2021届安徽省毛坦厂中学高三上学期9月联考试数学(理)试题Word版含答案

合集下载

2021年高三9月月考 数学理 含答案

2021年高三9月月考 数学理 含答案

()()1242412+-++++=-mx m m x mx y 2021年高三9月月考 数学理 含答案考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分.考试时间为120分钟;(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)(2)选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,集合,且,则A .B .C .D .2. 命题“所有实数的平方都是正数”的否定为A. 所有实数的平方都不是正数 B .有的实数的平方是正数C .至少有一个实数的平方是正数D .至少有一个实数的平方不是正数3. 已知函数的定义域为,则的 取值范围是A .B .C .D .4. 设,则不等式的解是A. B . C . D .或5. 如果函数是奇函数,则函数的值域是A .B .C .D .6. 已知函数为定义在上的奇函数,当时,,则当时,的表达式为A .B .C .D .7. 已知函数,则大小关系为A .B .C .D .8. 关于的方程在内有两个不相等实数根,则的取值范围是A. B . C . D . 或9. 若函数在区间上的图象如图所示,则的值可能是A.B.C.D.第二节,则A.B.C.D.11. ,方程有个实根,则所有非零实根之积为A.B.C.D.12.若函数,记,,则A.B.C.D.第Ⅱ卷(非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.函数的单调递增区间为_____________________.14. 已知;,若的充分不必要条件是,则实数的取值范围是___________________15. 已知可以表示为一个奇函数与一个偶函数之和,若不等式对于恒成立,则实数的取值范围是__________________20.已知函数,若的图象有三个不同交点,则实数的取值范围是_______________________三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本大题10分)已知集合,,,求实数的取值范围,使得成立.18.(本大题12分)设,是上的偶函数.(Ⅰ) 求的值;(Ⅱ) 利用单调性定义证明:在上是增函数.19.(本大题12分)已知定义在上的奇函数,当时,.(Ⅰ)当时,讨论在上的单调性;(Ⅱ)若在上为单调递减函数,求的取值范围.20.(本大题12分)某出版社新出版一本高考复习用书,该书的成本为元一本,经销过程中每本书需 付给代理商元的劳务费,经出版社研究决定,新书投放市场后定价为 元一本,预计一年的销售量为万本.(Ⅰ)求该出版社一年的利润(万元)与每本书的定价的函数关系式; (Ⅱ)每本书定价为多少元时,该出版社一年利润最大,并求出的最大值.21.(本大题12分)已知函数.(Ⅰ)判断奇偶性;(Ⅱ)若图象与曲线关于对称,求的解析式及定义域;(Ⅲ)若对于任意的恒成立,求的取值范围.22. (本大题12分)已知函数定义域为,且满足.(Ⅰ)求解析式及最小值;(Ⅱ)设22()(),()(2)()x x f x g x h x x x g x xe+'==+,求证:,.数学(理科)答案选择题:CDBDD CABBB CB填空题:13 1415 16解答题:17. 或或18. (1)(2)证明略21.当时,(1)递增;递减(2)22.(1)(2)时,;时,23.(1)奇函数(3),当时,;当时,(4)当时,,故此时定义域中无正整数当时,需所有正整数在定义域中,故,即再利用单调性可知,,故所求范围是22. (1),(2),,令通过求导知当时有最大值为,且又通过求导知故22368 5760 坠}D?o37018 909A 邚34061 850D 蔍40759 9F37 鼷22983 59C7 姇35763 8BB3 讳31829 7C55 籕20666 50BA 傺34508 86CC 蛌。

2021-2022年高三上学期九月月考数学理科卷 含答案

2021-2022年高三上学期九月月考数学理科卷 含答案

2021年高三上学期九月月考数学理科卷含答案一、选择题:本题共12小题,每小题5分。

1.已知集合,集合,集合,则=()A.B.C.D.2.,则=()A.3 B.1 C.2 D.3.函数的定义域为()A. B.C. D.4.已知,则下列不等式成立的是()A.B.C.D.5.已知过,则以下函数图像正确的是()A. B. C. D.6.已知实数满足,,则的最大值是()A.B.4 C.D.7.已知命题“已知为定义在上的偶函数,则的图像关于直线对称”,命题“若,则方程有实数解”,则()A.“且”为真B.“或”为假C.假真D.真假8.若满足,且的最大值为4,则的值为()A.B.C.D.9.若函数在的最大值为,最小值为,且,则的值是()A.1 B.C.D.10.已知函数,若,则的取值范围是()A.B.C.D.11.已知函数,若方程恰有两个不同实根,则实数的取值范围是()A.B.C.D.12.已知集合,函数,若对任意,都有,则实数的取值范围是()A.B.C.D.二、填空题:本题4小题,每小题5分。

13.=_________14.函数的单调递增区间为__________15.已知是定义在实数集上的函数,当时,,且对任意都有,则=__________16.已知是定义在上的偶函数,且当时,,若满足:①时,,②是定义在上的周期函数,③存在使得,则的值为________三、解答题:解答应写出文字说明、证明过程或演算步骤。

17.(12分)函数关于对称(1)求得值;(2)解不等式18.(12分)二次函数开口向上,且满足恒成立。

已知它的两个零点和顶点构成边长为2的正三角形。

(1)求的解析式;(2)讨论在的最小值。

19.(12分)四棱锥中,,底面为平行四边形,,点分别为的中点。

(1)求证:;(2)若,求二面角的正弦值。

20.(12分)已知抛物线焦点为,准线为,为上任意点。

过作的两条切线,切点分别为。

(1)若在轴上,求;(2)求证:以为直径的圆恒过定点。

2021年高三9月月考试卷数学理答案

2021年高三9月月考试卷数学理答案

2021年高三9月月考试卷数学理答案一、选择题:(本大题共8小题,每小题5分,共40分)二、填空题:(本大题共6小题,每小题5分,共30分)9、 e 10、 y=011、_________ 12、 913、 14、___2__ (3分) , _-2__(2分)三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15、(本小题满分12分)解:根据图象得 A=由于 所以T=所以函数 因为 当 所以 则 因为 所以 所以16、(本小题满分12分)解:(I )由可得,由锐角△ABC 中可得由余弦定理可得:22232cos 253660164a b c bc A =+-⨯=+-⨯=, 有:(II )由正弦定理:,题号 1 2 3 4 5 6 7 8 答案DAAAADBC即17、 (本小题满分14分) (1)(2)因为 所以的最小正周期为 (3)因为 于是,当时,取得最大值2; 当取得最小值—1.18、(本小题满分14分)解:(I )因为x=5时,y=11,所以(II )由(I )可知,该商品每日的销售量 所以商场每日销售该商品所获得的利润222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<- 从而,2'()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+--=--所以,当x=4时,函数取得最大值,且最大值等于42。

答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大。

19、(本小题满分14分)【解】(Ⅰ)当时,,.,.所以曲线在点(2,3)处的切线方程为,即. (Ⅱ).令,解得或.针对区间,需分两种情况讨论: (1) 若.则,所以在区间上的最小值在区间的端点得到.因此在区间上,恒成立,等价于10,210,2f f ⎧⎛⎫-> ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩ 即解得,又因为,所以. (2) 若 .则 当变化时,的变化情况如下表:所以在区间上的最小值在区间的左端点或处得到.因此在区间上,恒成立,等价于 10,210,f f a ⎧⎛⎫-> ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩ 即解得或,又因为,所以.综上所述:20、(本小题满分14分)解:(1)当221,()(1),'()()x x a x x x e x e x x --=Φ=++Φ=-+时.∴的单调递增区间为(0,1),单调递减区间为:,.(2)切线的斜率为,∴ 切线方程为. (图略) 所求封闭图形面积为1121000111[(1)](1)()|22x x x S e x dx e x dx e x x e---=--+=+-=-+-=-⎰⎰.(3)22'()(2)()[(2)]x x x x x a e e x ax a e x a x ---Φ=+-++=-+-, 令.设,∴上是增函数∴ ,即,∴不存在实数a ,使极大值为3.综上所述:不存在实数a ,使极大值为3.35036 88DC 補21556 5434 吴N-39863 9BB7 鮷1j)23789 5CED 峭33335 8237 舷j25298 62D2拒 23874 5D42 嵂。

