电子技术实验(6)
实验6-集成计数器
&
G 10 G 17
& 1K
G3
G7 &
& G 18
1
FF 3 & 1J
C1 R
Q3
D3 G4 &
&
G 11 G 19
& 1K
CT P CT T
& 74160
G 20
CO
实验原理
芯片的应用:用74160组成任意模值计数器:
集成计数器可以加适当反馈电路后构成任意模值M计数器。 任意模值M计数器设计原理: 设:计数器的最大计数模值为M,若要得到一个模值为N(<M) 的计数器,则只要在M进制计数器的顺序计数过程中,设 法跳过(M-N)个状态,只在N个状态循环计数,就可以得 到计数模值不大于M的任意模值计数器。 通常中规模集成计数器都有清零、置数等多个控制端,因此 实现任意M计数的基本方法有两种:清零法和置数法。
实验原理
用74160组成任意模值计数器:
② .置数法:置数法和置零法不同,由于置数操作可以在任意
状态下进行,因此计数器不一定从全0状态开始计数。它 可以通过预置功能使计数器从某个预置状态Si开始计数, 计满N个状态后产生置数信号,使计数器进入预置状态Si, 然后再重复前面过程。 同步预置:置数(/LD)有效信号从Si+N-1状态译出,等下一 个CP到来时,才将预置数置入计数器,计数器在Si、 Si+1、┈Si+N-1共N个状态中循环。 异步预置:置数(/LD)有效信号从Si+N状态译出,当Si+N状 态一出现,置数信号立即就将预置数置入计数器,它不 受CP控制,所以Si+N状态只在极短的瞬间出现。稳定状 态中不包含Si+ N。
电工电子技术实验报告答案
实验名称:基本放大电路的研究一、实验目的1. 了解基本放大电路的组成和原理。
2. 掌握放大电路的性能指标和测量方法。
3. 学会使用示波器和信号发生器等实验仪器。
二、实验原理基本放大电路主要由晶体管、电阻和电容等元件组成。
其基本原理是利用晶体管的放大作用,将输入信号放大到所需的电压或电流水平。
放大电路的性能指标主要包括增益、输入阻抗、输出阻抗、带宽和噪声等。
三、实验仪器与设备1. 晶体管(如:3DG6)2. 电阻(不同阻值)3. 电容(不同容量)4. 信号发生器5. 示波器6. 万用表7. 实验电路板8. 电源四、实验步骤1. 按照实验电路图连接电路,注意元件的连接顺序和方向。
2. 调整电源电压,使晶体管工作在放大区。
3. 使用信号发生器产生输入信号,频率和幅度可调。
4. 使用示波器观察输入信号和输出信号的波形,测量输出信号的幅度和相位。
5. 使用万用表测量放大电路的输入阻抗、输出阻抗和带宽。
6. 改变电路元件的参数,观察放大电路性能的变化。
五、实验数据与结果1. 输入信号频率:1kHz2. 输入信号幅度:1Vpp3. 输出信号幅度:10Vpp4. 输入阻抗:50kΩ5. 输出阻抗:1kΩ6. 带宽:100kHz六、实验分析1. 放大电路的增益为输出信号幅度与输入信号幅度的比值,本实验中增益为10。
2. 输入阻抗为晶体管集电极与基极之间的等效电阻,本实验中输入阻抗为50kΩ。
3. 输出阻抗为晶体管发射极与集电极之间的等效电阻,本实验中输出阻抗为1kΩ。
4. 带宽为放大电路能够正常工作的频率范围,本实验中带宽为100kHz。
七、实验结论1. 通过本次实验,我们掌握了基本放大电路的组成和原理。
2. 我们学会了使用示波器和信号发生器等实验仪器进行实验。
3. 通过改变电路元件的参数,我们观察到了放大电路性能的变化,进一步了解了放大电路的性能指标。
八、注意事项1. 在连接电路时,注意元件的连接顺序和方向,避免出现短路或开路。
电力电子技术(6)
电力电子技术(3)第1章电力电子器件1.电力电子器件一般工作在__开关__状态。
2.在通常情况下,电力电子器件功率损耗主要为_通态损耗_,而当器件开关频率较高时,功率损耗主要为_开关损耗__。
3.电力电子器件组成的系统,一般由__控制电路__、_驱动电路_、 _主电路_三部分组成,由于电路中存在电压和电流的过冲,往往需添加_保护电路__。
4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型器件、双极型器件、复合型器件_三类。
5.电力二极管的工作特性可概括为_承受正向电压导通,承受反相电压截止_。
6.电力二极管的主要类型有_普通二极管_、_快恢复二极管_、 _肖特基二极管_。
7.肖特基二极管的开关损耗_小于_快恢复二极管的开关损耗。
8.晶闸管的基本工作特性可概括为 __正向电压门极有触发则导通、反向电压则截止__ 。
9.对同一晶闸管,维持电流IH与擎住电流I L在数值大小上有I L__大于__IH。
10.晶闸管断态不重复电压UDSM与转折电压Ubo数值大小上应为,UDSM_大于__Ubo。
11.逆导晶闸管是将_二极管_与晶闸管_反并联_(如何连接)在同一管芯上的功率集成器件。
12.GTO的__多元集成__结构是为了便于实现门极控制关断而设计的。
13.MOSFET的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的_截止区_、前者的饱和区对应后者的__放大区__、前者的非饱和区对应后者的_饱和区__。
