用坐标表示轴对称PPT课件 人教版
合集下载
用坐标表示轴对称-ppt下载
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
14.(10分)(1)分别作出△ABC关于直线MN对称的图形和△ABC关于 直线PQ对称的图形;
(2)若网格中每个小正方形的边长为1,求△ABC的面积.
(1)略 (2)10
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
11.(2016·呼伦贝尔)将点A(3,2)向左平移4个单位长度得到点A′,则 点A′关于y轴对称的点的坐标是( ) D
A.(-3,2) B.(-1,2) C.(1,-2) D.(1,2) 12.已知点A(2x-4,6)关于y轴对称的点在第二象限,则( A) A.x>2 B.x<2 C.x>0 D.x<0
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
3.(4 分)已知点 P(a,3),Q(-2,b)关于 x 轴对称,
则 a= -2 ,b= -3 .
4.(4 分)若 M(a,-21)与 N(4,b)关于 y 轴对称,
则 a= -4 ,b= -12 .
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
14.点P(1,2)关于直线y=1对称的点的坐标是 (1,0) ; 关于直线x=2对称的点的坐标是 (3,2) .
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
三、解答题(共35分)
15 . (10 分 ) 如 图 , 已 知 △ ABC 的 三 个 顶 点 坐 标 分 别 为 A( - 2 , 3) ,
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
14.(10分)(1)分别作出△ABC关于直线MN对称的图形和△ABC关于 直线PQ对称的图形;
(2)若网格中每个小正方形的边长为1,求△ABC的面积.
(1)略 (2)10
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
11.(2016·呼伦贝尔)将点A(3,2)向左平移4个单位长度得到点A′,则 点A′关于y轴对称的点的坐标是( ) D
A.(-3,2) B.(-1,2) C.(1,-2) D.(1,2) 12.已知点A(2x-4,6)关于y轴对称的点在第二象限,则( A) A.x>2 B.x<2 C.x>0 D.x<0
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
3.(4 分)已知点 P(a,3),Q(-2,b)关于 x 轴对称,
则 a= -2 ,b= -3 .
4.(4 分)若 M(a,-21)与 N(4,b)关于 y 轴对称,
则 a= -4 ,b= -12 .
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
14.点P(1,2)关于直线y=1对称的点的坐标是 (1,0) ; 关于直线x=2对称的点的坐标是 (3,2) .
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
(教学提纲)用坐标表示轴对称-ppt 下载【 优质公 开课推 荐】
三、解答题(共35分)
15 . (10 分 ) 如 图 , 已 知 △ ABC 的 三 个 顶 点 坐 标 分 别 为 A( - 2 , 3) ,
人教版八年级数学上册《用坐标表示轴对称》课件(共18张PPT)
点(x, y)关于x轴对称的点的坐标为_(x_,_-__y_). 点(x, y)关于y轴对称的点的坐标为_(-__x_,_y_).
1、完成下表.
已知点
(2,-3) (-1,2) (-6,-5) (0,-1.6) (4,0)
关于x轴的对称点 关于y轴的对称点
(2,3) (-1,-2) (-6, 5) (0,1.6) (4,0) (-2, -3) (1, 2) (6, -5) (0, -1.6) (-4,0)
谢谢观赏
You made my day!
我们,还在路上……
2、已知右边圆脸中眼睛A的坐标
为(2,3)B的坐标为(4,3)嘴角C的
坐标为(4,1)D的坐标为(2,1)。y Nhomakorabea5
你能根据 轴对称的 性质写出
· ·4
B1
A1
3
· · C1
2
D1
1
·A B· D· C·
左边圆脸 的眼睛和
-4
-3
-2
-1
0 -1
12345
x
嘴角的坐
-2
标吗?
-3
-4
A1的坐标为(___-2__,__3_)_ B1的坐标为(__-_4_,___3_) C1的坐标为(___-_4_,__1_)_ D1的坐标为(__-_2_,___1_)
·
A’(2,-3)
x 45
你能说出
点A与点
A’坐标的
关系吗?
在平面直角坐标系中画出下列各点关
于x轴的对称点.
y
思考:
5
4
B (-4, 2)
·
3 2
1
·-4 -3 -2 -1-10 -2
B’ (-4, -2) -3
1、完成下表.
已知点
(2,-3) (-1,2) (-6,-5) (0,-1.6) (4,0)
关于x轴的对称点 关于y轴的对称点
(2,3) (-1,-2) (-6, 5) (0,1.6) (4,0) (-2, -3) (1, 2) (6, -5) (0, -1.6) (-4,0)
谢谢观赏
You made my day!