2021-2022年高三上学期9月月考试题 数学试题(理) 含答案

2021-2022年高三上学期9月月考试题 数学试题(理) 含答案

2021年高三上学期9月月考试题数学试题(理)含答案一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6},集合A={2,3,4},集合B={2,4,5},则下图中的阴影部分表示( )A.{2,4} B.{1,3}C.{5} D.{2,3,4,5}[答案] C[解析] 阴影部分在集合B中,不在集合A中,故阴影部分为B∩(∁U A)={2,4,5}∩{1,5,6}={5},故选C.2.函数y=1ln x-1的定义域为( )A.(1,2)∪(2,+∞)B.[1,+∞) C.(1,+∞) D.(1,2)∪[3,+∞) 答案 A解析由ln(x-1)≠0,得x-1>0且x-1≠1.由此解得x>1且x≠2,即函数y=1ln(x-1)的定义域是(1,2)∪(2,+∞).3.已知命题:若,则;命题:若,则;在下列命题中:(1);(2);(3)();(4)()p q p q p q p q∧∨∧⌝⌝∨,真命题是A.(1)(3)B. (1)(4)C. (2)(3)D. (2)(4)[答案]C4.若,则A. 15 B.14 C.13 D.12D5.下列函数中,既是偶函数,又在区间内是增函数的是( ) A . B. C. D. B6.下列说法错误的是( )A .若p :∃x ∈R ,x 2-x +1=0,则¬p :∀x ∈R ,x 2-x +1≠0B .“sin θ=12”是“θ=30°或150°”的充分不必要条件C .命题“若a =0,则ab =0”的否命题是“若a ≠0,则ab ≠0”D .已知p :∃x ∈R ,cos x =1,q :∀x ∈R ,x 2-x +1>0,则“p ∧(¬q )”为假命题 [答案] B[解析] 特称命题的否定为全称命题,“=”的否定为“≠”,∴A 正确;sin θ=12时,θ不一定为30°,例如θ=150°,但θ=30°时,sin θ=12,∴B 应是必要不充分条件,故B 错;C显然正确;当x =0时,cos x =1,∴p 真;对任意x ∈R ,x 2-x +1=(x -12)2+34>0,∴q 真,∴p ∧(¬q )为假,故D 正确.7.将函数y =3cos x +sin x (x ∈R)的图象向左平移m (m >0)个长度单位后,所得到的图象关于原点对称,则m 的最小值是( )A .π12B .π6C .π3D .2π3[答案] D[解析] y =3cos x +sin x =2sin(x +π3),向左平移m 个单位得到y =2sin(x +m +π3),此函数为奇函数,∴m +π3=k π,k ∈Z ,∵m >0,∴m 的最小值为2π3.8.函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系下的图像大致是( )答案 C解析 f (x )=1+log 2x 的图像可由f (x )=log 2x 的图像上移1个单位得到,且过点(12,0),(1,1),由指数函数性质可知g (x )=21-x 为减函数,且过点(0,2),故选C.9.已知函数满足,当时,,若在区间 上方程有两个不同的实根,则实数的取值范围是A . B. C . D . [答案]B10.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其导函数f ′(x )的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin(12x +π4)B .f (x )=4sin(12x +π4)C .f (x )=2sin(x +π4)D .f (x )=4sin(12x +3π4)[答案] B[解析] f ′(x )=Aωcos(ωx +φ),由f ′(x )的图象知,T 2=3π2-(-π2)=2π,∴T =4π,∴ω=12,∴Aω=2,∴A =4,∴f ′(x )=2cos(12x +φ),由f ′(x )的图象过点(3π2,-2)得cos(3π4+φ)=-1,∵0<φ<π,∴φ=π4, ∴f ′(x )=2cos(12x +π4),∴f (x )=4sin(12x +π4).11.已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数y =f (x )的图像在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .0B .0或-12C .-14或-12D .0或-14答案 D解析 ∵f (x +2)=f (x ),∴T =2.又0≤x ≤1时,f (x )=x 2,可画出函数y =f (x )在一个周期内的图像如图.显然a =0时,y =x 与y =x 2在[0,2]内恰有两不同的公共点.另当直线y =x +a 与y =x 2(0≤x ≤1)相切时也恰有两个公共点,由题意知y ′=(x 2)′=2x =1,∴x =12.∴A (12,14),又A 点在y =x +a 上,∴a =-14,∴选D.12. 已知函数f (x )=ax sin x -32(a ∈R),若对x ∈[0,π2],f (x )的最大值为π-32,则函数f (x )在(0,π)内的零点个数为( C )A .0B .1C .2D .3解析 因为f ′(x )=a (sin x +x cos x ),当a ≤0时,f (x )在x ∈[0,π2]上单调递减,最大值f (0)=-32,不适合题意,所以a >0,此时f (x )在x ∈[0,π2]上单调递增,最大值f (π2)=π2a -32=π-32,解得a =1,符合题意,故a =1.f (x )=x sin x -32在x ∈(0,π)上的零点个数即为函数y =sin x ,y =32x 的图像在x ∈(0,π)上的交点个数.又x =π2时,sin π2=1>3π>0,所以两图像在x ∈(0,π)内有2个交点,即f (x )=x sin x -32在x ∈(0,π)上的零点个数是2.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分. 13.已知f (x )=x (1+|x |),则f ′(1)·f ′(-1)=________.答案 9解析 当x ≥0时,f (x )=x 2+x ,f ′(x )=2x +1, 则f ′(1)=3.当x <0时,f (x )=x -x 2,f ′(x )=1-2x ,则f ′(-1)=3,故f ′(1)·f ′(-1)=9. 14.若cos x cos y +sin x sin y =12,sin2x +sin2y =23,则sin(x +y )=________.[答案] 23[解析] ∵2x =(x +y )+(x -y ),2y =(x +y )-(x -y ),sin2x +sin2y =23,∴sin(x +y )cos(x -y )=13,又由cos x cos y +sin x sin y =12得cos(x -y )=12, ∴sin(x +y )=23.15.已知函数f (x )=x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与直线y =0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为274,则a 的值为________. [答案] -316.已知函数f (x )=e sin x+cos x-12sin2x (x ∈R ),则函数f (x )的最大值与最小值的差是________. [答案] e 2-e-2[解析] 令sin x +cos x =t ,则sin2x =t 2-1,易知-2≤t ≤2,∴函数f (x )化为y =e t -12t 2+12.(-2≤t ≤2),y ′=e t -t ,令u (t )=e t -t ,则u ′(t )=e t-1.当0<t ≤2时,u ′(t )>0,当-2≤t <0时,u ′(t )<0,∴u (t )在[-2,0]上单调递减,在[0,2]上单调递增,∴u (t )的最小值为u (0)=1,于是u (t )≥1,∴y ′>0,∴函数y =e t-12t 2+12在[-2,2]上为增函数,∴其最大值为e 2-12,最小值为e-2-12,其差为e 2-e -2.三、解答题: 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数f (x )=23sin(π+x) cos(-3π-x )-2sin(π2-x )cos(π-x ).(1)求函数f (x )的单调递增区间;(2)若f (α2-π12)=32,α是第二象限角,求cos(2α+π3)的值.答案 (1)[k π-π3,k π+π6](k ∈Z ) (2)7+3516解析 (1)f (x )=3sin2x -2cos x (-cos x )=3sin2x +2cos 2x =3sin2x +cos2x +1=2sin(2x +π6)+1, 由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).故函数f (x )的单调增区间为[k π-π3,k π+π6](k ∈Z ).(2)∵f (α2-π12)=2sin α+1=32,∴sin α=14.∵α是第二象限角,∴cos α=-1-sin 2α=-154. ∴sin2α=-158,cos2α=78.∴cos(2α+π3)=cos2αcos π3-sin2αsin π3=78×12-(-158)×32=7+3516.17. 将函数y =f (x )的图象向左平移1个单位,再纵坐标不变,横坐标伸长到原来的π3倍,然后再向上平移1个单位,得到函数y =3sin x 的图象.(1)求y =f (x )的最小正周期(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,求当x ∈[0,1]时,函数y =g (x )的最小值和最大值.[解析] (1)函数y =3sin x 的图象向下平移1个单位得y =3sin x -1,再将各点的横坐标缩短到原来的3π倍得到y =3sin π3x -1,然后向右移1个单位得y =3sin(π3x -π3)-1.所以函数y =f (x )的最小正周期为T =2ππ3=6.(2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称, ∴当x ∈[0,1]时,y =g (x )的最值即为当x ∈[3,4]时,y =f (x )的最值. ∵x ∈[3,4]时,π3x -π3∈[2π3,π],∴sin(π3x -π3)∈[0,32],∴f (x )∈[-1,12],∴y =g (x )的最小值是-1,最大值为12.19. (本小题满分12分)已知),(3)(23R x b ax x x f ∈+-=其中 (1)求的单调区间;(2)设,函数在区间上的最大值为,最小值为,求的取值范围. 解:(12分)(1))2(363)(2'a x x ax x x f -=-= 令a x x x f 20,0)('===或得当时,)),(,在(+∞∞,20)(a x f -单调递增,在上单调递减当时,)),(,在(+∞∞,02)(a x f -单调递增,在上单调递减.................5分 (2)由知在上递减,在递增3334128)2(,128)2(a b b a a a f m b a f M -=+-==+-==设0)1)(1(121212)(,8124)(2'3<-+=-=+-=a a a a g a a a g 所以上单调递减,1611)43()(,25)21()(min max ====g a g g a g 所以20.对于函数,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数和在点P 处相切,称点P 为这两个函数的切点. 设函数,.(Ⅰ)当,时, 判断函数和是否相切?并说明理由; (Ⅱ)已知,,且函数和相切,求切点P 的坐标; 解:(Ⅰ)结论:当,时,函数和不相切. 理由如下:由条件知,由,得, 又因为 ,, 所以当时,,,所以对于任意的,. 当,时,函数和不相切. (Ⅱ)若,则,,设切点坐标为 ,其中,由题意,得 , ① , ② 由②,得 ,代入①,得 . (*) 因为 ,且, 所以 . 设函数 ,, 则 . 令 ,解得或(舍).所以当时,取到最大值,且当时.因此,当且仅当时. 所以方程(*)有且仅有一解. 于是 , 因此切点P 的坐标为. 21.(本小题满分12分)设函数.(1)若函数在上为减函数,求实数的最小值; (2)若存在,使成立,求正实数的取值范围. 解:(1)由已知得.因在上为减函数,故在上恒成立. 所以当时,.2分当,即时,.所以于是,故a 的最小值为. 4分 (2)命题“若存在 ,使成立”等价于“当时,有 . 由(1),当时,,∴. 问题等价于:“当时,有”. 6分 ①当时,由(1),在上为减函数, 则()()222min124e f x f e ae ==-≤,故. 8分②当<时,由于'2111()()ln 24f x a x =--+-在上的值域为 (ⅰ),即,在恒成立,故在上为增函数, 于是,min 1()()4f x f e e ae e ==-≥>,矛盾. 10分 (ⅱ),即,由的单调性和值域知, 存在唯一,使,且满足: 当时,,为减函数;当时,,为增函数; 所以,0min 0001()()ln 4x f x f x ax x ==-≤, 所以,2001111111ln 4ln 4244a x x e e ≥->->-=,与矛盾. 综上,得请考生在第22、23、24题中任选一题做答,如果多做,则按所做第一题记分.在答题卡选答区域指定位置答题,并写上所做题的题号.注意所做题目的题号必须和所写的题号一致.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知与圆相切于点,半径,交于点. (1)求证:;(2)若圆的半径为,,求线段的长度.解:(1)证明:连接,,.与圆相切于点,. .,. .又,..…………………5分 (2)假设与圆相交于点,延长交圆于点. 与圆相切于点,是圆的割线,)()(2ON PO OM PO PN PM PA +⋅-=⋅=.,,16)35()35(2=+⨯-=PA . . 由(1)知. .在中,.C AB P O NC ABPMO5325313219cos 2222=⨯⨯⨯-+=∠⋅⋅⋅-+=AOP OC OA OC OA AC ..…………………10分23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为)(226222为参数t t y tx ⎪⎪⎩⎪⎪⎨⎧+=-=.在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为. (1)求圆的直角坐标方程;(2)设圆与直线交于点,若点的坐标为,求. 解:(1)由得,即.…………4分(2)将的参数方程代入圆的直角坐标方程,得25)226()223(22=++--t t . 即,…………6分由于082204)29(2>=⨯-=∆,可设是上述方程的两个实根.所以,又直线过点,可得:29)()()(||||||||212121=+-=-+-=+=+t t t t t t PB PA .…………10分 24.(本小题满分10分)选修4—5:不等式选讲 已知函数,,且的解集为. (1)求的值;(2)若,且,求 的最小值.解:(1)因为, 等价于,由有解,得,且其解集为.又的解集为,故. 5分 (2)由(1)知,又,由柯西不等式得∴ 的最小值为9 . 10分。

2021年高三上学期第一次月考9月数学试题(理)含答案

2021年高三上学期第一次月考9月数学试题(理)含答案

精品文档2021年高三上学期第一次月考9月数学试题(理)含答案第I卷一、选择题:(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数,则对应的点所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限2.若集合,,则A.B.C. D.3. 设p:x<3,q:-1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.设f(x)=,则f(f(-2))=A.-1 B.C.D.5.在等差数列中,已知,则()A.10 B.18 C.20 D.286.是双曲线上一点,分别是双曲线左右焦点,若||=9,则||= ( )A.1B.17C.1或17D.以上答案均不对7.若某几何体的三视图如右图所示,则此几何体的体积等于() A.30 B.12 C.24 D.48.设函数的图象上的点处的切线的斜率为k,若,则函数的图象大致为()32 3精品文档9.执行如图所示的程序框图,则输出的结果是 ( ) A. 14B. 15C. 16D. 1710.中是边上的一点(包括端点),则的取值范围是 ( ) A . B . C . D .11.如图过拋物线的焦点F 的直线依次交拋物线及准线于点A ,B ,C ,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为 ( ) A. B. C .D .12.若直角坐标平面内A 、B 两点满足①点A 、B 都在函数的图象上;②点A 、B 关于原点对称,则点(A,B )是函数的一个“姊妹点对”.点对(A,B )与(B,A )可看作是同一个“姊妹点对”.已知函数 ,则的“姊妹点对”有 ( )A. 2个B. 1个C. 0个D. 3个第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:(本大题共4小题,每小题5分,共20分.) 13.设变量满足约束条件,则的最大值为 . 14.在的展开式中的的系数为 . 15.已知(为自然对数的底数),函数 则 .16 .已知数列的前n 项和,若不等式对 恒成立,则整数的最大值为 .三、解答题:(本大题共5小题,共计70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分) 在中是其三个内角的对边且. (I)求角的大小(II)设,求的面积的最大值. 18.(本小题满分12分)开始0,1S n ==输出n 结束3?S <-21log 2n S S n +=++否是1n n =+第117届中国进出品商品交易会(简称xx年秋季广交会)将于2015年8月15日在广州举行,为了搞好接待工作,组委会在广州某大学分别招募8名男志愿者和12名女志愿者,现将这20名志愿者的身高组成如下茎叶图(单位:cm),若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.(I)计算男志愿者的平均身高和女志愿者身高的中位数(保留一位小数).(II)若从所有“高个子”中选3名志愿者,用表示所选志愿者中为女志愿者的人数,试写出的分布列,并求的数学期望.19.(本小题满分12分)如图正方形与梯形所在的平面互相垂直点在线段上.(I)当点为中点时求证平面(II)当平面与平面所成锐二面角的余弦值为时,求三棱锥的体积.20.(本小题满分12分)椭圆的焦点在x轴上,其右顶点(a,0)关于直线的对称点在直线 (c为半焦距长) 上.(I)求椭圆的方程;(II)过椭圆左焦点F的直线l交椭圆于A、B两点,交直线于点C. 设O为坐标原点,且求的面积.21.(本小题满分12分)已知函数(为无理数,)(I)求函数在点处的切线方程;(II)设实数,求函数在上的最小值;(III)若为正整数,且对任意恒成立,求的最大值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写题号.22.(本小题满分10分)【选修4—1:几何证明选讲】如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=AC, AE= AB,BD,CE相交于点F.(I)求证:A,E,F,D四点共圆;(II)若正△ABC的边长为2,求,A,E,F,D所在圆的半径.23. (本小题满分10分)【选修4—4:极坐标与参数方程】在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建坐标系,已知曲线C :ρsin 2θ=2acosθ(a >0),已知过点P (-2,-4)的直线l 的参数方程为,直线l 与曲线C 分别交于M ,N . (1)写出曲线C 和直线l 的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a 的值. 24. (本小题满分10分)【选修4-5:不等式选讲】已知a ,b ∈R +,a +b =1,,∈R +. (I)求的最小值; (II)求证:.xx 届山东省滕州市第一中学高三9月月考数学答案 (理)一.选择题:二.填空题: 13. 6 14. -910 15. 7 16. 4 三.解答题: 17 解:(Ⅰ)∵2sin(2)2sin 2,sin(2)sin 233ππ∴+=∴+=A B A B,或,由,知,所以不可能成立,所以, 即,所以(Ⅱ)由(Ⅰ),,所以,22222222213cos 3321222+-+-=⇒-=⇒-=+-⇒-=+≥⇒≤a b c a b C ab a b ab a b ab ab ab ab即△ABC 的面积S 的最大值为 18.解:(1)根据茎叶图可得:男志愿者的平均身高为159169170175176182187191176.1()8+++++++≈cm女志愿者身高的中位数为(2)由茎叶图可知,“高个子”有8人,“非高个子”有12人,而男志愿者的“高个子”有5人,女志愿者的“高个子”有3人,的可能值为0,1,2,3, 故即的分布列为:所以的数学期望19.解:(1)以直线、、分别为轴、轴、轴 建立空间直角坐标系,则,,, 所以.∴.........2分又,是平面的一个法向量.∵ 即 ∴∥平面 .................4分 (2)设,则,又设,则,即...6分 设是平面的一个法向量,则取 得 即又由题设,是平面的一个法向量,......................8分 ∴2166)1(4222|,cos |22=⇒=-+==><λλλn OA ...................10分 即点为中点,此时,,为三棱锥的高,∴ ................................12分 20.解:(1)椭圆的右顶点为(2,0), 设(2,0)关于直线的对称点为(, 则………………4分 解得则,所求椭圆方程为--------------------------6分(2)设A由,01248)4k (3),1(,1443222222=-+++⎩⎨⎧+==+k x k x x k y y x 得 所以…………①,…………② 因为即,所以……③……6分 由①③得代入②得,,整理得…………8分所以所以……10分由于对称性,只需求时,△OAB 的面积.此时,所以……12分21.⑴∵()(0,)()ln 1,()()2f x f x x f e e f e ''+∞=+==定义域为又():2(),2y f x e y x e e y x e ∴==-+=-函数在点(,f(e))处的切线方程为即------3分(2)∵时,单调递减; 当时,单调递增.当min 1,()[,2],[()]()ln ,a f x a a f x f a a a e≥==时在单调递增 min 111112,[()]2a a a f x f e e e e e ⎛⎫<<<<==- ⎪⎝⎭当时,得-------------------------------6分 (3) 对任意恒成立,即对任意恒成立, 即对任意恒成立 令2ln ln 2()(1)'()(1)1(1)x x x x x g x x g x x x x +--=>⇒=>-- 令1()ln 2(1)'()0()x h x x x x h x h x x-=-->⇒=>⇒在上单调递增。

2021届高考9月份联考试题理科数学试卷附答案解析

2021届高考9月份联考试题理科数学试卷附答案解析

2021届普通高中教育教学质量监测考试全国卷理科数学注意事项:1 .本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2 .答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。

3 .全部答案写在答题卡上,写在本试卷上无效。

4 .本试卷满分150分,测试时间120分钟。

5 .考试范画:必修1〜5,选修2 — 1, 2-2, 2—3。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。

1.若 z=2—L 则区一zl= A3 B.2 C. VTO D.V262,若集合 A={xly=k )g3(x2—3x-18)}, B={-5, -2, 2, 5, 7),则 AAB = A.{—2, 2, 5}B.{-5, 7}C.{-5, -2, 7}D.{-5, 5, 7)3.我国古代的宫殿金碧辉煌,设计巧夺天工,下图(1)为北京某宫殿建筑,图(2)为该宫殿某一 “柱脚”的三视图,其中小正方形的边长为1,则根据三视图可知,该“柱脚”的表面积为94•已知抛物线G : y2=6x 上的点M 到焦点F 的距离为一,若点N 在Cz : (x+2)2+y 2=l ・ 2则点M 到点N 距离的最小值为A.A /26-1B.>/43-1C.V33-1D.25.根据散点图可知,变量x, y 呈现非线性关系。

