.[解答]求最短离问题,在实际生活中的应用非常广泛,如水泵站的选址,煤气管道的铺设,天桥的选址等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章平移、对称与旋转第4讲利用轴对称破解最短路径问题一、学习目标1. 理解“直线上同一侧两点与此直线上一动点距离和最小”问题通过轴对称的性质与作图转化为“两点之间,线段最短”问题求解。

2.能将实际问题或几何问题(对称背景图)中有关最短路径(线段之差最大值)问题借助轴对称转化为两点之间,线段最短问题分析与求解。

二、基础知识·轻松学与轴对称有关的最短路径问题关于最短距离,我们有下面几个相应的结论:(1)在连接两点的所有线中,线段最短(两点之间,线段最短);(2)三角形的两边之和大于第三边,两边之差小于第三边;(3)在三角形中,大角对大边,小角对小边。

(4)垂直平分线上的点到线段两端点的距离相等;【精讲】一般说来,线段和最短的问题,往往把几条线段连接成一条线段,利用“两点之间线段最短”或者“三角形两边之和大于第三边”加以证明,关键是找相关点关于直线的对称点实现“折”转“直”。

另外,在平移线段的时候,一般要用到平行四边形的判定和性质。

(判定:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形;性质:平行四边形的对边相等。

)三、重难疑点·轻松破最短路径问题在平面图形中要解决最短路径问题,自然离不开构建与转化“两点之间,线段最短”的数学公理,通常将涉及到的两点中的任一点作出关于直线的对称点,从而运用两点之间,线段最短解决实际问题.在日常生活、工作中,经常会遇到有关行程路线的问题。

“最短路径问题”的原型来自于“饮马问题”、“造桥选址问题”,出题通常以直线、角、等腰(边)三角形、长方形、正方形、坐标轴等对称图形为背景。

(1)“一线同侧两点”问题例1 如图,点A、B在直线m的同侧,点B′是点B关于m的对称点,AB′交m于点P.(1)AB′与AP+PB相等吗?为什么?(2)在m上再取一点N,并连接AN与NB,比较AN+NB与AP+PB的大小,并说明理由.解析:(1)∵点B′是点B关于m的对称点,∴PB=PB′,∵AB′=AP+PB′,∴AB′=AP+PB.(2)如图:连接AN,BN,B′N,∵AB′=AP+PB,∴AN+NB=AN+NB′>AB′,∴AN+NB>AP+PB.点评:两条线段之和最短,往往利用对称的思想,把两条线段的和变为一条线段来研究,利用两点之间的线段最短得出结果。