我们,还在路上……
2、已知右边圆脸中眼睛A的坐标
为(2,3)B的坐标为(4,3)嘴角C的
坐标为(4,1)D的坐标为(2,1)。y Nhomakorabea5
你能根据 轴对称的 性质写出
· ·4
B1
A1
3
· · C1
2
D1
1
·A B· D· C·
左边圆脸 的眼睛和
-4
-3
-2
-1
0 -1
12345
x
嘴角的坐
-2
标吗?
-3
-4
A1的坐标为(___-2__,__3_)_ B1的坐标为(__-_4_,___3_) C1的坐标为(___-_4_,__1_)_ D1的坐标为(__-_2_,___1_)
·
A’(2,-3)
x 45
你能说出
点A与点
A’坐标的
关系吗?
在平面直角坐标系中画出下列各点关
于x轴的对称点.
y
思考:
5
4
B (-4, 2)
·
3 2
1
·-4 -3 -2 -1-10 -2
B’ (-4, -2) -3
人教版八年数学上 第13章_轴对称单元复习课件(共27张PPT)
(2)轴对称:把一个图形沿着某一条直线折叠后,能 够与另一个图形重合,那么这两个图形关于这条直线 成轴对称,这条直线叫做对称轴,两个图形中的对应 点叫做对称点。
(3)图形轴对称的性质:如果两个图形关于某直线对 称,那么对称轴是任何一对对应点所连线段的垂直平
分线。
3
(4)轴对称图形的性质:轴对称图形的对称轴是任何一 对对应点所连线段的垂直平分线。
13
例1 如图,以直线AE为对称轴,画出该图形的另一部分。
B C
A D E
解:作图过程如下:
(1)分别作出点B、C关 F 于直线AE的对称点F、H。
(2)连结AF、FD、DH、 HE,得到所求的图形。
H
14
点P(a,b)关于x轴对称的点的坐标为(a,-b)
点P(a,b)关于y轴对y 称的点的坐标为(-a,b)
到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上。
4
正方形、长方形、等腰三角形、等腰梯形 和圆都是轴对称图形。有的轴对称图形有不止 一条对称轴。
5
二、题目特点:
• 判断轴对称图形或对称轴的条数 • 根据轴对称图形的性质作对称轴 • 用线段垂直平分线的性质解决计算题或进行证明说理 三、解题切入点:
4
A5E来自FG3
12
∴ AB=DB, ∠1= ∠2=60° 从而有 ∠3= ∠1=60° 在△ABF和△DBG中
∠3= ∠1
BC
∠4= ∠5
AB=DB
∴ △ABF≌ △DBG
∴BF=BG
1.如图,在△ABC中,BP、CP分别是∠ABC和 ∠ACB的平分线,且PD//AB,PE//AC,求 △PED的周长 .
3
2
B1
(3)图形轴对称的性质:如果两个图形关于某直线对 称,那么对称轴是任何一对对应点所连线段的垂直平
分线。
3
(4)轴对称图形的性质:轴对称图形的对称轴是任何一 对对应点所连线段的垂直平分线。
13
例1 如图,以直线AE为对称轴,画出该图形的另一部分。
B C
A D E
解:作图过程如下:
(1)分别作出点B、C关 F 于直线AE的对称点F、H。
(2)连结AF、FD、DH、 HE,得到所求的图形。
H
14
点P(a,b)关于x轴对称的点的坐标为(a,-b)
点P(a,b)关于y轴对y 称的点的坐标为(-a,b)
到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上。
4
正方形、长方形、等腰三角形、等腰梯形 和圆都是轴对称图形。有的轴对称图形有不止 一条对称轴。
5
二、题目特点:
• 判断轴对称图形或对称轴的条数 • 根据轴对称图形的性质作对称轴 • 用线段垂直平分线的性质解决计算题或进行证明说理 三、解题切入点:
4
A5E来自FG3
12
∴ AB=DB, ∠1= ∠2=60° 从而有 ∠3= ∠1=60° 在△ABF和△DBG中
∠3= ∠1
BC
∠4= ∠5
AB=DB
∴ △ABF≌ △DBG
∴BF=BG
1.如图,在△ABC中,BP、CP分别是∠ABC和 ∠ACB的平分线,且PD//AB,PE//AC,求 △PED的周长 .
3
2
B1
人教版数学八年级上册13.用坐标表示轴对称课件(1)
解:关于x 轴对称的点的坐标:(-2, -6), (1,2),(-1, -3),(-4,2),(1,0) .
关于y 轴对称的点的坐标:(2,6), (-1,-2),(1,3),(4,-2),(-1,0) .