为了进行线性回归分析,设u=21ny, v=(2x -3)2,利用最小二乘法,得到线性回归方程u=-1v+2,则3B.变量y 的估计值的最小值为eA.变量y 的估计值的最大值为e图⑴ 图⑵A.9TT +9+9 B.18 兀+18 点 +9 C.18 兀+18& +18D.18TT +91 + 18C 变量y 的估计值的最大值为e 2 D.变量y 的估计值的最小值为e 26,函数f(x)=h]2x —x3的图象在点(1, f(L))处的切线方程为 2 25 3 5 c — 1 1 、1 A. y = — x--B. y = — —x + 2C. y = —x--D. y = --x44 44447,已知函数 f(x)=3cos(sx+<p)(3>0),若 f (一二)=3, f( —)=0,则 3 的最小值为3 31 3 A.-B.-C.2D.3248 .(3x-2)2(x-2)6的展开式中,X”的系数为 A.O B.4320C.480D.38409 .已知圆C 过点(1, 3), (0, 2), (7, -5),直线/: 12x-5y —1=0与圆C 交于M, N 两点, 则 IMNI = A.3B.4C.6D.8 10・已知角a 的顶点在原点,始边与x 轴的非负半轴重合,终边过点(1, m),其中m>0:若tan2a12 rll—,则 cos(2a+ni7i) = 6「 口A.— —B.— —131311 .已知三棱锥S-ABC 中,ZiSBC 为等腰直角三角形,ZBSC=ZABC = 90°, ZBAC=2Z BCA, D, E, F 分别为线段AB, BC, AC 的中点,则直线SA, SB, AC, SD 中,与平面SEF 所成角为定值的有A.1条B.2条 C3条 D.4条e x212.已知函数f(x)= — —m(h]x+x+ —)恰有两个极值点,则实数m 的取值范围为 x x11 1 c c 1 eA.(-8, _] B,(一,+8) C.(一,-)U (- , 4-oo)D .(—8, —]U(—,+8)222 332 3第n 卷二、填空题:本大题共4小题,每小题5分。

安徽省六安市毛坦厂中学2021届高三上学期周考数学理(应届)试题 Word版含答案

安徽省六安市毛坦厂中学2021届高三上学期周考数学理(应届)试题 Word版含答案

第1页 共4页 ◎ 第2页 共4页1|4x x <<3>(1,0)-(0,1)(1,)⋃+∞.已知函数()f x ==第3页 共4页 ◎ 第4页 共4页15.1221sin 41x x dx x -⎛⎫+-= ⎪+⎝⎭⎰__________. 16.若函数()21ln 2f x ax x x x =+-存在单调递增区间,则a 的取值范围是___.三、解答题17.设命题p :实数x 满足22230(0)x ax a a --<>,命题q :实数x 满足204xx -≥-. (I )若1a =,p q ∧为真命题,求x 的取值范围;(II )若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.18.如图,设()2,4A 是抛物线2:C y x =上的一点.(()求该抛物线在点A 处的切线l 的方程; (()求曲线C 、直线l 和x 轴所围成的图形的面积.19.已知函数y=f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=-x 2+ax. (1)若a=-2,求函数f (x )的解析式; (2)若函数f (x )为R 上的单调减函数,①求a 的取值范围;②若对任意实数m ,f (m -1)+f (m 2+t )<0恒成立,求实数t 的取值范围.20.(13分)已知函数3211()132f x x x =-+,x ∈R . (1)求函数()f x 的极大值和极小值;(2)求函数图象经过点3(,1)2的切线的方程; (3)求函数3211()132f x x x =-+的图象与直线1y =所围成的封闭图形的面积.21.已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.22.已知函数()()221ln f x ax a x x =-+-,()22ln g x a x x=--,其中a R ∈. (1)当0a >时,求()f x 的单调区间;(2)若存在21,x e e⎡⎤∈⎢⎥⎣⎦,使得不等式()()f x g x ≥成立,求a 的取值范围.参考答案1.C 2.B 3.B 4.D 5.B 6.B 7.B 8.D 9.C 10.B 11.A 12.B.13.2 14.3 1523π+. 16.1,e ⎛⎫-+∞ ⎪⎝⎭17.(1)当1a =时, 由2230x x --<得13x(由204xx -≥-得24x ≤<( ∵p q ∧为真命题,∴命题,p q 均为真命题,∴13,24,x x -<<⎧⎨≤<⎩解得23x ≤<( ∴实数x 的取值范围是[)2,3((2)由条件得不等式22230x ax a --<的解集为(),3a a -( ∵p ⌝是q ⌝的充分不必要条件, ∴q 是p 的充分不必要条件, ∴[)()2,4,3a a -,∴2,34,a a -<⎧⎨≥⎩解得43a ≥,∴实数a 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭( 18.(Ⅰ)因为2yx ,所以2y x '=所以直线l 在A 处的斜率2|4x k y ='==则切线l 的方程为()442y x -=-即44y x =- (Ⅱ)由(Ⅰ)可知14yx =+,所以由定积分可得面积342203224121221|44404838330y S dy y y y ⎛⎫⎛=+=+-⨯=⨯+-⨯ ⎪ ⎝⎝-⎭=⎰所以曲线C 、直线l 和x 轴所围成的图形的面为23. 19. (1)当0x <时,0x ->,又因为()f x 为奇函数, 所以22()()(2)2f x f x x x x x =--=---=-所以222 0(){2 0x x x f x x x x -<=--≥ (2)(当0a ≤时,对称轴02ax =≤,所以2()f x x ax =-+在[0,)+∞上单调递减, 由于奇函数关于原点对称的区间上单调性相同,所以()f x 在(,0)-∞上单调递减, 又在(,0)-∞上()0f x >,在(0,)+∞上()0f x <, 所以当a ≤0时,()f x 为R 上的单调递减函数 当a>0时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上递增,在,2a ⎛⎫+∞ ⎪⎝⎭上递减,不合题意所以函数()f x 为单调函数时,a 的范围为a 0≤…(因为2(1)()0f m f m t -++<,(2(1)()f m f m t -<-+所以()f x 是奇函数,(2(1)()f m f t m -<--又因为()f x 为R 上的单调递减函数,所以21m t m ->--恒成立, 所以22151()24t m m m >--+=-++恒成立, 所以54t > 20.解:(1)()2f x x x '=- ,令()0f x '= ,解得x=0或x=1,令()0f x '> ,得x<0或x>1,()0f x '< ,解得0<x<1,∴函数f(x)在(),0-∞ 上单调递增,在(0,1)上单调递减,在()1,+∞ 上单调递增 ∴x=0是其极大值点,x=1是极小值点,所以f(x)的极大值为f (0)=1; f(x)的极小值为()516f = (2)设切点为P 3200011,132x x x ⎛⎫-+ ⎪⎝⎭,切线斜率()2000k f x x x '==-∴曲线在P 点处的切线方程为()()3220000011132y x x x x x x ⎛⎫--+=--⎪⎝⎭ ,把点3,12⎛⎫ ⎪⎝⎭代入,得()20000034129002x x x x x -+=⇒==或 ,所以切线方程为y=1或3148y x =-; (3)由3211301322111x y x x x y y y ⎧⎧==-+=⎧⎪⎪⇒⎨⎨⎨=⎩⎪⎪==⎩⎩或 ,所以所求的面积为()333243220311119(1)232126640f x dx x x dx x x ⎛⎫⎛⎫-=-+=-+= ⎪ ⎪⎝⎭⎝⎭⎰⎰. 21.(()()f x 的定义域为()0,∞+,()1f x a x'=-,若0a ≤,则()0f x '>,()f x 在()0,∞+是单调递增;若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,所以()f x 在10,a ⎛⎫⎪⎝⎭单调递增,在1,a⎛⎫+∞ ⎪⎝⎭单调递减.(()由(()知当0a ≤时()f x 在()0,∞+无最大值,当0a >时()f x 在1x a=取得最大值,最大值为111ln 1ln 1.f a a a a a a ⎛⎫⎛⎫⎛⎫=+-=-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此122ln 10f a a a a ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,∞+是增函数,()10g =,于是,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.22.(1)函数()y f x =的定义域为()0,∞+,()()()()222221212212ax a x ax x a f x a x x x x-++--+'=-+==. 当0a >时,令()0f x '=,可得10x a=>或2x =. ①当12a =时,即当12a =时,对任意的0x >,()0f x '≥, 此时,函数()y f x =的单调递增区间为()0,∞+; ②当102a <<时,即当12a >时,令()0f x '>,得10x a<<或2x >;令()0f x '<,得12x a <<.此时,函数()y f x =的单调递增区间为10,a ⎛⎫ ⎪⎝⎭和()2,+∞,单调递减区间为1,2a ⎛⎫ ⎪⎝⎭; ③当12a>时,即当102a <<时,令()0f x '>,得02x <<或1x a>;令()0f x '<,得12x a <<.此时,函数()y f x =的单调递增区间为()0,2和1,a ⎛⎫+∞⎪⎝⎭,单调递减区间为12,a ⎛⎫⎪⎝⎭; (2)由题意()()f x g x ≥,可得ln 0ax x -≥,可得ln x a x ≥,其中21,x e e ⎡⎤∈⎢⎥⎣⎦. 构造函数()ln x h x x =,21,x e e ⎡⎤∈⎢⎥⎣⎦,则()min a h x ≥. ()21ln x h x x -'=,令()0h x '=,得21,x e e e ⎡⎤=∈⎢⎥⎣⎦. 当1x e e≤<时,()0h x '>;当2e x e <≤时,()0h x '<. 所以,函数()y h x =在1x e=或2x e =处取得最小值,1h e e ⎛⎫=- ⎪⎝⎭,()222h e e =,则()1h h e e ⎛⎫< ⎪⎝⎭,()min 1h x h e e ⎛⎫∴==- ⎪⎝⎭,a e ∴≥-.因此,实数a 的取值范围是[),e -+∞.。

安徽省六安市毛坦厂中学理科2021届数学周考试题及答案

安徽省六安市毛坦厂中学理科2021届数学周考试题及答案

第1页 共4页 ◎ 第2页 共4页1|4x x <<3>(1,0)-(0,1)(1,)⋃+∞.已知函数()f x ==第3页共4页◎第4页共4页参考答案1.C 2.B 3.B 4.D 5.B 6.B 7.B 8.D 9.C 10.B 11.A 12.B.13.2 14.3 1523π+. 16.1,e ⎛⎫-+∞ ⎪⎝⎭17.(1)当1a =时, 由2230x x --<得13x(由204xx -≥-得24x ≤<( ∵p q ∧为真命题,∴命题,p q 均为真命题,∴13,24,x x -<<⎧⎨≤<⎩解得23x ≤<( ∴实数x 的取值范围是[)2,3((2)由条件得不等式22230x ax a --<的解集为(),3a a -( ∵p ⌝是q ⌝的充分不必要条件, ∴q 是p 的充分不必要条件, ∴[)()2,4,3a a -,∴2,34,a a -<⎧⎨≥⎩解得43a ≥,∴实数a 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭( 18.(Ⅰ)因为2yx ,所以2y x '=所以直线l 在A 处的斜率2|4x k y ='==则切线l 的方程为()442y x -=-即44y x =- (Ⅱ)由(Ⅰ)可知14yx =+,所以由定积分可得面积342203224121221|44404838330y S dy y y y ⎛⎫⎛=+=+-⨯=⨯+-⨯ ⎪ ⎝⎝-⎭=⎰所以曲线C 、直线l 和x 轴所围成的图形的面为23. 19. (1)当0x <时,0x ->,又因为()f x 为奇函数, 所以22()()(2)2f x f x x x x x =--=---=-所以222 0(){2 0x x x f x x x x -<=--≥ (2)(当0a ≤时,对称轴02ax =≤,所以2()f x x ax =-+在[0,)+∞上单调递减, 由于奇函数关于原点对称的区间上单调性相同,所以()f x 在(,0)-∞上单调递减, 又在(,0)-∞上()0f x >,在(0,)+∞上()0f x <, 所以当a ≤0时,()f x 为R 上的单调递减函数 当a>0时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上递增,在,2a ⎛⎫+∞ ⎪⎝⎭上递减,不合题意所以函数()f x 为单调函数时,a 的范围为a 0≤…(因为2(1)()0f m f m t -++<,(2(1)()f m f m t -<-+所以()f x 是奇函数,(2(1)()f m f t m -<--又因为()f x 为R 上的单调递减函数,所以21m t m ->--恒成立, 所以22151()24t m m m >--+=-++恒成立, 所以54t > 20.解:(1)()2f x x x '=- ,令()0f x '= ,解得x=0或x=1,令()0f x '> ,得x<0或x>1,()0f x '< ,解得0<x<1,∴函数f(x)在(),0-∞ 上单调递增,在(0,1)上单调递减,在()1,+∞ 上单调递增 ∴x=0是其极大值点,x=1是极小值点,所以f(x)的极大值为f (0)=1; f(x)的极小值为()516f = (2)设切点为P 3200011,132x x x ⎛⎫-+ ⎪⎝⎭,切线斜率()2000k f x x x '==-∴曲线在P 点处的切线方程为()()3220000011132y x x x x x x ⎛⎫--+=--⎪⎝⎭ ,把点3,12⎛⎫ ⎪⎝⎭代入,得()20000034129002x x x x x -+=⇒==或 ,所以切线方程为y=1或3148y x =-; (3)由3211301322111x y x x x y y y ⎧⎧==-+=⎧⎪⎪⇒⎨⎨⎨=⎩⎪⎪==⎩⎩或 ,所以所求的面积为()333243220311119(1)232126640f x dx x x dx x x ⎛⎫⎛⎫-=-+=-+= ⎪ ⎪⎝⎭⎝⎭⎰⎰. 21.(()()f x 的定义域为()0,∞+,()1f x a x'=-,若0a ≤,则()0f x '>,()f x 在()0,∞+是单调递增;若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,所以()f x 在10,a ⎛⎫⎪⎝⎭单调递增,在1,a⎛⎫+∞ ⎪⎝⎭单调递减.(()由(()知当0a ≤时()f x 在()0,∞+无最大值,当0a >时()f x 在1x a=取得最大值,最大值为111ln 1ln 1.f a a a a a a ⎛⎫⎛⎫⎛⎫=+-=-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此122ln 10f a a a a ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,∞+是增函数,()10g =,于是,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.22.(1)函数()y f x =的定义域为()0,∞+,()()()()222221212212ax a x ax x a f x a x x x x-++--+'=-+==. 当0a >时,令()0f x '=,可得10x a=>或2x =. ①当12a =时,即当12a =时,对任意的0x >,()0f x '≥, 此时,函数()y f x =的单调递增区间为()0,∞+; ②当102a <<时,即当12a >时,令()0f x '>,得10x a<<或2x >;令()0f x '<,得12x a <<.此时,函数()y f x =的单调递增区间为10,a ⎛⎫ ⎪⎝⎭和()2,+∞,单调递减区间为1,2a ⎛⎫ ⎪⎝⎭; ③当12a>时,即当102a <<时,令()0f x '>,得02x <<或1x a>;令()0f x '<,得12x a <<.此时,函数()y f x =的单调递增区间为()0,2和1,a ⎛⎫+∞⎪⎝⎭,单调递减区间为12,a ⎛⎫⎪⎝⎭; (2)由题意()()f x g x ≥,可得ln 0ax x -≥,可得ln x a x ≥,其中21,x e e ⎡⎤∈⎢⎥⎣⎦. 构造函数()ln x h x x =,21,x e e ⎡⎤∈⎢⎥⎣⎦,则()min a h x ≥. ()21ln x h x x -'=,令()0h x '=,得21,x e e e ⎡⎤=∈⎢⎥⎣⎦. 当1x e e≤<时,()0h x '>;当2e x e <≤时,()0h x '<. 所以,函数()y h x =在1x e=或2x e =处取得最小值,1h e e ⎛⎫=- ⎪⎝⎭,()222h e e =,则()1h h e e ⎛⎫< ⎪⎝⎭,()min 1h x h e e ⎛⎫∴==- ⎪⎝⎭,a e ∴≥-.因此,实数a 的取值范围是[),e -+∞.。