14.电力MOSFET的通态电阻具有__正__温度系数。
15.IGBT 的开启电压UGE(th)随温度升高而_略有下降__,开关速度__小于__电力MOSFET 。
16.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为电压驱动型、电流驱动型两类。
17.IGBT的通态压降在1/2或1/3额定电流以下区段具有负温度系数,在1/2或1/3额定电流以上区段具有正温度系数。
《电子技术基础》电子教案6
第6章 调谐放大器和正弦波振荡器本章重点1.了解调谐放大器的电路结构、工作特点及工作原理。
2.理解正弦波振荡电路的工作原理、振荡条件。
3.掌握变压器耦合及三点式LC 振荡电路的工作原理及振荡频率。
4.了解石英晶体振荡电路。
本章难点1.调谐放大器的选频能力。
2.正弦波振荡电路的振荡条件。
学时分配6.1 调谐放大器调谐放大器:具有选频放大能力的放大电路。
电路特点:LC 谐振回路作负载。
应用:无线电发射和接收设备。
6.1.1.调谐放大器的工作原理动画 调谐放大器的工作原理一、LC 并联电路图6.1.1所示。
R 为并联电路损耗电阻。
1.阻抗频率特性图6.1.2(a )所示。
它表示了LC 并联电路的阻抗Z 与信号频率f 之间的变化关系。
当f = f 0时,LC 并联电路发生谐振,阻抗最大。
当f < f 0或f > f 0时,电 图6.1.1 LC 并联电路路失谐,阻抗很小。
因此,f 0称为谐振频率,又称固有频率,即LCf π=210 可见,元件L 、C 取定值时,谐振频率f 0是一个常数。
2.相位频率特性图6.1.2(b )所示。
它表示了LC 并联电路两端电压v 和流进并联电路电流i 之间的相位角之差 ϕ与信号频率f 之间的变化关系。
当f = f 0时,ϕ = 0,电路呈纯阻性;当f < f 0时,ϕ > 0,电路呈感性;当f > f 0时,ϕ < 0,电路呈容性;可见,LC 并联电路随信号频率的变化呈现不同的性质。
3.选频特性阻频特性和相频特性统称为LC 并联电路的频率特性。
它说明了LC 并联电路具有区别不同频率信号的能力,即具有选频特性。
如图6.1.3所示。
品质因数为 R L f R L R X Q L 002π===ω 它表征了LC 并联电路选频特性的好坏。
实验和理论证明:R 越小,Q 值越大,曲线越尖锐,电路选频能力越强;R 越大,Q 值越小,曲线越平坦,电路选频能力越差。
模电实验常用仪器的介绍及操作
模拟电子技术实验 1 实验一常用电子仪器使用及元件测试实验一常用电子仪器使用正确地观察电子技术实验现象、测量实验数据,必须学会常用电子仪器及设备的正确使用方法,掌握基本的电子测试技术,这也是电子技术实验课的重要任务之一。
所使用的主要电子仪器有:SS-7804型双踪示波器,EE-1641D函数信号发生器,直流稳压电源,DT890型数字万用表和电子技术实验学习机。
其中示波器的使用较难掌握,是我们学习的重点,要进行反复的操作练习,达到熟练掌握的目的。
一、实验内容1. SS-7804(8702)型示波器的面板及其各键钮的功能SS-7804型示波器是双踪示波器,它可以同时观察两个信号的波形,即信号从CH1和CH2输入,便可在荧光屏上得到两个信号的波形;以便分析其特点。
电源按钮POWER 电源开关:按下状态(ON),电源接通;弹出状态(STBY),即切断电源。
垂直系统CH1、CH2 输入端口:测试信号通过测试笔或探头从此端口输入。
CH1、CH2 输入通道选择按钮:按下该钮即被选通,荧屏上即显示该通道的信号波形。
〔VOLTS/DIV〕垂直灵敏度选择开关:对于通道1(CH1)和通道2(CH2)所输入信号的幅度应选择适当的灵敏度。
〔▲ POSITION ▼〕垂直位移旋钮:顺时针旋转,亮线(波形)上升;逆时针旋转,亮线(波形)下降。
即调整亮线(波形)至便于观察、测量即可。
DC/AC 输入耦合方式选择按钮:按下为 DC耦合——即直流耦合,弹出为 AC耦合——交流耦合。
GND 输入接参考地按钮:按下时为接参考地;输入信号被切断,垂直放大器的输入端被接地。
ADD 信号叠加按钮:按下该键,示波器将显示通道1(CH1)和通道2(CH2)两路信号进行代数和的波形,既显示CH1+CH2 的波形。
INV 信号取反按钮:按下该键,将通道2(CH2)输入的信号反向。
*若同时按下了INV、ADD ,既是显示通道1(CH1)和通道2(CH2)两路信号进行代数差的波形,既显示CH1- CH2 的波形。
电力电子技术实验报告答案
实验一锯齿波同步移相触发电路实验一、实验目的(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
(2)掌握锯齿波同步移相触发电路的调试方法。
三、实验线路及原理锯齿波同步移相触发电路的原理图如图1-11所示。
锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。
