天津科技大学生物化学全套5PPT课件
生物化学绪论ppt课件
生物化学绪论ppt课件目录•生物化学概述•生物大分子结构与功能•生物小分子代谢及调控机制•基因表达调控与疾病关系•细胞信号传导途径和受体介导作用•现代生物化学技术应用及发展前景PART01生物化学概述生物化学定义与特点生物化学定义研究生物体内化学过程及其分子机制的学科。
生物化学特点从分子水平揭示生命现象,涉及生物大分子的结构与功能、生物小分子代谢、基因表达调控等。
生物化学研究历史与现状研究历史从19世纪末开始,随着化学和生物学的发展,生物化学逐渐形成并发展壮大。
研究现状生物化学已成为生命科学领域的重要分支,涉及基因组学、蛋白质组学、代谢组学等多个研究方向。
生物化学方法可用于检测生物标志物,辅助疾病诊断。
疾病诊断药物研发疾病预防与治疗通过研究生物大分子与小分子相互作用,指导药物设计和优化。
揭示疾病发生的生物化学机制,为疾病预防和治疗提供新思路。
030201生物化学在医学领域重要性PART02生物大分子结构与功能氨基酸蛋白质的基本组成单位氨基酸序列蛋白质的一级结构二级、三级和四级结构蛋白质的高级结构催化、运输、免疫、调节等蛋白质的功能蛋白质结构与功能核酸的基本组成单位DNA的双螺旋结构RNA的种类与功能核酸的功能核苷酸mRNA、tRNA、rRNA等碱基配对、反向平行等遗传信息的储存、传递和表达01020304单糖的结构与性质双糖的结构与性质多糖的结构与性质糖类的功能葡萄糖、果糖等蔗糖、麦芽糖等淀粉、纤维素等提供能量、细胞识别、生物合成等PART03生物小分子代谢及调控机制糖代谢及调控机制糖的生理功能糖是生物体内主要的能源物质,通过糖酵解和三羧酸循环等过程提供能量。
此外,糖还参与细胞识别、信号传导等生物过程。
糖代谢途径生物体内的糖代谢主要包括糖异生、糖酵解、糖有氧氧化等过程。
其中,糖异生是非糖物质转变为葡萄糖的过程;糖酵解是葡萄糖在无氧条件下分解为乳酸的过程;糖有氧氧化是葡萄糖在有氧条件下彻底氧化为二氧化碳和水的过程。
生物化学教学课件ppt
分子间作用力包括范德华力、氢键和疏水作用力等,影响分子的聚集状态和稳 定性。
化学反应与能量转化
化学反应
化学反应是原子或分子重新组合的过程,遵循质量守恒和能 量守恒定律。
能量转化
化学反应中伴随着能量的吸收或释放,可用于解释反应的动 力学和热力学性质。
酸碱反应与缓冲溶液
酸碱反应
酸和碱通过质子转移反应生成水和盐,酸碱反应是化学反应中的重要类型之一。
生物化学教学课件
目录
• 生物化学概述 • 生物化学基础知识 • 生物大分子与细胞结构 • 生物化学代谢过程 • 生物化学实验技术与方法 • 生物化学前沿研究与发展趋势
01
生物化学概述
生物化学的定义与重要性
定义
生物化学是生物学和化学两门学 科的交叉学科,主要研究生物体 内的化学过程和物质代谢。
重要性
02
生物化学基础知识
分子结构与性质
分子结构
分子由原子组成,通过化学键连接, 具有空间构型和电子分布,决定分子 的物理和化学性质。
分子性质
分子的性质由其结构决定,包括极性 、溶解度、挥发性等,影响分子的物 理状态和化学反应活性。
化学键与分子间作用力
化学键
化学键是原子间通过电子转移或共享形成的相互作用力,分为共价键、离子键 和金属键等。
核酸的结构与功能
总结词
核酸是生物体中重要的遗传物质,具有多种结构和功能。
详细描述
核酸包括DNA和RNA,它们由核苷酸组成,具有一级、二级和三级结构。一级结构决定了核酸的序列 ,二级结构决定了核酸的双螺旋结构,三级结构决定了核酸的空间构象。核酸的功能是携带和传递遗 传信息。
酶的结构与催化机制
总结词
天津大学生物化学05第五章核酸化学ppt课件
dA M P dG M P dC M P 未 发 现 dT M P
M-单(D-二;T-三〕 ;P-磷酸 RNA的称号为某〔单、二、三〕苷酸,DNA在某 〔单、二、三〕前加脱氧两字。 如AMP称腺苷—磷酸(或腺苷酸〕,dAMP称为 脱氧腺苷—磷酸〔脱氧腺苷酸〕。
第二节 核苷酸(5多磷核苷酸1〕
