《一元二次方程》第一课时教学设计

合集下载

一元二次方程(第一课时)教学设计

一元二次方程(第一课时)教学设计

第二十一章一元二次方程21.1 一元二次方程教学目标1.理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项.2.理解一元二次方程的根的意义,能够运用代入法检验根的正确性.预习反馈1.等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.如:下列方程:①1-x2=0;②2(x2-1)=3y;③2x2-3x-1=0;④1x2-2x=0中,是一元二次方程的是①③.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.3.使方程左右两边相等的未知数的值,就是这个一元二次方程的解,也叫做一元二次方程的根.求方程的解的过程,叫做解方程.如:下面哪些数是方程x2-x-6=0的根?-2,3.-4,-3,-2,-1,0,1,2,3,4.新授内容一、一元二次方程的一般形式例1(教材P3例)将方程3x(x-1)=5(x+2)化为一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.【解答】去括号,得3x2-3x=5x+10.移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.【方法归纳】 1.把一元二次方程化为一般形式,就是把一元二次方程化为ax2+bx+c=0(a≠0)的形式.其中,二次项系数、一次项系数、常数项均包括数字前的符号.2.将一元二次方程化为一般形式时,通常要将首项化负为正,化分为整.【跟踪训练1】方程x2-2(3x-2)+(x+1)=0的一般形式是(A)A.x2-5x+5=0 B.x2+5x+5=0C.x2+5x-5=0 D.x2+5=0【跟踪训练2】(《名校课堂》21.1习题)一个关于x的一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,则这个一元二次方程是2x2+3x-5=0.二、一元二次方程的解的意义例2(教材补充例题)关于x的一元二次方程(a+1)x2-ax+||a-1=0的一个根为0,则a=1.【思路点拨】将x=0代入一元二次方程,得到关于a的方程,解方程即可.注意二次项系数a+1≠0.【跟踪训练3】已知关于x的方程x2+bx+a=0的一个根是x=-a(a≠0),则a-b的值为(A) A.-1 B.0 C.1 D.2三、巩固训练1.若(p-2)x2-3x+p2-p=0是关于x的一元二次方程,则(D)A.p=2 B.p≠0 C.p>2 D.p≠2 2.把方程(x-2)(x+2)+(2x-1)2=0化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别是(D)A.5、-4、6 B.1、-5、0 C.5、-2、1 D.5、-4、-3 3.若x=3是关于x的方程2x2+ax-6=0的一个根,则a的值是-4.4.根据题意,列出方程(不必解答):(1)两个连续整数的积是210,求这两个数;(2)在一块长250 m、宽150 m的草地四周修一条路,路修好后草地的面积减少1 191 m2,求这条路的宽度.解:(1)设其中一个整数为x,则另一个整数为(x+1),依题意,得x(x+1)=210.(2)设这条路的宽为x m,则(250-2x)(150-2x)=250×150-1 191.四、课堂小结五、巩固训练1.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)A.x-6=-4 B.x-6=4 C.x+6=4 D.x+6=-4 2.若(x+1)2-1=0,则x的值为(D)A.±1 B.±2 C.0或2 D.0或-2 3.已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是(B)A.m≥-34B.m≥0 C.m≥1 D.m≥24.方程4x2+4x+1=0的解是(D)A.x1=x2=2 B.x1=x2=-2 C.x1=x2=12D.x1=x2=-125.解下列方程:(1)16x2-49=0; (2)64(1+x)2=100;(3)(x-3)2-9=0; (4)(3x-1)2=(3-2x)2.解:(1)x1=74,x2=-74. (2)x1=14,x2=-94. (3)x1=0,x2=6. (4)x1=45,x2=-2.六、课堂小结(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说.。

认识一元二次方程教案

认识一元二次方程教案

认识一元二次方程教案【篇一:2015届九年级数学上册 2.1 认识一元二次方程(第一课时)教学设计 (新版)北师大版】1.认识一元二次方程(一)一、学生知识状况分析学生的知识技能基础:学生在七年级已学过一元一次方程的概念,经历过由具体问题抽象出一元一次方程的过程;学生在八年级已学过二元一次方程组的概念,经历过由具体问题抽象出二元一次方程组的过程;学生已理解了“元”和“次”的含义,具备了学习一元二次方程的基本技能。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和数学思考,具备了一定的合作与交流的能力。

二、教学任务分析教科书基于学生对方程认识的基础之上,提出了本课的具体学习任务:1、经历抽象一元二次方程概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。

2、会识别一元二次方程及各部分名称。

从数学课堂的远期目标来看,还应该培养学生提出问题、分析问题、解决问题的能力。

三、教学过程分析本节课设计了七个教学环节:第一环节:自主探究问题一;第二环节:自主探究问题二;第三环节:自主探究问题三;第四环节:总结归纳;第五环节:学以致用;第六环节:反思;第七环节:布置作业。