四、实验内容(1)锯齿波同步移相触发电路的调试。
(2)锯齿波同步移相触发电路各点波形的观察和分析。
五、预习要求(1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。
(2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。
六、思考题(1)锯齿波同步移相触发电路有哪些特点?(2)锯齿波同步移相触发电路的移相范围与哪些参数有关?(3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大?七、实验方法(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。
如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。
在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。
①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。
②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。
③调节电位器RP1,观测“2”点锯齿波斜率的变化。
大学模拟电子技术实验课思考题及参考答案
实验报告简要分析及参考答案以下为简要分析,答题时请详细规范作答——实验一仪器的使用P178:交流毫伏表的使用(1)将信号发生器输出值与毫伏表测量值相比较,得到的结论是:信号发生器输出的电压是用峰峰值表示的,而毫伏表测量的电压是用有效值表示的,正弦波峰峰值电压是有效值电压的(2)用毫伏表的MANU和AUTO模式测量信号发生器的输出电压,其不同之处是:用MANU 模式测量时要把量程旋钮置于合适的量程才能显示正确的测量电压;AUTO模式则自动显示测量电压。
P178:思考题1.因为交流毫伏表的电压测量范围为100U A~300V,它能感应并测量仪器周围很微弱的干扰信号,所以交流毫伏表一接通电源显示屏上就有数码显示。
2.图(a):(1)调节触发方式选择开关在AUTO状态;(2)调节垂直位移旋钮在适当的位置;(3)调节亮度旋钮在适当的位置。
图(b):(1)T/DIV旋钮不要置于X-Y显示方式;(2)扫描时间选择旋钮的扫描频率不要选得太高,图(c):调节聚焦和垂直位移旋钮在适当的位置。
3.示波器的红夹子应于毫伏表测试线上的红夹子相接,示波器的黑夹子应于毫伏表的黑夹子相接。
如果互换使用将引入干扰,产生较大的测量误差,甚至不能测量。
原因参阅课本P10。
实验二元件的识别与测量P1804.(2)用两手抓住表笔捏紧电阻两端测量其阻值,相当于把人体的电阻与所测电阻并联,所测电阻越大,影响越大,测量值越小。
P1816(2)用×100Ω档测出的阻值小,而用×1KΩ档测出的阻值大。
因为万用表不同的欧姆档流出的电流不同,×100Ω档时流出的电流大,×1KΩ档时流出的电流小。
当用不同的欧姆档测量同一只二极管时,由于二极管是非线性元件,等效电阻不是一个固定值,其值随电流的改变而改变,所以当用不同的量程测其正、反向电阻值时,测量值也不同。
P183:思考题用×1档电流大,×10k档电压大,都容易烧坏晶体管。
【2024版】精品课件-数字电子技术(第三版)(刘守义)-第6章
第6章 寄 存 器
2. 所谓可编程分频器是指分频器的分频比可以受程序控制。 在现代通信系统与控制系统中,可编程分频器得到广泛的应 用。 下面以图6.10的实际电路为例, 介绍利用移位寄存器 实现可编程分频的基本思路。
(2) 并行加载数据。 断开电源, 将S0、 S1置11(都接 高电平), 将D0~D3置1010; 接通电源, 此时, 发光二极 管均不亮, 送出一个单脉冲, 观察发光二极管的亮、 灭情 况。如果操作准确, 发光二极管的亮、 灭指示Q0~Q3的数据 为1010, 说明D0~D3的数据已加载到输出端, 此时再改变输 入端的数据, 输出数据不变。
第6章 寄 存 器 实训6 寄 存 器
6.1 寄存器的功能与使用方法 6.2 寄存器应用实例 6.3 寄存器集成电路简介
第6章 寄 存 器
实训6 1. (1) 了解寄存器的基本功能。 (2) 学会寄存器的使用方法。 (3) 熟悉寄存器的一般应用。 (4) 进一步掌握数字电路逻辑关系的检测方法。
第6章 寄 存 器
第6章 寄 存 器
当A、 B的数据(即74LS194 S0、 S1端的数据)为01时, 数据右移; 第一个时钟脉冲过后, 74LS194(1)DSR端的数 据1移位至Q0端, 其他Q端的0均依次右移, 各输出端的数据 如表6.1的第2行数据所示; 此后, 随着时钟脉冲的到来, 发光二极管自左至右一个个点亮, 第8个脉冲以后, 全部二 极管均点亮, 此时, DSR端的数据变为0, 随着后续脉冲的到 来, 发光二极管自左至右一个个熄灭。
电路与模拟电子技术实验报告