当堂练习
练习2 若点P(2a+b,-3a)与点P′(8,b+2) 关于x 轴对称,则a = 2 ,b= 4 ;若关于y 轴对 称,则a = 6 ,b=__-_2_0__.
C y C′
D
D′
为: A′( 5 , 1 ), B′( 2 , 1 ),
A
B
1
O
B′
1
A′x
C′( 2 , 5 ),
D′( 5 , 4 ),
运用变化规律作图
解:依次连接 A′B′ , B′C′, C′D′, D′A′,
就可得到与四边形ABCD
关于y轴对称的四边形
C y C′
D
D′
A′B′C′D′ .
如图,如果以天安门 为原点,分别以长安街和中 轴线为x轴和y 轴建立平面 直角坐标系,对应于东直 门的坐标,你能找到西直门 的位置,说出西直门的坐 标吗?
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
对于平面直角坐标系中任意一点,你能找出其关于 x 轴或y 轴对称的点的坐标吗?它们之间有什么规律?
样的变化规律?
y
C′ 关于x 轴对称的每对
A′ B
对称点的横坐标相等,纵 坐标互为相反数.
C
1D
O
1
D′
B′
A
E E′
x
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
在平面直角坐标系中,画出下列已知点及其关于 y 轴对称的点,把它们的坐标填入表格中.
关于y 轴对称的点的坐标:(2,6), (-1,-2),(1,3),(4,-2),(-1,0) .
当堂练习
练习2 若点P(2a+b,-3a)与点P′(8,b+2) 关于x 轴对称,则a = 2 ,b= 4 ;若关于y 轴对 称,则a = 6 ,b=__-_2_0__.
C y C′
D
D′
为: A′( 5 , 1 ), B′( 2 , 1 ),
A
B
1
O
B′
1
A′x
C′( 2 , 5 ),
D′( 5 , 4 ),
运用变化规律作图
解:依次连接 A′B′ , B′C′, C′D′, D′A′,
就可得到与四边形ABCD
关于y轴对称的四边形
C y C′
D
D′
A′B′C′D′ .
如图,如果以天安门 为原点,分别以长安街和中 轴线为x轴和y 轴建立平面 直角坐标系,对应于东直 门的坐标,你能找到西直门 的位置,说出西直门的坐 标吗?
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
对于平面直角坐标系中任意一点,你能找出其关于 x 轴或y 轴对称的点的坐标吗?它们之间有什么规律?
样的变化规律?
y
C′ 关于x 轴对称的每对
A′ B
对称点的横坐标相等,纵 坐标互为相反数.
C
1D
O
1
D′
B′
A
E E′
x
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
在平面直角坐标系中,画出下列已知点及其关于 y 轴对称的点,把它们的坐标填入表格中.
用坐标表示轴对称ppt课件
B '(-4,-2)
你能说出点B 与点B'坐标的 x 关系吗?
学习探究
➢【自学】 自学教材P68-69页完成《学习任务单》的活动1、2(3分钟).
活动1:根据问题1、问题2、问题3,由此你能得到什么结论?
关于x轴对称的点的坐标的特点:
自学要求: (独立不讨论)
①圈点勾画; ②标记疑问.
关于y轴对称的点的坐标的特点:
(4分钟)
活动3:在平面直角坐标系中画出下列各点关于y轴的对称点。
y
展学要求:
(x , y)
关于
B(-4,2)
B '(-4,-2)
积极展示,自信大方。 ①组长主持,分工讲解; ②有没有补充和质疑的?
y轴 对称
O
x
( -x, y )
C '(3,4)
C (3,-4)
学习小结
知识要点
关于x轴对称的点的坐标的特点: 横坐标相等,纵坐标互为相反数。(简称:横轴横相等)
则点B关于x轴的对称点C的坐标是( D )
A.(-4,-2)
B.(2,2)
C.(-2,2)
D.(2,-2)
学以致用
3.设点M(x,y)在第二象限,且|x|=2,|y|=3,则点M关于y轴的对称点的坐标是
(A )
A.(2,3) B.(-2,3) C.(-3,2) D.(-3,-2)
4.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1
M
A N
学习探究
任务一 学习用坐标表示轴对称 问题2:如图,在平面直角坐标系中你能画出点A关于x轴的对称点吗?
y
A (2,3)
你能说出点A 与点A'坐标的 关系吗?
人教版数学八年级上册用坐标表示轴对称PPT完整版
用坐标表示轴对称
新知引入
猜一 猜
一位外国游客在天安门广场询问小明西 直门的位置,但他只知道东直门的位置, 聪明的小明想了想,就准确的告诉了他, 你能猜到小明是怎么做的吗?
