经济数学线性代数(1)
04184线性代数(经管类)基础知识
![04184线性代数(经管类)基础知识](https://img.taocdn.com/s3/m/db3c18763c1ec5da50e27053.png)
第一章行列式(一)行列式的定义1.行列式的定义D n=∑(-1)t a1c1a2c2…a n cn(t是列标c的逆序数)=∑(-1)t a r11a r22…a rn n(t是行标r的逆序数) 2.余子式及代数余子式设有n阶行列式D n,对任何一个元素a ij,划去它所在的第i行及第j列,剩下的元素按原先次序组成一个n-1阶行列式,称它为元素a ij的余子式,记作M ij,再记A ij=(-1)i+j M ij,称A ij为元素a ij的代数余子式.3.特殊行列式①②③(二)行列式的性质性质1 行列式与它的转置行列式相等,即|A|=|A T|性质2用数k乘行列式D中某一行(列)的所有元素等于用数k乘此行列式D.推论1行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面性质3互换行列式的任意两行(列),行列式的值改变符号.推论2如果行列式中有某两行(列)相同,则此行列式的值等于零.推论3 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4如果行列式某行(列)所有元素均为两个数的和,则行列式可以按该行(列)拆为两个行列式的和.性质5 把行列式某一行(列)所有元素都乘以同一个数然后加到另一行(列)的对应元素上去,行列式不变. 定理1(行列式展开定理)n阶行列式D=|a ij|n等于它任意一行(列)各元素与其对应的代数余子式的乘积的和,即D=a i1A i1+a i2A i2+…+a in A in(i=1,2,…n)(D按第i行的展开式)或D=a1j A1j+a2j A2j+…+a nj A nj(j=1,2,…n)(D按第j列的展开式)定理2行列式D=|a ij|n的任一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即a i1A k1+a i2A k2+…+a in A kn=0(i≠k)或a1j A1s+a2j A2s+…+a nj A ns=0(j≠s)(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:第二章矩阵(一)矩阵的定义矩阵定义:m*n个数a ij(i=1,2,…m,j=1,2,…n)排列成一个m行n列的有序数表,称为m*n矩阵,记为(a ij)m*n (二)矩阵的运算1.矩阵的同型与相等设有矩阵A=(a ij)m*n, B=(b ij)k*s,若m=k, n=s,则说A与B是同型矩阵,若A与B同型,且对应元素相等,即a ij=b ij,则称矩阵A与B相等,记为A=B2.矩阵的加、减法设A=(a ij)m*n, B=(b ij)m*n,是两个同型矩阵,则A+B=(a ij+b ij)m*n , A-B=(a ij-b ij)m*n注意:矩阵的相加(减)体现为对应元素的相加(减),只有A与B为同型矩阵,它们才可以相加(减).①A+B=B+A ②(A+B)+C=A+(B+C) ③A-B=A+(-B)3.数乘运算设A=(a ij)m*n,k为任一个数,则规定kA=(ka ij)m*n, 数k与矩阵A的乘积就是A中所有元素都乘以k①(kj)A=k(j A) ②(k+j)A=k A+j A ③k(A+B)=k A+k B4.乘法运算设A=(a ij)m*k,B=(b ij)k*n,则规定AB=(c ij)m*n,其中c ij=a i1b1j+a i2b2j+…+a ik b kj (i=1,2,…,m, j=1,2,…,n)只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,且AB的行数为A的行数,AB的列数为B的列数,AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.矩阵乘法与普通数乘法不同:不满足交换律,即①AB≠BA②当AB=0,不能推出A=0或B=0,不满足消去律.①(AB)C=A(BC) ②A(B+C)=AB+AC ③(B+C)A=BA+CA ④k(AB)=(k A)B=A(k B)⑤AE=EA=A5.方阵的乘幂与多项式方阵A为n阶方阵,则A m=AAA…A(m个).①A k A j=A k+j ②(A k)j=A kj ③特别地A0=E④若f(x)=a m x m+a m-1x m-1+…+a1x+a0,则规定f(A)=a m A m+a m-1A m-1+…+a1A+a0E,称f(A)为A的方阵多项式。
线性代数及其在经济领域中的应用与作用
![线性代数及其在经济领域中的应用与作用](https://img.taocdn.com/s3/m/3fef0e056c85ec3a87c2c5e2.png)
③该学科所体现的几何观念与代数方法之间的联系 ,从具体概 利润 ,列 出方程组求解 。
念抽象 出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合 例如:某商店经营四类商品 ,四个月的销售额及利润额如表 2
等 ,对于强化人们 的数学训练 ,增益科学智能是非常有用 的;
所示 ,试求每类商品的利润率 。
间。托普利茨将 线性代数 的主要定理推广到任意体上的最一般 的向 解 :设 A…B C、D四种 产品的单位成 本分别为 X 、X:、X,、x ,可列
量 空 间 中 。
出方 程组
“代数”这一个词在我 国出现较 晚 ,在清代 时才传 人 中国 ,当时 被人 们译成“阿尔热 巴拉 ”,直 到 1859年 ,清代 著名的数学家 、翻译 家李善兰才将它翻译成 为“代数学”,之后 一直 沿用 。现代线性代数
得以被具体表示 。
工具 ,而线性方程组在经济领域 的应用 比较广泛。
由于科学研究 中的非线性模 型通常可以被近似为线性模 型 ,使 2.1成本 问题 。
得线性代数被 广泛地应用于 自然科学 和社会科学中。
某些产品在生产过程 中能获得另外几种产 品或副产 品,但是 对
线性代数 出现 于十七世纪。直到十八世纪末 ,线性代数 的领域 每种产品 的单位成本难 以确 定 ,这类 问题可以通过几次测试 ,列 出
用 ,因而它在各种代数分支中 占居首要地位 ;
斤
②在计算机广泛应用 的今天 ,计算机 图形学 、计算机辅助设计 、 2.2利润问题。
密码学 、虚拟现实等技术无不以线性代 数为其理论 和算法基础 的一 企业经营几类商 品,由于有些费用难 以划分 ,因此不能 确定每
部 分ห้องสมุดไป่ตู้;
线性代数PPT全集
![线性代数PPT全集](https://img.taocdn.com/s3/m/7409f21327284b73f242508b.png)
a31 a32 b3
a11 a12 a13 D a21 a22 a23
a31 a32 a33
a11 a12 b1 D3 a21 a22 b2 .