➢参与核酸生物合成的直接原 料不是一磷酸核苷酸,而是 三磷酸核苷酸,如ATP 〔三 磷酸腺苷酸〕。 ➢AT P 上 的 磷 酸 残 基 用 α 、 β 、 γ来编号。
1.DNA双螺旋构造模型要点3
➢双 螺 旋 DNA分 子整个长 度的直径 一样,为 2nm
1.DNA双螺旋构造模型要点4
➢〔4〕一个链的 碱基顺序确定后 ,那么另一条链 必有相对应的碱 基顺序。
➢ 碱基互补原那么 具有极重要意义 ,DNA复制、转 录、反转录等过 程的分子根底都 是碱基互补配对
2.双螺旋构造的稳定要素1
3.DNA双螺旋的不同类型2
〔四〕DNA的三构造
当研讨某些小病毒、线粒体、叶绿体及某些细菌中分别 出来降解的DNA时,发现它们的双螺旋二级构造还可进 一步紧缩成闭链环状或开链环状以及麻花状等,这是 DNA构成的三级构造。
松弛形
负超螺旋
解链环形
二、 RNA的分子构造1
〔一〕RNA一级构造 〔二〕RNA的碱基组成 〔三〕RNA的类型 〔四〕RNA的二级构造
〔一〕RNA一级构造
➢由 几 十 个 至 几 千个AMP, GMP,CMP和 UMP四种核苷 酸借磷酸二酯键 相连的多核苷酸 链,其中不含侧 链。
〔二〕RNA的碱基组成
➢含腺嘌呤、鸟嘌呤、 胞嘧啶、和尿嘧啶四 种碱基,尚含有多种 “稀有碱基〞和特殊 方式的核苷。
《生物化学》 ppt课件
一、水的结构 单个水分子的两个氢原子共价地与氧原子结合,呈现一种非线
性排列(图1-4a,b)。水的氢键形成具有协同的性质。这就是说, 作为受体的氢键结合的水分子是一种比未键合的水分子更好的氢键 供体。(同样,作为氢键供体的氢键结合的水分子也是一种更好的 氢键受体)。因此,水分子之间氢键的形成有一种彼此支援的现象。 1、冰的结构
结构互补性是生物分子间识别的手段。生命的复杂而高度
组织化的型式取决于生物分子彼此识别和相互作用的能力。如 果一种分子的结构与另一种分子的结构是互补的,例如某种酶 与它的专一性底物分子,那么这两种分子之间的相互作用就能 准确地实现。结构互补性的原理是生物分子识别的基本要素.
6、生物分子的的识别是由弱的相互作用力介导的 通过结构互补性所发生的生物分子识别事件是由前面
1、生物分子是含碳的化合物 所有生物分子都含有碳。碳的优势是由于它通过共用电
子对形成稳定的共价键方面的多面性。通常与碳以共价键相 结合的原子是碳本身以及H、O和N(图1—1)。
碳的共价键有两个特别值得注意的性质。一是碳与自ቤተ መጻሕፍቲ ባይዱ 形成共价键的能力,另一个是被键合碳原子周围的四个共价 键的四面体性质。这两种性质对于碳所形成的线性、分支以 及环状的化合物的惊人多样性是极为重要的。这种多样性可 因N、O和H原子的参与而进一步扩大。
3、生物大分子具有特征性的三维结构 任何一种分子结构都是独特的,并具有可区别的特有的性
质。生物大分子,尤其是蛋白质,分子结构已经达到了其复杂 性的极点。 4、非共价作用力维持生物大分子的结构
共价键把原子结合在一起形成分子,非共价作用力是分子
内或分子间的原子之间的吸引。非共价作用力是弱的作用力, 包括氢键、离子键、范德华力和疏水相互作用。这些作用力一 般介于4–30 kJ·mol-1范围。 5、结构互补性决定生物分子的相互作用
天津科技大学生物化学全套课件01
生物化学实验技术操作指导天津科技大学生物化学课程组2006.12目录生物化学实验须知⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2实验室一些常用知识介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3实验一:离子交换法分离氨基酸⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7实验二:垂直板聚丙烯酰胺凝胶电泳分离蛋白质⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9实验三:马铃薯多酚氧化酶制备及性质实验⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13实验四:碱性蛋白酶活力的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯16 