电工与电子技术实验课程名称电工与电子技术实验学生学院自动化学院专业班级____17物联网一班 __ 学号_____学生姓名________ ____ _ 指导教师_______ _____ __2018 年12月 25号实验一伏安特性曲线的测量专业班级学号实验者一、实验目的(1)学习伏安特性曲线的测量方法;(2)学习直流稳压电源、毫安表的使用方法;(3)熟悉用万用表测量电阻、直流电压;(4)熟悉常用电工实验箱的使用。
二、实验仪器和设备直流稳压电源、数字万用表、直流毫安表、电工实验箱三、实验原理伏安特性曲线是指某一元件端口的电压、电流间的变化规律(外特性)曲线。
通过对该曲线的分析计算,可以掌握端口电压、电流的变化规律。
因此,在电路分析中,测定端口的伏安特性曲线是一种很重要的分析手段。
对于线性元件,通过它的电流与加在它两端的电压成正比关系,服从欧姆定律,伏安特性画在I-V坐标平面上是一条通过原点的直线,如图4.1.1所示;通过非线性电阻元件中的电流与加在其两端的电压不成正比关系变化,不服从欧姆定律,其伏安特性画在I-V坐标平面上是一条曲线,如图4.1.2所示。
图4.1.1 线性元件伏安特性图4.1.2 非线性元件伏安特性伏安特性的测量可采用伏安测量法,即用电压表测元件端口电压、用电流表测通过元件的电流。
如图4.1.3所示,图中R1是待测元件,R2是分压电位器。
测量时,调节电源电压Us或电位器R2,记录各种电流值I及相应的电压值V。
根据测量值,以电压V为横坐标,以电流I为纵坐标作图,即可得到伏安特性曲线。
伏安法原理简单,测量方便,由于仪表的内阻会影响到测量的结果,因此,必须注意仪表的合理接法。
四、实验内容用伏安法测定电阻元件伏安特性。
实验电路如图4.1.3所示。
测定电阻R1=1㏀的伏安特性,电路中稳压电源输出为5V。
1. 实验前的准备(1)检查毫安表和数字万用表(2)判定导线好坏(3)电阻、电位器好坏判定2. 合理放置实验箱及仪表打开实验箱使箱盖直向上,双手扶稳箱盖底端并向右推出箱盖,将箱盖放在试验台下方的柜子里。
电子技术基础实验
出波形的变化原因。
(3) 实验中遇到了什么问题, 如何解决? (4) 功率放大器与电压放大电路比较有何异同点? (5) 查阅其他集成功率放大器的相关资料手册。
表 S2.3
第三篇 电子技术基础实验 S2.5 实验报告
(1) 整理实验测量数据。 (2) 分析静态工作点对放大器性能的影响。 (3) 分析空载和带载情况下, 放大倍数的改变原因。 (4) 初步确定输出电压达到饱和失真(或截止失真)时, 静态工作点的大致范围。
第三篇 电子技术基础实验
实验 3 多级放大器
第三篇 电子技术基础实验 表S1.1
第三篇 电子技术基础实验
(2) 用双踪示波器Y轴任一输入通道探头测量示波器 “校正电压”, 读出荧屏显示波形的UP-P值和频率f。
(3) 用交流毫伏表及双踪示波器测量信号发生器的输出 电压及周期的数值, 记入表S1.2。
第三篇 电子技术基础实验 表S1.2
第三篇 电子技术基础实验
第三篇 电子技术基础实验
(3) 双踪示波器的电压测量有“CH1”、“CH2”、 “CH1+CH2”、“断续”和“交替”五种方式。 其中“断续” 和“交替”是双踪信号测量方式。 “断续”适用于频率较高 的信号测量, “交替”用于频率较低的信号的测量。
当被测信号频率较低时, 波形会有些闪烁,但被测信号 波形只要不左右移动, 仍属于稳定显示。
第三篇 电子技术基础实验 S3.4 实验内容及步骤 (1) 按图S3.1连接好电路, 检查无误。
图 S3.1 多级放大器
第三篇 电子技术基础实验
(2) 闭合开关S,将直流电源UCC调到12V,接入电路输入 端,分别调节Rp1和Rp2,使UC1、UC2调至8~10V(建立各级合 适的静态工作点), 测量UC1Q、UC2Q, 填入表S3.1中。
电力电子技术(6).ppt
➢ 电力电子器件(Power Electronic Device) — 可直接用于主电路中,实现电能的变 换或控制的电子器件。
➢ 主电路(Main Power Circuit) — 电气设备或电力系统中,直接承担电 能的变换或控制任务的电路。
2020年9月26日星期六
第一章 电力电子器件
三相交流电源
接近于零,而电流由外电路决定 ;阻断时(断态) 阻抗很大,接近于断路,电流接近于零,管子两端 电压由外电路决定 。
➢ 电力电子器件一般需要由电子电路来控制和驱动。 ➢ 电力电子器件自身的功率损耗远大于电子器件,
一般都要安装散热器。
2020年9月26日星期六
第一章 电力电子器件
3.电力电子器件的损耗
3)保护电路
保证电力电子器件和整个电力电子系统正常可靠运行
4)检测电路
由信息电路组成,检测主电路或应用现场信号
2020年9月26日星期六
第一章 电力电子器件
1.1.3 电力电子器件的分类
➢ 按照器件能够被控制的程度,分为以下三类:
1. 半控型器件
— 通过控制信号可以控制其导通来自不能控制其关断。 -- SCR及派生器件
3. PN结加反向电压( 反向偏置)
外电场
1) PN结反向偏置时, PN 结仅流过很小 的反向饱和电流, PN 结反向截止。 PN 结表现为高阻 态.