a31 a32 b3
则三元线性方程组的解为:
b1 a12 a13 D1 b2 a22 a23 ,
b3 a32 a33
a11 b1 a13 D2 a21 b2 a23 ,
Pn = n (n–1) (n–2) ··· 2 1 = n!
二、排列的逆序数
我们规定各元素之间有一个标准次序. 以 n 个不同的自然数为例, 规定由小到大 为标准次序.
定义: 在一个排列 i1 i2 ···is ···it ···in 中, 若数 is>it, 则称这两个数组成一个逆序.
它的特点是研究的变量数量较多,关系复杂,方法上 既有严谨的逻辑推证、又有巧妙的归纳综合,也有繁 琐和技巧性很强的数字计算,在学习中,需要特别加 强这些方面的训练。
第一章 行列式 第二章 矩阵及其运算 第三章 矩阵的初等变换
及线性方程组
第四章 向量组的线性相关性
第五章 相似矩阵及二次型
基础 基本内容
a13 x3 a23 x3
b1 , b2 ,
a31x1 a32 x2 a33 x3 b3;
的系数行列式
a11 a12 a13 D a21 a22 a23 0,
a31 a32 a33
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
(2)a12:
a12a21x1 + a12a22x2 = b2a12,
两式相减消去x2, 得 (a11a22 – a12a21) x1 = b1a22 – b2a12;
大学数学知识点(微积分,线性代数)
![大学数学知识点(微积分,线性代数)](https://img.taocdn.com/s3/m/11d4cc8271fe910ef12df8b8.png)
线性代数知识点第一章 行列式1. 二阶、三阶行列式的计算*2. 行列式的性质(转置,换行,数乘,求和,数乘求和)3. 行列式展开(=D ,=0)4. 利用性质计算四、五阶行列式5. 克拉默法则解线性方程组及对方程组解的判定(分非齐次的和齐次的) 主要是行列式的计算第二章 矩阵1. 矩阵的定义、矩阵的行列式的定义及矩阵与行列式的区别2. 矩阵的运算(加减、数乘、乘法不满足交换律、转置、方阵的幂)3. 特殊的矩阵(对角、数量、单位矩阵、三角形矩阵、对称矩阵、分块矩阵)4. 矩阵的初等变换(三种)、行阶梯形、行最简形、标准形5. 逆矩阵的定义、运算性质6. 利用初等变换求逆矩阵及矩阵方程7. 矩阵的秩的概念及利用初等变换求矩阵的秩主要是矩阵的运算及逆矩阵和秩的求解第三章 线性方程组1. 线性方程组的求解(分非齐次的和齐次的)2. 线性方程组解的判定(分非齐次的和齐次的)3. N 维向量空间4. 向量间的线性关系a) 线性组合b) 线性相关与线性无关c) 极大无关组5. 线性方程组解的结构(分非齐次的和齐次的)主要是线性相关无关的判定及极大无关组、线性方程组的求解经济数学知识点第七章 无穷级数6. 无穷级数的概念:1231n n n uu u u u ∞==+++++∑7. 无穷级数的敛散性:部分和有极限——级数收敛8. 无穷级数的性质(和差、数乘、加减项、加括号、必要条件——通项不收敛于零)9. 正项级数收敛的基本定理——正项级数收敛的充分必要条件是:它的部分和数列n S 有界10. 常用判别法a) 比较判别法• 参考级数(p-级数、几何级数)• 推论(极限) b)比值判别法 c)根值判别法 • 不需要参考级数 • 与1比较(有时要结合比较判别法)——P285例9 11.交错级数:莱布尼茨定理 12.任意项级数 13.幂级数 a)幂级数的性质(和差、连续性、可积性、可导性——求和函数) b)收敛半径及收敛域 c)非特殊幂级数要结合换元法 14.泰勒公式和麦克劳林公式 15.泰勒级数和麦克劳林级数(条件) 16.函数的幂级数展开 a)直接法(泰勒级数法) b) 三种常用函数的泰勒展开式2111(,)2!!x n e x x x x n =+++++∈-∞+∞ 213511sin (1) (,)3!5!(21)!n n x x x x x x n +=-+-+-+∈-∞+∞+ 2311(1) (1,1)1n n x x x x x x=-+-++-+∈-+17. 函数的幂级数展开(间接法) – 利用已有的函数泰勒展开式 – 变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分 – 注意等式成立的范围 18.幂级数的应用举例 – 近似计算 19. 常用的泰勒公式01(1);1n n x x ∞==-∑01(2)(1);1n n n x x ∞==-+∑2201(3);1n n x x ∞==-∑0(4);!nx n x e n ∞==∑ 210(5)sin (1);(21)!n nn x x n +∞==-+∑10(6)ln(1)(1).1n n n x x n +∞=+=-+∑第八章 多元函数1. 空间解析几何简介2. 多(二)元函数的概念a) 定义域b) 二元函数的图象是一个曲面3. 二元函数的极限(方向任意)4. 二元函数的连续性及闭区间上连续函数的性质5. 二元函数的偏导数a) 偏导数的定义及计算b) 高阶偏导数c) 可微的必要条件、充分条件d) 二元函数的全微分e) 全微分在近似计算中的应用f) 复合函数的微分法(链式法则)g) 隐函数的微分法h) 二元函数的极值的必要条件、充分条件),(y x f 在点),(00y x 处是否取得极值的条件如下:(1)20B AC -<时具有极值, 当0<A 时有极大值, 当0>A 时有极小值; (2)20B AC ->时没有极值;(3)20B AC -=时可能有极值,也可能没有极值i) 条件极值及拉格朗日乘数法6. 二重积分a) 二重积分的定义及几何意义b) 二重积分的性质(数乘、和差、可加性、比较、长度、范围、中值) c) 二重积分的计算i. 积分顺序的交换ii. 化为累次积分第九章 微分方程与差分方程简介1. 微分方程的的概念2. 一阶微分方程——注意常数C 的选择a) 可分离变量的微分方程()()g y dy f x dx =、()()dy f x g y dx = b) 齐次微分方程()dy y f dx x= c) 一阶线性微分方程()()dy P x y Q x dx+= i. 一阶线性齐次方程()0dy P x y dx+= ii. 一阶线性非齐次方程()()dy P x y Q x dx+= 3. 几种二阶微分方程a) 22() d y f x dx=型的微分方程——两端连续两次积分即可 4. 差分方程。
