指数函数课件
合集下载
第三章 第五节 指数函数 课件(共53张PPT)
解析: 函数 y=|3x-1|的图象是由函数 y=3x 的图象向下平移一个单位 后,再把位于 x 轴下方的图象沿 x 轴翻折到 x 轴 上方得到的,函数图象如图所示.
由图象知,其在(-∞,0]上单调递减,所以 k 的取值范围为(-∞,0].
答案: (-∞,0]
指数函数的性质及应用
角度一 比较指数幂的大小
解析: (1)由函数 y=kx+a 的图象可得 k<0,0<a<1.因为函数的图象与 x 轴交点的横坐标大于 1,所以 k>-1,所以-1<k<0.函数 y=ax+k 的图象可以 看成把 y=ax 的图象向右平移-k 个单位长度得到的,且函数 y=ax+k 是减函 数,故此函数与 y 轴交点的纵坐标大于 1,结合所给的选项,选 B.
1.判断下列结论是否正确(请在括号中打“√”或“×”)
n (1)
an
=(n
a
)n=a(n∈N+).(
)
m
(2)分数指数幂 an
可以理解为mn
个 a 相乘.(
)
(3)函数 y=3·2x 与 y=2x+1 都不是指数函数.( )
(4)若 am<an(a>0,且 a≠1),则 m<n.( )
答案: (1)× (2)× (3)√ (4)×
角度二 解简单的指数方程或不等式
(1)若
,则函数 y=2x 的值域是( )
1 A.8,2
1 B.8,2
C.-∞,18
D.[2,+∞)
4x,x≥0, (2)已知实数 a≠1,函数 f(x)=2a-x,x<0, 若 f(1-a)=f(a-1),则 a 的
值为________.
解析: (1)因为
由图象知,其在(-∞,0]上单调递减,所以 k 的取值范围为(-∞,0].
答案: (-∞,0]
指数函数的性质及应用
角度一 比较指数幂的大小
解析: (1)由函数 y=kx+a 的图象可得 k<0,0<a<1.因为函数的图象与 x 轴交点的横坐标大于 1,所以 k>-1,所以-1<k<0.函数 y=ax+k 的图象可以 看成把 y=ax 的图象向右平移-k 个单位长度得到的,且函数 y=ax+k 是减函 数,故此函数与 y 轴交点的纵坐标大于 1,结合所给的选项,选 B.
1.判断下列结论是否正确(请在括号中打“√”或“×”)
n (1)
an
=(n
a
)n=a(n∈N+).(
)
m
(2)分数指数幂 an
可以理解为mn
个 a 相乘.(
)
(3)函数 y=3·2x 与 y=2x+1 都不是指数函数.( )
(4)若 am<an(a>0,且 a≠1),则 m<n.( )
答案: (1)× (2)× (3)√ (4)×
角度二 解简单的指数方程或不等式
(1)若
,则函数 y=2x 的值域是( )
1 A.8,2
1 B.8,2
C.-∞,18
D.[2,+∞)
4x,x≥0, (2)已知实数 a≠1,函数 f(x)=2a-x,x<0, 若 f(1-a)=f(a-1),则 a 的
值为________.