第一环节:自主探究问题一活动内容:出示问题一:幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?活动目的:提出了半开放性的问题:根据这一情境,结合这些已知量,你想求哪些量?旨在培养学生的问题意识;要求学生根据条件列出关系式,旨在提高学生分析问题的能力、提高学生抽象思维能力,同时也为后续归纳一元二次方程提供材料。

教学要求与效果:教学中,为了帮助学生理解题意,可以首先提出问题:你能找到图中的矩形地面、条形区域和地毯区域吗?并让一生指出对应的三部分;接着要求学生从这一实物图中抽象出几何图形,自己画出所抽象出的几何图形,然后教师呈现第二幅图。

《认识一元二次方程》第一课时教学设计

《认识一元二次方程》第一课时教学设计

《认识一元二次方程》第一课时教学设计作者:牛慧芳来源:《学校教育研究》2020年第02期教学内容:2.1 认识一元二次方程教材分析:(一)教材所处的位置认识一元二次方程是九年级《数学》上册第二章一元二次方程的第一节内容。

方程是刻画现实世界中数量关系的一个有效数学模型。

学生在七、八年级已经感受了利用方程解决实际问题的经验。

一元二次方程的知识是后续学习《二次函数》、解决函数及综合题的基础。

(二)教材结构本节通过丰富的实例“花边有多宽”“梯子的底端滑动多少米”等问题,建立一元二次方程,让学生通過观察归纳出一元二次方程的有关概念,并从中体会方程的模型思想。

(三)教学重点1.经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。

2.了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。

3.能准确说出一元二次方程的二次项,一次项、常数项。

(四)教学难点能准确运用一元二次方程解决现实生活中问题。

学情分析:学生在七年级上册《一元一次方程》一章中,已经结合丰富的现实情景,经历了方程概念的归纳过程,初步掌握了利用方程解决问题的基本步骤,为本节的深入学习奠定了基础。

素质目标:(一)知识点经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。

(二)能力训练点1.能利用去分母、去括号、移项、合并同类项等方法将一元二次方程转化为一般形式。

2.能准确确定一元二次方程的二次项,一次项、常数项。

(三)德育渗透点1.使学生在积极参与探索、交流的数学活动中,体验数学与实际活动的密切联系,感受与他人合作的重要性。

2.培养学生转化的数学思想。

教学策略:根据新教材的特点。

结合本班学生的实际情况,为了更好的突出本节重点,突破难点,圆满完成教学任务,取得良好的教学效果,本节采用“问题情景—建立模型—解释—应用与拓展的教学流程。

运用观察、比较、讨论、归纳、知识反馈等策略,引导学生多思善讲,在建立模型处适当给予点拨,以调动学生的自觉性、积极性,从而达到感知、归纳、应用、巩固和深化新知的目的。

初中数学教学课例《一元二次方程(1)》课程思政核心素养教学设计及总结反思

初中数学教学课例《一元二次方程(1)》课程思政核心素养教学设计及总结反思
课题,明确本节课的中心任务。 择与设计
3.播放“未铺地毯区域有多宽”的课件,说明题 目的条件和要求,课件要求制作得精美并且可以清楚得 显示出各个量之间的关系。
4.给学生时间思考:如何明确并用数学式子表示
出题目中的各个量? 5.让学生回答他们的答案是什么,给予点评,让
学生核对答案,可以以学生举手示意的方式掌握全班的 情况。
没有深入的理解。通过本节课的学习,应该让学生进一
步体会一元二次方程也是刻画现实世界的一个有效数
学模型。
1、会根据具体问题列出一元二次方程,体会方程
的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程
的一般形式;会把一个一元二次方程化为一般形式;会
判断一元二次方程的二次项系数、一次项系数和常数 教学目标
10.设置悬念:有的同学猜测是 1 米,到底是多少, 我们后面来看一看。为后续学习做好铺垫。
11.让学生说出他们的答案,点评,其他学生核对 自己的答案;可以以学生举手示意的方式掌握全班的情 况。
12.肯定学生的表现:大家自己的探索已经很好地 打开了第二章“一元二次方程”的大门,相信同学们这 一章会学得很好。
①在这个问题中,梯子顶端下滑 1 米时,梯子底端 滑动的距离大于 1 米,那么梯子顶端下滑几米时,梯子 底端滑动的距离和它相等呢?②如果梯子长度是 13 米,梯子顶端下滑的距离与梯子底端滑动的距离可能相 等吗?如果相等,那么这个距离是多少?
3、观察下面等式:102+112+122=132 +142 你还能找到其他的五个连续整数,使前三个数 的平方和等于后两个数的平方和吗?
10.总结本节内容,记下作业。(分析学生在本课 中所需学习方法的掌握情况、学生的课堂学习行为与习 惯、合作学习氛围、学生认知障碍等)

一元二次方程(第一课时)

一元二次方程(第一课时)