《线性代数》第1讲-第1章第1-2节
![《线性代数》第1讲-第1章第1-2节](https://img.taocdn.com/s3/m/e244d86158fafab069dc026c.png)
Linear Algebra
王健 理学院 数学系 北京工商大学 我的邮箱:wangjian04@ 课程主页:/ 登录密码:110
第一章 1 第一章 2
线性代数
课程特点: 一个中心 —— 求解线性方程组 一种工具 —— 矩阵(行列式、向量) 关于教材: 内容基本、难度低 第3.6节、第4.4节、第5.4节选讲 成绩:平时40%(出勤+作业+测验等)+ 期末60% 作业:用作业纸做,单周二交作业, 批阅1/3 作业上交情况及时上传至课程主页 答疑:单周周二下午七八节,工三303(数学系办公室)
a11
即 a 21 a 31 行标
a31
a12 a 22 a 32
a13 a 23 a 33
+ +
+
a11a 22 a 33 a12 a 23 a 31 a13 a 21a 32 a11a 23 a 32 a12 a 21a 33 a13 a 22 a 31 .
第一章 13
例4 解
1 求解方程
方程左端为
1 3 9
1 x 0. x2
计算三阶行列式
1 D 2 3 2 2 4 4 1 2
D 2 3
2 4
D 3 x 2 4 x 18 9 x 2 x 2 12
1 2 (2) 2 1 ( 3) (4) ( 2) 4
由 1, 2 , 3 组成的 3级排列有: 123 , 132 , 213 , 231 , 312 , 321 .
由自然数 1 , 2 , , n 所构成的不同的 n 级排列 的总数为 n!. 通常用 Pn 表示 .
Pn n ( n 1) ( n 2 ) 3 2 1 n!.
线性代数
![线性代数](https://img.taocdn.com/s3/m/e8a4176d814d2b160b4e767f5acfa1c7aa0082ee.png)
九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。“鸡兔同笼”问题实际 上就是一个简单的线性方程组求解的问题。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九 章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施 行初等变换,消去未知量的方法。
凯莱矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式 定义了有限维或无限维线性空间。托普利茨将线性代数的主要定理推广到任意体(domain)上的最一般的向量空 间中。线性映射的概念在大多数情况下能够摆脱矩阵计算而不依赖于基的选择。
学术地位
线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。在计算机 广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基 础的一部分。线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的 逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。随着科学的发展,我们 不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性 化,而由于计算机的发展,线性化了的问题又可以被计算出来,线性代数正是解决这些问题的有力工具。线性代 数的计算方法也是计算数学里一个很重要的内容。
所谓“线性”,指的就是如下的数学关系:。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符 号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统 一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系的线性算子f都有哪 几类,以及他们分别都有什么性质。
线性代数知识点总结第一章
![线性代数知识点总结第一章](https://img.taocdn.com/s3/m/992d715084868762cbaed528.png)
线性代数知识点总结第一章行列式第一节:二阶与三阶行列式把表达式称为所确定的二阶行列式,并记作,即结果为一个数。
同理,把表达式称为由数表所确定的三阶行列式,记作。
即=二三阶行列式的计算:对角线法则注意:对角线法则只适用于二阶及三阶行列式的计算。
利用行列式计算二元方程组和三元方程组:对二元方程组设则,对三元方程组,设,,,,则,,。
(课本上没有)注意:以上规律还能推广到n元线性方程组的求解上。
第二节:全排列及其逆序数全排列:把个不同的元素排成一列,叫做这个元素的全排列(或排列)。
n个不同的元素的所有排列的总数,通常用Pn (或An)表示。
(课本P5)逆序及逆序数:在一个排列中,如果两个数的前后位置与大小顺序相反,即前面的数大于后面的数,那么称它们构成一个逆序,一个排列中,逆序的总数称为这个排列的逆序数。
排列的奇偶性:逆序数为奇数的排列称为奇排列;逆序数为偶数的排列称为偶排列。
(课本P5)计算排列逆序数的方法:方法一:分别计算出排在前面比它大的数码之和即分别算出这n个元素的逆序数,这个元素的逆序数的总和即为所求排列的逆序数。
方法二:分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,这每个元素的逆序数之总和即为所求排列的逆序数。
(课本上没有)第三节:n阶行列式的定义定义:n阶行列式等于所有取自不同行、不同列的n个元素的乘积的代数和,其中p1 p2 … pn是1, 2,… ,n的一个排列,每一项的符号由其逆序数决定。
也可简记为,其中为行列式D的(i,j元)。
根据定义,有说明:1、行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程组的需要而定义的;2、n阶行列式是项的代数和;3、n阶行列式的每项都是位于不同行、不同列n个元素的乘积;4、的符号为,t的符号等于排列的逆序数5、一阶行列式不要与绝对值记号相混淆。
推论1:上,下三角行列式的值均等于其主对角线上各元素的乘积。
经济数学基础线性代数部分重难点解析