实验五:植物组织中DNA和RNA的提取和鉴定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯19实验六:糖酵解中间产物的鉴定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22实验七:综合设计实验—蛋白质的制备及其含量测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24 实验八:还原糖和总糖的测定(3,5-二硝基水杨酸法)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯35实验九:发酵过程中无机磷的利用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯37实验十:氨基酸的分离鉴定—纸层析法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯39 实验十一:细菌血栓溶解酶活性测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯41 实验十二:可溶性糖的硅胶G薄层层析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43 实验十三:植物材料中总黄酮的提纯与鉴定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯44 实验十四:IEF/SDS-PAGE双向电泳分离鉴定蛋白质⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯45附录⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯49一、实验室主要仪器使用操作规程与注意事项⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯49二、常用缓冲溶液的配制⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55三、硫酸铵饱和度的常用表⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯60生物化学实验须知1.实验室规则(1) 实验课必须提前5分钟到实验室,不迟到,不早退,应自觉遵守课堂纪律。
《生物化学》全套PPT课件
04 糖代谢途径与调控机制
糖类概述及分类方法
糖类定义
多羟基醛、多羟基酮及其缩聚物和某些衍生物的 总称。
糖类分类
单糖、低聚糖、多糖。
糖类生物学作用
提供能量;物质代谢的碳骨架;细胞的组成成分。
糖无氧氧化过程剖析
糖无氧氧化定义
在无氧条件下,葡萄糖经分解代谢为乳酸或乙醇的过程。
糖无氧氧化过程
葡萄糖磷酸化;异构化;裂解;还原。
质谱法
利用蛋白质分子在电场或 磁场中的运动规律进行测 定。
cDNA测序法
通过测定编码蛋白质的 cDNA序列,间接推断蛋 白质序列。
蛋白质高级结构类型及特点
二级结构
主要依靠氢键维持的局部 空间结构,包括α-螺旋、 β-折叠等。
三级结构
整条肽链中全部氨基酸残 基的相对空间位置,包括 结构域、超二级结构等。
脂类分类方法
根据化学结构和性质,脂类可分为简单பைடு நூலகம்质(如脂肪酸、甘油酯等) 和复合脂质(如磷脂、糖脂等)。
脂类在生物体内的分布
不同生物体内的脂类分布有差异,如动物体内主要储存甘油三酯, 而植物体内则以脂肪酸为主。
甘油三酯分解代谢过程剖析
01
甘油三酯的分解代谢途径
甘油三酯在体内主要通过脂肪酶的催化作用分解为甘油和脂肪酸,进而
糖异生作用及其生理意义
糖异生定义
非糖物质转变为葡萄糖或糖原的 过程。
糖异生过程
乳酸、甘油、生糖氨基酸等转变为 葡萄糖或糖原。
糖异生生理意义