这类题主考实际问题转化为数学问题的能力,关键是利用轴对称、“两点之间,线段最短”及三角形三边的关系等.变式1 需要在高速公路旁边修建一个飞机场,使飞机场到A,B两个城市的距离之和最小,请作出机场的位置.(2)“两点两线(平行)”问题例2 如图所示,在一条河的两岸有两个村庄,现要在河上建一座小桥,桥的方向与河流垂直,设河的宽度不变,试问:桥架在何处,才能使从A到B的距离最短?解析:虽然A、B两点在河两侧,但连接AB的线段不垂直于河岸.关键在于使AP+BD最短,但AP与BD未连起来,要用线段公理就要想办法使P与D重合起来,利用平行四边形的特征可以实现这一目的.如图,作BB'垂直于河岸GH,使BB′等于河宽,连接AB′,与河岸EF相交于P,作PD⊥GH,则PD∥BB′且PD=BB′,于是PDBB′为平行四边形,故PD=BB′.根据“两点之间线段最短”,AB′最短,即AP+BD最短.故桥建立在PD处符合题意.点评:此题考查了轴对称﹣﹣﹣最短路径问题,要利用“两点之间线段最短”,解决“造桥选址”的简单的实际问题.但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.此类题往往需要利用对称性、平行四边形的相关知识进行转化,以后还会学习一些线段转化的方法.变式2 如图,两个村庄A和B被一条河隔开,现要在河上架设一座桥CD.请你为两村设计桥址,使由A村到B村的距离最小(假定两河岸m、n是平行的,且桥要与河垂直).要求写出作法,并说明理由.(3)“一点两线(相交)”解决周长最短问题例3:如图所示,∠ABC内有一点P,在BA、BC边上各取一点P1、P2,使△PP1P2的周长最小.解析:依据两点之间线段最短,可分别作点P关于AB,AC的对称点,如图,以BC为对称轴作P的对称点M,以BA为对称轴作出P的对称点N,连MN交BA、BC于点P1、P2∴△PP1P2为所求作三角形.点评:解题关键是转化“直线上同一侧两点与此直线上一动点距离和最小”问题(将军饮马问题),其核心是化折为直(两点之间线段最短)的思想,转化技巧是能够运用轴对称性质及作图求解问题.变式3 城关中学八(2)班举行文艺晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,站在C处的学生小明先拿桔子再拿糖果,然后回到C处,请你在下图帮助他设计一条行走路线,使其所走的总路程最短?(4)“一线异侧两点”“差最大”问题例4 在定直线XY异侧有两点A、B,在直线XY上求作一点P,使PA与PB之差的绝对值最大.解析:作法:作点B关于直线XY的对称点B′,作直线AB′交XY于P点,则点P为所求点(如图);若B′A∥XY(即B′、A到直线XY的距离相等),则点P不存在.证明:连接BP,在XY上任意取点P′,连接P′A、P′B,则PB=PB′,P′B=P′B,因为|P′B﹣P′A|=|P′B′﹣P′A|<AB′=|P′B﹣PA|=|PB﹣PA|,所以,此时点P使|PA﹣PB|最大.点评:本题考查的是最短线路问题,解答此类题目的关键是根据轴对称的性质画出图形,再由两点之间线段最短的知识求解.变式4.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M,连接MB,若AB=8 cm,△MBC的周长是14 cm,(1)求BC的长(2)在直线MN上是否存在点P,使|PA-CP|的值最大,若存在,画出点P的位置,并求最大值,若不存在,说明理由。

(5)“两点一线+线段”例5 直线L的同侧有两点A、B,在直线L上求两点C、D,使得AC、CD、DB的和最小,且CD的长为定值a,点D在点C的右侧。

作法:①将点A向右平移a个单位到A1②作点B关于直线L的对称点B1③连结A1B1交直线L于点D④过点A作AC∥A1D交直线L于点C,连结BD,则线段AC、CD、DB的和最小。