一元二次方程教学设计1、教学目标知识与技能:探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识过程与方法:在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系情感态度价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.2、学情分析针对一系列实际问题,建立方程,引导学生观察这些方程的共同特点,从而归纳得出一元二次方程的概念及一般形式.在这个过程中,通过归纳具体方程的共同特点,得出一元二次方程的概念,体现了研究代数学问题的一般方法;一般形式ax2+bx+c=0(a≠0)也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果;a≠0的条件是确保满足“二次”的要求,从另一个侧面为理解一元二次方程的概念提供了契机.3、重点难点重点:一元二次方程的定义、各项系数的辨别,根的作用.难点:根的作用的理解.4、教学过程(这个过程可以酌情增加删减)4.1导入一、情境引入问题1 要设计一座2m高的人体雕像,修雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?分析:雕像上部的高度AC ,下部的高度BC 应有如下关系:2BC BC AC = AC BC 22= 解:设雕像下部高x m ,于是得方程()x x -=222通过整理得到方程0422=-+x x问题2 如图,有一块矩形铁皮,长100 cm ,宽50 cm .在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是 3 600 cm 2,那么铁皮各角应切去多大的正方形?学生通过分析设出合适的未知数,列出方程.问题1考虑从不同角度列方程,角度一:等量关系是底面的长×宽等于底面积,设切去的正方形的边长是x cm ,则有方程(100-2x )(50-2x )=3 600;角度二:等量关系是底面积等于大长方形的面积减去四个小正方形的面积,再减去四个长方形的面积,同样设正方形的长是x cm ,则有方程通过整理得到方程.问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?分析:全部比赛共28场,若设邀请x 个队参赛,每个队要与其他(x -1)个队各赛一场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共场,于是得到方程,经过整理得到方程.教师应注意:(1)学生对列方程解应用问题的步骤是否清楚;(2)学生能否说出每一步骤的关键和应注意问题.说明:由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.4.2讲授观察下列得到的方程:(1)0422=-+x x(2)2753500x x -+=;(3)2560x x --=; 学生活动:请口答下面问题.(1)上面几个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?结论:(1)都只含一个未知数x ;(2)它们的最高次数都是2次的;(3)都有等号,是整式方程.归纳定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一元二次方程的一般形式是:ax 2+bx+c=0(a ≠0).其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.思考:为什么规定a ≠0强调:一元二次方程定义中的三个条件:(1)是整式方程,(2)含有一个未知数,(3)未知数的最高次数是2,三个条件缺一不可说明:主体活动,探索一元二次方程的定义及其相关概念.4.3活动新知应用例:将方程3(1)5(2)x x x -=+化成一元二次方程的一般形式,并指出各项系数.解:去括号得233510x x x -=+,移项,合并同类项,得一元二次方程的一般形式238100x x --=.其中二次项系数是3,一次项系数是-8,常数项是-10.学生活动:学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.教师活动:在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).说明:进一步巩固一元二次方程的基本概念.例 猜测方程2560x x --=的解是什么?学生活动:学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x =1、2、3、4、5等,发现x =8时等号成立,于是x =8是方程的一个解,如此等等.教师活动:教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解(又叫作一元二次方程的根) 4.4练习1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:2.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个矩形的长比宽多2,面积是100,求矩形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ;(4)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x .4.5测试4.6作业(1)下列方程那些是一元二次方程?• 1. 5x-2=x+1 2. 7x 2+6=2x(3x+1)3. 6x 2=x4 . 2x 2=5y 5. -x 2=0(2)将方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:2)2()43)(3(+=-+x x x()()221 514 2481x x x -==;;()()()()()34225 43218 3.x x x x x +=-+=- ; 书本第四页复习巩固第1.2题1. 将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:()x x 61312=+ 8154)2(2=+x x 0)5()3(=+x x (4)(2x-2) (x-1)=0 (5)x(x-5) =2x-10 (6)(3x-2) (x+1)=x(2x-1)2. 根据下列问题列方程,并将所列方程化成一元二次方程的一般形式:(1)一个圆的面积是2兀平方米,求半径。

初中数学初二数学上册《一元二次方程》教案、教学设计

初中数学初二数学上册《一元二次方程》教案、教学设计
(二)讲授新知
1.教学内容:一元二次方程的定义、一般形式、标准形式及其解法。
2.教学过程:
(1)教师讲解一元二次方程的定义,让学生了解其一般形式和标准形式。
(2)教师通过示例,介绍直接开平方法、因式分解法、配方法等解法。
(3)学生跟随教师思路,理解并掌握一元二次方程的解法。
(三)学生小组讨论
1.教学内容:探讨一元二次方程在实际问题中的应用。
二、学情分析
初二是数学学习的关键时期,学生已经掌握了一元一次方程、不等式等基础知识,具备了一定的逻辑思维能力和解决问题的能力。在此基础上,学习一元二次方程,对学生来说既是对已有知识的巩固,也是对数学思维能力的提升。
学生在这个阶段,好奇心强,求知欲旺盛,但注意力容易分散。因此,在教学过程中,应注重激发学生的兴趣,引导他们积极参与课堂讨论和实践活动。同时,要关注学生的个体差异,针对不同学生的学习特点和能力,制定合理的教学策略,使他们在原有基础上得到提高。
(2)通过实际问题的引入,激发学生的学习兴趣,提高他们对数学知识的应用意识。
(3)运用多媒体教学手段,形象生动地展示一元二次方程的解法,帮助学生理解难点。
2.教学策略:
(1)针对学生的个体差异,实施分层教学,使每位学生都能在原有基础上得到提高。
(2)注重课堂小结,帮助学生梳理所学知识,形成知识体系。
2.引导学生认识到数学知识在实际生活中的重要作用,提高他们的数学素养。
3.培养学生严谨、认真的学习态度,养成良好的学习习惯,为未来的学习打下坚实基础。
在教学过程中,教师要关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,教师要注重启发式教学,引导学生主动发现问题、解决问题,使他们在探索中成长,不断提高自身的数学素养。