2021-2022年高三9月月考数学理试题 含答案

2021-2022年高三9月月考数学理试题 含答案

2021年高三9月月考数学理试题 含答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合21{|||},{|2,}x M x x x N x y x R -=≥==∈,则( ) A . B . C . D .2、对于非零向量,是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3、函数是( )A .偶函数,在是增函数B .奇函数,在是增函数C .偶函数,在是减函数D .奇函数,在是减函数 4、下列函数中,既是奇函数又存在极值的是( ) A . B . C . D .5、函数在点处的切线方程为,则等于( ) A .4 B .2 C . D .6、已知函数()()21,f x x g x kx =-+=,若方程有两个不相等的实根,则实数的取值范围是( )A .B .C .D .7、给出如下命题:①向量的长度与向量的长度相等;②向量与平行,则与的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同; ④两个公共终点的向量,一定是共线向量;⑤向量与向量是共线向量,则点必在同一条直线上. 其中正确的命题个数是( ) A .1 B .2 C .3 D .48、将函数的图象先向左平移个单位长度,再向上平移1个单位长度,所得图象对应的函数解析式是( ) A . B . C . D .9、方程的两根为,则的值为( )A .B .2C .D . 10、若存在整数使成立,则的取值范围是( ) A . B . C . D .11、设函数()()41411log (),log ()44x x f x x g x x =-=-的零点分别为,则( )A .B .C .D .12、若函数在R 上可导,且满足,则( ) A . B . C . D .二、填空题:(本大题共4小题,每题5分,共20分,把最简答案填写在答题卡相应的位置上)13、如图所示,在中,已知在AB 上,且12,3AD DB CD CA CB λ==+, 则14、若,则的值等于15、曲线与围成的封闭区域的面积是16、给出下列命题:①在区间上,函数11232,,(1),y x y x y x y x -===-=中由三个是增函数;②若,则;③若函数是奇函数,则的图象观点点对称;④已知函数()2332log (1)2x x f x x x -⎧≤=⎨->⎩,则方程有2个实数根;⑤定义在R 上的寒素,则与的图象关于直线对称以上命题是真命题的是三、解答题(本题共6个小题,共70分,写出文字说明,证明过程或步骤) 17、(本小题满分10分)已知向量(3,1),(sin 2,cos 2)a b x x =-=,函数 (1)若且,求的值;(2)求函数的单调增区间以及函数取得最大值时,向量与的夹角.18、(本小题满分12分)(1)已知集合,函数()22log (22)f x ax x =-+的定义域为,若(]12,,2,323PQ P Q ⎡⎫==-⎪⎢⎣⎭,求实数的值.(2)函数定义在R 上且,当时,()22log (22)f x ax x =-+,若,求实数的值.19、(本小题满分12分)设22(1)(log ),(01)(1)a a x f x a x a -=<<- (1) 求的表达式,并判断的奇偶性;(2)判断的单调性;(3)对于,当时,恒有,求的取值范围.20、(本小题满分12分)在平面直角坐标系中,O 为坐标原点,已知向量(2,1),(1,0),(cos ,)a A B t θ=. (1)若,且,求向量的坐标; (2)若,求的最小值.21、(本小题满分12分) 已知函数()3212()32a f x x x x a R =-+-∈ (1)当时,求函数的单调区间;(2)若对于任意都有成立,求实数的取值范围.22、(本小题满分12分)已知函数的减区间(1)试求的值;(2)求过点且与曲线相切的切线方程;(3)过点是否存在曲线相切的3条切线,若存在求实数的取值范围;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.A2.A3.B4.D5.D6.B7.C8.C9.A10.D11.A12.A二、填空题:(本大题共4小题,每题5分,共20分,把最简答案填写在答题卡相应的位置上)13. =14..15..16.②③④⑤.三、解答题(本题共6个小题,共70分,写出文字说明,证明过程或步骤)17.解:(1)∵f(x)=•=sin2x﹣cos2x,∴由f(x)=0得sin2x﹣cos2x=0,即tan2x=.∵0<x<π,∴0<2x<2π,∴2x=或2x=,∴x=或x=.(2)∵f(x)=sin2x﹣cos2x=2(sin2x﹣cos2x)=2sin(2x﹣),由2kπ﹣≤2x﹣≤2kπ+(k∈Z),得:kπ﹣≤x≤kπ+(k∈Z),∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.由上可得f(x)max=2,当f(x)=2时,由•=||•||cos<•>=2得:cos<•>==1,∵0≤<•>≤π,∴<•>=0,即f(x)取得最大值时,向量与的夹角为0.18.解:(1))∵P∩Q=[,),P∪Q=(﹣2,3],∴Q=(﹣2,).即不等式ax2﹣2x+2>0的解集为=(﹣2,).∴a<0且,∴a=﹣.(2)∵函数f(x)定义在R上且f(x)=﹣f(x+),∴f(x)=﹣f(x+)=f(x+)=f(x+3),∴f(x)的周期为3,f(35)=f(3×11+2)=f(2)=log2(a•22﹣4+2)=1,所以a=1.19.解:(1)设log a x=t,则x=a t,∴f(t)===∴f(x)=∴f(﹣x)=(a﹣x﹣a x)=﹣f(x),∴f(x)为奇函数,(2)函数为增函数,∵f(x)=设x1<x2,f(x1)﹣f(x2)=()=(﹣+﹣),∵0<a<1时,∴a2﹣1<0,>1,∴﹣>0,+﹣>0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)在(﹣∞,+∞)上单调递增;(3)∵f(1﹣m)+f(1﹣m2)<0,∴f(1﹣m)<﹣f(1﹣m2)=f(m2﹣1),∵f(x)在(﹣∞,+∞)上单调递增;∴解得,1<m,故m的取值范围为(1,).20.解:(1)=(cosθ﹣1,t).∵∥,且||=||,∴,化为cosθ=0,t=﹣.∴.(2)∵,∴cosθ﹣1﹣2t=0.∴cosθ=1+2t∈[﹣1,1],解得t∈[﹣1,0].∴y=cos2θ﹣cosθ+t2=(1+2t)2﹣(1+2t)+t2=5t2+2t=,∵t∈[﹣1,0],∴当t=﹣时,y取得最小值﹣.21.解:∵(1)当a=3时函数f(x)=﹣x3+x2﹣2x,函数f(x)=﹣x3+x2﹣2x=﹣x3+x2﹣2x,∴f′(x)=﹣x2+3x﹣2,﹣x2+3x﹣2>0,即1<x<2﹣x2+3x﹣2<0即x>2,x<1.所以函数f(x)的单调增区间(1,2),单调递减区间为(﹣∞,1),(2,+∞)(2)对于任意x∈[1,+∞)都有f′(x)<2(a﹣1)成立,﹣x2+ax﹣2<2(a﹣1),即x2﹣ax+2a>0,△=a2﹣8a,g(x)=x2﹣ax+2a,当△<0时0<a<8,不等式成立.当△≥0时,即a≥8,a≤0,g(1)>0,≤1﹣1<a≤0,综上实数a的取值范围:﹣1<a<8.22.解:(1)由题意知:f'(x)=3mx2+4nx﹣12<0的解集为(﹣2,2),所以﹣2和2为方程3mx2+4nx﹣12=0的根,由韦达定理知0=﹣,﹣4=﹣即m=1,n=0.(2)∵f(x)=x3﹣12x,∴f'(x)=3x2﹣12,∵f(1)=13﹣12•1=﹣11当A为切点时,切线的斜率k=f'(1)=3﹣12=﹣9,∴切线为y+11=﹣9(x﹣1),即9x+y+2=0;当A不为切点时,设切点为P(x0,f(x0)),这时切线的斜率是k=f'(x0)=3x02﹣12,切线方程为y﹣f(x0)=f'(x0)(x﹣x0),即y=3(x02﹣4)x﹣2x03,因为过点A(1,﹣11),﹣11=3(x02﹣4)﹣2x03,∴2x03﹣3x02+1=0,(x0﹣1)2(2x0+1)=0,∴x0=1或x0=﹣,而x0=1为A点,即另一个切点为P(﹣,),∴k=f′(﹣)=3×﹣12=﹣,切线方程为y+11=﹣(x﹣1),即45x+4y﹣1=0;所以,过点A(1,﹣11)的切线为9x+y+2=0或45x+4y﹣1=0.(3)存在满足条件的三条切线.设点P(x0,f(x0))是过点A的直线与曲线f(x)=x3﹣12x的切点,则在P点处的切线的方程为y﹣f(x0)=f'(x0)(x﹣x0)即y=3(x02﹣4)x﹣2x03因为其过点A(1,t),所以,t=3(x02﹣4)﹣2x03=﹣2x03+3x02﹣12,由于有三条切线,所以方程应有3个实根,设g(x)=2x3﹣3x2+t+12,只要使曲线有3个零点即可.设g'(x)=6x2﹣6x=0,∴x=0或x=1分别为g(x)的极值点,当x∈(﹣∞,0)和(1,+∞)时g'(x)>0,g(x)在(﹣∞,0)和(1,+∞)上单增,当x∈(0,1)时g'(x)<0,g(x)在(0,1)上单减,所以,x=0为极大值点,x=1为极小值点.所以要使曲线与x轴有3个交点,当且仅当即,解得﹣12<t<﹣11.实用文档。