新知引入
如图,是一幅老北京城的示意图,其
中西直门和东直门是关于中轴线对称
的.如果以天安门为原点,分别以长安
街和中轴线为x轴和y轴建立平面直角
对称 y
的
图形
.
解:点A(-3,5),B(-4,1),C(-1,3), 关于y轴对称点的坐标分别为 A′(3,5),B′(4,1),C′(1,3). 依次连接A′B′ ,B′C′ ,C′A′ , 就得到△ABC关于y轴对称的△A′B′C′.
·A 5
·A′
·B
· · 4 3 C 2 C′
1
·B′
步骤:一找、二描、三连
-4 -3 -2 -1-O1
-2 -3 -4
12345x
人教版数学八年级上册13.1.1用坐标 表示轴 对称
人教版数学八年级上册13.1.1用坐标 表示轴 对称
新知应用
例3 四边形ABCD的四个顶点的坐标分别为 A(-5,1)、B(-2,1)、
C(-2,5) 、D(-5,4),分别作出四边形关于y轴与x轴对称的图形.
B.(2,2)
C.(-2,2)
D.(2,-2)
人教版数学八年级上册13.1.1用坐标 表示轴 对称
人教版数学八年级上册13.1.1用坐标 表示轴 对称
新知演练
【变式2】在平面直角坐标系中,已知点A(2,m)和点 B(n,-3)关于x轴对称,则m+n的值是( C ) A.-1 B.1 C.5 D.-5
O
坐标系.根据如图所示的东直门的坐标,
新知引入
猜一 猜
一位外国游客在天安门广场询问小明西 直门的位置,但他只知道东直门的位置, 聪明的小明想了想,就准确的告诉了他, 你能猜到小明是怎么做的吗?
新知引入
如图,是一幅老北京城的示意图,其
中西直门和东直门是关于中轴线对称
的.如果以天安门为原点,分别以长安
街和中轴线为x轴和y轴建立平面直角
对称 y
的
图形
.
解:点A(-3,5),B(-4,1),C(-1,3), 关于y轴对称点的坐标分别为 A′(3,5),B′(4,1),C′(1,3). 依次连接A′B′ ,B′C′ ,C′A′ , 就得到△ABC关于y轴对称的△A′B′C′.
·A 5
·A′
·B
· · 4 3 C 2 C′
1
·B′
步骤:一找、二描、三连
-4 -3 -2 -1-O1
-2 -3 -4
12345x
人教版数学八年级上册13.1.1用坐标 表示轴 对称
人教版数学八年级上册13.1.1用坐标 表示轴 对称
新知应用
例3 四边形ABCD的四个顶点的坐标分别为 A(-5,1)、B(-2,1)、
C(-2,5) 、D(-5,4),分别作出四边形关于y轴与x轴对称的图形.
B.(2,2)
C.(-2,2)
D.(2,-2)
人教版数学八年级上册13.1.1用坐标 表示轴 对称
人教版数学八年级上册13.1.1用坐标 表示轴 对称
新知演练
【变式2】在平面直角坐标系中,已知点A(2,m)和点 B(n,-3)关于x轴对称,则m+n的值是( C ) A.-1 B.1 C.5 D.-5
O
坐标系.根据如图所示的东直门的坐标,
人教八年级数学上册《用坐标表示轴对称》课件(共39张PPT)
练一练
1.下列各点分别在坐标平面的什么位置上?
A(3,2)
第一象限 (+ , +)
B(0,-2)
y轴上
(0 , y)
C(-3,-2)
第三象限 (- , -)
D(-3,0)
x轴上
(X, 0)
E(-1.5,3.5)
第二象限 (- , +)
F(2,-3)
第四象限 (+ , -)
每个象限内的点都有自已的符号特征。
x=m对称,则;
(x1,y1)、(x2,y2)的关系:
y y X2=2m-x1 , 1= 2
(
m x1 x2 2
)
思考:如图,分别作出点P,M 关于 直线y=-2的对称点, 你能发现它们
坐标之间分别有什么关系吗?