初中数学教学课例《一元二次方程(第一课时)》教学设计及总结反思

初中数学教学课例《一元二次方程(第一课时)》教学设计及总结反思
设计思路:以实际问题为背景,引出一元二次方程 及其有关概念,通过学生分组讨论,得到一元二次方程 的一般形式,给出一元二次方程根的概念,组织学生分 教学策略选 析一元二次方程的根的不唯一性。 择与设计
策略选择:1.运用多媒体为教学工具的依托,板书 配合讲解,重点难点等关键信息两次呈现。
2.运用教师逐渐引导,循序渐进的引导学生猜想、
归纳、总结本课中一元二次方程的定义、一般形式及根 等这些关键内容。以此提高学生的数学核心素养。
3.采用小组合作、提问学生、上台展示等手段,锻 炼学生动手、动脑、语言表达的能力,加深知识学习和 掌握的程度。体现以学生为主体的高效课堂教学形式, 真正发挥学生的主观能动性。
最关注的学生学习活动:“探究一元二次方程一般 形式中 a≠0”的关键条件及“b、c 是否能为零”的时 候,采取小组合作讨论的环节。
初中数学教学课例《一元二次方程(第一课时)》教学设计 及总结反思
学科
初中数学
教学课例名
《一元二次方程(第一课时)》

教学内容:这节课是人教版第 22 章的第一节课时,
主要学习一元二次方程的定义、一般形式及其根的概
念。本节在引言方程的基础上,首先通过两个实际问题
——面积问题和比赛问题,进一步引出一元二次方程的
具体例子,然后再引导学生观察列出这三个具体方程,
并发现它们在形式上的共同点,给出一元二次方程的定 教材分析
义。
教学重点:一元二次方程的概念,一般形式和一元
二次方程的根的概念。
教学难点:通过提出问题,建立一元二次方程的数
学模型,•再由一元一次方程的概念迁移到一元二次方
程的概念。
1、知识与技能:理解一元二次方程概念是以未知
本环节在是这节课的核心,我才用小组讨论的形 式,让他们亲自感受到 a 为什么不等等于 0,等于零了 会怎样?再次让他们知道为什么 b、c 可以为零。这些 教学过程 问题能培养学生的猜想、归纳、总结的能力,有利于提 高学生的数学思维和建模能力。

8.1 一元二次方程 第一课时 教学设计-2021-2022学年鲁教版(五四制)八年级数学下册

8.1 一元二次方程  第一课时 教学设计-2021-2022学年鲁教版(五四制)八年级数学下册

一元二次方程(第一课时)一、教材分析1、教材的地位和作用方程是刻画现实世界中数量关系的一个有效地数学模型。

随着数学应用的日趋广泛,方程的工具作用显得愈发重要,它既与现实生活密切联系,又贯穿于整个初中阶段数学的学习。

在初中数学中占有重要地位。

本节课选自鲁教版八年级数学下册第八章第一节《一元二次方程》的第1课时,本章内容共需要14个课时完成。

在前几册中,学生已经学习了一元一次方程、二元一次方程组、可化为一元一次方程的分式方程等,初步感知了方程的模型作用,积累了利用方程解决实际问题的经验,并能解决相关的实际问题。

本节课的一元二次方程是一元一次方程、二元一次方程组及不等式知识的延续和深化,也是今后学生学习可化为一元二次方程的方程、一元二次不等式、二次函数等知识的基础。

这节课是一元二次方程的概念课,通过丰富的实例,抽象出一元二次方程的概念。

本节课的教学不仅使学生进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,而且提高了学生分析、比较、抽象和概括的能力。

为接下来的学习起到很好的铺垫作用。

2、教学目标及确立目标的依据:九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。

知识技能目标:1)理解和掌握一元二次方程的概念及一般形式。

正确认识二次项系数、一次项系数及常数项.2)会根据题意列一元二次方程,体会方程的模型思想。

过程性目标:经历“观察--尝试--解决--归纳”的全过程,体会一元二次方程在实际问题中的应用.情感态度目标:1)通过小组合作展示活动,培养学生的合作精神和学习自信心.2)体会一元二次方程在实际生活中的应用.体会特殊与一般的关系,渗透方程的思想.德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。

