九年级英数学下册【学案】圆周角与圆心角-弧的关系

合集下载

九年级数学下册圆周角和圆心角的关系教案

九年级数学下册圆周角和圆心角的关系教案

课题:3.4.1圆周角和圆心角的关系教学目标:1.理解圆周角定义,掌握圆周角定理.会熟练运用定理解决问题.2.培养学生观察、分析及理解问题的能力.3.在学生自主探索定理的过程中,经历猜想、推理、验证等环节,获得正确学习方式.培养学生的探索精神和解决问题的能力.教学重难点:重点:圆周角定理及其应用.难点:圆周角定理证明过程中的“分类讨论”思想的渗透.教学过程:一、创设情境,导入新课活动内容:1.圆心角的定义?(顶点在圆心的角叫圆心角)2.圆心角的度数和它所对的弧的度数有何关系?如图:∠AOB AB的度数.3.在同圆或等圆中,如果两个圆心角、两条、两条中有一组量相等,那么它们所对应的其余各组量都分别相等.处理方式:找三名学生直接回答.题 1是复习圆心角定义:顶点在圆心的角叫圆心角;题2和题3是复习定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.再特别向学生强调定理当中的前提条件“同圆或等圆”,同时要学生明白何为三组量中其中一组量相等,那么其余各组量也分别相等.设计意图:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.为本节课的学习做准备.二、合作学习,探究尝试活动内容1:问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?点A 在圆内点A 在圆外点A 在圆上.BOC A.B OC AO BC顶点在圆心.C .A OB圆心角 圆周角处理方式:学生根据上图的几种情况,类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.设计意图:本环节的设置,采用分类讨论和类比的思想方法得出圆周角的定义.问题当中的角的顶点位置发生变化可得到几种情况,其实是点和圆的位置关系知识点的应用,老师在此应注意知识之间的联系,达到触类旁通的目的.活动内容2: 练习巩固如图,指出图中的圆心角和圆周角. 解:圆心角有∠AOB 、∠AOC 、∠BOC圆周角有∠BAC 、∠ABC 、∠ACB处理方式:图中圆里有3条半径和3条弦,当学生讲出正确答案后,则需要老师从旁总结寻找圆心角和圆周角的方法.寻找圆心角关注的是半径,任意两条半径所夹的角就是一个圆心角,个数由半径的条数决定.寻找圆周角则应关注弦和弦与圆的交点,任意两弦和两弦的交点组成一个圆周角,数圆周角关键是看弦与圆的交点,看以这个交点为顶点能引出多少条弦,每两条弦所夹的即是一个圆周角,数完一个交点后,再数另一个交点.这里要注意,因为半径AO 没有延长,所以∠OAB 严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO 延长与圆相交后,就会形成圆周角了,所以这里要特别注意.设计意图:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动内容3:问题提出:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角:在同圆或等圆中,相等的弧所对的圆心角相等.在同圆或等圆中,相等的弧所对的圆周角有什么关系?为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.设计意图:利用球员射门学生熟悉的问题引出一条弧所对的圆周角和圆心角之间有一定的关系.做一做:如图,∠AOB =80°,(1)请你画出几个AB 所对的圆周角,这几个圆周角的大小有什么关系?教师提示:(1)思考圆周角和圆心角有几种不同的位置关系?(2)这些圆周角与圆心角∠AOB 的大小有什么关系?(3)议一议:改变圆心角∠A0B 的度数,上述结论还成立吗? (4)你是如何证明圆周角定理?处理方式:本活动环节,首先有一个情景引出探究的问题,然后通过类比得出探究圆周角定理的方法,再通过对特殊图形的研究,探索出一个特殊的关系,然后进行一般图形的变换,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理. 问题(1)有三种情况:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.问题(2) 学生在①操作的基础上猜测得出∠AOB =2∠AC B ,猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.接着教师引导学生结合图形用符号语言表示.符号语言:12ACB AOB ∠=∠ .问题(4 )引导学生写出已知求证已知:如图,∠ACB 是AB 所对的圆周角,∠AOB 是AB 所对的圆心角,求证:12ACB AOB ∠=∠.分析:①.首先考虑一种特殊情况:当圆心(O )在圆周角(∠ACB )的一边(BC )上时,圆周角∠ACB 与圆心角∠AOB 的大小关系. 让学生到黑板板演.∵∠AOB 是△ACO 的外角 ∴∠AOB =∠C +∠A ∵OA=OC ∴∠A =∠C∴∠AOB =2∠C ,12ACB AOB ∠=∠即.当圆心(O )在圆周角(∠ACB )的内部或外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样? 能否转化为①的情况? 学生先独立思考,在此基础上再指导学生进行合作交流.时机成熟后找两名同学上黑板板演,师生共同纠错.②.当圆心(O )在圆周角(∠ACB )的内部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?过点C 作直径CD .由①可得:11,22ACD AOD BCD BOD ∠=∠∠=∠。

北师大版数学九年级下册3.4.2圆周角和圆心角的关系优秀教学案例

北师大版数学九年级下册3.4.2圆周角和圆心角的关系优秀教学案例
3.鼓励学生在课后进行深入学习,如查阅相关资料、参加数学竞赛等,提高自己的数学素养。
4.教师对学生的作业完成情况进行评价,关注学生的知识掌握程度、实践能力和创新思维。
五、案例亮点
1.生活情境的创设:本案例通过生活中的圆形物体导入新课,使学生能够直观地感受到数学与生活的紧密联系,提高了学生的学习兴趣和积极性。
4.强调圆周角和圆心角在几何图形中的重要性,及其在实际生活中的应用。
(三)学生小组讨论
1.教师提出讨论话题:“圆周角和圆心角之间的关系有什么应用?你们能想到哪些实际问题需要用到这一关系?”
2.学生分组进行讨论,分享自己的观点和发现。
3.教师巡回指导,针对不同小组的特点给予个性化的指导和建议。
(四)总结归纳
北师大版数学九年级下册3.4.2圆周角和圆ቤተ መጻሕፍቲ ባይዱ角的关系优秀教学案例
一、案例背景
北师大版数学九年级下册3.4.2“圆周角和圆心角的关系”这一节内容,是在学生已经掌握了圆的基本概念、圆的周长和面积等知识的基础上进行讲解的。本节内容主要让学生了解圆周角和圆心角之间的关系,即圆周角是圆心角的两倍。这一节内容对于学生来说,既是对圆的相关知识的一个巩固,又是为后续学习圆的更复杂性质和应用打下基础。
4.结合现实问题,如圆形场地、圆形路径等,让学生思考圆周角和圆心角在实际中的应用,提高学生解决实际问题的能力。
(二)问题导向
1.引导学生提出问题:圆周角和圆心角之间有什么关系?它们在几何图形中有什么特殊性质?
2.设计具有启发性的问题,如:为什么圆周角是圆心角的两倍?这个结论在实际生活中有哪些应用?
3.鼓励学生自主探索,引导学生通过对圆的性质的观察和推理,发现圆周角和圆心角之间的关系。
2.培养学生运用圆周角和圆心角的关系解决实际问题的能力,如计算未知角度等。

北师大九年级下册数学《圆周角和圆心角的关系》导学案

北师大九年级下册数学《圆周角和圆心角的关系》导学案

课题3.4 圆周角和圆心角的关系(1)一、问题引入:1._________在圆上,并且角的两边都_________的角叫做圆周角.2.圆周角定理:在同一圆中,一条弧所对的圆周角等于_________圆心角的_________.3.圆周角定理的推论:在同圆或等圆中,____________所对的圆周角____________.二、基础训练:1.(2014 湖南省长沙市) 如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=度;2.(2014 湖南省郴州市) 如图,已知A、B、C三点都在⊙O上,∠AOB=60°则∠ACB=_______.3.(2014 湖北省宜昌市) 如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACDB. ∠ADBC. ∠AEDD.ACB三、课堂检测:1.(2013 湖南省常德市) 如图,已知⊙O是△ABC的外接圆,若∠BOC=100°,则∠BAC=__ _.2.(2014 广西来宾市) 如图,点A、B、C均在⊙O上,∠C=50°,则∠OAB=.3.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于().A.64°B.48°C.32°D.76°4.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于().第3题图第2题图A BOC第1题图第3题图第4题图第1题图第2题图A.37°B.74°C.54°D.64°5.如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC,∠ACB与∠BAC的大小有什么关系?为什么?OCAB第5题图6.如图,A,B,C,D是⊙O上的四点,且∠C=100°,求∠BOD和∠A的度数.AODBC。

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教学设计2

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教学设计2

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教学设计2一. 教材分析《圆周角和圆心角的关系》是北师大版数学九年级下册第3章第4节的内容。

本节课主要通过探究圆周角和圆心角的关系,让学生理解和掌握圆周角定理,能运用圆周角定理解决相关问题。

教材通过引入圆周角定理,引导学生发现圆周角和圆心角之间的数量关系,进而推导出定理。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的性质以及垂径定理。