维持血糖恒定;补充或恢复肝糖原 储备;利用乳酸。
05 脂类代谢途径与调控机制
脂类概述及分类方法
脂类定义及主要功能
脂类是生物体内重要的有机化合物,包括脂肪、磷脂、固醇等, 主要功能是储存能量、构成生物膜、参与信号传导等。
大学生物化学绪论ppt课件
个性化医疗
根据患者的基因和蛋白质 信息,制定个性化的治疗 方案,提高治疗效果。
未来发展趋势和前景展望
跨学科融合
生物化学将与计算机科学、数学、物 理学等学科更加紧密地结合,推动生
物医学领域的发展。
生物制药
利用生物化学技术生产重组蛋白药物 、抗体药物等,将成为未来药品研发
的重要方向。
精准医疗
随着基因测序技术的不断发展,未来 有望实现基于个体基因信息的精准医 疗。
生物经济
生物化学技术的发展将推动生物经济 的崛起,包括生物制造、生物农业、 生物能源等领域的发展。
THANKS
感谢观看
研究对象
生物大分子(蛋白质、核酸、多糖等)及其相互作用; 生物小分子(氨基酸、脂肪酸、维生素等)及其代谢; 生物体内能量转化与利用;生物膜与细胞信号传导等。
生物化学发展历史及现状
发展历史
从19世纪末到20世纪初,生物化学逐渐从生理学和有机化学中独立出来;20世纪中期以后,生 物化学在分子水平上取得了重大突破,如DNA双螺旋结构的发现、基因工程技术的建立等。
遗传信息的储存和传递、
催化等
糖类结构与功能
糖类的基本组成单位
单糖
糖类的分类
单糖、双糖、多糖等
糖类的结构特点
链状、环状、支链等
糖类的功能
能量储存和供应、细胞识别、 生物合成等
03
生物小分子代谢及调控机制
糖代谢及调控机制
糖酵解
将葡萄糖分解为丙酮酸, 产生ATP的过程。
糖异生
非糖物质转变为葡萄糖的 过程,主要在肝脏和肾脏 中进行。
大学生物化学绪论 ppt课件
目录
• 生物化学概述 • 生物大分子结构与功能 • 生物小分子代谢及调控机制 • 基因表达调控与疾病关系 • 细胞信号传导途径和受体介导作用 • 现代生物化学技象
《生物化学》全套课件
《生物化学》全套课件一、教学内容本课件基于《生物化学》教材,主要涉及第5章至第8章的内容。
详细内容包括:酶学原理、代谢途径、生物分子结构和功能、以及遗传信息的表达与调控。
二、教学目标1. 理解并掌握生物化学的基本概念、原理及实验方法。
2. 学习生物分子结构与功能的相互关系,了解其在生命活动中的作用。
3. 掌握代谢途径的基本过程,分析生物体内的物质转化与能量流动。
三、教学难点与重点难点:代谢途径的复杂性、生物分子结构与功能的相互关系。
重点:酶学原理、代谢调控、蛋白质结构与功能。
四、教具与学具准备1. 教具:PPT课件、黑板、粉笔、激光笔。
五、教学过程1. 导入:通过介绍生活中的生物化学实例,引发学生对生物化学的兴趣。
2. 新课内容:讲解酶学原理、生物分子结构与功能、代谢途径等,结合实例进行分析。
3. 例题讲解:针对每个知识点,给出典型例题,引导学生运用所学知识解决问题。
4. 随堂练习:设计针对性练习题,巩固所学知识。
6. 互动环节:鼓励学生提问,解答学生疑惑。
六、板书设计1. 板书左侧:列出本节课的主要知识点,以提纲形式呈现。
2. 板书右侧:针对重点内容,绘制示意图或表格,直观展示。
七、作业设计1. 作业题目:(1)简述酶学原理,举例说明酶在生物体内的作用。
(2)论述蛋白质结构与功能的关系。
(3)分析糖类、脂类、蛋白质在生物体内的代谢途径。
2. 答案:(1)酶学原理:酶是一种具有生物催化功能的蛋白质,能降低化学反应的活化能,加速反应速度。
例如,唾液淀粉酶能将淀粉分解为麦芽糖。
(2)蛋白质结构与功能的关系:蛋白质的结构决定其功能,不同的结构具有不同的功能。
例如,血红蛋白具有运输氧气的功能,其结构中的铁离子与氧气结合。
(3)糖类、脂类、蛋白质在生物体内的代谢途径:糖类主要通过糖酵解、三羧酸循环进行代谢;脂类通过β氧化途径代谢;蛋白质通过氨基酸的脱氨基作用、转氨基作用等途径代谢。
八、课后反思及拓展延伸1. 反思:根据学生的课堂表现和作业完成情况,调整教学方法和策略。
生物化学绪论ppt课件(完整版)