核心素养目标:培养学生勤于思考、勇于探索、钻研创新的品质。

一元二次方程(第一课时)教学设计

一元二次方程(第一课时)教学设计

一元二次方程(第一课时)教学设计一、教学目标:(一)知识技能:1、理解一元二次方程的概念。

2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项。

(二)教学思考:1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力。

2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性。

3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力。

(三)解决问题:在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

(四)情感态度:1、培养学生主动探究知识、自主学习和合作交流的意识。

2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识。

二、重点:一元二次方程的概念及一般形式。

三、难点:1、由实际问题向数学问题的转化过程。

2、正确识别一般式中的“项”及“系数”。

四、教学过程:(利用电脑多媒体课件教学)(一)复习引入:复习以前我们学过一元一次方程、二元一次方程(组)、分式方程引入新课。

(二)传授新知:1、由课本引言,引导学生列出方程x2+2x-4=0,这和我们以前学过的方程不同,这是什么方程呢?怎么解决这个问题呢?引发学生兴趣,让学生带着问题完成本节课学习。

(提示学生注意方程未知数的个数和未知数的最高次数。

)2、同样引导学生思考课本的两个问题,让学生建立数学模型,把实际生活中的问题转化为数学问题,增强学生解决实际问题的能力。

我们得到两个方程:x2-75x+350=0 ,x2-x-56=0。

(提示学生注意方程未知数的个数和未知数的最高次数。

)3、学生思考:三个方程x2+2x-4=0,x2-75x+350=0,x2-x-56=0它们有什么共同的特点?引导学生归纳出一元二次方程的概念:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

《一元二次不等式解法》(第一课时)教学设计

《一元二次不等式解法》(第一课时)教学设计

《一元二次不等式解法》(第一课时)教学设计浚县一中范景霞一、教学目标(一)知识目标理解一元二次方程,一元二次不等式、二次函数之间的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

(二)能力目标通过看图象找解集,培养学生从“从形到数”的转化力,“由具体到抽象”、“从特殊到一般”的归纳概括能力。

(三)情感目标创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

二、教学分析教学重点:一元二次不等式的解法。

教学难点:一元二次方程、一元二次不等式与二次函数的关系。

教学方法:诱思引探教学法教学用具:多媒体三、课堂设计(一)创设情景,引出“三个一次”的关系师:请同学们解一元二次方程:某2-某-6=0生:解(略)师:若将上述方程中的“=”改为“>”,就得到一元二次不等式某2-某-6>0,怎样求解一元二次不等式呢?这就是我们本节课学习的内容(板书课题)师:初中已经学过一元一次方程和一元一次不等式的解法,如:2某-7=0某=3.52某-7>0某>3.5(学生口答,教师板书)2某-7<0某<3.5师:其实两个一元一次不等式的解是通过不等式的基本性质得到的,但是我们很难利用不等式的基本性质尽快得到一元二次不等式的解,为此我们换一种角度来认识一元一次不等的解,我们引入一次函数y=2某-7的图象来认识2某-7<0和2某-7>0的解。

借助动画展示:①当2某-7=0时,得某=3.5;当y=0时,函数的图象与某轴交于点(3.5,0),得某=3.5。

②当2某-7>0时,得某>3.5;当y>0时,函数的图象在某轴上方,得某>3.5。

③当2某-7<0时,得某<3.5;当y<0时,函数的图象在某轴下方,得某<3.5。

引导学生观察得出结论:①当2某-7=0的解是函数y=2某-7的图象与某轴交点的横坐标。

②当2某-7>0的解集是函数y=2某-7的图象在某轴的上方的点的横坐标的集合。

一元二次方程教学设计(第1课时)

一元二次方程教学设计(第1课时)

17.1 一元二次方程一、教学目标(一)知识目标1、理解一元二次方程的概念.2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项. (二)能力目标在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识. ﹙三﹚情感与价值观1、培养学生主动探究知识、自主学习和合作交流的意识.2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.二、教学重点难点(一)重点一元二次方程的概念及一般形式.(二)难点1、由实际问题向数学问题的转化过程.2、正确识别一般式中的“项”及“系数”.三、教学流程:创设情境引入新课启发探究获得新知运用新知体验成功归纳小结拓展提高布置作业分层落实6、一元二次方程的概念:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。

7、组织学生讨论一元二次方程的一般式:ax*2+bx+c=0(a、b、c是已知数,a≠0),其中ax2叫做二次项, a是二次项系数;bx叫做一次项,b是一次项系数; c叫做常数项。

例1:将下列一元二次方程化成一般式,并写出方程中的各项及各项系数. (1)4x-3=5x2;(2)2(x+2)+8=3x(x-1).例2、当m取何值时,方程是关于x的一元二次方程五、练习巩固1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2- =0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数六、板书设计。

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。

3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

教学重点1、一元二次方程及其它有关的概念。

2、利用实际问题建立一元二次方程的数学模型。

教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

《一元二次方程》教学设计

《一元二次方程》教学设计

一元二次方程上官坊九年制学校郑明星一、教材依据本节课是义务教育课程标准人教版数学九年级上册第二十二章《一元二次方程》第一节第一课时,其核心内容是一元二次方程的概念。