但圆周角和圆心角的关系较为抽象,需要学生具有较强的空间想象能力和逻辑思维能力。

因此,在教学过程中,教师需要关注学生的学习差异,引导学生在探究过程中发现问题、解决问题。

三. 教学目标1.知识与技能目标:让学生理解和掌握圆周角定理,能运用圆周角定理解决相关问题。

2.过程与方法目标:通过观察、实验、猜想、证明等方法,培养学生的探究能力和合作精神。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生勇于探索、积极思考的精神。

四. 教学重难点1.教学重点:圆周角定理的推导和运用。

2.教学难点:圆周角定理的证明和理解。

五. 教学方法1.引导发现法:教师引导学生观察、实验、猜想,发现圆周角和圆心角的关系。

2.小组合作法:学生分组讨论,共同解决问题,培养合作精神。

3.归纳总结法:教师引导学生总结圆周角定理,加深对知识的理解。

六. 教学准备1.教具准备:圆规、直尺、多媒体课件。

2.学具准备:每人一份圆周角和圆心角的实验材料。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾上一节课所学内容,如圆的性质、垂径定理等。

然后提问:“你们认为圆周角和圆心角之间有什么关系?”引发学生的思考。

2.呈现(10分钟)教师利用多媒体课件展示圆周角和圆心角的图形,让学生观察并思考它们之间的关系。

同时,教师引导学生进行实验,用量角器测量圆周角和圆心角的度数,观察它们之间的数量关系。

3.操练(10分钟)教师布置练习题,让学生运用圆周角定理解决问题。

【精品教案】北师大版 九年级下册数学 圆周角和圆心角的关系 -教师版(基础)

【精品教案】北师大版 九年级下册数学  圆周角和圆心角的关系   -教师版(基础)

圆周角和圆心角的关系【学习目标】1.理解圆周角的概念,了解圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:一条弧所对的圆周角等于它所对圆心角度数的一半.3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)ODCBA要点二、圆内接四边形 1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD 是⊙O 的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补. 【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用1.如图,在⊙O 中,,求∠A 的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等. 举一反三:【变式】如图所示,正方形ABCD 内接于⊙O ,点E 在劣弧AD 上,则∠BEC 等于( )A .45°B .60°C .30°D .55° 【答案】A.∵ AB =BC =CD =DA ,∴ »»»»90AB BC CD DA ====°, ∴ ∠BEC =45°. 类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角.【答案与解析】(a)∠1顶点在⊙O 内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD是圆周角.(d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角;(e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角.【总结升华】紧扣定义,抓住二要素,正确识别圆周角.3.(2015•台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【答案与解析】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠CBD,∴∠1=∠2.【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】解题的关键是正确作出辅助线.举一反三:【变式】(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B. 4 C.4D.8【答案】C.提示:∵∠A=22.5°,DABCO∴∠BOC=2∠A=45°, ∵⊙O 的直径AB 垂直于弦CD , ∴CE=DE,△OCE 为等腰直角三角形, ∴CE=OC=2, ∴CD=2CE=4.故选:C .类型三、圆内接四边形及应用5.圆内接四边形ABCD 的内角∠A :∠B :∠C=2:3:4,求∠D 的度数.【思路点拨】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D 的度数. 【答案与解析】解:∵圆内接四边形的对角互补,∴ ∠A :∠B :∠C :∠D=2:3:4:3 设∠A=2x ,则∠B=3x ,∠C=4x ,∠D=3x , ∴2x+3x+4x+3x=360°, ∴x=30°. ∴∠D=90°.【总结升华】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.BACDO举一反三:【变式】如图,⊙O中,四边形ABCD是圆内接四边形,∠BOD=110°,则∠BCD的度数是().A.110°B.70°C.55°D.125°【答案】D.【巩固练习】一、选择题1.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O的直径,BD交AC于点E,连结DC,则∠AEB等于( ).A.70°B.90°C.110°D.120°(第1题图)(第2题图)2.如图所示,∠1,∠2,∠3的大小关系是().A.∠1>∠2>∠3 B.∠3>∠1>∠2 C.∠2>∠1>∠3 D.∠3>∠2>∠1 3.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( ).A.64°B.48°C.32°D.76°4.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于( ).A.37°B.74°C.54°D.64°(第3题图)(第4题图)(第5题图)5.如图,四边形ABCD 内接于⊙O ,若∠BOD=138°,则它的一个外角∠DCE 等于( ).A .69°B .42°C .48°D .38°6.(2015•酒泉)△ABC 为⊙O 的内接三角形,若∠AOC=160°,则∠ABC 的度数是( ) A .80° B . 160° C . 100° D . 80°或100°二、填空题7.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么_ _________.8.(2015•镇江一模)在圆内接四边形ABCD 中,∠A,∠B,∠C 的度数之比为3:5:6,则∠D= .9.如图,AB 是⊙O 的直径,弦CD⊥AB 于H ,BD∥OC,则∠B 的度数是 .10.如图,△ABC 内接于⊙O ,AB =BC ,∠BAC =30°,AD 为⊙O 的直径,AD =2,则BD = .11.如图,已知⊙O 的直径MN =10,正方形ABCD 四个顶点分别在半径OM 、OP 和⊙O 上, 且∠POM =45°,则AB = .(第11题图) (第12题图)12.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为直径,则∠A+∠B+∠C=________度.ODABC(第10题图)三、解答题13. 如图所示,AB,AC是⊙O的弦,AD⊥BC于D,交⊙O于F,AE为⊙O的直径,试问两弦BE与CF的大小有何关系,说明理由.14.(2015•嵊州市一模)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠D=70°,求∠CAD的度数;(2)若AC=8,DE=2,求AB的长.15.如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在上滑动(点C与A,点D 与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.【答案与解析】一、选择题1.【答案】C;【解析】因为∠A=50°,∠ABC=60°,BD是⊙O的直径,所以∠D=∠A=50°,∠DBC=40°,∠ABD=60°-40°=20°,∠ACD=∠ABD=20°,∠AED=∠ACD+∠D=20°+50°=70°,∠AEB=180°-70°=110°.2.【答案】D;【解析】圆内角大于圆周角大于圆外角.3.【答案】A;【解析】∵弦AB∥CD,∠BAC=32°,∴∠C=∠A=32°,∠AOD=2∠C=64°.4.【答案】B;【解析】∠ACD=64°-27°=37°,∠AOD=2∠ACD=74°.5.【答案】A;【解析】∠BAD=12∠BOD=69°,由圆内接四边形的外角等于它的内对角得∠DCE=∠BAD=69°.6.【答案】D;【解析】如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.二、填空题7.【答案】它们所对应的其余各组量也分别相等;8.【答案】80°;【解析】设每一份是x.则∠A=3x,∠B=5x,∠C=6x.根据圆内接四边形的对角互补,得∠A+∠C=180°,∠B+∠D=180°,则3x+6x=180°,- 11 -解得x=20°.所以∠D=9x﹣5x=4x=80°.9.【答案】60°;10.【答案】3;11.【答案】;【解析】如图,设AB =x ,在Rt ⊿AOD 中: x²+(2x )²=5², x =, 即 AB 的长=.第11题 第12题12.【答案】90° ; 【解析】如图,连结AB 、BC ,则∠CAD + ∠EBD +•∠ACE=∠CBD +∠EBD +•∠ABE=∠ABC=90°.三、解答题13.【答案与解析】BE=CF .理由:∵AE 为⊙O 的直径,AD ⊥BC ,∴∠ABE=90°=∠ADC ,又∠AEB=∠ACB ,∴∠BAE=∠CAF ,∴»»BECF . ∴BE=CF .14.【答案与解析】解:(1)∵OA=OD,∠D=70°,∴∠OAD=∠D=70°,∴∠AOD=180°﹣∠OAD﹣∠D=40°,∵AB是半圆O的直径,∴∠C=90°,∵OD∥BC,∴∠AEO=∠C=90°,即OD⊥AC,∴=,∴∠CAD=∠AOD=20°;(2)∵AC=8,OE⊥AC,∴AE=AC=4,设OA=x,则OE=OD﹣DE=x﹣2,∵在Rt△OAE中,OE2+AE2=OA2,∴(x﹣2)2+42=x2,解得:x=5,∴OA=5,∴AB=2OA=10.15.【答案与解析】(1)如图,作OH⊥CD于H,利用梯形中位线易证OF=OE,OA=OB,所以AF=BE,AF+EF=BE+EF,即AE=BF.- 12 -- 13 -(2)四边形CDEF 的面积是定值.连结OC,则, 11()2O 6922S CF DE CD H CD =+⋅=⋅⋅⋅=⨯=54(cm 2).。

2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案

2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案

2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案一. 教材分析《圆周角和圆心角的关系》是北师大版数学九年级下册第3.4.1节的内容。

本节课主要让学生了解圆周角和圆心角的关系,掌握圆周角定理,并能够运用该定理解决一些实际问题。

教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而得出圆周角定理。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积的计算方法。