2021-2022年高三上学期9月月考数学试卷(理科)含解析

2021-2022年高三上学期9月月考数学试卷(理科)含解析

2021-2022年高三上学期9月月考数学试卷(理科)含解析一、选择题(本大题共10小题,每小题5分,共50分)1.已知集合A={x|y=lg(2x﹣x2)},B={y|y=2x,x>0},R是实数集,则(∁RB)∩A=()A.[0,1] B.(0,1] C.(﹣∞,0] D.以上都不对2.下列四个函数中,与y=x表示同一函数的是()A.y=()2 B.y= C.y= D.y=3.设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a4.由方程x|x|+y|y|=1确定的函数y=f(x)在(﹣∞,+∞)上是()A.增函数B.减函数C.先增后减D.先减后增5..函数f(x)=|x|﹣k有两个零点,则()A.k=0 B.k>0 C.0≤k<1 D.k<06.若0<x<y<1,则()A.3y<3x B.logx 3<logy3 C.log4x>log4y D.()x>()y7.函数y=的图象大致是()A.B.C.D.8.若函数f(x)=,若f(a)>f(﹣a),则实数a的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)9.已知幂函数f(x)的图象经过点(,),P(x1,y1),Q(x2,y2)(x1<x2)是函数图象上的任意不同两点,给出以下结论:①x1f(x1)>x2f(x2);②x1f(x1)<x2f(x2);③>;④<.其中正确结论的序号是()A.①②B.①③C.②④D.②③10.已知函数f(x)=log(4x﹣2x+1+1)的值域是[0,+∞),则它的定义域可以是()A.(0,1]B.(0,1)C.(﹣∞,1]D.(﹣∞,0]二、填空题(本大题共5小题,每小题5分,共20分)11.若命题“∃x∈R,使得x2+(a﹣1)x+1<0”是真命题,则实数a的取值范围是.12.已知对不同的a值,函数f(x)=2+a x﹣1(a>0,且a≠1)的图象恒过定点P,则P点的坐标是.13.定义在R上的函数f(x)满足f(x)=,则f的长度为x2﹣x1.已知函数y=|log0.5x|定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值为.15.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x﹣1),已知当x∈[0,1]时f(x)=()1﹣x,则①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0;④当x∈(3,4)时,f(x)=()x﹣3.其中所有正确命题的序号是.三、解答题(本大题共6小题,共75分)16.对定义在实数集上的函数f(x),若存在实数x0,使得f(x0)=x0,那么称x0为函数f (x)的一个不动点.(1)已知函数f(x)=ax2+bx﹣b(a≠0)有不动点(1,1)、(﹣3,﹣3),求a、b;(2)若对于任意实数b,函数f(x)=ax2+bx﹣b (a≠0)总有两个相异的不动点,求实数a的取值范围.17.已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式f(x)=﹣(a∈R).(1)写出f(x)在[0,1]上的解析式;(2)求f(x)在[0,1]上的最大值.18.已知函数f(x)=2x﹣.(Ⅰ)若f(x)=2,求x的值;(Ⅱ)若2t f(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.19.已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(1)求函数f(x)的解析式;(2)若g(x)=f(x)+,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.20.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80﹣2t(件),价格近似满足f(t)=20﹣|t﹣10|(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数关系表达式;(2)求该种商品的日销售额y的最大值与最小值.21.对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f (x2)成立,则称函数f(x)为理想函数.(1)若函数f(x)为理想函数,求f(0)的值;(2)判断函数g(x)=2x﹣1(x∈[0,1])是否为理想函数,并予以证明;(3)若函数f(x)为理想函数,假定∃x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求证f(x0)=x0.参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.已知集合A={x|y=lg(2x﹣x2)},B={y|y=2x,x>0},R是实数集,则(∁R B)∩A=()A.[0,1]B.(0,1]C.(﹣∞,0]D.以上都不对【考点】交、并、补集的混合运算.【分析】集合A为对数函数的定义域,集合B为指数函数的值域,分别解出再进行运算即可.【解答】解:由2x﹣x2>0,得x(x﹣2)>0,即0<x<2,故A={x|0<x<2},由x>0,得2x>1,故B={y|y>1},∁R B={y|y≤1},则(∁R B)∩A=(0,1]故选B2.下列四个函数中,与y=x表示同一函数的是()A.y=()2B.y= C.y= D.y=【考点】判断两个函数是否为同一函数.【分析】逐一检验各个选项中的函数与已知的函数是否具有相同的定义域、值域、对应关系,只有这三者完全相同时,两个函数才是同一个函数.【解答】解:选项A中的函数的定义域与已知函数不同,故排除选项A;选项B中的函数与已知函数具有相同的定义域、值域和对应关系,故是同一个函数,故选项B满足条件;选项C中的函数与已知函数的值域不同,故不是同一个函数,故排除选项C;选项D中的函数与已知函数的定义域不同,故不是同一个函数,故排除选项D;故选B.3.设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【考点】对数值大小的比较.【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A4.由方程x|x|+y|y|=1确定的函数y=f(x)在(﹣∞,+∞)上是()A.增函数B.减函数C.先增后减 D.先减后增【考点】函数单调性的判断与证明.【分析】先利用分类讨论的方法对x,y的取值进行讨论,化去绝对值符号,化简曲线的方程,再结合方程画出图形,由图观察即得.【解答】解:①当x≥0且y≥0时,x2+y2=1,②当x>0且y<0时,x2﹣y2=1,③当x<0且y>0时,y2﹣x2=1,④当x<0且y<0时,无意义.由以上讨论作图如右,易知是减函数.故选B.5..函数f(x)=|x|﹣k有两个零点,则()A.k=0 B.k>0 C.0≤k<1 D.k<0【考点】函数的零点与方程根的关系.【分析】由题意可得,函数y=|x|的图象与函数y=k的图象有两个交点,数形结合可得k 的范围.【解答】解:∵函数f(x)=|x|﹣k有两个零点,∴函数y=|x|的图象与函数y=k的图象有两个交点,如图所示:数形结合可得,当k>0时,函数y=|x|的图象与函数y=k的图象有两个交点,故k的范围是(0,+∞),故选B.6.若0<x<y<1,则()A.3y<3x B.log x3<log y3 C.log4x>log4y D.()x>()y【考点】函数单调性的性质.【分析】根据指数函数、对数函数的单调性,可得结论.【解答】解:根据指数函数的单调性,可得3y>3x,()x>()y,根据对数函数的单调性,可得log x3>log y3,log4x<log4y,故选:D.7.函数y=的图象大致是()A.B.C.D.【考点】对数函数的图象与性质.【分析】先由奇偶性来确定是A、B还是C、D选项中的一个,再通过对数函数,当x=1时,函数值为0,可进一步确定选项.【解答】解:∵f(﹣x)=﹣f(x)是奇函数,所以排除A,B当x=1时,f(x)=0排除C故选D8.若函数f(x)=,若f(a)>f(﹣a),则实数a的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)【考点】对数值大小的比较.【分析】由分段函数的表达式知,需要对a的正负进行分类讨论.【解答】解:由题意.故选C.9.已知幂函数f(x)的图象经过点(,),P(x1,y1),Q(x2,y2)(x1<x2)是函数图象上的任意不同两点,给出以下结论:①x1f(x1)>x2f(x2);②x1f(x1)<x2f(x2);③>;④<.其中正确结论的序号是()A.①②B.①③C.②④D.②③【考点】幂函数的性质.【分析】设f(x)=xα,把点(,)代入函数的解析式求出α,得到f(x)=,利用函数在其定义域[0,+∞)内单调递增,且增长速度越来越慢,结合函数图象作答.【解答】解析:依题意,设f(x)=xα,则有()α=,即()α=,所以,α=,于是f(x)=.由于函数f(x)=在定义域[0,+∞)内单调递增,所以当x1<x2时,必有f(x1)<f(x2),从而有x1f(x1)<x2f(x2),故②正确;又因为,分别表示直线OP、OQ的斜率,结合函数图象,容易得出直线OP的斜率大于直线OQ的斜率,故>,所以③正确,故选D.10.已知函数f(x)=log(4x﹣2x+1+1)的值域是[0,+∞),则它的定义域可以是()A.(0,1]B.(0,1)C.(﹣∞,1]D.(﹣∞,0]【考点】函数的定义域及其求法.【分析】根据对数函数的性质即可得到结论.【解答】解:∵函数f(x)=log(4x﹣2x+1+1)的值域是[0,+∞),∴设t=2x,则y=4x﹣2x+1+1=t2﹣2t+1=(t﹣1)2.则只要保证y=(t﹣1)2∈(0,1],即可,故当x∈(0,1],满足条件,故选:A二、填空题(本大题共5小题,每小题5分,共20分)11.若命题“∃x∈R,使得x2+(a﹣1)x+1<0”是真命题,则实数a的取值范围是(﹣∞,﹣1)∪(3,+∞).【考点】二次函数的性质.【分析】因为不等式对应的是二次函数,其开口向上,若“∃x∈R,使得x2+(a﹣1)x+1<0”,则相应二次方程有不等的实根.【解答】解:∵“∃x∈R,使得x2+(a﹣1)x+1<0∴x2+(a﹣1)x+1=0有两个不等实根∴△=(a﹣1)2﹣4>0∴a<﹣1或a>3故答案为:(﹣∞,﹣1)∪(3,+∞)12.已知对不同的a值,函数f(x)=2+a x﹣1(a>0,且a≠1)的图象恒过定点P,则P点的坐标是(1,3).【考点】指数函数的图象与性质.【分析】根据指数函数的性质,我们易得指数函数y=a x(a>0,a≠1)的图象恒过(0,1)点,再根据函数图象的平移变换法则,求出平移量,进而可以得到函数图象平移后恒过的点P的坐标【解答】解:由指数函数y=a x(a>0,a≠1)的图象恒过(0,1)点而要得到函数y=2+a x﹣1(a>0,a≠1)的图象,可将指数函数y=a x(a>0,a≠1)的图象向右平移1个单位,再向上平移2个单位.则(0,1)点平移后得到(1,3)点.则P点的坐标是(1,3)故答案为(1,3)13.定义在R上的函数f(x)满足f(x)=,则f转化为f(1)的值代入解析式求出值.【解答】解:当x>0时,f(x)=f(x﹣1)﹣f(x﹣2);所以有f(x﹣1)=f(x﹣2)﹣f(x﹣3);所以f(x)=﹣f(x﹣3);所以f(x)=f(x﹣6);所以f(x)的周期为6;所以f=f(1)=f(0)﹣f(﹣1)=﹣1;故答案为:﹣1.14.定义:区间[x1,x2](x1<x2)的长度为x2﹣x1.已知函数y=|log0.5x|定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值为.【考点】对数函数的定义域;对数函数的值域与最值.【分析】先由函数值域求出函数定义域的取值范围,然后求出区间[a,b]的长度的最大值.【解答】解:函数y=|log0.5x|的值域为[0,2],那么0≤log0.5x≤2 或﹣2≤log0.5x<0,即:log0.51<≤log0.5x≤log0.5(0.5)2或log0.5(0.5)﹣2≤log0.5x<log0.51,由于函数log0.5x是减函数,那么或1<x≤4.这样就求出函数y=|log0.5x|的定义域为[,4],所以函数定义域区间的长度为故答案为:15.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x﹣1),已知当x∈[0,1]时f(x)=()1﹣x,则①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0;④当x∈(3,4)时,f(x)=()x﹣3.其中所有正确命题的序号是①②④.【考点】函数奇偶性的性质.【分析】根据条件求出函数的周期,即可判定①的真假,根据函数f(x)是定义在R上的偶函数,以及在(0,1)上的单调性,可判定②的真假,根据单调性和周期性可求出函数的最值,可判定③的真假,最后求出函数在x∈[3,4]时的解析式即可判定④的真假【解答】解:∵对任意的x∈R恒有f(x+1)=f(x﹣1),∴f(x+2)=f(x)则f(x)的周期为2,故①正确;∵函数f(x)是定义在R上的偶函数,当x∈[0,1]时,f(x)=()1﹣x,∴函数f(x)在(0,1)上是增函数,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;∴函数f(x)的最大值是f(1)=1,最小值为f(0)=,故③不正确;设x∈[3,4],则4﹣x∈[0,1],f(4﹣x)=()x﹣3=f(﹣x)=f(x),故④正确故答案为:①②④三、解答题(本大题共6小题,共75分)16.对定义在实数集上的函数f(x),若存在实数x0,使得f(x0)=x0,那么称x0为函数f (x)的一个不动点.(1)已知函数f(x)=ax2+bx﹣b(a≠0)有不动点(1,1)、(﹣3,﹣3),求a、b;(2)若对于任意实数b,函数f(x)=ax2+bx﹣b (a≠0)总有两个相异的不动点,求实数a的取值范围.【考点】函数恒成立问题.【分析】(1)利用函数f(x)的不动点为1与﹣3,建立方程组,即可求a,b;(2)函数f(x)总有两个相异的不动点,等价于方程ax2+(b﹣1)x﹣b=0(a≠0)有两个相异实根,利用判别式,即可求实数a的取值范围.【解答】解(1)∵函数f(x)的不动点为1与﹣3,∴,∴a=1,b=3.…(2)∵函数f(x)总有两个相异的不动点∴方程ax2+(b﹣1)x﹣b=0(a≠0)有两个相异实根,∴△>0,即(b﹣1)2+4ab>0对b∈R恒成立…∞△1<0,即(4a﹣2)2﹣4<0…∴0<a<1.…17.已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式f(x)=﹣(a∈R).(1)写出f(x)在[0,1]上的解析式;(2)求f(x)在[0,1]上的最大值.【考点】函数的最值及其几何意义;函数解析式的求解及常用方法;函数奇偶性的性质.【分析】(Ⅰ)求出a=1;设x∈[0,1],则﹣x∈[﹣1,0],利用条件,即可写出f(x)在[0,1]上的解析式;(Ⅱ)利用换元法求f(x)在[0,1]上的最大值.【解答】解:(Ⅰ)∵f(x)为定义在[﹣1,1]上的奇函数,且f(x)在x=0处有意义,∴f(0)=0,即f(0)=﹣=1﹣a=0.∴a=1.…设x∈[0,1],则﹣x∈[﹣1,0].∴f(﹣x)=﹣=4x﹣2x.又∵f(﹣x)=﹣f(x)∴﹣f(x)=4x﹣2x.∴f(x)=2x﹣4x.…(Ⅱ)当x∈[0,1],f(x)=2x﹣4x=2x﹣(2x)2,∴设t=2x(t>0),则f(t)=t﹣t2.∵x∈[0,1],∴t∈[1,2].当t=1时,取最大值,最大值为1﹣1=0.…18.已知函数f(x)=2x﹣.(Ⅰ)若f(x)=2,求x的值;(Ⅱ)若2t f(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.【考点】指数函数综合题.【分析】(I)当x≤0时得到f(x)=0而f(x)=2,所以无解;当x>0时解出f(x)=2求出x即可;(II)由t∈[1,2]时,2t f(2t)+mf(t)≥0恒成立得到,得到f(t)=,代入得到m的范围即可.【解答】解:(Ⅰ)当x≤0时f(x)=0,当x>0时,,有条件可得,,即22x﹣2×2x﹣1=0,解得,∵2x>0,∴,∴.(Ⅱ)当t∈[1,2]时,,即m(22t﹣1)≥﹣(24t﹣1).∵22t﹣1>0,∴m≥﹣(22t+1).∵t∈[1,2],∴﹣(1+22t)∈[﹣17,﹣5],故m的取值范围是[﹣5,+∞).19.已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(1)求函数f(x)的解析式;(2)若g(x)=f(x)+,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;函数解析式的求解及常用方法.【分析】(Ⅰ)设f(x)图象上任一点坐标为(x,y),利用点(x,y)关于点A(0,1)的对称点(﹣x,2﹣y)在h(x)的图象上,结合函数解析式,即可求得结论;(Ⅱ)题意可转化为(x∈(0,2])恒成立,利用分离参数法,再求出函数的最值,从而可求实数a的取值范围.【解答】解:(Ⅰ)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(﹣x,2﹣y)在h(x)的图象上…∴,∴,∴…(Ⅱ)由题意,∴∵x∈(0,2],∴a+1≥x(6﹣x),即a≥﹣x2+6x﹣1,…令q(x)=﹣x2+6x﹣1=﹣(x﹣3)2+8(x∈(0,2]),∴x∈(0,2]时,q(x)max=7…∴a≥7…20.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80﹣2t(件),价格近似满足f(t)=20﹣|t﹣10|(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数关系表达式;(2)求该种商品的日销售额y的最大值与最小值.【考点】分段函数的应用;函数解析式的求解及常用方法.【分析】(1)根据y=g(t)•f(t),可得该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)分段求最值,可求该种商品的日销售额y的最大值和最小值.【解答】解:(1)依题意,可得:,所以;(2)当0≤t≤10时,y=(30+t)(40﹣t)=﹣(t﹣5)2+1225,y的取值范围是[1200,1225],在t=5时,y取得最大值为1225;当10<t≤20时,=(50﹣t)(40﹣t)=(t﹣45)2﹣25,y的取值范围是[600,1200),在t=20时,y取得最小值为600.综上所述,第五天日销售额y最大,最大为1225元;第20天日销售额y最小,最小为600元.21.对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f (x2)成立,则称函数f(x)为理想函数.(1)若函数f(x)为理想函数,求f(0)的值;(2)判断函数g(x)=2x﹣1(x∈[0,1])是否为理想函数,并予以证明;(3)若函数f(x)为理想函数,假定∃x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求证f(x0)=x0.【考点】函数的值;抽象函数及其应用.【分析】(1)取x1=x2=0可得f(0)≥f(0)+f(0)⇒f(0)≤0,由此可求出f(0)的值.(2)g(x)=2x﹣1在[0,1]满足条件①g(x)≥0,也满足条件②g(1)=1.若x1≥0,x2≥0,x1+x2≤1,满足条件③,收此知故g(x)理想函数.(3)由条件③知,任给m、n∈[0,1],当m<n时,由m<n知n﹣m∈[0,1],f(n)=f(n﹣m+m)≥f(n﹣m)+f(m)≥f(m).由此能够推导出f(x0)=x0.【解答】解:(1)取x1=x2=0可得f(0)≥f(0)+f(0)⇒f(0)≤0.又由条件①f(0)≥0,故f(0)=0.(2)显然g(x)=2x﹣1在[0,1]满足条件①g(x)≥0;也满足条件②g(1)=1.若x1≥0,x2≥0,x1+x2≤1,则=,即满足条件③,故g(x)理想函数.(3)由条件③知,任给m、n∈[0,1],当m<n时,由m<n知n﹣m∈[0,1],∴f(n)=f(n﹣m+m)≥f(n﹣m)+f(m)≥f(m).若x0<f(x0),则f(x0)≤f[f(x0)]=x0,前后矛盾;若x0>f(x0),则f(x0)≥f[f(x0)]=x0,前后矛盾.故x0=f(x0).xx10月25日31978 7CEA 糪38676 9714 霔20900 51A4 冤33680 8390 莐o29746 7432 琲D32425 7EA9 纩21793 5521 唡q 31170 79C2 秂27151 6A0F 樏'。