1953 James D. Watson和Francis H. Crick提出 DNA双螺旋结构模型。
Maurice H.F.Wilkins和Rosalind Franklin发现 DNA螺旋结构。
Frederick Sanger完成胰岛素序列分析。
生化发展大事记
1955 Arthur Kornberg发现E. coli DNA聚合酶。 Mahlon Hoagland证明氨基酸参与蛋白质合成前需要 被活化。
➢ “燃烧”学说(Justus Von Liebig,19世纪20年 代) —动物通过呼吸获取空气中的O2,氧化分解摄 取的食物,产生水和CO2,并且释放热量,保持体 温,维持活力。
➢ 物质代谢概念的产生 —比希将食物分为糖、脂和蛋白质三大类主要
成分,并提出物质,生物化学是一门边缘学科,也是 生命科学领域重要的领头学科。
一、概念:
是研究生物体内化学分子与化学反应的 科学,它在分子水平上探讨生命的本质, 即研究生物体的分子结构与功能、物质 代谢与调节、及其遗传信息传递的分子 基础和调控作用的科学。
生化的初级阶段:生物体内的物质,如糖类、
脂类、蛋白质和核酸等等,它们的组成、结构、 性质、功能等
第一章 绪 论
Introduction to Biochemistry
生物:有生命现象 的物体 —— 新陈 代谢,遗传与繁殖
生物化学ppt课件
核酸的调节与疾病
核酸代谢异常可能引起疾病,如癌症 等,因此核酸代谢的调节对于维持身 体健康至关重要。
CHAPTER 04
生物化学与医学
疾病的发生与生物化学
疾病的发生
生物化学是许多疾病发生的基础,如糖尿病、心 血管疾病、癌症等。这些疾病的形成与生物化学 过程有关,如糖代谢、脂质代谢、蛋白质代谢等 。
生物化学的历史与发展
• 生物化学作为一门独立的学科,起源于20世纪初。早期的生物化学研究主要集中在蛋白质、糖类、脂肪、核酸等生物大分 子的结构和功能方面。随着技术的进步,生物化学逐渐深入到分子水平,对基因表达、蛋白质合成、代谢调控等生命过程 的研究取得了重大突破。近年来,随着生物信息学和系统生物学的发展,对生物化学的研究和应用也进一步扩大和深化。
要支持。
代谢组学技术
通过对生物体内代谢产 物的全面分析,代谢组 学技术能够揭示生物过 程和疾病发生的潜在机
制。
生物化学在医学领域的应用前景
总结词
应用广泛、潜力巨大
药物研发
生物化学对药物研发过程中的靶点筛选、 药效评估等方面具有决定性作用。
疾病诊断
生物治疗
基于生物化学原理的检测方法能够快速、 准确地诊断多种疾病。
营养与健康
生物化学研究营养与健康的关系,如营养不足或过剩对健 康的影响。这些研究为营养学提供理论依据,从而为预防 和治疗营养相关疾病提供帮助。
营养与疾病
生物化学研究营养与疾病的关系,如某些营养素缺乏可能 导致某些疾病的发生。这些研究为预防和治疗这些疾病提 供理论依据。
CHAPTER 05
生物化学的未来与发展
新兴的生物化学技术
第一季度
第二季度
第三季度
第四季度
生物化学第五章 糖代谢 PPT课件
目录
目录
目录
(二)糖的分类及其结构
根据其水解产物的情况,糖主要可 分为以下四大类。
单糖 (monosacchride) 寡糖 (oligosacchride) 多糖 (polysacchride) 结合糖 (glycoconjugate)
消化过程
口腔 胃
淀粉
唾液α-淀粉酶
肠腔
胰液α-淀粉酶
肠粘膜 上皮细 胞刷状
缘
麦芽糖+麦芽三糖 α-临界糊精+异麦芽糖 (40%) (25%) (30%) (5%)
α-葡萄糖苷酶
α-临界糊精酶
葡萄糖
(二)糖的吸收
吸收部位:小肠上段 吸收形式 : 单 糖 吸收机制: 主动耗能
Na+依赖型葡萄糖转运体 Na+-dependent glucose transporter,
O
H
OH
HO
H
HO
H
H
OH
OH
CH 2 OH
HO H OH
H
H
OH H
OH OH
核糖(ribose) ——戊醛糖
O
H
OH
H
OH
H
OH
OH
HOH 2C
O OH
H H
HH
HO
OH
目录
2. 寡糖
能水解生成几分子单糖的糖,各单糖之 间借脱水缩合的糖苷键相连。