解析: (1)因为
《指数函数的概念》课件
2023
REPORTING
《指数函数的概念》 ppt课件
2023
目录
• 引言 • 指数函数的概念 • 指数函数的图像 • 指数函数的运算 • 指数函数与其他数学概念的联系 • 总结与回顾
2023
PART 01
引言
REPORTING
课程背景
数学的重要性
数学是现代科学的基础,而指数 函数在数学和实际生活中有着广 泛的应用。
。
人口增长模型
在生物学和人口统计学中,人口增 长通常使用指数函数来描述。通过 指数函数,可以预测未来人口数量 。
放射性物质衰变
在物理学中,放射性物质衰变通常 使用指数函数来描述。通过指数函 数,可以预测未来放射性物质的数 量。
2023
PART 03
指数函数的图像
REPORTING
指数函数的图像特点
2023
PART 04
指数函数的运算
REPORTING
指数函数的四则运算
01
02
03
04
指数加法
$a^m^n = a^{m+n}$
指数减法
$a^m / a^n = a^{m-n}$
指数乘法
$a^m * a^n = a^{m+n}$
指数除法
$frac{a^m}{a^n} = a^{mn}$
指数函数的复合运算
指数函数与一次函数的复合
$y = a^x * k$,其中k为常数
指数函数与二次函数的复合
$y = a^x * x^2$,其中a、x为变量
指数函数与对数函数的关系
对数函数的定义
如果 $y = a^x$,则 $x = log_a y$
对数函数的性质
REPORTING
《指数函数的概念》 ppt课件
2023
目录
• 引言 • 指数函数的概念 • 指数函数的图像 • 指数函数的运算 • 指数函数与其他数学概念的联系 • 总结与回顾
2023
PART 01
引言
REPORTING
课程背景
数学的重要性
数学是现代科学的基础,而指数 函数在数学和实际生活中有着广 泛的应用。
。
人口增长模型
在生物学和人口统计学中,人口增 长通常使用指数函数来描述。通过 指数函数,可以预测未来人口数量 。
放射性物质衰变
在物理学中,放射性物质衰变通常 使用指数函数来描述。通过指数函 数,可以预测未来放射性物质的数 量。
2023
PART 03
指数函数的图像
REPORTING
指数函数的图像特点
2023
PART 04
指数函数的运算
REPORTING
指数函数的四则运算
01
02
03
04
指数加法
$a^m^n = a^{m+n}$
指数减法
$a^m / a^n = a^{m-n}$
指数乘法
$a^m * a^n = a^{m+n}$
指数除法
$frac{a^m}{a^n} = a^{mn}$
指数函数的复合运算
指数函数与一次函数的复合
$y = a^x * k$,其中k为常数
指数函数与二次函数的复合
$y = a^x * x^2$,其中a、x为变量
指数函数与对数函数的关系
对数函数的定义
如果 $y = a^x$,则 $x = log_a y$
对数函数的性质
高一数学指数函数ppt课件
与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
指数函数图像和性质_完整ppt课件
-1.5
-1
-0.5
-0.2
-0.4
0.5
1
1.5
2
2.5
3.2
3
2.8
2.6
2.4
2.2
2 1.8
f x = 0.9 x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-0.5 -0.2
-0.4
0.5
1
1.5
2
2.5
3
3.5
4
13
练习: 1、已知下列不等式,试比较m、n的大小:
(2)m (2)n
ppt精选版
1
y y=x3
y=x
y=x2
1
y=x1/2
0
1
X
a>0
y y=x-2
y=x-1
1
y=x-1/2
0
1
X
a<0
(1)图象都过(0,0)点和 (1,1)点;
(2)在第一象限内,函数值 随x 的增大而增大,即
在(0,+∞)上是增函
数。
(1)图象都过(1,1)点;
(2)在第一象限内,函数值随 x 的增大而减小,即在
解 :根据指数函数的性质, 由图像得,
1.70.3 1 且 0.93.1 1 从而有
1.70.3 > 0.93.1
或者
1.70.3 > 1.7 0 > 0.90 > 0.93.1
ppt精选版
f x = 1.7
3.2
3
2.8
2.6
2.4
2.2
2
1.8
x
1.6
指数函数的概念PPT课件.ppt
4.截距:在 x 轴上没有,在y 轴上为1.
二.图象与性质
1.图象的画法:性质指导下的列表描点法. 2.草图:
观察指数函数 f (x) ax (a 1)
性质
(1) 无论a为何值,指数函数 f (x) a x 都有定义域为R
值域为 0, ,都过点(0,1).
(2) a 1 时, f (x) a x 在定义域内为增函数; 0 a 1 时, f (x) a x 在定义域内为减函数.
(3)关于是否是指数函数的判断
请看下面函数是否是指数函数:
(1) y x
(2) y 0.3x2
(3) y ( 3)3x
(5) y 1 x 1 44
(4) y 2 ( 3 )2x 4
归纳性质
函数 y 2 x
1.定义域: R
2.值 域: 0,
3.奇偶性:既不是奇函数也不是偶函数
例2.比较下列各组数的大小.
(1) ( 1 )0.8与( 1 )1.8
4
2
(2)
(
8
)
3 7
与(
7
5
)12
7
8
(3) 1.080.3与0.983.1
小结比较大小的方法:
1.构造函数的方法: 数的特征是同底不同指 (包括可转化为同底的)
2. 搭桥比较法: 用特殊的数1或 0.