点C、D即为所求。

变式5长方形OACB,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,画出点E的位置;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,画出点E、F的位置;(6)台球击点问题例6如图,在台球桌面ABCD上,有白和黑两球分别位于M,N两点处,问:怎样撞击白球M,使白球先撞击台边BC,反弹后再去击中黑球N?解析:作N关于BC的对称点N′,连接MN′交BC于点E,连接EN.按ME方向撞击白球M,白球M反弹后必沿EN方向击中黑球N.点评:要使白球M撞击台边BC反弹后再去击中黑球N,必须使∠MEB=∠NEC.由轴对称还可得,∠N′EC=∠NEC.又对顶角∠MEB=∠N′EC,故可得到∠MEB=∠NEC.本题重在考查轴对称的性质在实际生活中的应用,关键注意对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.变式6如图,甲乙丙丁四人做接力游戏.开始时,甲站在长方形操场ABCD内部的E 点处,丙在BC的中点G处,乙,丁分别站在AB、CD边上.游戏规则是,甲将接力棒传给乙,乙传给丙,丙传给丁,最后丁跑回传给甲.如果他们四人的速度相同,试找出乙,丁站在何处,他们的比赛用时最短?(请画出路线,并保留作图痕迹,作法不用写)四、课时作业·轻松练A.基础题组1.如图,直线l是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A、B、 C、D、2.已知,如图△ABC为等边三角形,高AH=10cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为cm.第2题第3题3.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD= °.4.为庆祝60年国庆圣典,阳光中学八年级(2)班举行一次文艺晚会,桌子摆成两真线(如图:AO,OB)AO桌子上摆满苹果,BO桌子上摆满桔子,坐在C处的小华想先拿苹果再拿桔子,然后回到座位C处,∠AOB小于90度,请你帮助他设计一条行走路线,使小华所走路程最短.请作出路线图,并用字母表示所走路线.(保留作图痕迹,不写作法、不必说明理由)B.中档题组5.如图,山娃星期天从A处赶了几只羊到草地l1放羊,然后赶羊到小河l2饮水,之后再回到B处的家,假设山娃赶羊走的都是直路,请你为它设计一条最短的路线,标明放羊与饮水的位置.6.如图,一牧民从A点出发,到草地出发,到草地MN去喂马,该牧民在傍晚回到营帐B之前先带马去小河边PQ给马饮水(MN、PQ均为直线),试问牧民应走怎样的路线,才能使整个路程最短?(简要说明作图步骤,并在图上画出)C.挑战题组7.如图,荆州古城河在CC′处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:DD′,EE′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A、B在东西方向上相距65米,南北方向上相距85米,如何架桥可使到A到B的路程最短,画出路程图五、我的错题本参考答案变式练习变式1解:利用轴对称图形的性质可作点A关于公路的对称点A′,连接A′B,与公路的交点就是点P的位置.变式2 解:如图,过点B作BC⊥n,且使BC等于河宽,连接AC交直线m与M,作MN∥BC即可.理由:两点之间线段最短.变式3解析:本题意思是在OA上找一点D,在OB上找一点E,使△CDE的周长最小.如果作点C关于OA的对称点是M,关于OB的对称点是N,当点D、E在MN上时,△CDE的周长为CD+DE+EC=MN,此时周长最小.变式4解:(1)因MN垂直平分AB,所以MB=MA,又因△MBC的周长是14 cm,故AC+BC =14 cm,所以BC=6 cm.(2)当点P位于直线MN与BC延长线的交点时,PA-CP的值最大,最大值是6cm,理由:因A、B关于直线MN对称,所以AP=BP,当点P位于MN(直线MN与BC延长线的交点除外)上时,根据三角形三边关系始终有|PB-CP|<BC,当点P位于直线MN与BC延长线的交点P时,即B、C、P三点成线时,存在|PA-CP|=BC=6 cm为最大值,变式5解:(1)如图,作点D关于OA的对称点D',连接CD'与OA交于点E,连接DE.若在边OA上任取点E'与点E不重合、,连接CE'、DE'、D'E'由DE'+CE'=D'E'+CE'>CD'=D'E+CE=DE+CE,可知△CDE的周长最小.(2)如图,作点D关于OA的对称点D',在CB边上截取CG=2,连接D'G与OA交于点E,在EA上截取EF=2,∵GC∥EF,GC=EF,∴四边形GEFC为平行四边形,有GE=CF,又GC、EF的长为定值,∴此时得到的点E、F使四边形CDEF的周长最小.变式6解:作点G关于CD的对称点G′,作E关于AB的对称点E′连接G′E′,交CD于点F、交AB于点H,故比赛最短的路线为:E→H→G→F.课堂作业A.基础题组1.D解析:利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.作点P关于直线L的对称点P′,连接QP′交直线L于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选D.2.10解析:连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.连接PC,∵△ABC为等边三角形,D为AB的中点,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.3. 45°解析:∵当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°,∴∠PCD=45°.4.解析:要求小华所走路程最短路线,如图,可作点C关于OA的对称点M,作点C关于OB的对称点N.连接MN,交OA于点F,交OB于点E,最短路线CEF.B.中档题组5解:作出点A关于l1的对称点E,点B适于l2的对称点F,连接EF,交于l1,l2于点C,点B,则AC,CD,BD是他走的最短路线.6.解:如图,分别作A点关于直线MN的对称点A′、B点关于直线PQ的对称点B′,连接A′B′,分别交MN于点C,交PQ于点D,连接AC、BD,∴路线AC+CD+BD最短.C.挑战题组7.解:作AF⊥CD,且AF=河宽,作BG⊥CE,且BG=河宽,连接GF,与河岸相交于E′、D′.作DD′、EE′即为桥.证明:由作图法可知,AF∥DD′,AF=DD′,则四边形AFD′D为平行四边形,于是AD=FD′,同理,BE=GE′,由两点之间线段最短可知,GF最小;即当桥建于如图所示位置时,ADD′E′EB最短.。

相关文档
最新文档