高三数学9月份联考试题 理含解析 试题

高三数学9月份联考试题 理含解析 试题

卜人入州八九几市潮王学校五大联盟2021届高三数学9月份联考试题理〔含解析〕一、选择题 1.集合,,那么中的元素的个数为()A.0B.1 C.2D.3 【答案】C 【解析】因为或者,所以,应选答案C 。

2.,为虚数单位,,那么()A.9B.C.24D.【答案】A 【解析】因为,所以,那么,应选答案A 。

3.幂函数的图象过点,那么函数在区间上的最小值是()A.B.0C.D.【答案】B 【解析】由题设,故在上单调递增,那么当x =12时取最小值g(12)=2−2=0,应选答案B 。

4.a =40.3,b =813,c =log0.3,这三个数的大小关系为()A.b <a <cB.a <b <cC.c <a <bD.c <b <a 【答案】C【解析】因为0<0.3<1⇒c =log 20.3<0,1<a =40.3=20.6<2=b =813,所以c <a <b ,应选答案C 。

5.设等比数列{a n}的前n项和为S n,且a4=2a2,那么S8S4=()A.4B.5C.8D.9【答案】B【解析】由题设q2=a4a2=2,S8=S4+q4S4=(1+4)S4=5S4,所以S8S4=5,应选答案B。

6.设x,y满足约束条件{y≥0x−y+1≥0x+y−3≤0,那么z=x−3y的最大值为()A.3B.−5C.1D.−1【答案】A【解析】画出不等式组{y≥0x−y+1≥0x+y−3≤0表示的区域如图,那么问题转化为求动直线y=13x−13z在y上的截距−13z的最小值的问题,结合图形可知:当动直线y=13x−13z经过点P(3,0)时,z max=3−3×0=3,应选答案A。

7.函数f(x)=Acos(ωx+φ)+1(A>0,ω>0,0<ω<π)的最大值为3,y=f(x)的图象的相邻两条对称轴间的间隔为2,与y轴的交点的纵坐标为1,那么f(13)=()A.1B.−1C.√32D.0【答案】D【解析】由题设条件可得A=2,T2=2⇒T=4,那么ω=2π4=π2,所以f(x)=2cos(π2x+φ)+1,将点P(0,1)代入可得f(x)=2cos(0+φ)+1=1⇒cosφ=0,即φ=kπ+π2,k ∈Z ,又0<φ<π⇒φ=π2,所以f(x)=2cos(π2x +π2)+1=2cos2π3+1=0,应选答案D 。

高三数学上学期9月第二次联考试题 理含解析 试题

高三数学上学期9月第二次联考试题 理含解析 试题

卜人入州八九几市潮王学校2021届高三数学上学期9月第二次联考试题理〔含解析〕一、选择题:在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。

A ={x |x <1},B ={x |31x<},那么A.{|0}A B x x =<B.A B R =C.{|1}A B x x =>D.AB =∅【答案】A 【解析】 ∵集合{|31}x B x =<∴{}|0B x x =<∵集合{|1}A x x =<∴{}|0A B x x ⋂=<,{}|1A B x x ⋃=<应选A2.i 为虚数单位,假设1i(,)1ia b a b =+∈-R ,那么b a =〔〕A.1C.2D.2【答案】C 【解析】 【分析】根据复数的除法运算得到1112i a bi i +==+-,再由复数相等的概念得到参数值,进而得到结果. 【详解】i 为虚数单位,假设1(,)1a bi a b R i =+∈-,1112ia bi i +==+-根据复数相等得到1212a b ⎧=⎪⎪⎨⎪=⎪⎩.121()22b a ==故答案为:C.【点睛】这个题目考察了复数除法运算,以及复数相等的概念,复数a bi +与i c d +相等的充要条件是a c =且b d =.复数相等的充要条件是化复为实的主要根据,多用来求解参数的值或者取值范围.步骤是:分别别离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程〔组〕求解. 3.5log 2a=,0.5log 0.2b =,0.20.5c =,那么,,a b c 的大小关系为〔〕A.a c b <<B.a b c <<C.b c a <<D.c a b <<【答案】A 【解析】 【分析】利用10,,12等中间值区分各个数值的大小。

【详解】551log 2log 2a =<,0.50.5log 0.2log 0.252b =>=, 10.20.50.50.5<<,故112c <<, 所以a c b <<。

2021年高三上学期9月质量检测考试数学(理)试题 含答案

2021年高三上学期9月质量检测考试数学(理)试题 含答案

2021年高三上学期9月质量检测考试数学(理)试题 含答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.5.已知双曲线的一个焦点与抛物线的焦点重合,且双曲线的离心率等于,则该双曲线的标准方程为( )A .B .C .D .6、若正数满足,则的最小值是( )A .B .5C .D .67.某几何体三视图如图所示,则该几何体的体积为( )A .8-2πB .8-π2C .8-πD .8-π48、将4个颜色互不相同的球全部放入编号为1,2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .52种 B .36种 C . 20种 D .10种 9、在△ABC 中,内角的对边分别是,若,,则( )A .B .C .D .10.执行如右图的程序框图,若输出的,则输入的值可以为( ) A . B . C . D .11.二项式展开式中含有项,则可能的取值是 ( )A .8B .7C .6D .512.设函数在上存在导数,,有,在上,若,则实数的取值范围为( ) A . B . C . D .第Ⅱ卷本卷包括必考题和选考题两部分。

第13题~第21题为必考题,每个考生都必须做答。

第22题~第24题为选考题,考生根据要求做答。

二.填空题:本大题共4小题,每小题5分。

13. 若函数f (x )=为偶函数,则=14. 一个圆经过椭圆的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 15.若满足约束条件:;则的取值范围为16. 是定义在R 上的函数,且,,,则 .三.解答题:解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)已知数列满足,,.(1)求数列的通项公式;(2)设,数列的前项和为,求..18.(本小题满分12分)如图,在长方体中,==1,,点E 是线段AB 的中点.(1)求证:;(2)求二面角的大小的余弦值.19.名同学的语文、英语成绩如下表所示:(第10题图)BA 1CD B 1C 1D 1E(1)根据表中数据,求英语分y 对语文分x 的线性回归方程;(2)要从4名语文成绩在90分(含90分)以上的同学中选出2名参加一项活动,以表示选中的同学的英语成绩高于90分的人数,求随机变量的分布列及数学期望. (线性回归方程中,,,其中为样本平均值,,的值的结果保留二位小数.)20.(本小题满分12分) 已知椭圆C 1:x 2a 2+y 2b2=1()a >b >0的右焦点与抛物线C 2:y 2=4x 的焦点F 重合,椭圆C 1与抛物线C 2在第一象限的交点为P ,||PF =53.(1)求椭圆C 1的方程;(2)过点A ()-1,0的直线与椭圆C 1相交于M 、N 两点,求使FM →+FN →=FR →成立的动点R 的轨迹方程.21. (本小题满分12分)已知函数,其中a 为常数,且.(1)当时,求的单调区间;(2)若在处取得极值,且在上的最大值为,求a 的值.选做题:请考生从第22、23、24题中任选一题做答,并按要求在答题卷上注明题号.多答按所答的首题进行评分.22.(本小题满分10分)选修4—1:几何证明选讲。

2021年高三上学期9月月考数学理试卷 Word版含答案

2021年高三上学期9月月考数学理试卷 Word版含答案

2021年高三上学期9月月考数学理试卷 Word 版含答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,集合B ={-2,-1,0,1,2},则(∁R A)∩B=( )A .{0,1,2}B .{-2,-1}C .{0}D .{-2,-1,0}2.已知命题:,,那么命题为( ) A . B . C .D .3.下列函数中,既是奇函数,又是在区间(0,1)上单调递增的函数是( ) A .B .C .D .4.已知,则的值等于 A .B .C .D .5.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )6.已知函数为定义在R 上的奇函数,当时,为常数),则的值是( ) A . B . C . D . 7.若)0)(sin(3)(:;,22:≠+=∈+=ωϕωππϕx x f q Z k k p 是偶函数,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件8.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =3x -2,则曲线y =f (x )在点(1,f (1))处切线的斜率为()B.A .-12B .1C .4D .59.在△ABC 中,若2cos B ·sin A =sin C ,则△ABC 的形状一定是 A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 10.若,则值为( ) A .3 B . C . D . 11.已知为R 上的可导函数,当时,,则关于x 的函数的零点个数为( ) A .0 B .1 C .2 D .0或 2 12.定义在上的函数,当时,.若,,,则a ,b ,c 的大小关系为( ) A .a >b >c B .a >c >b C .b >c >a D .c >b >a第II 卷(非选择题)二、填空题(本大题共4小题,每小题5分 ,共20分,把答案填在答题卡中对应题号后的横线上.)13.设函数 则的单调减区间为___________. 14.函数,(均为常数),且,则 .15.定义在R 上的偶函数在[0,)上是增函数,则方程的所有实数根的和为 . 16.给出下列命题:①若是锐角的内角,则;②存在实数,使;③直线是函数图象的一条对称轴;④函数的图象向右平移个单位,得到的图象.其中正确的命题是 . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知函数()⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛-=x x x x f 4sin 4sin 223cos πππ, (I )求函数的最小正周期;(II )求函数在区间上的最值及相应的x 的值.18.(本小题满分12分)设命题p :函数f (x )=lg(ax 2-12x +116a )的定义域为R ;命题q :不等式(12)x +1-a <0对均成立.(I)如果p 是真命题,求实数a 的取值范围;(II)如果命题“p 或q ”为真命题,且“p 且q ”为假命题,求实数a 的取值范围.19.(本小题满分12分)在中,内角对边的边长分别是,已知.(I)若的面积等于,求;(II)若,求的面积.20.(本小题满分12分)某大桥长3150米,通过大桥的车速不能超过30米/秒,一个由10辆同一车型组成的车队匀速通过该大桥.设车队的速度为x米/秒,根据安全的需要,相邻两车至少保持米的距离,其中为常数且.从第一辆车上桥到最后一辆车下桥(不记车长)所用时间为y(秒).(I)若大桥限制最低速度为20米/秒,则两车之间的最低安全距离为多少?(II)求车队通过大桥所用时间取最小值时,车队的速度.21.(本小题满分12分)设点、是函数的图象上的任意两点,且角的终边经过点P.当时,的最小值为.(I)求函数的解析式;(II)当时,不等式恒成立,求实数的取值范围.22.(本小题满分12分)已知f(x)=ln(x+1),g(x)=ax2+12bx(a,b∈R).(I) 若b=6且h(x)=f(x-1)-g(x)存在单调递减区间,求实数a的取值范围;(II)若a=0,b=2,求证:当x∈(-1,+∞)时,f(x)-g(x)≤0恒成立;(III)利用(II)的结论证明:若x>0,y>0,x≠y,则x ln x+y ln y>(x+y)ln x+y 2.郴州市二中xx届高三9月月考答卷数学(理科)二、填空题(本大题共4小题,每小题5分,共20分,)13.______________________; 14.___________________________;15.______________________; 16.___________________________.三、解答题(本大题共6小题,共70分.)17.(本小题满分10分)19.(本小题满分12分)21.(本小题满分12分)郴州市二中xx 届高三9月月考试卷数学(理科)参考答案二、填空题(本大题共4小题,每小题5分 ,共20分,)13. ; 14. 2; 15.4; 16. ①③.三、解答题(本大题共6小题,共70分.)17.解:(I)()⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛-=x x x x f 4sin 4sin 223cos πππ ()()x x x x x x sin cos sin cos 2sin 232cos 21-+++=⎪⎭⎫ ⎝⎛+=++=32sin 32cos 2sin 232cos 21πx x x x . . …………………………………………………………5分(II) ,. 所以,,此时,即;,此时,即.…………………………………………………………10分18.解:(I)若命题p 为真,即ax 2-12x +116a >0对任意x 恒成立.(ⅰ)当a =0时,不合题意;(ⅱ)当a ≠0时,可得⎩⎪⎨⎪⎧a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,14-14a 2<0,解得a >1.所以实数a 的取值范围是(1,+∞).……………………………………………6分 (II) 命题q :不等式(12)x +1-a <0对均成立.即(12)x < a -1,所以 a -1>[(12)x ]max =2, 因此,若命题q 为真,则a >3.由命题“p 或q ”为真且“p 且q ”为假,得命题p 、q 一真一假.所以实数a 的取值范围是(1,3]. ……………………………………………12分 19.解:(I )由余弦定理及已知条件得,又因为的面积等于,所以,得.联立方程组解得.……………………………………………………………5分(II )由题意得B A B A B A B A B B sin cos cos sin sin cos cos sin cos sin 4+=+-, 即, ……………………………………………7分 当时,,当时,得,由正弦定理得,联立方程组解得.………………10分所以,不论如何,的面积.…………………12分20.解:(I )两车之间的安全距离:2211()50()5024g x ax x a x a a=++=++-,时,是增函数.(米) …………………………………5分 (II )车队通过大桥所用时间:29(50)3150360099(030)ax x y ax x x x+++==++<≤ ……………8分当时,22236009(400)(0,30],'90ax x y a x x-∈∴=-=< 时, ………………………………10分当时,360099y ax x =++≥=当且仅当时,取得最小值. ……………………………12分21.解:(I)角ϕ的终边经过点P(,-1),∵,∴ϕ=. 由于=,且的最小值为, 所以T=,即,∴ω=3,∴ ………………………………5分 (II) 当时,,,…………………7分 ①当时,因为,所以,可化为所以,由,可知;…………………9分 ②当时,因为,可化为所以,由,可知.……………11分因此,实数的取值范围是或. …………………………12分22.解:(I)当b =6时,h (x )=ln x -ax 2-3x∴h ′(x )=1x -2ax -3.∵h (x )有单调减区间,∴h ′(x )<0有解,即1-2ax 2-3xx <0 ∵x >0,∴2ax 2+3x -1>0有解. (ⅰ)当a ≥0时符合题意;精品文档实用文档 (ⅱ)当a <0时,Δ=9+8a >0,即a >-98,所以,-98<a <0. 综上所述,a 的取值范围是(-98,+∞). …………………………………………4分(II)当a =0,b =2时,设φ(x )=f (x )-g (x )=ln(x +1)-x ,∴φ′(x )=1x +1-1=-x x +1. ∵x >-1,讨论φ′(x )的正负得下表: ↗ ↘ ∴当x =0∴当x ∈(-1,+∞)时,f (x )-g (x )≤0恒成立.…………………………………8分 (III)证明:∵x >0,y >0,∴x ln x +y ln y -(x +y )ln x +y 2=x ⎝⎛⎭⎫ln x -ln x +y 2+y ⎝⎛⎭⎫ln y -ln x +y 2 =x ln 2x x +y +y ln 2y x +y=-x ln x +y 2x -y ln x +y 2y =-x ln ⎝⎛⎭⎫1+y -x 2x -y ln ⎝⎛⎭⎫1+x -y 2y . ∵x >0,y >0,x ≠y ,∴y -x 2x +1=y +x 2x >0, y -x 2x >-1,且y -x 2x ≠0,由(2)有ln ⎝⎛⎭⎫1+y -x 2x <y -x 2x 同理ln ⎝⎛⎭⎫1+x -y 2y <x -y 2y . ∴ -x ln ⎝⎛⎭⎫1+y -x 2x -y ln ⎝⎛⎭⎫1+x -y 2y >-x ·y -x 2x -y ·x -y 2y =0 ∴ x ln x +y ln y >(x +y )lnx +y 2. …………………………………………12分 20933 51C5 凅27630 6BEE 毮30756 7824 砤HIEk21379 5383 厃31649 7BA1 管|0(W21741 54ED 哭。