课堂小结
1.指数函数的概念 2.指数函数的图象和性质 3.简单应用
一、指数函数的概念
1.定义:形如 f (x) a x (a 0, a 1)的函数称为指数函数.
2.几点说明:
(1)关于对 a 的规定:
若 a 0 对于 x 0, a x 都无意义
二.图象与性质
1.图象的画法:性质指导下的列表描点法. 2.草图:
观察指数函数 f (x) ax (a 1)
性质
(1) 无论a为何值,指数函数 f (x) a x 都有定义域为R
值域为 0, ,都过点(0,1).
(2) a 1 时, f (x) a x 在定义域内为增函数; 0 a 1 时, f (x) a x 在定义域内为减函数.
(3)关于是否是指数函数的判断
请看下面函数是否是指数函数:
(1) y x
(2) y 0.3x2
(3) y ( 3)3x
(5) y 1 x 1 44
(4) y 2 ( 3 )2x 4
归纳性质
函数 y 2 x
1.定义域: R
2.值 域: 0,
3.奇偶性:既不是奇函数也不是偶函数
例2.比较下列各组数的大小.
(1) ( 1 )0.8与( 1 )1.8
4
2
(2)
(
8
)
3 7
与(
7
5
)12
7
8
(3) 1.080.3与0.983.1
小结比较大小的方法:
1.构造函数的方法: 数的特征是同底不同指 (包括可转化为同底的)
2. 搭桥比较法: 用特殊的数1或 0.
课堂小结
1.指数函数的概念 2.指数函数的图象和性质 3.简单应用
一、指数函数的概念
1.定义:形如 f (x) a x (a 0, a 1)的函数称为指数函数.
2.几点说明:
(1)关于对 a 的规定:
若 a 0 对于 x 0, a x 都无意义
高中数学《指数函数》ppt课件
01
02
03
乘法法则
$a^m times a^n = a^{m+n}$,同底数幂相 乘,底数不变,指数相加 。
除法法则
$a^m div a^n = a^{mn}$,同底数幂相除,底 数不变,指数相减。
幂的乘方法则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
不同底数指数运算法则
常见指数函数类型及其特点
自然指数函数
幂指数函数
对数指数函数
复合指数函数
底数为e(约等于2.71828) 的指数函数,记为y=e^x。 其图像上升速度最快,常用 于描述自然增长或衰减现象
。
形如y=x^n(n为实数)的函 数,当n>0时图像上升,当 n<0时图像下降。特别地,当 n=1时,幂指数函数退化为线
高中数学《指数函数》ppt 课件
目录
• 指数函数基本概念与性质 • 指数函数运算规则与技巧 • 指数函数在生活中的应用举例 • 指数函数与对数函数关系探讨 • 指数方程和不等式求解技巧 • 总结回顾与拓展延伸
01 指数函数基本概 念与性质
指数函数定义及图像特点
指数函数定义
形如y=a^x(a>0且a≠1)的函 数称为指数函数。
在生物学领域,指数函 数和对数函数被用于描 述生物种群的增长和衰 减过程;
在物理学领域,指数函 数和对数函数被用于描 述放射性衰变等物理现 象。
05 指数方程和不等 式求解技巧
一元一次、二次指数方程求解方法
01
一元一次指数方程:形如 $a^x = b$ ($a > 0, a neq 1$)的方程。求解方法
利用对数性质将指数方程转化为代数 方程进行求解。
指数函数及图像.ppt
[规律方法] 1.求含有指数型的函数定义域时,要注意考 虑偶次根式的被开方数大于等于0,分母不为0等限制条件.
2.求含有指数式的复合函数的值域时,要结合指数函数的 单调性和定义域来考虑,不要遗漏了指数函数的值域大于0.
【活学活用 3】 求下列函数的定义域与值域:
(1)y=
;(2)y= 1-3x.
解 (1)由 x-2≥0,得 x≥2.
R.因为5-x>0,所以5-x-1>-1,
所以函数的值域为(-1,+∞)
课堂小结
1.指数函数的定义域为(-∞,+∞),值域为(0,+∞),
且f(0)=1.
2. 当a>1时,a的 值 越 大,图 象 越 靠 近y轴 ,递增速度越 快.当0<a<1时,a的值越小,图象越靠近y轴,递减的速
度越快.