![经济数学基础线性代数部分重难点解析](https://img.taocdn.com/s3/m/0bd55ab96edb6f1afe001f97.png)
第三部 线性代数 第1章 行列式1.了解或理解一些基本概念(1)了解n 阶行列式、余子式、代数余子式等概念; (2)了解n 阶行列式性质,尤其是:性质1 行列式D 和其转置行列式T D 相等;性质2 若将行列式的任意两行(或列)互换,则行列式的值改变符号; 性质3 行列式一行(或列)元素的公因子可以提到行列式记号的外面;性质5 若将行列式的某一行(或列)的倍数加到另一行(或列)对应的元素上,则行列式的值不变.例1 设行列式211201231--=D ,则D 中元素223=a 的代数余子式23A = 。
解 由代数余子式的定义ij A ij ji M +-=)1(,其中ij M 为ij a 的余子式,可知 23A =11311131)1(32-=-+。
应该填写 1131-。
例2 下列等式成立的是( ) ,其中d c b a ,,,为常数。
A .acb d dc ba -= B .111111c bd a d c b a +=++C .d c b a d c ba 22222= D .111111c b d a d c b a ⋅=⋅⋅ 解 因为 dc ba d cb acd a b a b c d a c b d ≠-==-=-,所以选项A 是错误的。
由行列式性质4可知,111111c b d a d c b a +=++,所以选项B 是正确的。
因为d c ba d cb a dc b a 242222≠=,所以选项C 是错误的。
因为1111,11c b d a cd ab d c b a ⋅-=⋅⋅=))((c b d a --,111111c b d a d c b a ⋅≠⋅⋅,所以选项D 是错误的。
例3 行列式4321100001000010=D = 。
解 按第1列展开行列式,得6300020001)1(432130000200001014-=-==+D故应该填写 –6。
2.掌握行列式的计算方法化三角形法:利用行列式性质化成上(或下)三角行列式,其主对角线元素的乘积即为行列式的值。
经济数学线性代数(第三版)第一章课后习题详解
![经济数学线性代数(第三版)第一章课后习题详解](https://img.taocdn.com/s3/m/ac793a7bc850ad02df80410c.png)
经济数学线性代数(第三版)课后习题详解(第一章)
其它章节课后答案,关注微信公众号:答案管家
其它章节课后答案,关注微信公众号:答案管家
其它章节课后答案,关注微信公众号:答案管家
其它章节课后答案,关注微信公众号:答案管家其它章节课后答案,关注微信公众号:答案管家
其它章节课后答案,关注微信公众号:答案管家
其它章节课后答案,关注微信公众号:答案管家
其它章节课后答案,关注微信公众号:答案管家
其它章节课后答案,关注微信公众号:答案管家
其它章节课后答案,关注微信公众号:答案管家。
线性代数知识点总结
![线性代数知识点总结](https://img.taocdn.com/s3/m/c3ccd5d67d1cfad6195f312b3169a4517723e514.png)
线性代数知识点总结线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。
下面是小编想跟大家分享的线性代数知识点总结,欢迎大家浏览。
第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的.子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断。
经济数学基础线性代数之第1章行列式
![经济数学基础线性代数之第1章行列式](https://img.taocdn.com/s3/m/caf9a91eda38376bae1fae69.png)
第一单元 行列式的定义一、学习目标通过本节课学习,理解行列式的递归定义,掌握代数余子式的计算,知道任何一个行列式就是代表一个数值,是可以经过特定的运算得到其结果的.二、内容讲解行列式 行列式的概念什么叫做行列式呢?譬如,有4个数排列成一个行方块,在左右两边加竖线。
即2153-称为二阶行列式;有几个概念要清楚,即上式中,横向称行,共有两行;竖向称列,共有两列; 一般用ija 表示第i 行第j 列的元素,如上例中的元素311=a ,512=a ,121-=a ,222=a .再看一个算式075423011--称为三阶行列式,其中第三行为5,-7,0;第二列为–1,2,-7;元素423=a ,531=a又如1321403011320---,是一个四阶行列式.而11a 的代数余子式为()07421111111--=-=+M A代数余子式就是在余子式前适当加正负号,正负号的规律是-1的指数是该元素的行数加列数.()43011322332-=-=+M A问题思考:元素ija 的代数余子式ijA 是如何定义的? 代数余子式ijA 由符号因子j i +-)1(与元素ij a 的余子式ij M 构成,即()ijji ijM A +-=1三、例题讲解例题1:计算三阶行列式542303241---=D分析:按照行列式的递归定义,将行列式的第一行展开,使它成为几个二阶行列式之和, 二阶行列式可以利用对角相乘法,计算出结果.解:()()()5233145430112111---⋅-+--⋅=++D ()42031231--⋅++7212294121=⋅+⋅+⋅=四、课堂练习计算行列式hg f ed c b a D 00000004=利用n 阶行列式的定义选择答案.将行列式中的字母作为数字对待,利用递归定义计算.注意在该行列式的第一行中,有两个零元素,因此展开式中对应的两项不用写出来了.4D =⋅-⋅+11)1(a h f ed c 00+41)1(+-⋅b 000g f ed c ⋅五、课后作业1.求下列行列式的第二行第三列元素的代数余子式23A(1)210834021-- (2)3405122010141321---2.计算下列行列式(1)622141531-- (2)612053124200101---3.设00015413010212014=D(1)由定义计算4D ;(2)计算2424232322222121A a A a A a A a +++,即按第二行展开; (3)计算3434333332323131A a A a A a A a +++,即按第三行展开;(4)按第四行展开.1.