· P(-2,4)
y
5
4
3 2
’
1
-4
-3
-2
-1
0 -1
-2
· M(3,1) x
12345
2. 注意总结题目的解题规律、方法 和易错点 ,提前讨论完的小组坐下改错 。
3 (精力要集中) 展示、点评、分工表
题
展示 点评(主讲) 特别提示
自主导学1
3组
学以致用3
4组
知识回顾
5组
1组 2组 9组
展示同学书 写工整,板 书清楚,
非展示同学 认真讨论并 整理学案
不讲答案,讲 重点难点,与 注意事项,方 法与总结拓展 与变形。
A(3,2) 第一象限 (+ , +) B(0,-2) y轴上 (0 , y) C(-3,-2) 第三象限 (- , -) D(-3,0) x轴上 (X, 0) E(-1.5,3.5)第二象限 (- , +) F(2,-3) 第四象限 (+ , -)
人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件
画点B、C的对称点F、G,然后顺次连接E、F、G得△
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
13.2.2 用坐标表示轴对称 课件 2024—-2025学年人教版数学八年级上册
B两点原来的位置关系是( )
A.关于y轴对称
B.关于x轴对称
C.A和B重合
D.关于原点对称
4.下列关于点的变化,进行轴对称变换的是( ) A.(-1,3)→(1,-3)B.(-5,-6)→(5,-6) C.(2,-3)→(-2,3)D.(5,7)→(-5,2)
5.(教材变形题·P71练习T3)在平面直角坐标系中,已知 点A(-3,1),B(-1,0),C(-2,-1),请在图中画出 △ABC,并画出与△ABC关于y轴对称的图形.
B (–3, –5)
C (3, –5)
合作交流
ii、如图,以矩形ABCD的中心为原点建立平面直
角坐标系:
(1)点A与点D有什么位
y
置关系?点B与点C呢? 点A与点D关于y (–3,
A 5)
D(3, 5)
轴对称,点B与点C
关于y轴对称;
(2)关于y轴对称的点的
O
x
坐标有什么特征?
关于y轴对称的点
横坐标互为相反数, 纵坐标相同。
解决问题:
思考 如图,西直门和东直门是 关于中轴线对称的. 如果以天 安门为原点,分别以长安街和 中轴线为x轴和y 轴建立平面直 角坐标系,根据图示,你能说 出西直门的坐标吗?
四:跟踪训练(一)
1.点P(-5, 6)与点Q关于x轴对称,则点Q的坐标为 ___(_-__5__,_-_6.) 2.点M(a, -5)与点N(-2, b)关于x轴对称,则a=__-_2__,b =___5__.
13.2 画轴对称图形 用坐标表示轴对称
一知识回顾:
已知点A和一条直线MN,你能画出这个点关于已知直线 的对称点吗?
过点A作AO⊥MN于O, 然后延长AO至OA′,使AO=OA′.
人教版数学八年级上册13.2.2 用坐标表示轴对称课件(共21张PPT)
解:(1) 由题意得 2 = a + b, ,解得 a = -3,
a = -3.
b = 5.
a = 3,
a = 3,
(2)由题意得
,解得
-2 = a + b.
b = -5.
13.2.2 用坐标表示轴对称
3. 已知△ABC 的三个顶点的坐标分别为 A (-3,5),B (-4,1),C (-1,3),
13.2.2 用坐标表示 轴对称
13.2.2 用坐标表示轴对称
学习目标
1. 理解在平面直角坐标系中,已知点关于 x 轴、y 轴对称的点的坐标的
特点. 重点 2. 掌握在平面直角坐标系中作出一个图形的轴对称图形的方法. 难点
13.2.2 用坐标表示轴对称
情境学新知
学校计划在空白区域修建2个四边形 篮球场,数学兴趣小组的同学们想在 学校平面示意图上作规划. 如图是数学兴趣小组通过查阅资料在 网格纸上绘制的部分平面示意图.
13.2.2 用坐标表示轴对称 第二步:通过实地测量其余楼距离,得到以下信息,补全示意图:
1.男生宿舍,女生宿舍关于y轴对称. 2.食堂与行政楼关于y轴对称. 3.教师宿舍与行政楼关于x轴对称. 4.新修建的体育馆在操场边,与图 书馆关于x轴对称.
食堂 体育馆
∟∟
∟
∟
女生宿舍 教师宿舍
13.2.2 用坐标表示轴对称
2
B′
B
1
-4 -3 -2 -1-O1 1 2 3 4 5 x
-2
-3
-4
13.2.2 用坐标表示轴对称
课堂小结
关于坐标轴 对称的点的 坐标规律
点( x,y) 关于 x 轴对称的点的坐标为(x,-y); 点(x,y)关于 y 轴对称的点的坐标为(-x,y).
人教版八年级数学上册13.《用坐标表示轴对称》课件
关于 轴的对称图形是下图中的( C ).
′
′
−2,0 , −1, −2
2
2
2
2
1
1
1
1
−2 −1
−1
−2
1
2
−2 −1
−1
1
2
−2 −1
−1
−2
−2
数形结合
1
2
−2 −1
−1
−2
1
2
例
已知点 2, ,点 + , 3 .