历史ⅱ岳麓版第13课交通与通讯 的变化资料
”;此后十年间,航空事业获得较快发展。
筹办航空事宜
处
三、从驿传到邮政 1.邮政 (1)初办邮政: 1896年成立“大清邮政局”,此后又设 , 邮传邮正传式部脱离海关。 (2)进一步发展:1913年,北洋政府宣布裁撤全部驿站; 1920年,中国首次参加 万国。邮联大会
2.电讯 (1)开端:1877年,福建巡抚在 架台设湾第一条电报线,成为中国自 办电报的开端。
二、水运与航空
1.水运 (1)1872年,
轮船正招式成商立局,标志着中国新式航运业的诞生。
(2)1900年前后,民间兴办的各种轮船航运公司近百家,几乎都是
在列强排挤中艰难求生。
2.航空
(1)起步:1918年,附设在福建马尾造船厂的海军飞机工程处开始
研制 。
(2)发展水:上1飞918机年,北洋政府在交通部下设“
《指数函数》PPT课件
商的乘方
商的乘方等于乘方的商。 如:$(a/b)^n = a^n div b^n$。
指数函数的极限与连续
极限性质
当底数大于1时,指数函数随着指 数的增大而趋于无穷大;当底数 在0到1之间时,指数函数随着指 数的增大而趋于0。
连续性
指数函数在其定义域内是连续的, 即对于任意两个相邻的点,函数值 之间的差可以无限小。
。
工程学
在工程学中,指数函数可用于 描述材料疲劳、信号处理等问
题。
计算机科学
在计算机科学中,指数函数可 用于算法分析、图像处理等领
域。
THANKS
感谢观看
02 指数函数的运算 性质
指数函数的四则运算
加法运算
同底数指数相加,指数 不变,底数相乘。如:
$a^m + a^m = 2a^m$。
减法运算
同底数指数相减,指数 不变,底数相除。如: $a^m - a^m = 0$。
乘法运算
同底数指数相乘,指数 相加,底数不变。如:
$a^m times a^n = a^{m+n}$。
级数展开的定义
将指数函数表示为无穷级数的形式,便于分析和 计算。
泰勒级数展开
通过泰勒公式将指数函数展开为幂级数,适用于 函数在某点的局部逼近。
麦克劳林级数展开
特殊形式的泰勒级数,用于在原点处展开指数函 数。
指数函数的傅里叶变换
傅里叶变换的概念
01
将时间域的函数转换为频域的函数,便于分析信号的频率特性
指数函数在生物学中的应用
细菌增长模型
指数函数可以描述细菌在适宜环 境下的增长情况,用于预测细菌
数量。
药物代谢动力学
指数函数可以模拟药物在体内的 代谢过程,用于计算药物浓度随
指数函数的概念图象及性质PPT课件
栏目 导引
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;
指数函数6省公开课获奖课件市赛课比赛一等奖课件
你能从以上两个解析式中抽象出一 种更具有一般性旳函数模型吗?
提醒:用字母a来替代2与0.94
得到:y=ax,这是一类主要旳函数 模型,而且有广泛旳用途,它能够 处理好多生活中旳实际问题,这就 是我们下面所要研究旳一类主要函 数模型。
一、指数函数旳概念:
一般地,函数y=ax (a>0,a≠1) 叫做指 数函数,其中x是自变量,函数旳定 义域是R。
( a>1)
(1)指数函数Y= ax 过点(1,1.7) , 说出a旳范围并指出它旳奇偶性和单调性。
1 01
练:指数函数y=bx 过点(1, 0.3),说出b旳范围并指出它旳奇偶性和单调性。
答案: 0< b<1,是非奇非偶函数,x在(-∞,+∞) 上Y= b x是减函数
(2)指数函数Y=a x ,Y=b x ,Y=c x ,Y=m x旳图象如图,试判断底数a、 b、c、m旳大小。
解:
y
2
x3
增函数且
1
1
32
y 1 x 是减函数且 2 1
2
33
2
2
1 3 1 3 3 2
2
1
1
3
1 3
2 2
第17张
4。已知
( 4)a
(
4
b
)
,比较a.