(1)1021)1(32--+ (2)305120121)1(32---+2.(1)20 (2)243.(1)1 (2)1 (3)1 (4)1第二单元 行列式的性质一、学习目标通过本节课的学习,掌握行列式的性质,并会利用这些性质计算行列式的值.二、内容讲解 行列式的性质用定义计算行列式的值有时是比较麻烦的,利用行列式的性质能够使计算变的比较容易了.行列式的性质有七条,下面讲一讲几条常用的性质.在讲这些性质前,先给出一个概念:把行列式D 中的行与列按原顺序互换以后得到的行列式,称为D 的转置行列式,记为TD .如987654321=D ,963852741T =D1.行列式的行、列交换,其值不变.如264536543-==这条性质说明行列式中,行与列的地位是一样的.2.行列式的两行交换,其值变号.如243656543-=-=3.若行列式的某一行有公因子,则可提出.如d c b a dc ba333=注意:一个行列式与一个数相乘,等于该数与行列式的某行(列)的元素相乘. 4.行列式对行的倍加运算,其值不变.如倍加运算就是把一行的常数倍加到另一行上2113-- 5513-=注意:符号“À+2Á”放在等号上面,表示行变换,放在等号下面表示列变换. 问题1:将n 阶行列式的最后一行轮换到第一行, 这两个行列式的值有什么关系?答案设n 阶行列式nD ,若将nD 的最后一行轮换到第一行,得另一个n 阶行列式nC ,那么这两个行列式的值的关系为: n C =n nD 1)1(--问题2:如果行列式有两行或两行以上的行都有公因子,那么按性质3应如何提取? 答案按顺序将公因子提出.三、例题讲解例1计算行列式dc b a 675081004000--.分析:利用性质6,行列式可以按任一行(列)展开.本题按第一行逐步展开,计算出结果.解:dc b a 675081004000--=dc b a 670800-=d c ab 60=abcdÀ+2Á我们将行列式中由左上角至右下角的对角线, 称为主对角线.如例1中,行列式在主对角线以上的元素全为零,则称为下三角行列式. 由例1的计算过程,可得这样规律:下三角行列式就等于主对角线元素的积. 同理,主对角线以下元素全为零的行列式,则称为上三角行列式,且上三角行列式也等于主对角线元素之积.今后,上、下三角行列式统称为三角行列式.例2 计算行列式4977864267984321----分析:原行列式中第三行的元素是第一行的2倍,因此,利用行列式的倍加运算(性质5),使第三行的元素都变为0,得到行列式的值.解:4977864267984321----497700067984321----= 0例3 计算行列式2211132011342211----分析:利用行列式的倍加运算(性质5),首先将某行(列)的元素尽可能化为0,再利用行列式可以按任一行(列)展开的性质(性质6),逐步将原行列式化为二阶行列式,计算出结果.解:2211132011342211---- 2411142010342011---Â+Ã111142010342011----=111134211)1(433-----⨯+1101312104----⨯=1121)1(412----⨯+12)21(4=---=通过此例可知,行列式两行成比例,则行列式为零.三、课堂练习练习1 若d a a a a a a a a a =333231232221131211,求行列式232221131211313231222333a a a a a a a a a ---利用行列式的性质3,将第一行的公因子3、第二行的公因子(-1)、第三行的公因子2提出.利用行列式的性质3和性质2,将所要计算的行列式化为已知的行列式,再求其值.练习2 计算行列式540554129973219882310391----由性质4,若行列式中某列的元素均为两项之和,则可将其拆写成两个行列式之和.在着手具体计算前,先观察一下此行列式有否特点?有,其第三列的数字较大,但又都分别接近100、200、300和400,故将第三列的元素分别写成两项之和, 再利用行列式的性质4将其写成两个行列式之和.注意,将第三列的元素分别写成两À+Á项之和时,还要考虑到结论“行列式中两列元素相同(或成比例),则该行列式的值为0”的利用.五、课后作业1.计算下列行列式(1)75701510--- (2)253132121-(3) ww w w ww22111 (0≠w ) (4)38790187424321--2.证明(1)0=---------cb b a ac b a a c c b a c c b b a (2)()32211122b a b b a a b ab a -=+1.(1)0 (2) -2 (3) 22)1(--w w (4)02. (1)提示:利用性质5,将第一行化成零行.(2)提示:利用性质5,将第三行的元素化成“0 0 1”,再按第三行展开,并推出等号右边结果.第三单元 行列式的计算一、学习目标通过本节课的学习,掌握行列式的计算方法.二、内容讲解行列式的计算行列式=按任何一行(列)展开 下面用具体例子说明.d c b a =bc ad -1156)1(5232153=+=-⋅-⋅=-一个具体的行列式就是代表具体的一个数.再看一个三阶行列式.75423011--可以按任何一行(列)展开按第一行展开=752300543107421-⨯+⨯+-⨯=02028+-=8 按第三列展开=231107511475230-⨯+--⨯--⨯=0)57(40++-⨯-=8注意:1.行列式计算一般按零元素较多的行(列)展开.2.代数余子式的正负号是有规律的,一正一负相间隔.问题:试证 2222222211110000d c b a d c b a d c b a d c dc b a b a =答案左边=222211122222111100)1(00)1(d c b a b a bc d c b a d c d a ++-+-222211)1(d c b a ad +-=222211)1(d c b a cb +--22222222)(d c b a d c b a d c b a cb ad =-==右边三、例题讲解例 计算行列式214200131000211---分析:由性质6可知,行列式可以按任何一行(列)展开来求值.因为第二、三行,第四列的零元素都较多,所以可选择其一展开,再进一步将其展成二阶行列式,并计算结果.