1 若点 和点 关于 轴对称,则 =−3
−3, −2 ,分别画出与△ 关于 轴和 轴对称的图
形.
解:点 , 关于 轴对称的点的坐标为 −,
,因此
△ 的三个顶点关于 轴对称的点分别为 1 2 , 4 ,
1 5 , 3 ,1 3 , − 2 . 依次连接 1 1 ,1 1 ,1 1 ,
2
1
′
(− , 1)
2
′
(−, ) 4,0′源自 −4,0探究
′
−
(, )
关于 轴对称
′
(−, )
归纳
关于坐标轴对称
的点的坐标规律
点 , 关于 轴对称的点的坐标为 , − ;
点 , 关于 轴对称的点的坐标为 −, .
例
思考
在平面直角坐标系中,关于坐标轴对称的
两个点的坐标有什么规律呢?
探究
如图,在平面直角坐标系中,请画出下列点关于
轴的对称点,并把它们的坐标填入表格中.
′
′
−2,0 , −1, −2
2
2
2
2
1
1
1
1
−2 −1
−1
−2
1
2
−2 −1
−1
1
2
−2 −1
−1
−2
−2
数形结合
1
2
−2 −1
−1
−2
1
2
例
已知点 2, ,点 + , 3 .
1 若点 和点 关于 轴对称,则 =−3
−3, −2 ,分别画出与△ 关于 轴和 轴对称的图
形.
解:点 , 关于 轴对称的点的坐标为 −,
,因此
△ 的三个顶点关于 轴对称的点分别为 1 2 , 4 ,
1 5 , 3 ,1 3 , − 2 . 依次连接 1 1 ,1 1 ,1 1 ,
2
1
′
(− , 1)
2
′
(−, ) 4,0′源自 −4,0探究
′
−
(, )
关于 轴对称
′
(−, )
归纳
关于坐标轴对称
的点的坐标规律
点 , 关于 轴对称的点的坐标为 , − ;
点 , 关于 轴对称的点的坐标为 −, .
例
思考
在平面直角坐标系中,关于坐标轴对称的
两个点的坐标有什么规律呢?
探究
如图,在平面直角坐标系中,请画出下列点关于
轴的对称点,并把它们的坐标填入表格中.
用坐标表示轴对称通用课件
实例
将点$P(2, 3)$绕原点逆时针旋转30度 ,得到点$P'(-1.175, 3.825)$。
相似变换法则
相似变换法则
在平面直角坐标系中,将点$P(x, y)$的横纵坐标同时扩大或缩小相同的倍数k, 得到点$P'(kx, ky)$。
实例
将点$P(2, 3)$的横纵坐标同时扩大2倍,得到点$P'(4, 6)$。
实例
将点$P(2, 3)$沿x轴正方向平移3 个单位,得到点$P'(5, 3)$;若沿 x轴负方向平移2个单位,得到点 $P'(-4, 3)$。
旋转变换法则
旋转变换法则
在平面直角坐标系中,将点$P(x, y)$ 绕原点逆时针旋转$theta$角度,得 到点$P'(xcostheta - ysintheta, xsintheta + ycostheta)$。
自然界中的轴对称现象
总结词
自然界中存在着许多轴对称的现象,这些现象在生物学、化学和物理学等领域都有广泛 的应用。
详细描述
自然界中存在着许多轴对称的现象,如雪花、分子结构、昆虫的身体等。这些现象在生 物学、化学和物理学等领域都有广泛的应用,它们为科学家们提供了深入了解自然界的
途径,有助于揭示自然界的奥秘。
05 轴对称的数学模 型
线性函数模型
总结词
线性函数模型是轴对称数学模型的一种,它表示的是一种线 性关系。
详细描述
线性函数模型一般形式为 y = mx + c,其中 m 是斜率,c 是截距。当一个函数满足关于某一直线对称,那么这个函数 就是线性函数模型的一种。
二次函数模型
总结词
二次函数模型是轴对称数学模型的一 种,它表示的是一种二次关系。
将点$P(2, 3)$绕原点逆时针旋转30度 ,得到点$P'(-1.175, 3.825)$。
相似变换法则
相似变换法则
在平面直角坐标系中,将点$P(x, y)$的横纵坐标同时扩大或缩小相同的倍数k, 得到点$P'(kx, ky)$。
实例
将点$P(2, 3)$的横纵坐标同时扩大2倍,得到点$P'(4, 6)$。
实例
将点$P(2, 3)$沿x轴正方向平移3 个单位,得到点$P'(5, 3)$;若沿 x轴负方向平移2个单位,得到点 $P'(-4, 3)$。
旋转变换法则
旋转变换法则
在平面直角坐标系中,将点$P(x, y)$ 绕原点逆时针旋转$theta$角度,得 到点$P'(xcostheta - ysintheta, xsintheta + ycostheta)$。