2020年9月26日星期六
第一章 电力电子器件
2) 反向恢复过程
漂移运动达动态平
- - -- -- ++ ++ ++ ++
衡, 在P区和N区的
- - -- -- ++ ++ ++ ++少子飘移交界面处构成空间
电子技术实验报告
实验一常用电子仪器的使用一、实验目的(1)通过阅读仪器说明书(使用手册),了解仪器的主要技术性能指标,初步掌握常用电子仪器的使用方法。
(2)掌握函数信号发生器和交流电压表(毫伏表)的使用方法。
(3)掌握双踪示波器的基本操作方法,掌握使用示波器测量电信号的基本参数:幅度(有效值、峰值或峰峰值)、周期(频率)和相位的方法。
二、实验设备及材料函数信号发生器(DF1641B1型)、双踪示波器(MOS-620/640型)、交流毫伏表(MVT171或D-171型)、直流稳压电源、万用表等。
三、实验原理(一)函数信号发生器函数信号发生器是在电子电路实验中最常用的电子仪器之一,用来产生各种波形的信号(正弦波、三角波、方波等)。
函数信号发生器所产生的各种信号的参数(如电压幅度、频率等),一般都可以通过仪器面板上设置的开关和旋钮加以调节。
本实验中介绍的DF1641B1型函数信号发生器,是一多功能函数信号发生器。
它可以输出正弦波、三角波和方波,频率范围为0.3 Hz ~3 MHz。
其最大输出电压幅度>20V 峰峰值(对正弦波,最大输出有效值>7 V),可作为一般振荡器给放大器提供信号。
该函数信号发生器与其他设备配合,还可以用作扫频信号发生器,这里仅介绍作为振荡器的使用方法。
1、DF1641B1型函数发生器面板中各旋钮介绍。
如图1-1所示。
图1-1 DF1641B1型函数发生器面板图1—电源开关;2—频率范围选择(向上);3—频率范围选择(向下);4—波形选择开关;5—直流偏置开关;6—直流偏置调节;7—扫频方式选择;8—扫描速率;9—输出衰减选择;10—电压输出;11—TTL输出;12—输出幅度微调;13—计数器输入;14—内接/外测选择;15—扫频宽度;16—对称度调节;17—输出信号幅度显示;18—对称度控制开关;19—频率微调;20—频率显示5..2、操作步骤(1)打开电源开关○1后,按下波形选择开关○4以选择信号类型,例如,正弦波。
实训六 电压串联负反馈对放大器性能的影响
(1)输出电压 U o与输入电压之间满足关系式
上述两个特性是分析理想运放应用电路的基本原 模拟电子 技术实验 则,可简化运放电路的计算。
在实际的负反馈电路里,有四种常见的组态:
电压串联、电压并联、电流串联、电流并联。引入
负反馈后,放大电路的许多性能得到改善,如:提 高了输出的稳定性;改善了输入、输出电阻(增大 或减小);展宽频带;降低非线性失真。 电压串联负反馈放大电路是基本运算电路。本
Rif(计算值)
Rif(理论值)
3、电路的输出电阻 Rof
令 RL 510 输入: 500 Hz, i 0.5V 的正弦信号,测量 f V 并记录:当 RL 时的Vo 值;当 RL 510 时的 VoL 值,计算 Rof 。 Vo VoL Rof RL VoL
5、观察A点电位 令 Vi 为:0.1v、0.2v、0.5v、0.6v 时,测量A点 电位。
模拟电子 技术实验
Vi (v) VA (有RF)
0.1v
0.2v
0.5v
0.6v
6、设计一个负反馈放大器,要求 并实际测量是否达到设计要求。
模拟电子 技术实验
AVf 10 ,
输入阻抗 Rif ﹥1M 。画出电路图,计算电路参数,
仪 器
毫伏表 示波器
Vi (v)
Vo (v)
AVf(计算值)
AVf(理论值)
模拟电子 技术实验
2、电路的输入电阻 Rif
在 R1 前面串接 Rs ,令 Rs 1M ,测量
、
Vs ,计算 Vi
Rif
Vi Rif Rs Vs Vi
仪 器 毫伏表 示波器
模拟电子 技术实验
电力电子技术实验
实验一 三相桥式全控整流电路实验
六、注意:
双踪示波器有两个探头,可以同时测量两个信号,但这两 个探头的地线都与示波器的外壳相连接,所以两个探头 的地线不能同时接在某一电路的不同两点上,否则将使 这两点通过示波器发生电气短路。为此,在实验中可将 其中一根探头的地线取下或外包以绝缘,只使用其中一 根地线。当需要同时观察两个信号时,必须在电路上找 到这两个被测信号的公共点,将探头的地线接上,两个 探头各接至信号处,即能在示波器上同时观察到两个信 号,而不致发生意外。
(1) 锯齿波周期与幅值测量(分开关s2、s3、s4合上与断 开多种情况)。测量“1”端。
(2)输出最大与最小占空比测量。测量“2”端。 注意:下面(2-7)六路电路中任选择一种电路做实验
实验二 直流斩波电路的性能研究
2.buck chopper (1)连接电路 将UPW(脉宽调制器)的输出端2端接到斩波电路中IGBT管VT的G端,分别将斩
本实验室管理采用专人负责制度,能够承担与电力电子及 电气传动课程相关的各类实验,满足学生学习的需要。