二、设计思想本节课的教学设计是以课程标准和教材为依据。

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。

通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。

在整个代数中起承前启后的作用,也是解决一些数学问题的重要工具。

从认知基础上看,学生已经学习了一元一次方程,具备了运用方程思想解决实际问题的基础和保证。

但班中学生好动、好奇、好表现,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中我抓住学生这一特点,一方面要运用直观生动的生活实例,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面创造条件和机会,让学生发表见解,发挥学生学习的主动性。

促进学生个性发展。

因此我在教学的设计上遵循因材施教、循序渐进和理论联系实际的原则,优化教育教学过程,突出体现“三全”(全面参与、全员参与、全程参与)与“三性”(自主性、活动性、创造性)的教学思想。

逐步培养学生正确的、科学的思维方式以及运用基本的数学思想方法去研究问题,解决问题的能力,全面提高学生素质。

三、教学目标知识与技能:使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

培养学生观察、类比、归纳、分析的能力。

数学思考:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己类比、抽象出一元二次方程的概念。

解决问题:能够根据实际问题列出一元二次方程情感态度:通过数学建模的分析、思考过程,激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。

一元二次方程教案第一课时

一元二次方程教案第一课时

一元二次方程教案第一课时一、教学目标知识与技能:学生能够理解一元二次方程的概念,掌握一元二次方程的一般形式,并能正确地识别和转换一元二次方程。

过程与方法:通过观察、分析和归纳,学生能够掌握一元二次方程的解法,并能够运用一元二次方程解决实际问题。

情感态度与价值观:培养学生对数学的兴趣和爱好,激发学生的学习热情,培养学生的逻辑思维能力和创新精神。

二、教学重点和难点教学重点:一元二次方程的概念、一般形式及其解法。

教学难点:如何正确识别和转换一元二次方程,以及如何运用一元二次方程解决实际问题。

三、教学过程导入新课:通过实例引导学生了解一元二次方程的概念,并通过对比一元一次方程,突出一元二次方程的特点和差异。

知识讲解:详细讲解一元二次方程的一般形式、解法及其在实际问题中的应用,并配以相应的例题进行说明。

练习与巩固:提供相应的练习题目,让学生在课堂上进行练习,并引导学生通过自主思考和小组讨论解决问题。

总结与回顾:对本节课的知识点进行总结和回顾,加深学生对一元二次方程的理解和应用。

布置作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。

四、教学方法和手段教学方法:采用讲解、演示、小组讨论等多种教学方法相结合的方式进行教学,以提高学生的参与度和学习效果。

教学手段:运用多媒体课件、板书等多种教学手段辅助教学,提高教学效果和学生的学习兴趣。

五、课堂练习、作业与评价方式课堂练习:提供相应的练习题目,让学生通过自主思考和小组讨论解决问题,巩固所学知识。

作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。

作业可以分为基础题目和提高题目两个层次,以满足不同学生的需求。

评价方式:通过学生的课堂表现、练习和作业等多种方式进行评价,以全面了解学生的学习情况和进步程度。

同时,鼓励学生积极参与评价,提高评价的客观性和准确性。

六、辅助教学资源与工具教学课件:提供相应的多媒体课件,包括文字、图片、视频等多种形式的内容,以辅助教学。

17.1一元二次方程(第一课时)教学设计

17.1一元二次方程(第一课时)教学设计

《17.1一元二次方程》教学设计蚌埠六中王薇一、教材分析:一元二次方程的学习,是对已学过的实数、一元一次方程等知识的巩固,同时又是对今后学习的可化为一元二次方程的其它高次方程、二次函数等知识的基础。

本节课内容是八年级下册第17章《17.1一元二次方程》的第一节课,包括一元二次方程的概念及一般形式,是一元二次方程学习的重中之重。

由于学生们已经学习过一元一次方程的基本概念,有了用方程思想解决实际问题的经验,所以本节课也从实际问题出发,让学生认识一元二次方程,在建立一元二次方程的基础上,通过观察归纳出一元二次方程的概念。

二、学情分析:八年级学生经过以前的学习,已经具备了初步的逻辑思维能力和简单的观察归纳能力,具有强烈的求知欲,课堂上独立思考、合作交流都是他们可以胜任的。

但部分学生在课堂上只停留在认真、专心听讲,缺少主动参与的意识;还有部分同学背概念背得很熟,但实际运用上有所欠缺。

所以在本节课的教学中,要继续培养学生观察归纳、合作交流的能力,同时,要积极培养他们学习数学的兴趣,调动他们学习的积极性,帮助他们在学习中建立成就感,养成良好的学习习惯。

三、教学目标:根据大纲的要求,本节教材的内容特点,学生的情况等,确定以下教学目标:知识与技能目标:了解一元二次方程的概念;知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

过程与方法目标:对实际问题进行分析、观察,经历归纳出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一种数学模型。