自然界中的轴对称现象
总结词
自然界中存在着许多轴对称的现象,这些现象在生物学、化学和物理学等领域都有广泛 的应用。
详细描述
自然界中存在着许多轴对称的现象,如雪花、分子结构、昆虫的身体等。这些现象在生 物学、化学和物理学等领域都有广泛的应用,它们为科学家们提供了深入了解自然界的
途径,有助于揭示自然界的奥秘。
05 轴对称的数学模 型
线性函数模型
总结词
线性函数模型是轴对称数学模型的一种,它表示的是一种线 性关系。
详细描述
线性函数模型一般形式为 y = mx + c,其中 m 是斜率,c 是截距。当一个函数满足关于某一直线对称,那么这个函数 就是线性函数模型的一种。
二次函数模型
总结词
二次函数模型是轴对称数学模型的一 种,它表示的是一种二次关系。
《用坐标表示轴对称》精品课件 人教版八年级数学上
Cy D
A B1 O1
x
A′′
C′′
D′′
B′′
归纳
在平面直角坐标系中画轴对称图形的步骤
(1)计算——计算已知图形特殊点的对称点的坐标; (2)描点——根据对称点的坐标描点; (3)连接——按原图对应顺序依次连接所描各点,即可 得到要画的图形.
课堂练习
1.分别写出下列各点关于 x 轴和 y 轴对称的点的坐标:
(-2,6) (1,-2) (-1,3) (-4,-2) (1,0)
关于 x 轴对 称的点
(-2,-6)
(1,2)
(-1,-3) (-4,2)
(1,0)
关于 y 轴对 称的点
(2,6) (-1,-2)
(1,3)
(4,-2)
(-1,0)
课堂练习
2.如图,△ABO关于 x 轴对称, 点 A 的坐标为(1,-2),写 出点 B 的坐标.
答:B(1,2)
y
B(1,2)
1
O1
x
A(1,-2)
课堂练习
y
3.如图,利用关于坐标轴
对称的点的坐标的特点, A(-4,1)
分别画出与△ABC关于 x A′′(-4,-1)
轴和 y 轴对称的图形.
C(-3,2)
C′(3,2)
B′′(-1,1)
1
O1
B(-1,-1)
B′(1,-1)
C′′(-3,-2)
探究新知
知识点1 关于坐标轴对称的点的坐标
在平面直角坐标系中,画出下列已知点及其关于 x 轴 的对称点,把它们的坐标填入表格中.
探究新知
y
C′(-6,5) B(-1,2)
1 O
B′(-1,-2) C(-6,-5)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结:在平面直角坐标系中,关于x 轴对称的点横坐标相等,纵坐标互为相反 数.关于y轴对称的点横坐标互为相反数,
纵坐标相等. 已知点关于x轴或y轴对称的点
的坐标变化规律:( P44) (x, - y) 点(x, y)关于x轴对称的点的坐标为______. ( - x, y) 点(x, y)关于y轴对称的点的坐标为______.
(4,0)
(2, 3) (-1,-2) (-6, 5) (-2, -3) (1, 2) (6, -5)
(0,1.6) (4,0) (0, -1.6) (-4,0)
2、已知点P(2a+b,-3a)与点P’(8,b+2).
2 4 若点p与点p’关于x轴对称,则a=_____ b=_______. -20 6 若点p与点p’关于y轴对称,则a=_____ b=_______.
A
·
c
B
·
C’ ··
5 4 3 2 1
A’ · B’ ·
-4 -3 -2 -1-10 归纳:(P44)先求出已知图形中的 -2 -3 特殊点(如多边形的顶点或端点)的 对应点的坐标,描出并连接这些点, -4 就可 得到这个图形的轴对称图形.
1 2 3 4 5
x
练习:P45
2 .3
(1,2)
· · ·
5
y
( 2, 3) A
· · C D · ·
B1
1
A1
4
3 2
1
( 2, 1)
1
1
0 -1
· · D C · ·
2 3 4
( 4, 3) B
( 4, 1)
5
-4
-3
-2
-1
x
返回
-2 -3
-4
练习
1、完成下表. (抢答)
已知点
关于x轴的对称点 关于y轴的对称点
(2,-3)
(-1,2)
(-6,-5) (0,-1.6)
·
· ·
(拓展提高) 思考:(P46探究3):(拓展提高)如图,分 别作出点P,M,N关于直线x=1的对称点, 你能 发现它们坐标之间分别有什么关系吗?