常见的二糖 麦芽糖 (maltose):葡萄糖—葡萄糖 蔗 糖 (sucrose):葡萄糖—果糖 乳 糖 (lactose):葡萄糖—半乳糖
ATP ADP
生物化学PPT课件
生物化学的应用领域
01
02
03
04
医学研究
生物化学在医学领域中发挥着 重要作用,如疾病诊断、药物
研发和生理机制研究等。
农业生产
通过生物化学手段改良作物品 质、提高产量,以及研发新型
肥料和农药。
环境保护
利用生物化学方法处理环境污 染问题,如水体净化、土壤修
复等。
生物技术产业
生物化学在生物技术产业中具 有广泛应用,如基因工程、蛋
合成生物学
合成生物学是新兴的交叉学科,旨在设计和构建人工生物系统,实现新功能或 优化现有功能。通过合成生物学,科学家可以创建定制化的微生物,用于生产 燃料、药物和其他有用物质。
纳米技术与生物医学应用
纳米药物
纳米药物利用纳米技术将药物包裹在 纳米载体中,以提高药物的靶向性、 稳定性和生物利用度,降低副作用。 纳米药物在癌症治疗、疫苗开发等领 域具有广泛应用前景。
生物合成与分解代谢
生物合成
生物合成是指生物体利用简单无机物和单糖等合成复杂有机 物的过程。生物合成包括脂肪酸、蛋白质、核酸等物质的合 成。这些合成过程需要经过一系列酶促反应的完成。
分解代谢
分解代谢是指生物体将大分子有机物分解成小分子有机物和 无机物的过程。这些分解过程包括糖酵解、柠檬酸循环和氧 化磷酸化等。分解代谢是生物体获取能量和合成物质的重要 途径。
结论总结
根据实验结果和讨论,总结实验的结论,指 出研究的局限性和未来研究方向。
结果讨论
对实验结果进行深入分析和讨论,探讨结果 的合理性和科学性。
结论应用
探讨实验结论在实际生产和科研中的应用价 值和意义。
05
生物化学前沿研究
基因编辑与合成生物学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、糖的生理功能
糖类在生物体的生理功能主要有: ① 氧化供能:糖类占人体全部供能量的70%。 ② 作为结构成分:如生物膜、神经组织等的组分。 ③ 作为核酸类化合物的成分:构成核苷酸,
DNA,RNA等。 ④ 转变为其他物质:转变为脂肪或氨基酸等化合
物。
16
三、糖的消化吸收 (一)糖的消化
人类食物中的糖主要有植物淀粉、动物糖原 以及麦芽糖、蔗糖、乳糖、葡萄糖等,以淀 粉为主。 消化部位: 主要在小肠,少量在口腔。
7
① 单糖 葡萄糖(glucose) ——已醛糖
O
H
OH
HO
H
H
OH
H
OH
OH
CH 2 OH
O
HH
H
HO OH H OH
H
OH
果糖(fructose) ——已酮糖
OH
O
HO
H
H
OH
H
OH
OH
HOH2C H
H
O CH2OH
OH OH
OH H
8
半乳糖(galactose) ——已醛糖
O
H
OH
HO
H
HO
25
⑴
葡萄糖(glucose)
磷酸化
⑵ 6-磷酸葡萄糖(glucose-6-phosphate, G-6-P)
异构
⑶ 6-磷酸果糖(fructose-6-phosphate, F-6-P)
磷酸化
1,6-双磷酸果糖(fructose-1,6-bisphosphate, F-1,6-BP)
26
无氧酵解的活化阶段
10
③ 多糖
淀 粉 (starch) 糖 原 (glycogen) 纤维素 (cellulose)
11
淀粉的分子结构
淀粉颗粒
-1,6-糖苷键 -1,4-糖苷1键2
糖原的分子结构
-1,6-糖苷键 -1,4-糖苷键
13
纤维素的分子结构
β-1,4-糖苷键
14
④ 结合糖 糖与非糖物质的结合物。
糖脂 (glycolipid):是糖与脂类的结合物。 糖蛋白 (glycoprotein):是糖与蛋白质的结合物。
* 反应不可逆,第一个限速(关键)步骤; 磷酸果糖激酶-1
ADP (3)
fructose-1,6-bisphosphate
ATP
fructose-6-phosph27ate
⑴
葡萄糖(glucose)
磷酸化(-1ATP)
⑵ 6-磷酸葡萄糖(glucose-6-phosphate, G-6-P)