电力电子技术体管触发电路及单相半波可控整流电路实 验 实验二 正弦波同步移相触发电路实验 实验三 锯齿波同步移相触发电路实验 实验四 单相桥式半控整流电路实验 实验五 单相桥式全控整流电路实验 实验六 单相桥式有源逆变电路实验 实验七 三相半波可控整流电路的研究 实验八 三相桥式半控整流电路实验 实验九 三相桥式全控整流(及有源逆变电路实验) 实验十 单相交流调压电路实验
实验三 单相交流调压电路实验
四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或
NMCL—36组件 5.二踪示波器 6.万用表 7、U盘(自备)
电子版 电工技术实验6个实验
于最大稳定电流 I ZM 。稳压电路的稳压性能通常用稳压系数 S 和动态内阻 r 表示:
U o
S Uo U i
r U o I o
Ui
三.实验步骤
启动 EWB
1.半波整流电路
1).按图 2.7.1 建立实验电路。 2).断开开关 S。用示波器分别观 测并记录输入、输出电压波形。测量输
出电压平均值。 3).接通开关 S,以接入滤波电容 C,重复步骤 2)。
档中。
2. 二阶有源滤波器
1).按照图 2 连接电路。 2).用扫频仪测试电路的频率特性 3).用 EWB 的交流频率分析功能分析电路的频率特性
3. 电压—电流变换器
1).按照图 3 连接电路并设置各元件的参数。 选择 File | Save 菜单命令,将电路保存在 .ewb 文件中。按照节 1.3.4 的 2 中介绍的方 法,将电路图复制到粘贴板上,然后,将其粘贴到字处理软件的文档中。 2).启动电路仿真。调节 R1,使 u i 在+5V~-5V 之间变化,测量相应的 io。 3).使 u i 保持+5V 或-5V,在 0%—100%之间改变 RL ,测量相应的 io 。
电路 a,b 的实验数据
与横轴的交点为 通过对比两个表的实验数据可以得知,电压源与对应电流源的作用效果是一样的,所以 可以等效替代。
五.实验结论
独立电流源和独立电压源满足叠加定理,电压源和电流源可以等效替代。
实验二 等效电源定理 一. 实验目的
1. 了解 EWB 的基本界面,学习 EWB 的基本操作; 2. 学习基本元件的使用、模拟电路的建立和仿真测试。 3. 验证代文宁定理和诺顿定理。
分),图片请保持正向、清晰,实验报告无需手写; 四、 文件命名格式:“中心-学号-姓名-科目.doc” 五、 文件容量大小:不得超过 20MB。
电工学电子技术实验报告
电工与电子技术实验讲义实验一 晶体管共射极单管放大电路一、实验目的(1)熟悉电子电路实验中常用的示波器、函数信号发生器的主要技术指标、性能及使用方法。
(2)掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。
(3)学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
(4)掌握放大器电压放大倍数、输入电阻*、输出电阻*的测试方法。
二、实验原理图2-1为电阻分压式工作点稳定的共射极单管放大器实验电路图。
它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R F 和R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号i u 后,在放大器的输出端便可得到一个与i u 相位相反、幅值被放大了的输出信号0u ,从而实现了电压放大。
图2-1 共射极单管放大器实验电路在图2-1电路中,当流过偏置电阻RB1和RB2的电流远大于晶体管V 的基极电流IB 时(一般5-10倍),则其静态工作点可用下式估算)(E F C C CC CE FE BEB E R R R I U U R R U U I ++-=+-=电压放大倍数 //(1)C Lu be FR R A r R ββ=-++输入电阻 be B B i r R R R ////21= 输出电阻 C R R ≈0由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。
在设计前应测量所用元器件的参数,为电路设计提供必要的依据;在完成设计和装配以后,还必须测量和因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。
放大器的测量和调试一般包括放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。
1.放大器静态工作点的测量与调试 (1)静态工作点的测量测量放大器的静态工作点,应在输入信号i u =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流C I 以及各电极对地的电位B U 、C U 和E U 。