解:按第三行展开214200131000211---=214100211)1(2021315021)1(14313----⨯+----⨯++=1411)1()1(22121)1(33232--⨯-⨯----⨯++==10)41(2)22(3-=+--⨯-四、课堂练习练习1 计算行列式dcb a 100110011001---根据定义,按第一行展开,使其成为两个三阶行列式之和.因为行列式第一行有较多的零元素,所以可采用“降阶法”,即先按第一行展开,使其成为两个三阶行列式之和,然后再计算两个三阶行列式降阶,最后求出结果.dcb a 100110011001--- =dcd cb a 101011101101-----练习2 计算行列式24524288251631220223------为了避免分数运算,先作变换“第一行加上第二行的2倍,即À+Á 2;第三行加上第二行的-2倍,即Â+Á(-2);第四行加上第二行的-2倍,即Ã+Á(-2)”.该行列式没有明显特点,采用哪种方法计算都可以,这里用“化三角行列式”的方法进行计算.注意尽量避免分数运算.21524288251631220223------111042011631212401----五、课后作业1.计算下列行列式:(1)881441221---- (2)4222232222222221À+Á2 Â+Á(-2(3) 4321651065311021 (4)00312007630050131135362432142.计算n阶行列式xaaa x a a a x/media_file/jjsx/4_1/3/khzy/khzy.htm - #1.(1)48 (2)4 (3)-3 (4)-3402. ])1[()(1x a n a x n +---第四单元 克拉默法则一、学习目标克拉默法则是行列式在解线性方程组中的一个应用,通过本节课的学习,要知道克拉默法则求线性方程组解的条件,了解克拉默法则的结论.二、内容讲解克拉默法则设n 个未知数的线性方程组为 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (1)记行列式nnn n n na a a a a a a a a D 212222111211=称为方程组(1)的系数行列式.将D 中第j 列的元素njj j a ,,a ,a 21分别换成常数n b ,,b ,b 21而得到的行列式记作jD .克拉默法则 如果线性方程组(1)的系数行列式0≠D ,那么它有惟一解D D x D Dx D D x n n ===,,,2211 (2)证将(2)式分别代入方程组(1)的第i 个方程的左端的nx x x ,,,21 中,有D D a D Da D D a n in i i +++ 2211(3)将(3)中的jD 按第j 列展开, 再注意到j D中第j 列元素的代数余子式和D 中第j 列元素的代数余子式ij A是相同的, 因此有),,2,1(2211n j A b A b A b D njn j j j =+++= (4)把(4)代入(3),有D D a D Da D D a n in i i +++ 2211(){1121211111n n i i i A b A b A b A b a D+++=()222221212n n i i i A b A b A b A b a ++++…+…()}nn n in i n n in A b A b A b A b a ++++2211把小括弧打开重新组合得(){()()()}i nn in n i n i n in in i i i i i n in i i n in i i b A a A a A a b A a A a A a b A a A a A a b A a A a A a b D=+++++++++++++++++=2211221122222112112211111因由性质6和性质7⎩⎨⎧=≠=+++k i D ki A a A a A a kn in k i k i 02211 故上式等于i b ,即i n in i i b D D a D Da D D a =+++ 2211下面再证明方程组(1)的解是惟一的.设nn c x c x c x ===,,,2211为方程组(1)的任意一组解.于是 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b c a c a c a b c a c a c a b c a c a c a 22112222212111212111 (5)用j A 1,j A 2,…j n A 分别乘以(5)式的第一、第二、…、第n 个等式,再把n 个等式两边相加,得++++11221111)(c A a A a A a nj n j j +++++j nj nj j j j j c A a A a A a )(2211n nj nn j n j n c A a A a A a )(2211++++ njn j j A b A b A b +++= 2211根据性质6和性质7,上式即为),,2,1(n j D c D j j ==因为0≠D ,所以),,2,1(n j DD c j j ==克拉默法则有以下两个推论:推论1 如果齐次线性方程组的系数行列式0≠D , 那么 它只有零解.推论2 齐次线性方程组有非零解的必要条件是系数行列式0=D . 问题:对任一线性方程组都可用克拉默法则求解吗?答案 不对.当线性方程组中的未知量个数与方程个数不一样;或未知量个数与方程个数相同,但其系数行列式等于零时,不能使用克拉默法则.三、例题讲解例 利用克拉默法则解下列方程组⎩⎨⎧-=-=+-7526432121x x x x分析:这是一个两个变量、两个方程的方程组,它满足了克拉默法则一个条件.克拉默法则的另一个条件是要求系数行列式的值不等于零.因此,先求出方程组的系数行列式的值,若它的值不等于零,说明该方程组有惟一解,然后求常数项替代后的行列式的值,再用克拉默法则给出的公式求出解. 解:因为系数行列式()()24535243⨯--⨯-=--=D 07815≠=-= 且257461-=--=D ,972632=--=D ,所以7211-==D D x ,7922==D D x四、课堂练习k 取什么值时,下列方程组有唯一解?有唯一解时求出解.⎪⎩⎪⎨⎧=+--=++-=++0211321321321x x x x kx x kx x x对行列式作变换“第二行加上第一行的1倍,即Á+À;第三行加上第一行的-1倍,即Â+À(-1)”.这是三个未知量三个方程的线性方程组,由克拉默法则知,当系数行列式D ≠0时,方程组有唯一解.所以,先求系数行列式的值.2111111--=kk Dkk k k --++2211011五、课后作业用克莱姆法则解下列方程组1.⎪⎩⎪⎨⎧=+=++=-12 142 23232121x x x x x x x 2.⎪⎪⎩⎪⎪⎨⎧-=+++-=+-+=---=+++422222837432143214314321x x x x x x x x x x x x x x x 1.31=x ,42=x ,233-=x ,2. 21-=x ,3352=x ,2103=x ,204-=x。