情感态度与价值观:利用旧知识学习新知识的教学方式可以培养学生的学习能力及合作交流能力,进一步渗透方程思想,帮助学生体会到数学与实际生活的紧密联系。

四、教学重点与难点:要运用一元二次方程解决问题,必须要先理解一元二次方程的概念,所以本节课的重点是一元二次方程的概念及一般形式;难点是理解一元二次方程的概念及一般形式,并且会把一元二次方程化为一般形式。

五、教学方法:类比教学、自主探究、讲练结合六、教学准备:多媒体课件。

211《一元二次方程教案》(第1课时).doc

211《一元二次方程教案》(第1课时).doc

22. 1 一元二次方程第一课时一、 教学内容一元二次方程概念及一元二次方程一般式及有关概念. 二、 教学目标了解一元二次方程的概念;一般式a/+bx+c 二0 (aHO )及其派生的概念;应用一元二 次方程概念解决一些简单题H .1. 通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2. 一元二次方程的一般形式及其有关概念.3. 解决一些概念性的题目.4. 通过生活学习数学,并用数学解决生活中的问题來激发学生的学习热情. 三、 重难点关键1. 重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概 念解决问题.2. 难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概 念迁移到一元二次方程的概念.四、 教学过程 (一、)复习引入 学牛活动:列方程.问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺•八寸,两隅相去适一 丈,问户高、广各儿何? ”人意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽 各是多少? 如果假设门的高为x 尺,那么,这个门的宽为 _________ 尺,根据题意,得 __________ 整理、化简,得: __________ ・问题(2)如图,一块四周镶冇宽度相等的花边的地毯, 毯中央的长方形图案的面积为18m2,求花边有多宽?设花边的宽为“ in ,那么地毯屮央长方形图案的 长为 m, 宽 为 _____________ m,根据题意, 得方程: ____________________________________ . 问题(3)观察下面等式:102+112+122=132+142你还能找到其他的五个连续整数,使前三个 数的平方和等于后两个数的平方和吗? 设五个连续整数中第一个为x,那么后四个___________________________________ ,根据题意, 得方程: ___________________________________________________________________ 老师点评并分析如何建立一元二次方程的数学模型,并整理. (二、)探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有儿个未知数?数为 __________ 它的长为8m,宽为5m,如果地(2)按照整式中的多项式的规定,它们最高次数是儿次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x; (2)它们的最高次数都是2次的;(3)都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.-般地,任何一个关于x的一元•二次方程,经过整理,都能化成如下形式ax2+bx+c=0 (aHO).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0 (aHO)后,其屮ax'是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(阅读练习册P1例题)巩固练习1、下列方程中,一元二次方程冇( )个(1)/ = 3 (2)5酹=3(/・ 1) ⑶丄二/ (+)yz・ A2 =5 (5)5/ ・2x = 5(/ +2)(/ ・ 1)x 4A. 2B. 3 C・ 4 D. 5例1.将方程(8-2x) (5-2x)二18化成一元二次方程的一般形式,并写出其屮的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=O(8工0).因此,方程(8~2x) ( 5~2x)=18必须运用整式运算进行整理,包括去•括号、移项等.解:去扭号,得:40-16x-l 0X+4X2= 18移项,得:4x-26x+22=0其中二次项系数为4, 一次项系数为-26,常数项为22.(三、)巩固练习教材匕练习1、(四、)应用拓展例2.求证:关于x的方程(m2-8m+17) x2+2mx+l=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m収何值,该方程都是一元二次方程,只要证明m2-8m+17 H0即可. 证明:m2-8m+17= (m-4) 2+1•・• (m-4)空0・・・(m-4) 2+1>0, B|J (m-4) 2+1^0・・・不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1) 一元二次方程的概念;(2) 一元二次方程的一般形式ax'+bx+c二0 CaHO)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.练习册P H提升:(A组)2.选用作业设计.作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x'+7二0 ②ax"+bx+c二0 ③(x-2) (x+5) =x2-l ④3x2-— =0XA. 1个B. 2个C. 3个D. 4个2.px2-3x+p2-q=0是关于x的一元二次方程,则().A. p=lB. p>0C. pHOD. p 为任意实数二、填空题1.____________________________________ 方程3x「3二2x+l的二次项系数为, 一次项系数为 ______________________________________________ ,常数项为2.一元二次方程的一般形式是__________ .3.关于x的方程(旷1) X2+3X=0是一元二次方程,则a的取值范围是 __________ .三、综合提高题1. a满足什么条件时,关于x的方程a (x2+x) =>/3x- (x+1)是一元二次方程?2.关于x的方程(2m2+m) x,,M+3x=6可能是一元二次方程吗?为什么?反思提高:。

《一元二次方程》第一课时(说课稿)

《一元二次方程》第一课时(说课稿)

《一元二次方程》第一课时(说课稿)新蔡县孙召镇初级中学周长伟各位领导、老师大家好:很荣幸参加这次活动,并希望得到您的指导。

我说课的题目是:华师大版教材九年级上册第23章第一节《一元二次方程》。

我要说的内容有以下五点:1、说教材,2、说目标,3、说教学方法;4、说教学程序;5、说评价。

下面分别谈一谈:一、说教材。

1、教材分析:本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察、类比、归纳出一元二次方程的概念,是学习一次方程、方程组及不等式知识的延续和深化,也是函数等重要数学思想方法的基础。