7
7
b旳大小
5、已知y=f(x)是指数 函数,且f(2)=4,求 函数y=f(x)旳解析式。
6、某种放射性物质不断衰变为其 他物质,每经过一年它剩余旳质 量约是原来旳84%,画出这种物 质旳剩余量随时间变化旳图象, 并从图象上求出经过多少年,剩 余量是原来旳二分之一。(成果 保存1位有效数字)
2、
定义
提醒:用字母a来替代2与0.94
得到:y=ax,这是一类主要旳函数 模型,而且有广泛旳用途,它能够 处理好多生活中旳实际问题,这就 是我们下面所要研究旳一类主要函 数模型。
一、指数函数旳概念:
一般地,函数y=ax (a>0,a≠1) 叫做指 数函数,其中x是自变量,函数旳定 义域是R。
( a>1)
(1)指数函数Y= ax 过点(1,1.7) , 说出a旳范围并指出它旳奇偶性和单调性。
1 01
练:指数函数y=bx 过点(1, 0.3),说出b旳范围并指出它旳奇偶性和单调性。
答案: 0< b<1,是非奇非偶函数,x在(-∞,+∞) 上Y= b x是减函数
(2)指数函数Y=a x ,Y=b x ,Y=c x ,Y=m x旳图象如图,试判断底数a、 b、c、m旳大小。
解:
y
2
x3
增函数且
1
1
32
y 1 x 是减函数且 2 1
2
33
2
2
1 3 1 3 3 2
2
1
1
3
1 3
2 2
第17张
4。已知
( 4)a
(
4
b
)
,比较a.
7
7
b旳大小
5、已知y=f(x)是指数 函数,且f(2)=4,求 函数y=f(x)旳解析式。
6、某种放射性物质不断衰变为其 他物质,每经过一年它剩余旳质 量约是原来旳84%,画出这种物 质旳剩余量随时间变化旳图象, 并从图象上求出经过多少年,剩 余量是原来旳二分之一。(成果 保存1位有效数字)
2、
定义
指数函数及其性质PPT课件
05 指数函数与其他函数的比 较
与线性函数的比较
线性函数
y=kx+b,表示的是一种 匀速变化,增加或减少的 趋势。
指数函数
y=a^x,表示的是一种爆 炸式增长或衰减的趋势。
比较
线性函数的变化速率是恒 定的,而指数函数的变化 速率会随着x的增大或减小 而快速增大或减小。
与幂函数的比较
01
幂函数
y=x^n,当n>0时,表示的是一种增长趋势;当n<0时,表示的是一种
包括单调性、奇偶性、周期性等。
指数函数的应用
在数学、物理、工程等领域都有广泛的应用。
练习与思考
练习题
根据指数函数的性质,判断下列哪些是指数函数,哪些不是,并说明理由。
思考题
指数函数在生活和生产中有哪些应用?请举例说明。
THANKS FOR WATCHING
感谢您的观看
指数函数的运算性质
01
基本运算性质
02
$a^m times a^n = a^{m+n}$
03
$(a^m)^n = a^{mn}$
04
$frac{a^m}{a^n} = a^{m-n}$
05
复合运算性质:如果 $u(x) = b^x$ 且 $b > 0$ 且 $b neq 1$,则 $y = a^{u(x)}$ 也是指数函数。
04
05
指数函数的值域为 $(0, +infty)$。
指数函数的图像
当 $a > 1$ 时,图像位于第一象限和第四象限 ;
绘制方法:选择一个 $a$ 值,例如 $y = 2^x$ 或 $y = frac{1}{2}^x$,然后使用计算器或数学软件绘制图
指数函数_优秀课件
[巧练模拟]—————(课堂突破保分题,分分必保!)
5.(2012·温州调研)设函数f(x)=a-|x|(a>0,且a≠1),
f(2)=4,则
()
A.f(-2)>f(-1)
B.f(-1)>f(-2)
C.f(1)>f(2)
D.f(-2)>f(2)
解析:由a-2=4,a>0得a=12, ∴f(x)=12-|x|=2|x|. 又∵|-2|>|-1|,∴2|-2|>2|-1|, 即f(-2)>f(-1).
答案: (0,1)
[冲关锦囊] 1.与指数函数有关的函数的图象的研究,往往利用相应
指数函数的图象,通过平移、对称变换得到其图象. 2.一些指数方程、不等式问题的求解,往往利用相应的
指数型函数图象数形结合求解.