他们具备一定的观察、分析和推理能力。

但是,对于圆周角和圆心角的关系,他们可能还没有直观的认识,需要通过实例和推理来理解和掌握。

三. 教学目标1.让学生了解圆周角和圆心角的概念,理解它们之间的关系。

2.让学生掌握圆周角定理,并能够运用该定理解决一些实际问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.圆周角和圆心角的关系。

2.圆周角定理的证明和运用。

五. 教学方法1.采用问题驱动法,引导学生发现问题、分析问题和解决问题。

2.利用几何画板和实物模型,直观地展示圆周角和圆心角的关系。

3.采用小组合作学习,让学生在讨论中共同探究和解决问题。

4.通过练习题,巩固所学知识,提高解题能力。

六. 教学准备1.准备几何画板和实物模型,用于展示圆周角和圆心角的关系。

2.准备相关的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用几何画板或实物模型,展示一个圆和一些圆周角、圆心角,让学生观察它们之间的关系。

提问:你们觉得圆周角和圆心角有什么关系呢?2.呈现(10分钟)引导学生通过观察和推理,发现圆周角和圆心角的关系。

呈现圆周角定理:圆周角等于它所对圆心角的一半。

让学生理解并记住这个定理。

3.操练(10分钟)让学生分组讨论,每组设计一个实例,验证圆周角定理。

每组选取一个代表进行汇报,其他组进行评价。

通过这个过程,让学生加深对圆周角定理的理解。

4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固所学知识。

九年级数学圆周角与圆心角的关系

九年级数学圆周角与圆心角的关系

解决几何作图题
在数学竞赛中,利用圆周 角定理可以解决一些几何 作图题。
05
练习与思考
基础练习题
1、题目
已知⊙O的半径为5cm,圆心角 ∠AOB = 100°,则弦AB的长为
_______.
2、题目
已知$angle AOB = 60^{circ}$, 点$P$是$OB$上一点,$OP =
5$,则以点$P$为圆心,与 $OA$相切的圆中最小的半径为
学习目标
理解圆周角和圆心角 的定义及性质。
能够运用圆周角与圆 心角的关系解决实际 问题。
掌握圆周角与圆心角 之间的定理及其证明。
02
圆周角与圆心角的基本概 念
圆周角的定义
顶点在圆上,两边都和圆相交的角叫 做圆周角。
圆周角等于它所夹弧所对的圆心角的 一半。
圆心角的定义
顶点在圆心上,两边都和圆相交的角叫做圆心角。 圆心角等于的半径
利用圆周角定理,可以确定一个点在 圆上的位置。
通过圆周角定理,可以计算出圆的半 径。
绘制圆的切线
利用圆周角定理,可以绘制出圆的切 线。
在数学竞赛中的应用
解决几何证明题
在数学竞赛中,利用圆周 角定理可以证明一些几何 命题。
解决几何计算题
通过圆周角定理,可以解 决一些几何计算题,例如 计算角度或长度。
证明过程还可以通过其他方法,如利用相似三角形来证明。
定理的应用示例
应用示例1
证明两个圆周角相等。如果两个 圆周角所对的弧相等,那么这两 个圆周角相等,这是圆周角定理
的一个直接应用。
应用示例2
计算圆心角的大小。已知一个圆周 角的大小,可以利用圆周角定理计 算出它所对的圆心角的大小。
应用示例3

九年级英数学下册【说课稿】圆周角与圆心角-弧的关系

九年级英数学下册【说课稿】圆周角与圆心角-弧的关系

圆周角与圆心角、弧的关系一、说教材1、教材的地位与作用:本课内容是在学生已经学习圆心角、弧、弦、弦心距之间的关系的基础上进行研究的。

通过本课的学习,一方面可以巩固圆心角与弧的关系定理,另一方面也是今后学习圆的性质、球的性质的重要基础,在教材中处于承上启下的重要位置。

另外,通过对圆周角定理的探讨,培养学生严谨的思维品质,同时教会学生从特殊到一般和分类讨论的思维方法,因此,这节课无论在知识上,还是在方法上,都起着十分重要的作用。

2、教学重点与难点:重点:同圆或等圆中同弧或等弧所对的圆周角与圆心角的大小关系定理的发现与论证。

难点:同圆或等圆中同弧或等弧所对的圆周角与圆心角的大小关系的论证。

二、说目标1、认知目标:使学生掌握圆周角的概念、同圆或等圆中同弧或等弧所对的圆周角与圆心角的大小关系,能准确运用圆周角定理进行简单的证明和计算。

2、能力目标:培养学生观察、分析、发现、归纳的能力,以及从特殊到一般,化一般为特殊的化归能力。

3、情感目标:在同圆或等圆中同弧或等弧所对的圆周角与圆心角的大小关系得发现、论证、反思的过程中,和探究学习过程中培养学生之间合作意识以达到同学之间的互帮补助的同学情谊和集体荣誉感以及增强学生自信心,以及体现我校高效课堂理念。

三、说教法1、对比教学法、启发式教学法2、合作探究法3、直观教学法四、说教学流程(一)创设情境导入新知设计意图:由生活实践来创设情境,让学生感受数学与生活的。

由具体的生活实例到数学的建模体现了数学来源与实际生活,同时数学服务与实际生活。

即直观又新颖。

同时有效地激发了学生学习的兴趣,(二)活动(辩一辩)设计题图:通过圆心角定义导入圆周角定义,采用对比教学法,学生能很快地进入主题,同时也锻炼了学生的归纳能力,让学生的观察能力、语言组织能力得到锻炼(三)探究。

(一个展示三个活动)设计意图:通过一个展示和三个活动形象生动的将学生的注意力集中到学习中来,同时也将学生个体的主体地位和探究交流学习方法得以展现。

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1一. 教材分析北师大版数学九年级下册 3.4《圆周角和圆心角的关系》是本节课的主要内容。

通过本节课的学习,让学生理解圆周角和圆心角的关系,掌握圆周角定理,并能运用圆周角定理解决实际问题。

教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而发现圆周角定理。

二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的半径、直径等,对圆有一定的认识。

但学生对圆周角和圆心角的概念可能比较陌生,需要通过实例和探究活动来理解和掌握。

此外,学生需要具备一定的观察和推理能力,通过观察图形和逻辑推理来发现圆周角定理。

三. 教学目标1.知识与技能目标:让学生掌握圆周角定理,能运用圆周角定理解决实际问题。

2.过程与方法目标:通过观察、操作、推理等过程,培养学生的观察能力和推理能力。

3.情感态度与价值观目标:让学生体验数学学习的乐趣,培养学生的探究精神和合作意识。

四. 教学重难点1.教学重点:圆周角定理的掌握和运用。

2.教学难点:圆周角定理的证明和理解。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。

2.问题驱动法:通过提出问题,引导学生观察、思考和推理,培养学生的问题解决能力。

3.合作学习法:引导学生分组讨论和合作,培养学生的团队合作意识和交流能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示圆周角和圆心角的图形和实例。

2.教学素材:准备一些相关的实例和习题,用于引导学生进行探究和练习。

3.教学工具:准备圆规、直尺等绘图工具,方便学生进行绘图和操作。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,如自行车轮子的转动、钟表的指针运动等,引导学生观察和思考这些现象与圆周角和圆心角的关系。

2.呈现(10分钟)呈现圆周角和圆心角的定义,引导学生理解它们的概念。

通过PPT展示一些实例,让学生观察和思考圆周角和圆心角之间的关系。

圆周角与圆心角、弧的关系

圆周角与圆心角、弧的关系

(教案)圆周角与圆心角、弧的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,同时两边都和圆相交的角叫做圆周角。

2.在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。

4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。

5.圆的内接四边形对角之和是180度。

6.弧的度数确实是圆心角的度数。

解题思路:1.已知圆周角,能够利用圆周角求出圆心角2.已知圆心角,能够利用圆心角求出圆周角3.已知直径和弧度,能够求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,同时两边都和圆相交的角叫做圆周角。

注意圆周角定义的两个差不多特点:(1)顶点在圆上;(2)两边都和圆相交。

二、教学内容【1】圆心角:顶点在圆心的角。

利用两个错误的图形来强调圆周角定义的两个差不多特点:练习:判断下列各图形中的是不是圆周角,并说明理由.【2】明白得圆周角定理的证明一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。

已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去查找圆心O与∠BAC的关系本题有三种情形:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●假如圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●假如圆心O在∠BAC的内部或外部,那么只要作出直径AD,将那个角转化为上述情形的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.4 圆周角和圆心角的关系 第1课时(教案)-北师大版数学九年级下册