P(-2,4) 4 3’ M(-1,1) 2 1
·
y5
x=1
P’(4,4)
·
4
·
M’(3,1) 1 2 3
·
5
-4 -3
N(-3,-2)
·
-2 -1
探究2:如图,你能在平面直角坐标系中 画出点A关于y轴的对称点A’吗? y 5 你能说出
点A与点 A’坐标的 关系吗? A’(-2,3)
·
4 3 2 1
·
1 2
A (2,3)
-4
-3
-2
-1 0 -1
3
4
5
x
-2 -3 -4
在平面直角坐标系中画出下列各点 关于y轴的对称点.
y
B (-4, 2)
5 4 3 2 1 1 2
活动一:
1、观察图中两个圆脸 有什么关系?
5 4 3 2 1 0 -1 -2 -3 -4 1
?
y
· · C D · ·
B1
1
A1
1
· · D C · ·
A
2 3 4 5
B
-4
-3
-2
-1
x
轴对称关系(关于y轴对称)
?
活动一:
2、已知右边圆脸中眼睛A的坐标 (4,3)嘴角 ) 为( C的 (2,3)B的坐标为( 坐标为( ( 4,1)D的坐标为( (2,1)。 )
5
y
3、你 能根据轴 对称的性 质写出左 边圆脸的 眼睛和嘴 角的坐标 吗?
· · C D · ·
B1
1
A1
4 3 2 1 0 -1 -2 -3 -4 1
1
· · D C · ·
A
2 3 4 5
B
-4
-3
-2
-1
x
活动一:
-2,3) B1的坐标为 ( -4,3) A1的坐标为( _________ ________ -4,1) D1的坐标为 ( -2,1) C1的坐标为( ____) 关于x轴 对称的 点的坐 标具有 3 4 5 怎样的 x 关系?
C(3, -4)
归纳:关于x轴对称的点的坐标的特 点是: 横坐标相等,纵坐标互为相反数.
练习: (- 5 , -6 ) 1、点P(-5, 6)与点Q关于x轴对称,则点Q的坐标为__________. -2 5 2、点M (a, -5)与点N(-2, b)关于x轴对称,则a=_____, b =_____.
x
3 4 5
· A’(2,-3)
你能说出 点A与点 A’坐标的 关系吗?
在平面直角坐标系中画出下列各点关于x轴的 对称点.
y
B (-4, 2)
·
5 4 3 2
1 1 2
·
· 通过探究你能用语言归纳关于 x 轴对称的点坐标规律吗?
-4
-4 -3 -2 -1 0 -1 -2 B’ (-4, -2) -3
12.2作轴对称图形
12.2.2 用坐标表示轴对称
探究1:如图,在平面直角坐标系中你能 画出点A关于x轴的对称点吗? y 5
4 3 2 1
·
1 2
A (2,3)
-4
-3
-2
-1
请同学们在坐标系中多找 几个点,并画出它们关于 轴对称的点,然后观察已 知点与对称点的横坐标和 纵坐标 有什么变化?
0 -1 -2 -3 -4
这节课你学到了什么?
1、学习了在平面直角坐标系中,关于x轴和y轴 对称的点的坐标的特点。
关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴 对称的点横坐标互为相反数,纵坐标相等.
例:已知△ABC的三个顶点的坐标分别为A (-3,5),B(- 4,1),C(-1,3),作出△ABC关于y y 轴对称的图形。
解:点A(-3,5),B(-4,1), C(-1,3),关于y轴对称 点的坐标分别为A’(3,5), B’(4,1),C’(1,3).依次连接 A’B’,B’C’,C’A’,就得到 △ABC关于y轴对称的 △A’B’C’.
·
· C’(-3, -4)
-4 -3 -2 -1 0 -1 -2 -3 -4
思考: 关于y轴 B’ (4, 2) 对称的 点的坐 标具有 怎样的 3 4 5 x 关系?
·
· C(3, -4)
归纳:关于y轴对称的点的坐标的特 点是: 横坐标互为相反数,纵坐标相等.
练习:
(5,6) 1、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为__________. 2、点M (a, -5)与点N(-2, b)关于y轴对称,则a=_____, 2 b =_____. -5
0 -1 -2
x
·
N’(5,-2)
,
归纳:若两点(x1,y1)、(x2,y2)关于 直线
x1 x2 ) x=m对称,则; X2=2m-x1 (m= 2
y =y
1
2
类似: 若两点(x1,y1)、(x2,y2)关于 直线y=n对称,则 x1=x2 ; y2=2n-y1
y1 y 2 (n= ) 2