[精析考题] [例 3] (2011·宁波三校联考)若函数 f(x)=a|x-2|(a>0,a≠1)满足 f(1)=13,则 f(x)的单调递减区间是________.
答案:A
[高手点拨] 本题给出三种比较指数幂大小的方法,法一是构造函 数法,利用指数函数性质比较大小,利用这种方法应注意 底数是否大于1;法二与法三两种方法相类似,都是对a、 b、c进行简单变形,转化为同次根式的形式,由被开方数 的大小可得出a、b、c的大小.
答案: [-1,-∞)
5.函数y=121-x的值域是________. 解析:函数的定义域为R,令u=1-x∈R,
∴y=12u>0.
答案:(0,+∞)
1.分数指数幂与根式的关系 分数指数幂与根式可以相互转化,通常利用分数指数 幂的意义把根式的运算转化为幂的运算,从而简化计 算过程.
2.函数y=ax、y=|ax|、y=a|x|(a>0,a≠1)三者之间的关系 函数y=ax与y=|ax|是同一个函数的不同表现形式, 函数y=a|x|与y=ax不同,前者是一个偶函数,其图象 关于y轴对称,当x≥0时两函数图象相同.
4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)
4.2 指数函数
4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质
1.理解指数函数的概念. 2.探索指数函数的单调性与图象的特殊点,并掌握指数函数图象的性质. 3.体会直观想象的过程,加强数学抽象、数学运算素养的培养.
指数函数 一般地,函数① y=ax(a>0,且a≠1) 叫做指数函数,其中指数x是自变量,定义 域是② R .
解下列方程:
(1)81×32x=
1 9
x2
;(2)22x+2+3×2x-1=0.
思路点拨
(1)两边化为同底数幂 利用指数相等求解.
(2)令2x=t(t>0),将原方程化为4t2+3t-1=0 求出t的值
解析
(1)∵81×32x=
1 9
x
2
,∴32x+4=3-2(x+2),
∴2x+4=-2(x+2),解得x=-2.
与指数函数有关的复合函数的定义域、值域问题
大家对“水痘”应该不陌生,它与其他的传染病一样,有一定的潜伏期,这段时 间里病原体在机体内不断地繁殖.病原体的繁殖方式有很多种,分裂就是其中的一 种.我们来看某种球菌的分裂过程:由1个分裂成2个,2个分裂成4个,4个分裂成8个, …… 问题 1.2个这样的球菌分裂x次后,得到的球菌的个数y与分裂次数x的关系式是什么? 提示:y=2x+1. 2.上述求出的关系式中x的范围是什么? 函数的值域是什么? 提示:x∈N*;值域是{22,23,24,…}.
比较指数幂大小
1.01365 37.8, 0.99365 0.03,
1.02365 1 377.4, 0.98365 0.000 6.
问题 1.上面的式子告诉我们一个什么道理? 提示:积跬步以致千里,积怠惰以致深渊. 2.如果不计算出结果,如何比较上式中各指数幂的大小? 提示:利用函数单调性进行比较.
4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质
1.理解指数函数的概念. 2.探索指数函数的单调性与图象的特殊点,并掌握指数函数图象的性质. 3.体会直观想象的过程,加强数学抽象、数学运算素养的培养.
指数函数 一般地,函数① y=ax(a>0,且a≠1) 叫做指数函数,其中指数x是自变量,定义 域是② R .
解下列方程:
(1)81×32x=
1 9
x2
;(2)22x+2+3×2x-1=0.
思路点拨
(1)两边化为同底数幂 利用指数相等求解.
(2)令2x=t(t>0),将原方程化为4t2+3t-1=0 求出t的值
解析
(1)∵81×32x=
1 9
x
2
,∴32x+4=3-2(x+2),
∴2x+4=-2(x+2),解得x=-2.
与指数函数有关的复合函数的定义域、值域问题
大家对“水痘”应该不陌生,它与其他的传染病一样,有一定的潜伏期,这段时 间里病原体在机体内不断地繁殖.病原体的繁殖方式有很多种,分裂就是其中的一 种.我们来看某种球菌的分裂过程:由1个分裂成2个,2个分裂成4个,4个分裂成8个, …… 问题 1.2个这样的球菌分裂x次后,得到的球菌的个数y与分裂次数x的关系式是什么? 提示:y=2x+1. 2.上述求出的关系式中x的范围是什么? 函数的值域是什么? 提示:x∈N*;值域是{22,23,24,…}.