异构
23
无氧酵解的反应过程可分为活化、裂解、放 能和还原四个阶段。 其中,活化、裂解、放能三个阶段又可合称 为糖酵解途径(glycolytic pathway)。
24
1. 活化(activation) ——己糖磷酸酯的生成: 活化阶段是指葡萄糖经磷酸化和异构反应生成
1,6-双磷酸果糖(F-1,6-BP,FDP)。 活化阶段由3步化学反应组成。
HO CH2
H H
OH
OH H
HO
OH
H OH
* 己糖激酶/葡萄糖激酶
ATP (1) ADP
P O CH2
H H
OH
OH H
HO
OH
H OH
glucose
glucose-6-phosphate
消耗1ATP;
消反耗应不1A可TP逆;,己第糖二激个酶限,速M(g磷关2+酸键;己)糖步异骤构;酶 (2)
能量代谢
生物大分子分解为生物小分子
物质代谢
2
四、代谢途径
e1 e2 e3 e4 e5
SABCDP
3
五、代谢的发展过程
(一)分解代谢的一般过程
第一阶段是生物大分子的降解阶段; 第二阶段是单体分子初步分解阶段; 第三阶段是乙酰基完全分解阶段; 第四阶段是氢的燃烧阶段;
(二)合成代谢的一般过程
⑶ 6-磷酸果糖(fructose-6-phosphate, F-6-P)
磷酸化(-1ATP)
1,6-双磷酸果糖(fructose-1,6-bisphosphate, F-1,6-BP)
糖酵解第一阶段是耗能的,1G消耗2ATP
第五章 糖 代 谢
Chapter 5 Metabolism of Carbohydrates
1
第一节 新陈代谢的一般概念
一、新陈代谢概念
生物活体与外界不断进行的物质交换和能量交换过程;
二、物质代谢和能量代谢
三、分解代谢和合成代谢
生物体的新陈代谢
合成代谢 分解代谢
生物小分子合成生物大分子
需要能量 释放能量
17
(二)糖的吸收 主要在小肠上段以单糖形式吸收。
18
四、糖代谢概况
糖原
糖原合成 肝糖原分解
核糖 磷酸戊糖途径
酵解途径
+
葡萄糖
NADPH+H+
消化与吸收
糖异生途径
有氧
丙酮酸
无氧
H2O及CO2 乳酸
淀粉 乳酸、氨基酸、甘油
19
第三节 糖的分解代谢途径
20
一、糖酵解途径(EMP途径)--糖的无氧分解
What’s glycolysis? 糖的无氧酵解(glycolysis)是指葡萄糖在无氧条件下
分解生成乳酸并释放出能量的过程。
糖酵解的全部反应过程在细胞液(cytoplasm)中进行,共 10步,终产物是丙酮酸。
无氧酵解代谢的终产物是乳酸(lactate),一分子葡萄 糖经无氧酵解可净生成2分子ATP。
二、三羧酸循环(TCA)--糖的有氧分解 三、单磷酸己糖支路(HMP途径) 四、磷酸解酮酶途径(PK途径) 五、脱氧酮糖酸途径(ED途径)
21
一、糖酵解途径--糖的无氧分解
(一)糖酵解(EMP)的生物化学过程 (二)丙酮酸的无氧降解 (三)EMP途径的能量产生 (四)糖酵解的生理意义
22
(一)糖酵解的生物化学过程
原料准备阶段;单分子合成阶段;生物大分子合 成阶段。
4
六、新陈代谢的特点
1、酶催化,反应条件温和,效率高; 2、严格的顺序性; 3、灵活的自我调节;
5
第二节 糖及代谢概述
Section 2 Introduction
6
一、糖的化学
糖(carbohydrates)即碳水化合物,是指多羟基 醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四 大类。 ① 单糖 (monosacchride) ② 寡糖 (oligosacchride) ③ 多糖 (polysacchride) ④ 结合糖 (gly
OH
OH
CH 2 OH
HO H OH
H
H
OH H
OH OH
核糖(ribose) ——戊醛糖
O
H
OH
H
OH
H
OH
OH
HOH 2C
O OH
H H
HH
HO
OH
9
② 寡糖
麦芽糖 (maltose) 葡萄糖 — 葡萄糖
蔗 糖 (sucrose) 葡萄糖 — 果糖
乳 糖 (lactose) 葡萄糖 — 半乳糖