高三数学上学期9月联考试题应届理试题

高三数学上学期9月联考试题应届理试题

毛坦厂中学2021届高三数学上学期9月联考试题〔应届〕理制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题〔一共12小题,每一小题5分,一共60分〕 1、集合,集合,那么A ∩B=( )A .B .C .D .2、以下命题正确的个数为〔 〕①“都有〞的否认是“使得〞;②“〞是“〞成立的充分条件;③命题“假设,那么方程有实数根〞的否命题;④幂函数的图像可以出如今第四象限。

A. 0 B. 1 C.2 D.3 3、在同一平面直角坐标系中,函数的图象与的图象关于直线对称,而函数的图象与的图象关于y 轴对称,假设,那么的值是( )A. -eB. -e 1 C. e D. e14、函数2()ln(43)f x x x =-+的单调递增区间是( )A .(-∞,1)B .(-∞,2)C .(2,+∞)D .(3,+∞) 5、 函数与函数的图象可能是 〔 〕6、函数⎩⎨⎧≥++<+-+=0,2)1(log 0,3)34()(2x x x a x a x x f a 〔a >0且a ≠1〕是R 上的单调函数,那么a 的取值范围是〔 〕A.3(0,]4B.3[,1)4C.]43,32[ D.]43,32(7、 1.30.20.20.7,3,log 5a b c ===,那么ɑ,b ,c 的大小关系〔 〕A. a c b <<B. c a b <<C. b c a <<D. c b a <<8、定义域为R 的函数()f x 在[1,)+∞单调递增,且(1)f x +为偶函数,假设(3)1f =,那么不等式(21)1f x +<的解集为〔 〕A .(-1,1)B .(-1,+∞) C.(-∞,1) D.(-∞,-1)∪(1,+∞)9、函数()12f x x x =+-f (x )有〔 〕 A .最小值12 ,无最大值 B .最大值12,无最小值 C .最小值1,无最大值 D .最大值1,无最小值10、定义在R 上的奇函数)(x f ,满足)21()21(x f x f -=+,在区间]0,21[-上递增,那么〔 〕A )2()2()3.0(f f f << B.)2()3.0()2(f f f << C.)2()2()3.0(f f f << D.)3.0()2()2(f f f << 11、定义在R 上函数f(x),对任意的x 1,x 2∈[2021,+∞)且x 1≠x 2,都有[f(x 1)-f(x 2)](x 1-x 2)<0,假设函数y=f(x+2021)为奇函数,(a-2021)(b-2021)< 0且a+b>4034,那么〔 〕A.f(a)+f(b)>0B.f(a)+f(b)<0C.f(a)+f(b)=0D.以上都不对12、设()f x 是定义在R 上的奇函数,且()10f =,当0x >时,有()()f x xf x >'恒成立,那么不等式()0xf x >的解集为( )A.(-∞,0)∪(0,1)B. (-∞,-1)∪(0,1)C.(-1,0)∪(1,+∞)D. (-1,0)∪(0,1)二.填空题〔一共4题,每一小题5分,一共20分〕13、f (x)=ax ²+bx 是定义在[a -1,3a ]上的偶函数,那么a +b=___________14、设函数()()321f x x a x ax =+-+.假设()f x 为奇函数,那么曲线()y f x =在点(0,0)处的切线方程为___________.15、方程062)1(22=++-+m x m x 有两个实根21,x x ,且满足41021<<<<x x ,那么m的取值范围是___________.16函数f 〔x 〕=e x﹣e ﹣x,以下命题正确的有 .〔写出所有正确命题的编号〕①f〔x 〕是奇函数;②f〔x 〕在R 上是单调递增函数;③方程f 〔x 〕=x 2+2x 有且仅有1个实数根;④假如对任意x∈〔0,+∞〕,都有f 〔x 〕>kx ,那么k 的最大值为2.三.解答题〔一共6小题,一共70分,解答时写出必要的文字说明、证明过程或者演算步骤。

高三数学上学期9月联考试题应届文试题

高三数学上学期9月联考试题应届文试题

卜人入州八九几市潮王学校毛坦厂2021届高三数学上学期9月联考试题〔应届〕文本套试卷分第一卷(选择题)和第二卷(非选择题)两局部.总分值是150分.考试时间是是120分钟.第一卷(选择题一共60分)一、选择题(本大题一一共12个小题,每一小题5分,一共60分)1.{}35A x Z x =∈-<<,211B x x ⎧⎫=≤⎨⎬-⎩⎭,那么()R AC B 中的元素个数为〔〕A.1B.2C.6D.82.**∈∈∀N n f N n )(,或者n n f ≤)(〞的否认形式是〔〕 A.,()n Nf n N **∃∉∉或者n n f >)( B.,()n N f n N **∃∉∉且n n f >)(C.**∉∈∃N n f N n )(,或者n n f >)( D.**∉∈∃N n f N n )(,且n n f >)(3.以下函数中不是偶函数的是〔〕A.()sin 2f x x π⎛⎫=+ ⎪⎝⎭B.()tan f x x = C.()ln f x x =D.()2xf x x e -=+4.函数()log 42a y x =++〔0a >,且1a ≠〕的图象恒过定点A ,且点A 在角θ的终边上,那么sin 2θ=〔〕A.513-B.513C.1213-D.12135.函数f (x )=2sin cos x x x x ++在[-π,π]的图像大致为()A .B .C .D .6.在△ABC 中,2BDDC =,E 为AD 的中点,那么EB =〔〕A.5163AB AC - B.5163AB AC + C.2136AB AC - D.3144AB AC - 7.函数()()sin 3cos 0f x x x ωωω=>的零点构成一个公差为2π的等差数列,把函数f (x )的图象 沿x 轴向右平移6π个单位,得到函数g (x )的图象.关于函数g (x ),以下说法正确的选项是() A.在,42ππ⎡⎤⎢⎥⎣⎦上是增函数 B.其图象关于直线2x π=对称C.函数g (x )是偶函数D.在区间2,63ππ⎡⎤⎢⎥⎣⎦上的值域为3,2⎡⎤⎣⎦ 8.数列{}n a 满足11(n 2)n n n a a a +-=-≥,12,a m a n ==,S n为数列{}n a 的前n 项和,那么S2019的值是()A .2mB .2nC .2019n m -D .2019n m -9.假设向量a ,b 的夹角为3π,且||2a =,||1b =,那么向量2a b +与向量a 的夹角为〔〕 A.6πB.3πC.23π D.56π10.在△ABC 中,tan A 是以-2为第三项,6为第七项的等差数列的公差,tan B 是以19为第二项, 27为第七项的等比数列的公比,那么这个三角形是〔〕 A .钝角三角形B .锐角三角形C .直角三角形D .等腰直角三角形11.在我国古代著名的数学专著九章算术里有一段表达:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:相逢时良马比驽马多行〔〕 A.1125里B.920里C.820里D.540里12.函数f (x )的定义域为R ,11()22f =-,对任意的x R ∈满足()4f x x '>. 当[0,2]απ∈时,不等式(sin )cos 20f αα+>的解集为()A.5,66ππ⎛⎫⎪⎝⎭ B.2,33ππ⎛⎫⎪⎝⎭C.45,33ππ⎛⎫⎪⎝⎭D.711,66ππ⎛⎫⎪⎝⎭第二卷(非选择题一共90分)二、填空题(本大题一一共4个小题,每一小题5分,一共20分)13.数列{}n a 的前n 项和为n S ,且231122n S n n =++,那么数列{}n a 的通项公式n a =__________.14.tan 2=-θ,那么2sin 2cos -=θθ.15.函数2cos ,112()1,1x x f x x x π⎧-≤≤⎪=⎨⎪->⎩,那么关于x 的方程2()3()20f x f x -+=的实根的个数是___. 16.函数4y x =++。

2021年高三上学期第一次(9月)月考数学(理)试题含答案

2021年高三上学期第一次(9月)月考数学(理)试题含答案

2021年高三上学期第一次(9月)月考数学(理)试题含答案一.选择题(王郡丽)1.已知全集为,集合,,则( )A. B.C. D.2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y=3xB .y=|x|+1C .y=﹣x 2+1D .y=3.设函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=2x +x ﹣3,则f (x )的零点个数为( )A .1B .2C .3D .44.曲线y=在点(0,一1)处的切线与两坐标轴围成的封闭图形的面积为( )A .B .-C .D .5.已知条件p :|x+1|>2,条件q :5x ﹣6>x 2,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.函数,当时下列式子大小关系正确的是( )A .B .C .D .7.已知函数()()322,2,03a f x x ax cx g x ax ax c a =++=++≠,则它们的图象可能( )8.设函数f (x )=x 2+xsinx ,对任意x 1,x 2∈(﹣π,π),若f (x 1)>f (x 2),则下列式子成立的是( )A.x1>x2B.C.x1>|x2| D.|x1|<|x2|9.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么y=x2,值域为{1,9}的“同族函数”共有()A.7个B.8个C.9个D.10个10.设定义在(0,+∞)上的函数f(x)=,g(x)=f(x)+a,则当实数a满足2<a<时,函数y=g(x)的零点个数为()A.0 B.2 C.3 D.4二.选择题(王宁)11.已知集合M={y|y=x2﹣1,x∈R},,则M∩N=.12.若(2m+1)>(m2+m﹣1),则实数m的取值范围是.13.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.14.若f(x)=是R上的单调函数,则实数a的取值范围为.15.已知定义在R上的奇函数f(x)满足f(x+4)=﹣f(x),且x∈[0,2]时,f(x)=log2(x+1),给出下列结论:①f(3)=1;②函数f(x)在[﹣6,﹣2]上是减函数;③函数f(x)的图象关于直线x=1对称;④若m∈(0,1),则关于x的方程f(x)﹣m=0在[﹣8,8]上的所有根之和为﹣8.则其中正确的命题为.三.解答题(16李芝17郑新建18杜孝峰19王炜20姚丙银21栾维莲)16.记函数的定义域为集合,函数的定义域为集合.(1)求和;(2)若,求实数的取值范围.17.设函数f(x)=lg(x2-x-2)的定义域为集合A,函数g(x)=3x-1的定义域为集合B.已知α:x∈A∩B,β:x满足2x+p≤0,且α是β的充分条件,求实数p的取值范围.18.已知函数f(x)=.(1)求函数f(x)的定义域;(2)判断f(x)的奇偶性并证明;(3)讨论f(x)在区间(0,1)上的单调性.19.(12分)已知函数(a>0)为奇函数,函数(b∈R)(Ⅰ)求函数f(x)的定义域;(Ⅱ)当x∈时,关于x的不等式有解,求b的取值范围.20. 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).21.已知函数.(Ⅰ)设是的极值点,求,并讨论的单调性;(Ⅱ)当时,证明.高三年级理科数学阶段质量检测题答案2015-9-28一. CBCAA CBBCC二.1. 2. [,2) 3. ﹣ 4.[,+∞) 5.①②④ 三解答题16.解:}12|{}02|{2-<>=>--=x x x x x x A 或,----------2分----------4分所以,(1),---------6分(2),----------10分得:所以,的取值范围是 ……………………………12分17.【解】 依题意,得A ={x |x 2-x -2>0}=(-∞,-1)∪(2,+∞),B ={x |3x-1≥0}=(0,3],∴A ∩B =(2,3]. 设集合C ={x |2x +p ≤0},则x ∈(-∞,-p 2]. ∵α是β的充分条件,∴(A ∩B )⊆C .则需满足3≤-p 2⇒p ≤-6.∴实数p 的取值范围是(-∞,-6].18.解:(1)由题可知,解得x ∈(﹣1,0)∪(0,1),所以函数f (x )的定义域为(﹣1,0)∪(0,1). (4分)(2)函数f (x )是奇函数.事实上,函数f (x )的定义域关于原点对称,且对定义域内的任意x ,有f (﹣x )=﹣log 2=﹣(﹣log 2)=﹣f (x ),∴函数f (x )是奇函数. (8分)(3)设,==,又>0∴,即∴f (x )在区间(0,1)上减函数。