数字电子技术实验报告(学生版)
数字电子技术实验报告开课实验室 指导教师 班级 学号 姓名 日期实验项目 实验一 TTL 逻辑门电路 和组合逻辑电路一、实验目的1.掌握TTL “与非”门的逻辑功能.2.学会用“与非”门构成其他常用门电路的方法。
3.掌握组合逻辑电路的分析方法与测试方法。
4.学习组合逻辑电路的设计方法并用实验来验证.二、预习内容1.用74LS00验证“与非”门的逻辑功能Y 1=AB 2.用“与非"门(74LS00)构成其他常用门电路Y 2=A Y 3=A+B=B A Y 4=AB B AB A实验前画出Y 1——Y 4的逻辑电路图,并根据集成片的引脚排列分配好各引脚。
3.画出用“异或”门和“与非”门组成的全加器电路。
(参照实验指导书P 。
75 图3—2-2)并根据集成片的引脚排列分配好各引脚。
4.设计一个电动机报警信号电路.要求用“与非”门来构成逻辑电路。
设有三台电动机,A 、B 、C 。
今要求:⑴A 开机,则B 必须开机;⑵B 开机,则C 必须开机;⑶如果不同时满足上述条件,则必须发出报警信号。
实验前设计好电动机报警信号电路。
设开机为“1”,停机为“0”;报警为“1”,不报警为“0”。
(写出化简后的逻辑式,画出逻辑图及引脚分配)三、实验步骤1. 逻辑门的各输入端接逻辑开关输出插口,门的输出端接由发光二极管组成的显示插口。
逐个测试逻辑门Y 1-Y 4的逻辑功能,填入表1-1表1-12. 用74LS00和74LS86集成片按全加器线路接线,并测试逻辑功能。
将测试结果填入表 1—2.判断测试是否正确。
图中A i 、B i 为加数,C i —1为来自低位的进位;S i 为本位和,C i 为向高位的进位信号.表1—23.根据设计好的电动机报警信号电路用74LS00集成片按图接线,并经实验验证.将测试结果填入表1—3。
表1-3四、简答题1.Y4具有何种逻辑功能?2.在实际应用中若用74LS20来实现Y=AB时,多余的输入端应接高电平还是低电平? 3.在全加器电路中,当A i=0,S i*=1,C i=1时C i—1=?数字电子技术实验报告开课实验室 指导教师 班级 学号 姓名 日期 实验项目 实验二 组合逻辑电路的设计一、实验目的1.掌握用3线- 8线译码器74LS138设计组合逻辑电路。
6高频电子技术实验六、倍频器
实验六丙类倍频器一、实验原理
倍频器的作用:将输入信号频率成整数倍增加。
使用倍频器的优点:
(1)能降低主振级频率,使其稳定工作。
(2)扩展发射机的工作波段。
(3)提高发射机工作稳定性。
构建仿真电路如下图:
三极管请按如下选取:
二、倍频特性实验
1、输出波形观察(请将输出波形截图粘贴如下)
输出波形的频率为Hz
2、傅里叶分析
将原理图中的信号源频率改为500KHz,谐振网络元件参数不变,使电路成为2倍频器,观察并记录输入与输出波形,并与丙类功放实验结果比较,说明什么问题?通过傅里叶分析,观察结果。
(提示:在单击“仿真”菜单中中“分析”选项下的“傅里叶分析”命令,在弹出的对话框中设置。
在“分析参数”标签页中的“基本频率”中设置基波频率与信号源频率相同,谐波数量中设置包括基波在内的谐波总数,“取样的停止时间”中设置停止取样时间,通常为毫秒级。
在输出变量页中设置输出节点变量)
请将傅里叶分析结果粘贴如下。
电子技术实训报告范文(精选6篇)
电子技术实训报告范文(精选6篇)电子技术实训报告范文(精选6篇)在日常生活和工作中,接触并使用报告的人越来越多,其在写作上具有一定的窍门。
那么一般报告是怎么写的呢?以下是小编精心整理的电子技术实训报告范文,希望对大家有所帮助。
电子技术实训报告篇1作为一名合格的大学生,社会实习是必经的过程,不管什么专业,都能在实习中获得自己以后从事的工作岗位所必需的技能。
以下是为您整理的电子工艺专业假期实习报告,谢谢阅读。
在为期两周的实习当中感触最深的便是实习联系理论的重要性,当遇到实际问题时,只要认真思考,对就是思考,用所学的知识,再一步步探索,是完全可以解决遇到的一般问题的。
这次的内容包括电路的设计,印制电路板,电路的焊接。
本次实习的目的主要是使我们对电子元件及电路板制作工艺有一定的感性和理性认识;对电子信息技术等方面的专业知识做进一步的理解;培养和锻炼我们的实际动手能力,使我们的理论知识与实习充分地结合,作到不仅具有专业知识,而且还具有较强的实习动手能力,能分析问题和解决问题的高素质人才,为以后的顺利就业作好准备。
在大一和大二我们学的都是一些理论知识,就是有几个实习我们也大都注重观察的方面,比较注重理论性,而较少注重我们的动手锻炼,比如上学期的精工实习。
而这一次的实习正如老师所讲,没有多少东西要我们去想,更多的是要我们去做,好多东西看起来十分简单,一看电路图都懂,但没有亲自去做它,你就不会懂理论与实习是有很大区别的,看一个东西简单,但它在实际操作中就是有许多要注意的地方,有些东西也与你的想象不一样,我们这次的实验就是要我们跨过这道实际和理论之间的鸿沟。