比较指数幂大小
1.01365 37.8, 0.99365 0.03,
1.02365 1 377.4, 0.98365 0.000 6.
问题 1.上面的式子告诉我们一个什么道理? 提示:积跬步以致千里,积怠惰以致深渊. 2.如果不计算出结果,如何比较上式中各指数幂的大小? 提示:利用函数单调性进行比较.
指数函数课件(共16张PPT)
问题情境: 一种放射性物质不断变化为其他物质,毎经过一
年剩留的质量约是原来的84%.试写出这种物质的剩 留量随时间变化的函数解析式。
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
我们设最初的质量为1,经过x年,剩留量是y.则 经过1年,y=1×84%=0.84; 经过2年,y=1×0.84×0.84=0.84; 经过3年,y=1×0.84×0.84×0.84=0.84; …… 一般地,经过x年,
y=0.84x.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
用描点法画出图象(图4-2).
从这个函数的对应值表和图象,可看到
y=2x在(-
,+
)上是增函数,y
1 2
x
在(-,+ )上是减函数.这两个函数
的任意函数值y都大于0,且它们的图象
都经过点(0,1).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
1.02365≈? 1.01365≈? 0.99365≈? 借助计算器,我们可以算得: 1.02365≈1377.41 1.01365≈37.78 0.99365≈0.03 1.02365×1.01365≈52043.22 1.01365×0.99365≈0.96 对比上述计算结果,你能感受到指数运算的“威力”吗?
年剩留的质量约是原来的84%.试写出这种物质的剩 留量随时间变化的函数解析式。
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
我们设最初的质量为1,经过x年,剩留量是y.则 经过1年,y=1×84%=0.84; 经过2年,y=1×0.84×0.84=0.84; 经过3年,y=1×0.84×0.84×0.84=0.84; …… 一般地,经过x年,
y=0.84x.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
用描点法画出图象(图4-2).
从这个函数的对应值表和图象,可看到
y=2x在(-
,+
)上是增函数,y
1 2
x
在(-,+ )上是减函数.这两个函数
的任意函数值y都大于0,且它们的图象
都经过点(0,1).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
1.02365≈? 1.01365≈? 0.99365≈? 借助计算器,我们可以算得: 1.02365≈1377.41 1.01365≈37.78 0.99365≈0.03 1.02365×1.01365≈52043.22 1.01365×0.99365≈0.96 对比上述计算结果,你能感受到指数运算的“威力”吗?
4.2.1 指数函数的概念 课件(共30张PPT) 高一数学人教A版(2019)必修第一册
体会课堂探究的乐趣, 汲取新知识的营养, 让我们一起 吧!
进
走
课
堂
①底数是大于0,且不等于1的常数. ②指数是自变量x. ③ax的系数必须是1.
【解析】选C.因为函数y=(a-2)ax是指数函数,所以a-2=1,解得a=3.
C
y=N(1+p)x(x∈N)
增长
衰减
提;1时为指数衰减型函数.
1%
10%
C
【解析】选D.因为函数f(x)=(2a-3)ax是指数函数,所以2a-3=1,解得a=2.所以f(x)=2x,所以f(1)=2.
D
64
729
y=a·0.85x(x∈N*)
《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的函数关系式?
截取次数
木棰剩余
1次
2次
3次
4次
x次
通过具体实例引入指数函数的定义,培养数学抽象的核心素养通过指数型函数的实际应用,培养数学建模的核心素养。
理解指数函数的定义,会求函数的定义域以及定区间的值域。
【解析】选C.设荷叶覆盖水面的初始面积为a,则x天后荷叶覆盖水面的面积为y=a·2x(x∈N*),根据题意,令2(a·2x)=a·220,解得x=19.
C
指数函数 的概念
核心知识
方法总结
易错提醒
核心素养
指数函数的定义
指数型函数模型
指数型函数模型公式:原有量为N,每次的增长(衰减)率为p,经过x次增长(衰减),该量增长到y,则 y=N(1±p)x(x N)
D
定义是考查的重点
3.若函数f(x)=(4-3a)x是指数函数,则实数的取值范围是__________________.