高三数学上学期9月联考试题历届理试题

高三数学上学期9月联考试题历届理试题

毛坦厂中学2021届高三数学上学期9月联考试题〔历届〕理制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题〔一共12小题,每一小题5分,一共60分〕1、假设集合{|23}M x x =-<<,2{|1,}N y y x x R ==+∈,那么集合M ∩N =〔 〕 A .(-2,+∞) B .(-2,3) C .[1,3) D .R 2、不等式2230x x --<成立的必要不充分条件是〔 〕A .13x -<<B .03x <<C . 23x -<<D .21x -<<3、以下有关命题的说法正确的选项是〔 〕A .命题“假设21x =,那么1x =〞的否命题为:“假设21x =,那么1x ≠〞. B .“1x =-〞是“2560x x --=〞的必要不充分条件.C .命题“x R ∃∈,使得210x x ++<〞的否认是:“x R ∀∈,均有210x x ++<〞. D .命题“假设x y =,那么sin sin x y =〞的逆否命题为真命题. 4、函数23()5(1)x f x aa o a -=->≠且恒过点〔 〕.A.3,42⎛⎫- ⎪⎝⎭B.3,52⎛⎫- ⎪⎝⎭C. (0,1)D.(0,-5) 5、假设函数f 〔x 〕=x 2+bx+c 满足f 〔﹣3〕=f 〔1〕,那么 〔 〕 A .f 〔1〕>c >f 〔﹣1〕 B .f 〔1〕<c <f 〔﹣1〕C .c >f 〔﹣1〕>f 〔1〕D .c <f 〔﹣1〕<f 〔1〕6、奇函数)(x f 在R 上是减函数,且)101(log 3f a -=,)1.9(log 3f b =,)2(8.0f c =,那么c b a ,,的大小关系为A. c b a >>B. a b c >>C. c a b >>D. b a c >> 7、函数()212log 23y x x =--的单调递减区间为 〔 〕A .(-∞,1] B.(3,+∞) C.(-∞,-1) D .(1,+∞)8、函数323,[0,),()(3)1,(,0)x x f x x a a x a x -∈+∞⎧=⎨+-+-∈-∞⎩在定义域内是增函数,那么实数a 的取值范围是〔 〕A .[4,+∞) B.[3,+∞) C.[0,3] D. (-∞,1]∪[3,+∞)9、函数f (x )和g (x )均为R 上的奇函数,且h (x )=af (x )+bg (x )+2,(5)6h =,那么(5)h -的值是( )A .-2B .-8C .-6D .610、定义在R 上的奇函数f 〔x 〕满足在〔﹣∞,0〕上为增函数且f 〔﹣1〕=0,那么不等式x•f〔x 〕>0的解集为〔 〕 A .〔﹣∞,﹣1〕∪〔1,+∞〕 B .〔﹣1,0〕∪〔0,1〕C .〔﹣1,0〕∪〔1,+∞〕D .〔﹣∞,﹣1〕∪〔0,1〕11、函数f 〔x 〕=()952411m m m m x----是幂函数,对任意x 1,x 2∈〔0,+∞〕,且x 1≠x 2,满足>0,假设a ,b∈R,且a+b >0,ab <0,那么f 〔a 〕+f 〔b 〕的值〔 〕A .恒大于0B .恒小于0C .等于0D .无法判断 12、函数y =e|ln x |﹣|x ﹣1|的图象大致是〔 〕A BC D 二.填空题〔一共4题,每一小题5分,一共20分〕13、定义域为R 的函数f (x )满足)(2)2(x f x f -=+,且1)1(=f ,那么=)7(f ___________.14、如下图的韦恩图中,A 、B 是非空集合,定义A *B ,x y R ∈,{}22A x y x x ==-,{}3,0x B yy x ==>,那么A *B=____________15、假设函数f (x )=|x -2|(x -4)在区间(5a,4a +1)上单调递减,那么实数a 的取值范围是____16、函数()x f 的定义域为A ,假设A x x ∈21,且()()21x f x f =时,总有21x x =,那么称()x f 为单函数.例如,函数()()R ∈+=x x x f 1是单函数.以下命题:①函数()()R ∈-=x x x x f 22是单函数; ②函数()⎩⎨⎧<-≥=2,2,2,log 2x x x x x f 是单函数;③假设()x f 为单函数,A x x ∈21,且21x x ≠,那么()()21x f x f ≠;④函数()x f 在定义域内某个区间D 上具有单调性,那么()x f 一定是单函数.其中的真命题是____________ (写出所有真命题的编号). 三.解答题〔一共6小题一共70分,解答时写出必要的文字说明、证明过程或者演算步骤〕17、〔本小题满分是10分〕集合{}{}2|310,|1210A x x x B x m x m =--≤=-<<+. 〔1〕当3m =时,求B A ;〔2〕假设B A ⊆,务实数m 的取值范围.18、〔本小题满分是12分〕命题P :[1,2]x ∀∈,20x a -≥;命题Q :0x R∃∈,使得200(1)10x a x +-+<.假设“P 或者Q 〞为真,“P 且Q 〞为假,务实数a 的取值范围.19、〔本小题满分是12分〕求以下各题: 〔1〕计算:;〔2〕计算lg20+log 10025; 〔3〕求函数的定义域.20、〔本小题满分是12分〕[]2,1,4329)(-∈+⨯-=x x f xx〔1〕设[]2,1,3-∈=x t x,求t 的最大值与最小值;〔2〕求)(x f 的最大值与最小值;21、〔本小题满分是12分〕函数()=xf x a 〔a >0且a ≠1〕.〔1〕假设f (x )在[-1,1]上的最大值与最小值之差为32,务实数a 的值; 〔2〕假设()()()=--g x f x f x . 当a >1时,解不等式2(2)(4)0++->g x x g x .22、〔本小题满分是12分〕函数()212 021 1 02xx f x x x x ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭=⎨⎪-+>⎪⎩,,.〔1〕画出函数()f x 的草图并由图像写出该函数的单调区间; 〔2〕假设()23x xg x a -=-,对于任意的[]1 1 1x ∈-,,存在[]2 1 1x ∈-,,使得()()12f x g x ≤成立,务实数a 的取值范围.历届理科数学试卷参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 CCDAABBAAAAD二、填空题13.8- 14. []()+∞⋃,21,0 15. 16.三、解答题 17. (1) {}则25AB x x =<≤〔2〕 1〕当时,要使则应满足B B A ≠∅⊆[]2,1-∈⇒m2〕当时,,即m -2符合题意B B A =∅⊆≤综上所述:(][]2,12,--∞-∈ m18.11a -≤≤或者3a >由条件知,2a x ≤对[1,2]x ∀∈成立,∴1a ≤;∵0x R ∃∈,使得200(1)10x a x +-+<成立.∴不等式200(1)10x a x +-+<有解,∴2(1)40a ∆=-->,解得3a >或者1a <-;∵p 或者q 为真,p 且q 为假, ∴p 与q 一真一假. ①p 真q 假时,11a -≤≤; ②p 假q 真时,3a >.∴实数a 的取值范围是3a >或者11a -≤≤.19. 解:〔1〕==10﹣1×103=102=100,〔2〕lg20+log 10025==lg20+log 105=lg100=2,〔3〕由所以f 〔x 〕的定义域为20.21.解:〔1〕①当时,②当时,综上可得,实数的值是或者.〔另解:或者〕〔2〕由题可得的定义域为,且,所以为上的奇函数;又因为且所以在上单调递增;所以或者所以不等式的解集为或者22.(1)草图见解析,减区间为()0 1,,增区间为() 0-∞,,()1 +∞,;(2)( 8]a ∈-∞,.〔2〕由题意可得()()1max 2max f x g x ≤⎡⎤⎡⎤⎣⎦⎣⎦,其中()()max 01f x f ==,()()max 19g x g a =-=-,即19a ≤-,故8a ≤,综上所述,( 8]a ∈-∞,.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届安徽省毛坦厂中学高三上学期9月联考试
数学(理)试题
一、选择题(共12小题,每小题5分,共60分) 1、已知集合
,集合
,则A ∩B=( )
A .
B .
C .
D .
2、下列命题正确的个数为( )
①“都有”的否定是“使得
”;
②“
”是“
”成立的充分条件;
③命题“若,则方程有实数根”的否命题;
④幂函数的图像可以出现在第四象限。

A. 0 B. 1 C.2 D.3 3、在同一平面直角坐标系中,函数的图象与
的图象关于直线
对称,而函

的图象与
的图象关于y 轴对称,若,则
的值为( )
A. -e
B. -e 1
C. e
D. e
1
4、函数2()ln(43)f x x x =-+的单调递增区间是( )
A .(-∞,1)
B .(-∞,2)
C .(2,+∞)
D .(3,+∞) 5、 函数
与函数
的图象可能是 ( )
6、已知函数⎩⎨⎧≥++<+-+=0,2)1(log 0
,3)34()(2x x x a x a x x f a (a >0且a ≠1)是R 上的单调函数,则a 的取值
范围是( )
A.3(0,]4
B.3[,1)4
C.]43,32[
D.]4
3,32(
7、已知 1.30.20.20.7,3,log 5a b c ===,则ɑ,b ,c 的大小关系( )
A. a c b <<
B. c a b <<
C. b c a <<
D. c b a <<
8、已知定义域为R 的函数()f x 在[1,)+∞单调递增,且(1)f x +为偶函数,若(3)1f =,则不等
式(21)1f x +<的解集为( )
A .(-1,1)
B .(-1,+∞)
C .(-∞,1)
D .(-∞,-1)∪(1,+∞)
9、已知函数()f x x =f (x )有( )
A .最小值12 ,无最大值
B .最大值1
2
,无最小值
C .最小值1,无最大值
D .最大值1,无最小值
10、定义在R 上的奇函数)(x f ,满足)21()21(x f x f -=+,在区间]0,21
[-上递增,则( )
A )2()2()3.0(f f f << B.)2()3.0()2(f f f << C.)2()2()3.0(f f f << D.)3.0()2()2(f f f << 11、已知定义在R 上函数f(x),对任意的x,x 2∈[2017,+∞)且x 1≠x 2,都有
[f(x)-f(x 2)](x 1-x 2)<0,若函数y=f(x+2017)为奇函数,(a-2017)(b-2017)< 0且
a+b>4034,则( )
A.f(a)+f(b)>0
B.f(a)+f(b)<0
C.f(a)+f(b)=0
D.以上都不对
12、设()f x 是定义在R 上的奇函数,且()10f =,当0x >时,有()()f x xf x >'恒成立,则不等式
()0xf x >的解集为( )
A.(-∞,0)∪(0,1)
B. (-∞,-1)∪(0,1)
C.(-1,0)∪(1,+∞)
D. (-1,0)∪(0,1) 二.填空题(共4题,每小题5分,共20分)
13、已知f (x)=ax ²+bx 是定义在[a -1,3a ]上的偶函数,那么a +b=___________
14、设函数()()32
1f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线
方程为___________.
15、方程062)1(22=++-+m x m x 有两个实根21,x x ,且满足41021<<<<x x ,则m 的取值范
围是___________.
16已知函数f (x )=e x ﹣e ﹣x ,下列命题正确的有 .(写出所有正确命题的编号) ①f (x )是奇函数;
②f (x )在R 上是单调递增函数;
③方程f (x )=x 2+2x 有且仅有1个实数根;
④如果对任意x ∈(0,+∞),都有f (x )>kx ,那么k 的最大值为2.
三.解答题(共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤。

) 17、(本小题满分10分)
已知集合,其中
,集合

(1)若,求

(2)若,求实数m 的取值范围.
18、(本小题满分12分)
已知二次函数f (x )=ax 2+bx +c ,满足f (0)=2,f (x +1)-f (x )=2x -1. (1)求函数f (x )的解析式;
(2)求f (x )在区间 [-1,2]上的最大值;
(3)若函数f (x )在区间[a ,a +1]上单调,求实数a 的取值范围.
19、(本小题满分12分)
已知p :函数32()f x x ax x =++在R 上是增函数;
q :函数()x g x e x a =-+在区间[)0,+∞上没有零点.
(1)如果命题p 为真命题,求实数a 的取值范围;
(2)如果命题“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围
已知函数f(x)=2
1x 2
-ɑx+(ɑ-1)ln x
(1)若f(x)在(1,+∞)单调递增,求ɑ的范围; (2)讨论f(x)的单调性.
22、(本小题满分12分)
已知函数f (x )对任意实数x , y 都有f(xy)=f(x)f(y),且(1)1f -=, (27)9f =,当01x ≤<时,[)0,1f(x )∈
(1)判断f (x )的奇偶性;
(2)判断f (x )在[0,+∞)上的单调性,并给出证明;
(3)若0a ≥且(1)f a +≤a 的取值范围.
2021届安徽省毛坦厂中学高三上学期9月联考试
数学(理)试题参考答案
一、选择题
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
D
B
B
D
D
C
B
A
D
D
B
D
二、填空题
13.4
1 14. y=x 15. (-5
7,-4
5) 16. ①②④ 三、解答题
17.集合,
由,则,
解得,

, ,则


.------5分 ,即, 可得⎩⎨⎧≤->-12222m m ,解得,0<m 21≤-----10分
18.(1) 由f(0)=2,得c =2.
由f(x +1)-f(x)=2x -1,得2ax +a +b =2x -1,
故 解得
所以f(x)=x 2-2x +2. ------- 4分
(2)f(x)=x 2-2x +2=(x -1)2+1,f(x)的图象的对称轴方程为x =1.
又f(-1)=5,f(2)=2,所以当x=-1时f(x)在区间 [-1,2]上取最大值为5. --- 8分 (3)因为f(x)的图象的对称轴方程为x =1.所以a ≥1或a+1≤1解得a ≤0或a ≥1因此a 的取值范围为(-∞,0]∪[1,+∞). ---- 12分
19.(1)如果p为真命题,
∵函数f(x)=x3+ax2+x在R上是增函数,∴f′(x)=3x2+2ax+1≥0对x∈(﹣∞,+∞)恒成立
∴….…………5分
(2)g′(x)=e x﹣1≥0对任意的x∈[0,+∞)恒成立,∴g(x)在区间[0,+∞)递增
命题q为真命题g(0)=a+1>0⇒a>﹣1….…………7分
由命题“p∨q”为真命题,“p∧q”为假命题知p,q一真一假,.…………8分
若p真q假,则….…………10分
若p假q真,则….…………11分
综上所述,.…………12分
20.解:(1)设当月工资、薪金为x元,纳税款为y元,

即y=------6分
(2)由(1)知:295=
解得:x=7500(元)
所以该负责人当月工资、薪金所得是7500元-----12分
21. f '(x)=
x
a x x )
1()[1(---
⑴因f(x)在(1,+∞)上递增 所以 f '(x)0≥对任意x>1恒成立 则x 1-≥a 对任意x>1恒成立
所以2≤a ---------------5分
⑵1≤a 时,增区间是(1,+∞),减区间是(0,1)
1<a <2时,增区间是(0,a-1)及(1,+∞),减区间是(a-1,1)
a =2时,增区间是(1,+∞),无减区间
a >2时增区间是(0,1)及(a-1,+∞)减区间是(1,a-1)-------12分
22.
…………………4分

∵x>0时f(x)×f(
x
1
) =f(1)=1且x [)1,0∈f(x) [)1,0∈, ∴x>0时 f(x)>0,0<x<1时0<f(x)<1
1021<<
∴x x 时1)(02
1<<x x
f ,
……………………8分
(3)∵
,又

,∴,
,……………………10分
,又
,故.……………………12分。

相关文档
最新文档