线性代数重要公式定理大全
![线性代数重要公式定理大全](https://img.taocdn.com/s3/m/80ffe8a7f9c75fbfc77da26925c52cc58ad6907c.png)
线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。
在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。
在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。
下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。
一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。
2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。
(2)行列式相邻行(列)对换,行列式的值不变。
(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。
(4)互换行列式的两行(列),行列式的值不变。
(5)若行列式的行(列)的元素都是0,那么行列式的值为0。
(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。
3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。
(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。
4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。
(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。
(3)行列式的转置等于行列式的值不变。
二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。
《线性代数》学习指南
![《线性代数》学习指南](https://img.taocdn.com/s3/m/508a163b27284b73f24250ec.png)
课程简介课程基本信息:1.课程中文名称:线性代数2.课程英文名称:Linear Algebra3.课程编号:025810024.适用专业:金融学专业、财务管理专业、风险管理与保险学专业、国际经济与贸易专业、市场营销专业等经济类各专业5.适用层次:专科起点升本科6.课程类别:专业必修课7.课程学时:授课课时45课时,自学学时135学时课程性质:《线性代数(经管类)》是经济管理类各专业、本科段必修的专业基础课。
本课程是在实数域上的有限维空间nR里讨论线性理论;为解决实际问题提供基本的思想和算法;也为深入学习数学和经济应用数学打下必要的基础。
内容说明:学习线性代数要先学会算行列式(第一章)。
一般线性代数包括:⑴线性空间;⑵线性变换;⑶矩阵论;⑷代数型。
根据经管类需要⑴中只学nR空间(第三章);⑵只学相似变换(第五章),合同变换(第六章);⑶学矩阵论;⑷只学二次型。
解线性方程组(第二章)是解决实际问题(例如投入产出、线性规划)的基本方法。
参考教材《线性代数》教材书名:线性代数著作责任者:杨荫华编著责任编辑:刘艳云梁鸿飞标准书号:ISBN 7-301-06954-5/F﹒0781出版发行:北京大学出版社内容提要:本书是高等成人教育、继续教育经济与管理类本科“线性代数”课程教材。
本书按照教育部颁布的《线性代数自学考试大纲》,并结合作者多年从事教学实践的经验编写而成。
全书共分七章。
内容包括行列式、线性方程组、n维向量空间、矩阵、矩阵的相似、二次型,以及线性空间与线性交换等。
每节后配有适量练习题,书末有习题参考答案与提示,供教师和学生参考。
本书叙述深入浅出、通俗易懂、论证严谨、便于自学,也可以作为参加经济与管理类自学考试本科段考生的自学教材或参考书。
书名:线性代数(经管类)作者:刘吉佑、徐诚浩编著出版发行:武汉大学出版社内容提要:本书是根据《线性代数(经管类)自学考试大纲》的精神和要求编写的,章节安排、自学要求、重点和难点都符合大纲要求。
线性代数总结精华ppt课件
![线性代数总结精华ppt课件](https://img.taocdn.com/s3/m/bc490f6c866fb84ae45c8dbd.png)
d数量矩阵:有数量的对角矩阵 记作 E .
第二章 矩阵
e.三角矩阵:分为上三角和下三角 f.负矩阵:原矩阵乘上负一 g.行最简型,行阶梯型,标准型 4.多元线性方程组与矩阵 a.系数矩阵与增广矩阵 5.矩阵的运算,加法,减法,数乘,乘法,转置,对称阵与反对称阵、 6.方阵行列式(这里要注意方阵行列式的运算规则) 7.伴随矩阵(注意运算规律) 8.共轭矩阵(不太重要)
第三章 向量 用向量的知识解构与重构矩阵
1.向量的定义,向量、向量组和矩阵的关系
2.向量组的线性相关1 a 12 a 2 m a m
3.向量的线性表示:
a.一个向量被向量组线性表示b 1 a 1 2 a 2 m a m
b.一个向量组被另一个向量组线性表示 B=§A 定理 1 向量 b 能由向量组 A 线性表示的充要条件是 R(A) = 联系上一章节学习的线性方程 R(B) , 其中矩阵 A = ( a1 , a2 ,……, am ), B = ( a1 , a2 ,……, am ,b ) . 组的是知识
b.线性方程组解的空间指的是由线性方程组的解的向量满足空间线性运算 及元素线性无关所组成的空间,其次线性方程组的解向量就是一个解空间
定理 6 n 元齐次线性方程组
Ax = 0
⑴
的解空间的维数为 n - r ,即 ⑴ 的基础解系含 n - r 个解,其中
R(A) = r.