不过,通过这个实验我们也发现有些事看似实易,在以前我是不敢想象自己可以独立一些计时器,不过,这次实验给了我这样的机会,现在我可以独立的做出。
总的来说,我对这门课是热情高涨的。
第一,我从小就对这种小制作很感兴趣,那时不懂焊接,却喜欢把东西给拆来装去,但这样一来,这东西就给废了。
电工电子技术 实验 电路元件的伏安特性测绘
电工电子技术实验电路元件的伏安特性测绘实验目的1. 理解电路元件的伏安特性及其作用;2. 学会使用伏安计和万用表的基本操作;3. 掌握电路元件伏安特性测绘的方法和步骤。
实验原理伏安特性(V-I特性)是指在电路中,电流随电压的变化规律。
伏安特性是电路中最基本的特性之一,它能够反映电路中元件的电学性能,如电阻、电容、电感等。
在直流电路中,电路元件的伏安特性通常用一条直线来表示,即欧姆定律(V=IR)的直线表示。
在交流电路中,因为电流和电压是变化的,所以电路元件的伏安特性通常是一个复杂的曲线。
伏安计是一种用来测量电路中电压和电流的仪器。
万用表是一种多功能测试仪器,既可以测量电压、电流、电阻,也可以测量容量、电感和频率等参数。
实验器材1. 伏安计;2. 万用表;3. 电阻(10Ω,220Ω);4. 电流表;6. 电源。
实验步骤1. 将电路连接好将电路连接好,在电源的正负极分别接一个开关,然后从正极连接一根电源线,连接到电阻的一个端点,再从电阻的另一个端点连接到伏安计的“电流”插口。
2. 测量电阻的电阻值使用万用表测量电阻,记录下电阻值,并标注在电阻上面。
3. 测量电源电压4. 拧动电源开关,不断调整电压将起始电压调到0,然后拧动电源开关,逐渐增加电压,将电商表的读数记录下来,以及伏安计的读数。
一般情况下,电压以0.5V的间隔逐渐增加即可。
5. 绘制伏安特性曲线将所记录的电流和电压对应的值绘制在坐标系上,在坐标系上标记出电流和电压的单位,然后将点逐一连接起来,即得到电路元件的伏安特性曲线。
实验注意事项1. 安全第一,在进行实验时,一定要注意安全,避免电路短路或者其他事故的发生。
2. 选择合适的电源电压,尽可能避免损坏电路元件。
3. 注意万用表和伏安计的使用方法,避免操作不当而导致测量误差。
4. 操作过程中要求实验者认真地观察并记录每次调整后的电压和电流值,以加强实验的可靠性。
结论本次实验通过测绘电路元件的伏安特性曲线,我们可以看到电路元件的电学性能,了解其电阻、电流和电压等参数的变化规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验目的
1. 加深对差动放大器性能及特点的理解
2. 学习差动放大器主要性能指标的测试方法
实验仪器
1、模拟电路实验装置一台
2、数字万用表一只
3、毫伏表一台
4、示波器一台
5. 函数信号发生器一台
实验内容
1.按实验原理图,连接好电路。
2.开关K拨向左边构成典型差动放大器。
(1)测量静态工作点
①调节放大器零点
信号源不接入,将放大器输入端A、B与地短接,接通±12V直流电源,用万用表的直流电压挡测量输出电压UO,调节调零电位器RP,使UO=0。
调节要仔细,力求准确。
②测量静态工作点
零点调好以后,用万用表的直流电压挡测量T1、T2管各电极电位及射极电阻Re 两端电压URE,记入表1.4.1。
测量静态工作点:放大器输入端A、B与地短接
3.测量差模电压放大倍数
断开直流电源,将函数信号发生器的输出端接放大器输入A端,信号源的地端(黑夹子)接放大器输入B端构成双端输入方式,调节输入信号为频率f=1KHz的正弦信号,并使信号源的幅度输出旋钮(AMPL)旋至零,用示波器监视输出端(集电极C1或C2与地之间)。
接通±12V直流电源,逐渐增大输入电压Ui(约100mV),在输出波形无失真的情况下,用交流毫伏表测量Ui,UC1,UC2 (注意:毫伏表后面板的开关打到“FLOAT”位置,保证两个被测信号不共地),记入表1.4.2中,并观察ui,uC1,uC2之间的相位关系。
测量差模电压放大倍数:差模信号
表1.4.2
4.测量共模电压放大倍数
将放大器A、B短接,信号源接A端与地之间,构成共模输入方式,调节输入信号f=1kHz,Ui=1V,在输出电压无失真的情况下,测量Ui,UC1,UC2之值记入表1.4.2,并观察ui,uC1,uC2之间的相位关系及URe随Ui改变而变化的情况。
5.具有恒流源的差动放大电路性能测试
将图1.4.1电路中开关K拨向右边,构成具有恒流源的差动放大电路。
参照典型差动放大器性能测试的步骤对具有恒流源的差动放大器进行测试,将测得的静态工作点填入自行设计的表格中,而后测量表1.4.2右侧的相关数据。
测量差模电压放大倍数:差模信号
实验总结
1.计算静态工作点、差模共模电压放大倍数和共模抑制比CMRR 。
2.整理实验数据,列表比较实验结果和理论估算值,分析误差原因
3.回答思考题,总结实验收获。