3.4 圆周角和圆心角的关系 第1课时(教案)-北师大版数学九年级下册

第4节圆周角和圆心角的关系1.经历探索圆周角和圆心角及其所对弧的关系的过程.2.理解圆周角的概念,了解并证明圆周角定理及其推论.3.理解圆的内接四边形的性质.1.经历探索圆周角和圆心角及其所对弧的关系的过程,培养学生观察、分析、猜想、归纳和逻辑推理的能力.2.通过渗透分类讨论、归纳等数学思想方法,培养学生的探究意识和探索新知识的能力.在经历探索圆周角和圆心角关系的过程中,感受探索的艰辛与喜悦,体验数学活动充满着探索与创造,激发学生的学习欲望.【重点】1.掌握圆周角定理及其证明过程.2.运用圆周角定理及其推论解决相关问题.3.圆的内接四边形的性质及其应用.【难点】1.圆周角定理的证明过程.2.体会分类讨论、归纳等数学思想方法的应用.第1课时圆周角定理及其推论11.理解圆周角的概念,掌握圆周角和圆心角之间的关系(圆周角定理)及其推论1,并会运用它们进行有关的证明和运算.2.理解并掌握圆周角和圆心角之间的关系(圆周角定理)的证明方法.经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.通过观察、猜想、验证、推理,培养学生探索数学问题的能力和方法.【重点】掌握圆周角的概念、圆周角定理及推论1及其证明过程.【难点】了解圆周角与圆心的三种位置关系,用化归思想合情推理验证圆周角定理.【教师准备】多媒体课件.【学生准备】1.复习三角形外角的知识和圆的基础知识.2.圆规和直尺.导入一:课件出示:如图所示,有一只小蚂蚁从C点出发,沿着圆周的方向逆时针爬行,在爬行的过程中,蚂蚁所在的点B与点A,C所组成的∠ABC的度数会发生变化吗?若∠AOC=60°,那么∠ABC的度数可能是多少?学生猜测:∠ABC的度数应该不会发生变化,∠ABC的度数可能是30°.【问题】∠ABC是什么角?圆心角∠AOC和∠ABC之间有什么样的关系?[设计意图]通过活泼的小蚂蚁的运动,让学生初步感知圆周角的基本概念以及圆周角与圆心角的关系,使学生对本节课的探究任务一目了然.导入二:课件出示:同学们,你们喜欢踢足球吗?看了2014年巴西世界杯和2015年加拿大女足世界杯了吗?(投影展示世界杯的精彩片段)【问题】请同学们想一想,球员射中球门的难易与什么有关?【学生活动】学生思考后积极回答,学生的答案可能会五花八门.【引导】射门球员与两个门柱组成的角度会决定球员射中球门的难易程度,相信学完本节课的知识你就可以解决这个问题了.[设计意图]由学生熟知的世界杯为引子,创设问题情境,吸引学生的注意,激发学生的学习兴趣.复习所学过的圆心角,并且引出要学习的圆周角,引导学生在观察图形的基础上进行独立思考,然后再进行合作交流,最后达成共识.课件出示:如图所示,球员射中球门的难易程度与他所处的位置B对球门AC的张角(∠ABC)有关.当球员分别站在B,D,E的位置上射门时,哪个位置进球的可能性大?【学生活动】学生思考后并猜测,可能会有大部分的学生认为在D处进球的可能性大,也有学生认为一样大.【教师活动】教师对于学生的回答,暂时不做评论,教师出示动画效果的视频进行演示,继续引导学生思考下面的问题.【问题】图中的三个角∠ABC,∠ADC,∠AEC,以前见过这种类型的角吗?它们有什么共同特征?【学生活动】生观察后,与同伴交流,代表小结三个角的共同特征:(1)角的顶点在圆上;(2)角在圆的内部;(3)角的两边都与圆相交.【教师点评】我们把具有这样特征的角称为圆周角.圆周角的概念:顶点在圆上,两边分别与圆还有另一个交点,像这样的角,叫做圆周角.【教师强调】理解圆周角的概念的两个特征:(1)角的顶点在圆上;(2)角的两边都与圆相交.[过渡语]同学们了解了圆周角的概念,通过下面的题目,来检测一下同学们对圆周角概念的理解程度.判断下列图中的角是否是圆周角,并说明理由.【学生活动】先让学生观察思考,独立判断,基础差的学生回答,并说明是与不是的理由.[设计意图]让学生学好基础知识、基本概念,识别其内容反映出来的数学思想和方法,培养学生的基本技能及分析问题和解决问题的能力,使学生通过自己的观察与探索,发现、理解并掌握圆周角的定义.课件出示:【做一做】如图所示,∠AOB=80°.问题1请你画出几个所对的圆周角,这几个圆周角有什么关系吗?请与同伴进行交流.教师引导学生动手操作并思考下面的问题:1.你所画出的圆周角的度数之间有什么关系?你是怎么得到这个结论的?2.你能画出多少个圆周角?【师生活动】要求学生动手操作,师巡视,发现学生出现的问题,及时纠正.学生独立完成并与同伴进行交流后,代表发言.1.使用量角器进行测量可得所对的圆周角的度数都相等.2.可以画出无数个相等的圆周角.问题2这些圆周角与圆心角∠AOB的大小有什么关系?你是怎么发现的?与同伴进行交流.【师生活动】学生继续进行操作,师参与其中.【学生活动】学生独立完成并与同伴进行交流后,代表发言.利用量角器得出所对的圆周角都等于40°,都等于所对的圆心角80°的一半.【议一议】如果改变图中的∠AOB的度数,上面的结论还成立吗?【活动方式】分组探究,分别以∠AOB的度数为30°,90°,120°和150°为例,分四组练习,得出结论.再结合各组的结论,总结出圆周角与圆心角之间的关系.【学生活动】学生在小组内交流、汇总,并在全班交流、补充.【教师归纳】圆周角与圆心的位置关系只有三种:(1)圆心在圆周角的一边上(如图(1)所示);(2)圆心在圆周角的内部(如图(2)所示);(3)圆心在圆周角的外部(如图(3)所示).【教师活动】要求学生独立写出已知和求证,并利用图(1)进行证明.教师引导学生思考下面的问题:1.△AOC是什么三角形?2.∠AOB与△AOC有什么关系?代表展示:如图(1)所示,∠ACB是所对的圆周角,∠AOB是所对的圆心角.求证∠C=·∠AOB.证明:圆心O在∠C的一条边上,如图(1)所示.∵∠AOB是△AOC的外角,∴∠AOB=∠A+∠C.∵OA=OC,∴∠A=∠C.∴∠AOB=2∠C,即∠C=∠AOB.【做一做】请你完成其他两种情况的证明.教师引导学生思考下面的问题:1.证明圆周角定理的主要思路是什么?2.我们用推理论证的方法得到了第一种情况结论是成立的.对于第二、三种情况都可以转化成圆心在圆周角的一边上的情况去处理.如何进行转化呢?【师生活动】学生分组讨论,师要参与其中,对有困难的小组进行指点.代表发言:1.主要是利用等腰三角形的外角的知识进行证明.2.可以通过作直径的方法进行转化.【活动方式】分成四组解答,第一、三组利用图(2)进行证明,第二、四组利用图(3)进行证明.【学生活动】学生讨论后,理清了思路,独立解答.找2名学生代表板演展示.【教师活动】师利用多媒体出示证明过程,规范学生的证明步骤.证明:圆心O在圆周角的内部(如图所示).在☉O中作直径CD,由前面的结论可知∠ACD=∠AOD,∠BCD=∠BOD,∴∠ACD+∠BCD=∠AOD+∠BOD.即∠ACB=∠AOB.证明:圆心O在圆周角的外部(如图所示).在☉O中作直径CD,由前面的结论可知∠ACD=∠AOD,∠BCD=∠BOD,∴∠ACD-∠BCD=∠AOD-∠BOD.即∠ACB=∠AOB.[设计意图]通过测量和推理证明两种方式得出圆周角的判定定理,加深了学生对于圆周角定【想一想】在射门游戏中,当球员在B,D,E处射门时,所形成的三个张角∠ABC,∠ADC,∠AEC的大小有什么关系?你能用圆周角定理证明你的结论吗?学生分析:如图所示,因为∠ABC,∠ADC,∠AEC都是同一条所对的圆周角,根据圆周角定理,它们都等于所对的圆心角∠AOC度数的一半,所以这三个角都相等.【问题】根据上述探究的结论,以及三个圆周角的共性,你还能得出什么样的结论?【师生总结】圆周角定理推论1:同弧或等弧所对的圆周角相等.【想一想】你现在知道球员在哪个位置把球射进球门的可能性大了吗?学生统一了想法:因为∠ABC=∠ADC=∠AEC,所以球员在B,D,E处把球射进球门的可能性是一样大的.[设计意图]利用情境题及时巩固新知,使每个学生都有收获,感受成功的喜悦,充分肯定探索活动的意义,提高学生的积极性和主观能动性.[知识拓展]在同一个圆中,同弦所对的圆周角可能相等也可能互补.如图所示.【教师强调】(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.1.圆周角的概念.2.圆周角定理.3.圆周角定理的证明方法.4.圆周角定理的推论1.1.(2014·温州中考)如图所示,已知A,B,C在☉O上,为优弧,下列选项中与∠AOB相等的是()A.2∠CB.4∠BC.4∠AD.∠B+∠C解析:由圆周角定理可得∠AOB=2∠C.故选A.2.如图所示,在☉O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°解析:∵OA=OB,∴∠B=∠BAO=25°,∵AC∥OB,∴∠BAC=∠B=25°,∴∠BOC=2∠BAC=50°.故选B.3.如图所示,☉O的直径CD⊥AB,∠AOC=50°,则∠CDB的大小为.解析:由垂径定理,得=,∴∠CDB=·∠AOC=25°.故填25°.4.如图所示,☉O是△ABC的外接圆,点D为上一点,∠ABC=∠BDC=60°,AC=3cm,求△ABC的周长.解:∵=,∴∠BDC=∠BAC.∵∠ABC=∠BDC=60°,∴∠ABC=∠BAC=60°,∴∠ACB=60°.∴△ABC为等边三角形.∵AC=3cm,∴△ABC的周长为3×3=9(cm).第1课时1.圆周角的概念:顶点在圆上,两边分别与圆还有另一个交点的角.2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.3.圆周角定理的推论1:同弧或等弧所对的圆周角相等.一、教材作业【必做题】1.教材第80页随堂练习第1,2题.2.教材第80页习题3.4第1,2,3题.【选做题】教材第81页习题3.4第4题.二、课后作业【基础巩固】1.(2014·山西中考)如图所示,☉O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°2.(2014·株洲中考)如图所示,点A,B,C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是.3.如图所示,边长为1的小正方形网格中,☉O的圆心在格点上,则∠AED的余弦值是.【能力提升】4.(2014·齐齐哈尔中考)如图所示,在☉O中,OD⊥BC,∠BOD=60°,则∠CAD的度数等于()A.15°B.20°C.25°D.30°5.如图所示,点E是的中点,点A在☉O上,AE交BC于D.求证BE2=AE·DE.6.如图所示,A,B,C,D是☉O上的四点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长.7.如图所示,在半径为5cm的☉O中,直径AB与弦CD相交于点P,∠CAB=50°,∠APD=80°.(1)求∠ABD的大小;(2)求弦BD的长.【拓展探究】8.(2015·安徽中考)在☉O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在☉O上,且OP⊥PQ.(1)如图(1)所示,当PQ∥AB时,求PQ的长度;(2)如图(2)所示,当点P在BC上移动时,求PQ长的最大值.【答案与解析】1.B(解析:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°×2=80°,∴∠C=∠AOB=40°.故选B.)2.28°(解析:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°,∴3∠ACB=84°,∴∠ACB=28°.故填28°.)3.(解析:∵∠AED与∠ABC都对应,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得BC=,则cos∠AED=cos∠ABC==.)4.D(解析:∵在☉O中,OD⊥BC,∴=,∴∠CAD=∠BOD=×60°=30°.故选D.)5.证明:∵点E是的中点,∴=.∴∠BAE=∠CBE,∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.6.解:∵在☉O中,AB=AC,∴弧AB=弧AC.∴∠ABC=∠D.又∠BAE=∠DAB,∴△ABE∽△ADB.∴=,即AB2=AE·AD=2×6=12.∴AB=2.7.解:(1)∵∠APD是△APC的外角,∠CAB=50°,∠APD=80°,∴∠C=80°-50°=30°,∴∠ABD=∠C=30°.(2)如图所示,过点O作OE⊥BD于点E,则BD=2BE,由(1)知∠ABD=30°,OB=5cm,∴BE=OB·cos30°=3×=(cm),∴BD=2BE=2×=3(cm).8.解:(1)连接OQ,如图(1)所示,∵PQ∥AB,OP⊥PQ,∴OP⊥AB,在Rt△OBP中,∵tan B=,∴OP=3tan30°=,在Rt△OPQ中,∵OP=,OQ=3,∴PQ==.(2)连接OQ,如图(2)所示,在Rt△OPQ中,PQ==,∴当OP的长最小时,PQ的长最大,此时OP⊥BC,则OP=OB=,∴PQ长的最大值为=.本节课教学设计上,一是注重了创设情境,激发学生学习的兴趣、主动性和求知欲望,为下一步教学的顺利展开开个好头;二是注重了引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的学习方法进行学习,使学生在数学活动中深刻地理解知识和掌握由特殊到一般的认知方法.探索并证明圆周角和圆心角的关系,学生解决起来是有一定难度的,教学时可以给学生留出充足的时间和空间,让他们进行思考、交流.学生在经历画图、猜想、推理、交流、严格证明等过程后,自己得出了结论,收到了预期的效果.在学生证明圆周角定理时由于引导效果不好,导致有些学生解决问题还有困难,不知如何入手.今后在教学中多训练学生的思维能力,再放手,采取结对子帮扶,充分发挥小组长的示范作用.练习(教材第80页)1.解:∠A=∠BOC=×50°=25°.2.解:∠BDC=∠BAC.相等的角还有:∠ADB=∠ACB,∠DBA=∠DCA,∠CAD=∠CBD.习题3.4(教材第80页)1.解:∠ACB=2∠BAC.∵∠ACB=∠AOB,∠BAC=∠BOC,且∠AOB=2∠BOC,∴∠ACB=2∠BAC.2.解:∵∠C=100°,∴∠BOD(大于180°的)=200°,∴∠BOD(小于180°的)=160°,∴∠A=∠BOD=×160°=80°.3.解:尽量保证同排的人视角相同.4.解:当船位于安全区域时,∠α小于“危险角”.对于圆周角的概念的得出,可以通过对情境题的仔细观察就可以直接得出圆周角的概念,而定理的探索,则需要通过动手操作,利用量角器测量的方法得出圆周角与圆心角之间的关系.对于圆周角定理的证明遵循“由特殊到一般”的方法,对于三种可能性的证明则可以利用“转化”的思想方法进行解决.。