第三章 向量
1向量的线性表示(主要是线性表示的概念,单个向量、向量组与向量组的 线性表示)
端木奈良 更多学习资源请加QQ:2119658018
线性代数复习指导
The Review Lesson To Linear Algebra
线性代数(经管类)讲义
![线性代数(经管类)讲义](https://img.taocdn.com/s3/m/5494e5e0f61fb7360b4c656c.png)
高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
例如)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
线性代数知识点总结
![线性代数知识点总结](https://img.taocdn.com/s3/m/5ec310986294dd88d0d26b86.png)
大学线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ (奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)((反序定理) 方幂:2121k k k kA AA +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)初等变换1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列)初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的(对换阵 倍乘阵 倍加阵) 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形 矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
线性代数一课一文
![线性代数一课一文](https://img.taocdn.com/s3/m/71ead1d705a1b0717fd5360cba1aa81144318f61.png)
线性代数一课一文一、简介线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如van的名著代数学第二卷就把线性代数作为其中的短短一章。
总结线性代数的历史基础上,分析了关于线性代数的几个核心问题:第一了解了几种关于线性代数基本结构问题的观点;第二了解了关于线性代数的两个基本问题,即为“线性”和“线性问题”;第三了解了线性代数的研究对象;第四分析了线性代数的结构体系。
上世纪80年代以来,随着计算机应用的普及,线性代数理论被广泛应用到科学、技术和经济领域,因此线性代数也成为高等院校理工科各专业的一门基础课程,文章简述线性代数的相关核心核心问题。
线性代数就是代数学的一个分支,今天数学界一致认得它做为一门单一制学科问世于上世纪30年代,因为招揽了系统的线性代数内容的著作就是在这一时期产生的,如van的名著代数学第二卷就把线性代数做为其中的短短一章。
但是线性代数的一些初级内容例如行列式、矩阵和线性方程组的研究可以追溯到二百多年前;19世纪四五十年代grassmann创办了为符号定义几何概念的方法,得出了线性毫无关系和基等概念,这标准着线性代数内容近代化已经开始;19世纪末向量空间的抽象化定义构成,并在20世纪初被广为用作和泛函分析研究,从而并使线性代数沦为以空间理论为破灭的单一制学科,因此可以说道线性代数就是综合了若干项单一制发展的数学成果而构成的。
从上世纪六七十年代起至线性代数步入了大学数学专业课程,在我国这门课程称作高等代数,它以线性代数为主体并列入了一章多项式理论。
无论是高等代数或线性代数,这个课程有两个特点:一个特点是各部分内容相对独立,整个课程呈现出一种块状结构,原因是线性代数学科的形成过程本身就没有一条明确的主线。
我们几乎可以找到从线性方程组,行列式,向量,矩阵,多项式,线性空间,线性变换中的任何一个分块开始展开的教材,其展开过程主要取决于作者串联这些分块的形式逻辑的脉络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a1n a 2 n . amn
下一步
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力
12
2、数乘矩阵的运算规律
(设 A、B为 m n 矩阵, , 为数)
1 A A; kA Ak 2 A A A; 3 A B A B.
称为矩阵A的负矩阵.
4 A A 0, A B A B .
下一步
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力
11
四、数与矩阵相乘
1、定义
数与矩阵A的乘积记作A或A , 规定为
a11 a12 a21 a22 A A a m 1 a m 1
436 283 513 125 414 258
C 283 125 258
623 782 353
D 623 782 353
下一步
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力
2
二、矩阵的定义
由 m n 个数 aij i 1,2,, m; j 1,2,, n 排成的 m行 n 列的数表
mn 零 (4)元素全为零的矩阵称为零矩阵, 矩阵记作 omn 或 o .
注意 例如
不同阶数的零矩阵是不相等的.
0 0 0 0
0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0
下一步
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力
例如
13 6 2i 2 2 2 2 2 2
是一个3 阶方阵.
(2)只有一行的矩阵 A a1 , a2 ,, an ,
称为行矩阵(或行向量).
下一步
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力
5
只有一列的矩阵 a1 a2 B , 称为列矩阵(或列向量). a n 不全为0
A 的负矩阵: 1 A 记为 A
A B A ( B)
下一步
有生命就会有希望,有信心就会有 成功,有思
3 1 2 0 A 1 5 7 9 2 4 6 8 求满足 A 2 X B 的 X
10
2、 矩阵加法的运算规律
1 A B B A; 2 A B C A B C .
a11 a 21 3 A a m1 a12 a 22 am1 a1 n a2n aij , a mn
1 0 (3)形如 0 2 0 O0 0 O 0 的方阵,称为对角 矩阵(或对角阵). n
下一步
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力
6
记作
A diag 1 , 2 ,, n .
a1 n b1 n a 2 n b2 n a mn bmn
下一步
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力
9
说明 只有当两个矩阵是同型矩阵时,才能进 行加法运算.
例如
12 3 5 1 8 9 1 9 0 6 5 4 3 3 2 1 6 8
7
(5)方阵
1 0 0 1 E En O 0 0
0 O 0 1
全为1
称为单位矩阵(或单位阵). 同型矩阵与矩阵相等的概念
1.两个矩阵的行数相等,列数相等时,称为同 型矩阵.
下一步
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力
12 1 3 8 5 9 13 11 4 1 6 9 5 0 4 7 4 4 . 6 3 3 6 2 8 9 81
下一步
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力
经济数学线性代数
第4讲
矩阵的概念及运算
教师:边文莉
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力 1
一、矩阵概念的引入
1. 将某种产品从甲,已,丙三个产地运往四个销 地A,B,C,D;调运计划数见下表。
甲 已 丙
可表示为:
A 385 432 382
385 432 382
B 436 513 414
a11 a21 a12 a22 a1n a2 n
am 1 am 2 amn
称为 m n矩阵.简称 m n 矩阵.
下一步
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力
3
记作
a11 a 21 A a m1
a12 a 22 am1
a1 n a2n a mn
第一行
第m行
简记为
A Amn aij mn aij .
aij 称为第i行j列的元素.
这m n个数称为A的元素.
下一步
有生命就会有希望,有信心就会有 成功,有思索就会有思路,有努力
4
几种特殊矩阵
(1)行数与列数都等于 n 的矩阵 A ,称为 n 阶 方阵.也可记作 An .
8
三、矩阵的加法
1、定义
设有两个 m n矩阵 A a ij , B bij , 那末矩阵 A 与 B 的和记作 A B,规定为
a11 b11 a 21 b21 A B a b m1 m1
a12 b12 a 22 b22 a m 2 bm 2