本节课是研究一元二次方程的导入课,它为进一步学习一元二次方程的解法及应用起到铺垫作用。

2、教学重点:一元二次方程的概念及一般形式。

3、教学难点:通过实例建立一元二次方程的数学模型,再由一元一次方程的概念类比、迁移得到一元二次方程的概念。

二、说目标。

1、知识目标:使学生充分了解一元二次方程的概念;正确掌握一元二次方程的一般形式。

2、能力目标:经历抽象一元二次方程的过程,使学生体会出方程是刻画现实生活中数量关系的一个有效数学模型。

3、情感目标:培养学生主动探索、敢于实践、合作交流的精神;激发学生的学习热情。

三、说教学方法1教法分析本节课主要采用类比发现法为主,以讨论、合作、探索、练习为辅的教学方法。

2.学法指导本节课的教学中,教会学生善于观察、分析讨论、合作交流、类比归纳,最后抽象所学知识。

3教学手段采用电脑多媒体辅助教学,利用投影展示交流。

四、说教学程序1创设情境导入新课问题(1):是考查巩固长方形面积计算的一个实际问题;问题(2):是考查黄金分割点的问题;问题(3):是考查增长率的问题。

通过三个实际问题进一步让学生明确列方程解实际问题的思路和方法,把实际问题转化成数学问题,让学生合作交流、归纳总结得出方程:(1)x(x+10)=900 (2)x2=1·(1-x)(3)5(1+x)2=7.2此方程的建立为下环节的教学作好铺垫。

九年级数学:21.1一元二次方程教案(第一课时)

九年级数学:21.1一元二次方程教案(第一课时)

2.一元二次方程的一般形式:
我们把一元二次方程按未知数的降幂排列有:20(0)
ax bx c a
++=≠.这种形式叫做一元二次方程的一般形式.其中a叫做二次项系数,b叫做一次项系数,c叫做常数项.
想一想:为什么要限制a≠0 ? b、c可以为零吗?强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现,但二次项必须存在,而且左边通常按未知数的次数从高到低排列,特别注意的是“=”的右边必须整理成0。

二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。

一元二次方程教学设计

一元二次方程教学设计

17.1一元二次方程第一课时教学设计【教学内容】:上海科学技术出版社八年级下册17.1一元二次方程(1)【教材分析】:一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,其内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(•指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。

【学情分析】:八年级学生已经学过实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,其内容都是学习一元二次方程的基础,有了这些基础,教他们一元二次方程就简单多了。

三维目标:知识与技能:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

过程与方法:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。

情感态度与价值观:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。

教学重难点“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念而一元二次方程化成一般形式是本节课的难点。

教具学具:教具:课件教学过程:一、合作学习,探究新知1、列出下列问题中关于未知数x的方程:(1)某地为增加农民收入,需要调整农作物种植结构,计划2007年无公害蔬菜的产量比2005年翻一番,要实现这一目标,2006年和2007年无公害蔬菜产量的年平均增长率应是多少?设无公害蔬菜产量的年平均增长率为x,2005年的产量为a,则2006年无公害蔬菜产量为a十ax=a(1+x);2007年无公害蔬菜产量为a(1+x)+ a(1+x).x= a(1+x)2 根据题意,2007年无公害蔬菜产量为2a,得a(1+x)2=2a(1+x)2=2整理得 x2+2x-1=0(2)在一块宽20m,长32m的矩形空地上,修筑宽相等的三条小路(两条纵向,一条横向,纵向与横向垂直),把矩形空地分成大小一样的6块,建成小花坛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元二次方程》第一课时教学设计
一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.4.追问条件,由一般式得出特殊式
(1)为什么a≠0?b和c能等于0吗?(2)特殊式:ax2+bx=0,ax2+c=0
教学活动3㈢例题示范,巩固提高
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项、合并同类项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
巩固练习
教材P27练习1、2(每组出三名同学在四周黑板写出,分六组)
教学活动
4㈣自我检查,信息反馈
自我测试设计
一、选择题(5×4=20分)
1.在下列方程中,一元二次方程的个数是().
①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-=0
A.1个 B.2个 C.3个 D.4个
2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().
A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6
3.px2-3x+p2-q=0是关于x的一元二次方程,则().
A.p=1 B.p>0 C.p≠0 D.p为任意实数
4.关于x的方程(m2-4)x2+mx-m=0是一元二次方程的条件是()A.m≠0 B.m≠2 C.m=-2 D.m≠±2
二、填空题(4×5=20分)
1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.
2.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是_________
3.关于x的方程(m+1)x︱m-1︱+mx-1=0是一元一次方程,则m=________三.应用题(20分)
《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,•两隅相去适一丈,问户高、广各几何?”。

相关文档
最新文档