初中数学九年级下册圆周角和圆心角的关系

初中数学九年级下册圆周角和圆心角的关系

课时课题:第三章圆3.圆周角和圆心角的关系第1课时课型:新授课教学目标:1.经历圆周角和圆心角的关系的探索、证明、应用的过程,养成自主探究、合作交流的学习习惯,体会分类、归纳等数学思想方法。

2.理解圆周角的概念及圆周角和圆心角的关系。

并能够应用“圆周角与圆心角的关系”进行简单的论证和计算.重点:经历探索“圆周角与圆心角的关系”的过程,理解“圆周角与圆心角的关系”.难点:了解圆周角与圆心的三种位置关系,用化归思想合情推理验证“圆周角与圆心角的关系”.教学分析及教学方法:本节课是在学生掌握了圆的有关性质和圆心角概念的基础上进行的,是前面学过的三角形内角和定理的推论和等腰三角形性质的延续,又是下一节课学习圆周角定理的推论的理论依据,还能充分渗透分类讨论的数学思想和方法。

本节课储备的知识,在推理、论证和计算中应用广泛,并且它在研究圆和其他图形中起着桥梁和纽带作用,是本章重点内容之一。

根据本节课教学内容的特点,采用“创景导学—自主探究—合作交流—巩固提升—当堂检测”的教学模式.课前准备:多媒体课件教学过程:一、创设情境,导入新课师:同学们玩过足球射门游戏吗?(投影展示一系列足球射门的图片)生:玩过.师:适当玩一些益智游戏,可以锻炼我们的多种能力,但是一定要把握度。

请同学们想一想,球员射中球门的难易与什么有关?生:积极回答!设计说明:设计上述问题,意在通过射门游戏引入圆周角的概念,激发学生的兴趣,而对于这一问题的答案,则可以让学生相互交流,自由发挥,不必去刻意追求正确的答案.师:(教师总结)如图1所示,球员射中球门的难易与他所在的位置B对球门AC的张角(∠ABC)有关.把实际图形画成图(1),请同学们观察图中的∠ABC有哪些特征?生1:角的顶点在圆上.生2:他说的不全面,应该有两个特征:(1)角的顶点在圆上;(2)角的两边都与圆相交.设计说明:在引导学生探索圆周角的特征时,要引导学生先在观察图形的基础上进行独立思考,然后再进行合作交流,最后形成共识.师:第二位同学回答的非常全面,我们把具备这两个特征的角叫做圆周角,这节课我们就来探索圆周角与圆心角的关系.(板书课题,导入新课)二、问题导学,合作探究(一)圆周角的概念师:哪位同学能叙述一下圆周角的概念?生:顶点在圆上,并且两边分别与圆还有另一个交点,像这样的角,叫做圆周角.师:这位同学回答的很正确,同学们在理解圆周的概念时一定要抓住它的两个特征:(1)角的顶点在圆上;(2)角的两边都与圆相交.下面我就出个题目,来检测一下同学们对圆周角概念的掌握情况.投影出示:判断下列图中的角是否是圆周角,并说明理由.(先让学生观察思考,然后再找基础较弱的学生回答)生1:第(1)个不是圆周角,因为角的顶点不在圆上.生2:第(2)个是圆周角.生3:第(3)个不是圆周角,因为角的顶点不在圆上.生4:第(4)个是圆周角.生5:第(5)个不是圆周角,因为该角只有一边与圆有一个交点,另一边不与圆相交.生6:第(6)个不是圆周角,因为该角的两边都不与圆相交.生7:第(7)个是圆周角.生8:第(6)个不是圆周角,它是圆心角.设计意图:一是通过对圆周角的辨析,加深对圆周角概念的理解;二是通过对(2)、(4)、(7)三个图形中圆周角不同位置的展示,引起学生的注意和思考,为下一步探索圆周角与圆心的位置关系做铺垫;三是借助(8)中图形对圆心角进行回顾.(二)探索圆周角和圆心角的关系师:在图1中,当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?生:相等.师:我们知道,在同圆或等圆中,相等的弧所对的圆心角相等,那么在同圆或等圆中,相等的弧所对的圆周角有什么关系?生:也相等.(大部分学生思考不语,有极少部分学生回答)设计说明:提出这一问题意在引起学生思考,为本节课活动埋下伏笔,但有部分学生提前进行了预习或通过猜测,说出了答案,教师可在此基础上继续质疑、引导.师:你能说出理由吗?生:思考,回答不出来.师:为了解决这个问题,我们先研究一条弧所对的圆周角与它所对的圆心角之间的关系.首先请同学们画出⊙O中弧AC所对的圆心角和圆周角.然后思考:(1)弧AC所对的圆周角有多少个?动手画一下.(2)这些圆周角与圆心有几种位置关系?生:结合图形回答.设计说明:教师引导学生通过动手画图,操作与观察,去发现弧AC所对的圆周角有无数个,它们与圆心的位置关系只有三种情况.教师在此基础上利用多媒体投影演示图2、图3,进一步明确圆周角与圆心的这三种位置关系,这样就为后面的分类探索起铺垫作用,达到分散难点的目的.师:下面我们把图1画成图4,其中O 为圆心,请同学们观察:圆周角∠ABC 与圆心角∠AOC ,它们的大小有什么关系?说说你的想法,并与同伴交流一下.(这里给学生留出思考、交流的时间)生:既然圆周角与圆心的位置关系只有三种情况,那我们就先考虑特殊情况下:圆周角的一边经过圆心时圆周角与圆心角的关系.设计说明:有了前面的铺垫,个别学生能够提出类似教材上小亮的想法,此时教师可顺势进行下面的教学,指导学生进行规范的演绎推理.师:这位同学说得很好,现在我们就来探究这种特殊情况:如图5,当∠ABC 的一边BC 经过圆心O 时,圆周角∠ABC 与圆心角∠AOC 的关系.哪位同学能到黑板上把你的结论和理由写出来?(画出图形,让学生到黑板板演) 生:解:∠ABC =21∠AOC . 理由:∵∠AOC 是△ABO 的外角,∴∠AOC =∠ABO +∠BAO . ∵OA =OB,∴∠ABO =∠BAO . ∴∠AOC =2∠ABO ,即∠ABC =21∠AOC . 师:如果∠ABC 的两边都不经过圆心(如图6所示),那么结果会怎样?o B 3ACB 2 B 1oBACoACBoACB(点B 在优弧AC 上运图2图3图4 图5图6生:开始思考、交流讨论. 师:(引导点拨)这两种情况能转化为第一种情况吗?如何转化?请同学讨论一下. 设计说明:学生解决这一问题时,教师可先设计问题引导,让学生独立思考:这两种情况能否转化为第一种情况?如何转化?在此基础上再指导学生进行合作交流.时机成熟后找两名同学上黑板板演,师生共同纠错. 生1:解:如图(1),在⊙中作直径BD ,由前面的结论可知,∠ABD =21∠AOD ,∠CBD =21∠COD . ∴∠ABD +∠CBD =21∠AOD +21∠COD .即:∠ABC =21∠AOC .生2:解:如图(2),在⊙O 中作直径BD , 由前面的结论可知,∠ABD =21∠AOD ,∠CBD =21∠COD . ∴∠ABD -∠CBD =21∠AOD -21∠COD . 即:∠ABC =21∠AOC . 师:同学们做得非常好,通过对圆周角和圆心角关系的探究,你发现了什么结论? 生:一条弧所对的圆周角等于它所对的圆心角的一半.师:我们把这一结论称为圆周角定理,请同学们结合图形识记这个定理.(教师板书定理)三、学以致用,巩固提高(投影出示练习题)1.(2012·湘潭)如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD =( ) A .20° B . 40° C .50° D . 80° 2.(2012·南通)如图,在⊙O 中,∠AOB =46º,则∠ACB = º.3.(2012·吉林中考)如图,A ,B ,C 是⊙O 上的三点,∠CAO =25°,∠BCO =35°,则∠AOB = 度.4.如图,OA ,OB ,OC 都是⊙O 的半径,∠AOB =2∠BOC .∠ACB 与∠BAC 的大小有什么关系?为什么?5.如图,A,B,C,D是⊙O上的四点,且∠BCD=100°,求∠BOD(弧BCD所对的圆心角)和∠BAD的大小.第5题图设计说明:先让学生独立完成,教师做巡视,了解学情,然后师生共同校对答案、纠错.通过一组习题来加深学生对圆周角及其定理的理解,提高运用所学知识解决问题的能力.如果时间允许可在学生完成4、5两题的基础上补充:(1)(2012·鄂州)如图OA=OB=OC且∠ACB=30°,则∠AOB的大小是() A.40°B.50°C.60°D.70°(2)如图,∠BCD=100°,点C在⊙O上,且点A不与B、D重合,求∠BAD度数.设计意图:让学生在独立自主解答问题的过程中,进一步巩固所学的知识,夯实基础,同时培养学生发现问题,解决问题的能力.四、归纳小结,知识升华师:请同学们从以下四个方面:1、学到了哪些知识;2、掌握了哪些数学方法;3、体会到了哪些数学思想;4、还有哪些发现与猜想?谈一谈本节课的学习收获.生:畅所欲言,谈收获与感受.设计意图:一是给学生抒发感受的机会,让学生在民主、和谐的氛围中小结本节课所学的知识及自己的感悟,;二是让学生总结出自己在“做中学”的收获,理清思路、整理经验,从而形成良好的学习习惯,以培养学生的表达能力和概括能力.五、当堂达标检测(投影出示达标检测题)1.若⊙O的一条弧所对的圆周角为60°,则这条弧所对的圆心角是()A.30° B.60° C.120° D.以上答案都不对2.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15︒ B.28︒ C.29︒ D.34︒3.(2012·泰州中考)如图,点A,B,C都在⊙O上,OD⊥BC于D,∠A=50°,则∠OCD 的度数是()A.40° B.45° C.50° D.60°4.(2012·大庆)如图所示,点A,B,C,D,E均在⊙O上,则∠AD C+∠AEB+∠BAC =( )A.90° B.180° C.270°D.360°5.(2012·威海中考)如图,在⊙O中,∠AOB的度数为160度,C是弧ACB上一点,D,E 是弧AB上不同的两点(不与A,B两点重合),则∠D+∠E的度数为.设计意图:通过当堂达标检测,一是巩固学生所学知识,使学生将刚刚理解的知识加以应用,并在应用过程中加深理解;二是通过对学生检测信息的收集、处理,来了解本节课学生当堂学习情况及教学中的不足之处,便于及时调整,起到查漏补缺的目的.六、板书设计3.圆周角和圆心角的关系一、圆周角的概念二、圆周角定理投影区域学生板演七、教学反思在本节课的教学中,我结合本节课教学内容、教学目标和学生的认知规律,在教学设计上,一是注重创设情境,激发学生学习的兴趣、主动性和求知欲望,为下一步教学的顺利展开开个好头;二是注重引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的学习方法进行学习,使学生在数学活动中深刻的理解知识和掌握由特殊到一般的认知方法。

3.4圆周角和圆心角的关系教学设计2023-2024学年数学北师大版九年级下册

3.4圆周角和圆心角的关系教学设计2023-2024学年数学北师大版九年级下册
2.拓展建议:
-鼓励学生在课后进行自主探究,尝试运用圆周角和圆心角的关系解决更复杂的问题。
-建议学生尝试设计一些有趣的几何图形,如正多边形和圆的组合,观察圆周角和圆心角在这些图形中的变化规律。
-引导学生关注生活中的圆形设计,如城市规划中的圆形广场、交通标志等,分析其中圆周角和圆心角的应用。
-鼓励学生进行小组合作,共同研究圆周角和圆心角在其他学科领域的应用,如物理中的圆周运动、天文学中的行星轨迹等。
解答:
连接OC,OA,OB。
由于O是弦AB的中点,根据圆的性质,OC垂直于AB。
在ΔOAC和ΔOBC中,OA=OB(半径相等),OC=OC(公共边),∠OAC=∠OBC(直角相等),所以ΔOAC≌ΔOBC(HL)。
因此,∠AOC=∠BOC,所以∠ACB=2∠AOC。
题型二:应用圆周角定理
题目:在圆中,弦AB和弦CD相交于点E,且∠AEC=80°,求∠BED的度数。
3.巩固练习(10分钟)
-设计具有层次性的练习题,让学生独立完成。题目包括基础题、综合题和应用题,涵盖圆周角和圆心角的知识点。
-学生完成练习题后,教师选取部分答案进行展示和讲解,强调解题过程中的注意事项和易错点。
-组织学生进行小组讨论,共同分析题目,培养合作精神和问题解决能力。
4.课堂提问(5分钟)
2.讲授新课(20分钟)
-教师通过讲解和动态演示,介绍圆周角定理及其推论,解释圆周角等于其所对圆心角的一半。
-引导学生通过实际作图,观察圆内接四边形的对角互补现象,加深对圆周角推论的理解。
-讲解圆心角、弧、弦的关系,强调圆心角相等时,其所对的弧和弦也相等。
-结合实际例子,说明圆周角和圆心角在生活中的应用,激发学生学习兴趣。
教学资源拓展

九年级英数学下册【教学设计】圆周角和圆心角-弧的关系

九年级英数学下册【教学设计】圆周角和圆心角-弧的关系

圆周角和圆心角、弧的关系教学设计思想本节在探索圆周角和圆心角的关系的过程中,渗透了分类讨论的思想。

在探究活动中,学生体会分类讨论点必要性和方法。

本节课遵循“以教师为主导,以学生为主体”的教学原则,以“发展学生的思维”为主线。

教学过程中,通过设问进行师生之间,学生之间的交流,根据学生反馈的信息,教师对出现的问题及时加以校正。

最后通过练习及时反馈学生对知识掌握的情况,通过小结进一步使学生明确本节课的教学目标。

教学目标知识与技能:1.能说出圆心角、圆周角的概念;2.明确圆心角、圆周角的关系,直径所对圆周角的特征,并能灵活应用解决有关问题。

过程与方法:通过操作、探究,发现圆心角与弦的对等关系,圆心角与圆周角的关系,体验探索过程。

情感态度价值观:体会从“特殊到一般”的数学思想方法,及在解决问题中体会与他人合作交流的重要性,养成合作学习的习惯。

教学重难点重点:圆心角和圆心角的性质,圆心角和圆周角的关系难点:探究圆心角和圆心角相关性质的过程教学方法1.采用引导探究法,体现“教为主导,学为主体”的教学原则。

2.学法指导:通过教师的“教”导出学生动脑、动口、动手的“学”,使学生由“学会”向“会学”过渡,力争体现“教是为了不教“的原则。

教学媒体多媒体课时安排2课时教学过程设计第一课时一、创设情境,引入新课通过上一节的学习我们知道圆既是轴对称图形又是中心对称图形,那么我利用圆的旋转不变性,将⊙O绕圆心O旋转任意角度α后,出现一个角∠AOB,请同学们观察一下,这个角有什么特点?如图 (如有条件可电脑闪动显示图形.)在学生观察的基础上,由学生说出这个角的特点:顶点在圆心上.在此基础上,教师给出圆心角的定义,并板书.顶点在圆心的角叫做圆心角.再进一步观察,AB是∠AOB所对的弧,连结AB,弦AB既是圆心角∠AOB也是AB所对的弦.这节课我们就来研究圆心角与它所对的弧、弦之间的关系.二、一起探究1.请同学们自己画一个圆心角∠AOB,再在同一圆中画出与∠AOB相等的另一个圆心角∠COD,再作出它们所对的弦AB,CD。

英德市第五中学九年级数学下册第三章圆4圆周角和圆心角的关系第1课时圆周角定理教案新版北师大版8

英德市第五中学九年级数学下册第三章圆4圆周角和圆心角的关系第1课时圆周角定理教案新版北师大版8

4 圆周角和圆心角的关系第1课时 圆周角定理1.理解圆周角的定义,掌握圆周角定理. 2.会熟练运用圆周角定理解决问题.重点圆周角定理及其应用. 难点圆周角定理证明过程中的“分类讨论”思想的渗透.一、复习导入1.圆心角的定义是什么?2.如图,圆心角∠AOB 的度数和它所对的AB ︵的度数有何关系?3.在同圆或等圆中,如果两个圆心角、两条________、两条________中有一组量相等,那么它们所对应的其余各组量都分别相等.二、探究新知 1.圆周角的定义引导学生自学教材第78页的相关内容,思考如下问题:(1)我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?(2)图③中的∠BAC 的顶点在什么位置? (3)角的两边有什么特点?圆周角的定义:顶点在圆上,并且两边分别与圆还有另一个交点的角叫圆周角. 2.圆周角定理课件出示教材第78页图3-14,提出问题:当球员在B ,D ,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC,∠ADC ,∠AEC.(1)在图中,AC ︵所对的圆周角有几个?(2) AC ︵所对的圆心角和所对的圆周角之间有什么关系?(3)你是通过什么方法得到的?圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半. 三、举例分析例1 如图,∠AOB =80°.(1)你能画出几个 AB ︵所对的圆周角吗? (2)圆周角和圆心角有几种不同的位置关系?(3)这些圆周角与圆心角∠AOB 的大小有什么关系? (4)这几个圆周角的大小有什么关系?(5)改变∠AOB 的度数,上面的结论还成立吗? (6)你能选择其中之一进行证明吗?(7)大家通过合作探究还能解决其他两种情况吗?解:如图①,∠ACB = 12∠AOB . 理由:∵ ∠AOB 是△ACO 的外角, ∴∠AOB =∠ACO+∠CAO. ∵OA =OC ,∴∠ACO =∠CAO. ∴∠AOB =2∠ACO. 即∠ACB= 12∠AOB.例2 问题回顾:当球员在B ,D ,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC,∠ADC ,∠AEC.这三个角的大小有什么关系?解:∠ABC=∠ADC=∠AEC.理由:连接AO ,CO. ∵∠ABC =12∠AOC,∠ADC =12∠AOC,∠AEC = 12∠AOC.∴∠ABC =∠ADC=∠AEC.圆周角定理推论:同弧或等弧所对的圆周角相等.四、练习巩固1.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=( )A.20°B.40°C.50°D.80°第1题图第2题图2.如图,在⊙O中,∠BOC=50°,则∠BAC=________°.五、课堂小结1.易错点:(1)一条弦所对的圆周角有两种情况:优弧、劣弧分别对着不同的圆周角;(2)圆上一条弧所对的圆周角能作出无数个;(3)圆周角和圆心有三种位置关系.2.归纳小结:(1)圆周角的定义:顶点在圆上,并且两边分别与圆还有另一个交点的角叫做圆周角;(2)圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半;(3)圆周角定理的推论:同弧或等弧所对的圆周角相等.3.方法规律:(1)圆周角和圆心的位置关系只有三种:圆心在圆周角的一边上,圆心在圆周角的内部,圆心在圆周角的外部;(2)圆周角的度数等于它所对弧上的圆心角度数的一半;(3)同弧或等弧所对的圆周角相等.六、课外作业1.教材第80页“随堂练习”第1、2题.2.教材第80~81页习题3.4第1、2、4题.这节课的教学主线非常清晰,重点明确,就是让学生经历观察、操作、猜想、证明等一系列探索活动.从提出猜想到证明猜想的过程中,教师始终将探索发现的空间留给学生,所设计的问题由浅入深、循序渐进,学习任务从易到难,挑战性问题在逐步提高,这是一种能激发学生学习兴趣的设计.本节课不足之处在于定理的证明根据圆心与圆周角的位置关系分三种情况,虽然借助了几何画板动态演示了这一过程,但是为何要分类,教学中似乎显得有些生涩.◆基础练习1. 下列函数中,不是二次函数的是( )A、21y = B 、22(1)4y x =+-C 、1(1)(4)2y x x =-+ D 、22(2)1y x x =--+ 2.在半径为4的圆中,挖去一个边长为xcm 的正方形,剩下部分面积为2ycm ,则关于y 与x 之间函数关系式为( )A 、24y x π=- B 、216y x π=- C 、216y x =- D 、24y x π=- 3.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为 . 4.边长为2的正方形,如果边长增加x ,则面积S 与x 之间的函数关系是 . 5.已知221(3)2a a y a x --=--是二次函数,则a = .◆能力拓展6.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5 m.如果长方体的长和宽用x(m)表示, 油漆每平方米所需费用是5元,油漆每个长方体所需费用为y 元.求y 与x 之间函数关系式.7.如图,矩形ABCD 中,AB=10cm,BC=5cm,点M 以1cm /s 的速度从点B 向点C 运动,同时,点N 以2cm /s 的速度从点C 向点D 运动.设运动开始第t 秒钟时,五边形ABMND 的面积为2Scm ,求出S 与t 的函数关系式,并指出自变量t 的取值范围.NDCB A◆创新学习8.已知函数2y ax bx c =++是二次函数,函数y ax b =+是一次函数且其图象不经过第一象限.请你给出符合上述条件的a 、b 的值.参考答案1.D 2.B 3. 0 4.244S x x =++ 5.1a =- 6.23010y x x =+ 7.由题意得BM= t ,CN =2 t ,所以MC =5t -,得MCN ABCD S S S ∆=-矩形 11055)22t t =⨯-⨯-⨯(, 即2550S t t -+=,自变量的取值范围是0<t <5. 8.当1,1a b =-=-时,2y x x c =--+是二次函数,1y x =--的图形不经过第一象限(答案不唯一).22.3 实践与探索使学生利用一元二次方程的知识解决实际问题,学会将实际问题转化为数学模型来建立一元二次方程.重点列一元二次方程解决实际问题.难点寻找实际问题中的等量关系.一、情境引入问题1 学校生物小组有一块长32 m,宽20 m的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道,要使种植面积为540 m2,小道的宽应是多少?问题2 某药品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率.二、探究新知教师引导学生分析解决问题,并让学生一题多解,同时要注意检验所解得的结果是否符合实际意义.问题 1 【分析】问题中的等量关系很明显,即抓住种植面积为540 m2来列方程,设小道的宽为x m,如何来表示种植面积?方法一:如图,由题意得32×20-32x-20x+x2=540.方法二:如图,采用平移的方法更简便.由题意可得(20-x)(32-x)=540,解得x1=50,x2=2,由题意可得x<20,∴x=2.问题2 【分析】这是增长率问题,问题中的数量关系很明了,即原价56元经过两次降价降为31.5元,设每次降价的百分率为x,由题意得56(1-x)2=31.5,解得x1=0.25,x2=1.75(舍去).三、练习巩固1.青山村种的水稻前年平均每公顷产量为7200 kg,今年平均每公顷产量为8450 kg,求水稻每公顷产量的年平均增长率.2.用一根长40 cm的铁丝围成一个长方形,要求长方形的面积为75 cm2.(1)求此长方形的宽;(2)能围成一个面积为101 cm2的长方形吗?如能,说明围法;(3)若设围成一个长方形的面积为S(cm2),长方形的宽为x(cm),求S与x的函数关系式,并求出当x为何值时,S的值最大,最大面积为多少?四、小结与作业小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2.用一元二次方程解决特殊图形问题时,通常要先画出图形,利用图形的面积找相等关系列方程.3.若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有a(1±x)n=b(常见n=2).布置作业从教材相应练习和“习题22.3”中选取.本课时从创设情境入手,让学生体会数学建模思想,学会分析问题并利用一元二次方程解决实际问题,举一反三,培养学生的创新意识和实践能力,同时通过合作交流培养学生参与合作的意识.。

北师大版九年级下册3.4圆周角与圆心角关系(教案)

北师大版九年级下册3.4圆周角与圆心角关系(教案)
3.重点难点解析:在讲授过程中,我会特别强调圆周角与圆心角的概念,以及圆周角定理及其推论。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角与圆心角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过观察和测量,让学生亲身体验圆周角与圆心角的关系。
6.课后作业的布置:为了让学生更好地巩固所学知识,我应该在课后布置一些具有代表性的练习题,让学生在实践中进一步理解和运用圆周角与圆心角的知识。
解决方法:通过画图和实际操作,让学生观察圆内接四边形的性质,引导他们发现对角互补的规律。
(4)解决实际问题:学生在解决与圆周角和圆心角相关的问题时,往往难以将理论知识与实际问题相结合。
解决方法:提供丰富的实际问题案例,让学生学会分析问题,将理论知识应用于实际情境。
四、教学流程
(一)导入新课(用时5分钟)
4.学生讨论的指导:在学生小组讨论环节,我应该关注每个小组的讨论进度,及时给予指导和启发。此外,要鼓励学生积极发表自己的观点,培养他们的表达能力和团队合作意识。
5.课堂总结的针对性:在课堂总结时,我应该针对学生在本次课程中的表现,有针对性地指出他们的优点和不足,以便他们在课后能够有针对性地进行复习和巩固。
具体内容包括:
(1)圆周角定义:圆周角是由圆上两条弧所对的角,其顶点在圆周上。
(2)圆心角定义:圆心角是由圆上两条弧所对的角,其顶点在圆心上。
(3)圆周角与圆心角关系:圆周角是圆心角的一半。
(4)圆周角定理:圆周角相等。
(5)圆周角定理推论:圆内接四边形的对角互补。
二、核心素养目标
1.培养学生的空间观念:通过观察、操作、推理等过程,使学生能够理解和运用圆周角与圆心角的概念,提高空间想象力和直观感知能力。

九年级数学下册《圆周角和圆心角的关系》教案、教学设计

九年级数学下册《圆周角和圆心角的关系》教案、教学设计
(二)过程与方法
在本章节的教学过程中,学生将通过以下过程与方法提升自身能力:
1.通过观察、猜想、验证、总结等环节,培养学生的逻辑思维能力。
2.以小组合作的形式,进行讨论、交流、分享,提高学生的合作意识和沟通能力。
3.运用数形结合的思想,将抽象的数学问题具体化,培养学生的空间想象能力。
4.引导学生运用已学知识解决新问题,提高学生的知识迁移能力和问题解决能力。
2.定理推导:教师通过几何画板等工具,动态展示圆周角和圆心角之间的关系,引导学生发现圆周角定理。
3.例题解析:教师针对圆周角定理,给出典型例题,讲解解题思路和方法。
4.知识拓展:教师介绍圆周角和圆心角在其他学科领域的应用,如圆周率在物理学、天文学等方面的运用。
(三)学生小组讨论,500字
在学生小组讨论环节,教师组织学生进行以下活动:
1.基础题:针对圆周角和圆心角的基本概念,设计一些填空题、选择题,让学生巩固所学。
2.提高题:设计一些需要运用圆周角定理的题目,让学生在解决问题中提高自己的能力。
3.实践题:结合生活实际,设计一些应用题,让学生将所学知识运用到实际问题中。
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下活动:
4.实践应用,巩固提高
(1)教师设计具有梯度的问题,让学生运用所学知识解决,巩固所学。
(2)学生进行课堂练习,教师巡回指导,及时发现问题,进行针对性辅导。
(3)课后作业布置,注重知识拓展和实际应用,提高学生的解决问题的能力。
5.总结反思,评价反馈
(1)教师引导学生总结本节课所学内容,强化重点知识。
(2)学生自我评价,反思学习过程中的优点和不足。
(一)教学重难点
1.重点:圆周角和圆心角的概念及其关系,圆周角定理及其推论。

初三下学期数学圆周角和圆心角的关系 知识点精讲 教案 教学设计 课件

初三下学期数学圆周角和圆心角的关系 知识点精讲 教案 教学设计 课件

初三下学期数学圆周角和圆心角的关系知识点精讲知识点总结圆心角与圆周角:圆心角是指顶点在圆心的角,而圆周角则指顶点在圆上的角,二者注意区分。

重要结论:①同弧(同弦)所对的圆周角是圆心角的一半(即½)②直径所对的圆周角是直角,即90º解题思路:结合垂径定理、圆心角和圆周角的转化关系,加上以前学过的直角三角形性质、三角形的外角性质和角平分线的性质,去解决具体题目,注意分析过程中灵活运用相关知识点。

要点1:圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2圆周角定理:一条弧所对的圆周角等于它所对圆心角度数的一半。

3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径。

要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上:②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上:圆心在圆周角的内部:圆心在圆周角的外部,(如下图)要点2:圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD是00的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补.习题讲析练习题:图文导学教学设计圆周角和圆心角的关系一、教材分析1、教材的地位和作用本课是在学习了圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是圆这章的重点内容之一。

2、依学情定目标我们面对的是已具备一定知识储备和一定认知能力的个性鲜明的学生,他们有较强的自我发展意识,根据新课程标准的学段目标要求,结合学生实际情况制订以下三个方面的教学目标:1)知识目标:了解圆周角和圆心角的关系,有机渗透由特殊到一般思想、分类思想、化归思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周角与圆心角、弧的关系
【学习目标】1、了解圆周角的概念.; 2、理解圆周角定理的证明。

【学习重点】圆周角概念和圆周角定理;
【学习难点】圆周角定理的三种情况证明,圆周角定理的应用 课前小测:1、⊙O 的半径为4cm ,线段OA =17cm ,则点A 与⊙O 的位置关系是( )
A .A 点在圆外
B .A 点在⊙O 上
C .A 点在⊙O 内
D .不
确定
2、抛物线()212+-=x y 的对称轴方程是
3、在⊙O 中,点C 是弧AB 的中点,∠A=50°,则∠BOC 等于 度.
4、计算:︒-︒45sin 260tan 2=
自主学习:(阅读书本)
一、探索一:我们发现1: 2: 像这样的角叫圆周角
二探索二:判断下列各个图形是不是圆周角:
三.探索三:1.如图,BC 所对的圆心角有多少个?BC 所对的圆周角有多少个?请在图中画出BC 所对的圆心角和圆周角,并猜测BC 所对的圆心角与圆周角的关系。

o
C C O C O B
B B 二、探索四:探索圆周角定理:探究:同一弧所对的圆周角和圆心角的大小有何
关系?
O C O C B A O C A (1)考虑一种特殊情况:圆心在∠BAC 的一边上
(2) 圆心在∠BAC
(3) 圆心在∠BAC 的
外部
通过上述讨论发现:_一条弧所对的圆周角等于____ 的圆心角的 ____。

证明过程。

相关文档
最新文档