3.1.1图形的平移

合集下载

3.1.(1)_图形的平移

3.1.(1)_图形的平移
对应角为∠A与∠D、∠B与∠DEF、∠ACB与∠F.
下面这几种物体的运动中,哪些是 在平移?
尝试:请你举一些生活中平移的实例。
如图,将点A 平移到点A的位置, 我们把点A 和点A称为对应点, 把点A 到点A的方向称为点A平移的方向, 线段AA的长度称为点A平移的距离. A 平移的方向和距离是平移 A 的两个要素.
C
D
F G
H
牛刀小试:
3.将线段AB向右平移3cm得到线段CD, 如果AB=5 cm,则CD= 5 cm.
B
D
A
C
3cm
挑战自我 :
1. 如图,四边形EFGH是由四边形ABCD经过平移 后得到的,请指出图中的对应点、对应线段和对应 角,并说明是怎样平移得到的.
挑战自我 :
2.如图,已知长方形的长2cm,宽是1cm,扇形 BFE、FCD的半径均为1cm,求阴影部分的面积.
沿着笔直的公路飞奔的汽车、自行车,在笔直的 铁轨上的飞驰的火车,天空中翱翔的飞机。
这些运动现 象都给我们 带来了怎样 一种感觉?
传送带上的产品,索道上的车厢。
这些现象都给我们带来物体平 行移动的形象。
我们生活中看到哪些运动也有类 似的特点?
滑雪运动员 在平坦雪地 上滑翔。
大楼电梯上 上下下迎送 来客。
“建筑物的整体平移技术”是将建筑物托 换到一个托架上,与地基切断,形成一个可移 动体,然后再用牵引设备将它平移到固定的新 地基上。
南京江南大酒店于2001年5月20日-2001 年5月27日向南平移了26 m,整个工程耗资 400万元,6月底大楼恢复使用。
“用不到造价1/4的钱保留了江 南大酒店,而且节省了两年的工 程时间,划算得很。”
图1

北师大版八下数学3.1《图形的平移》知识点精讲

北师大版八下数学3.1《图形的平移》知识点精讲

3.1《图形的平移》知识点1、平移的定义:把一个图形沿着一定的方向平行移动而达到另一个位置,这种图形的平行移动,简称平移。

平移式图形变换的一种形式。

2、平移的两个要素:(1)平移方向;(2)平移距离。

3、对应点、对应线段、对应角一个图形经过平移后得到一个新的图形,这个新图形与原图形是能够互相重合的全等形,我们把互相重合的点称为对应点,互相重合的线段称为对应线段,互相重合的角称为对应角。

4、平移方向和距离的确定(1)要对一个图形进行平移,在平移前必须弄清它的平移方向和平移距离,否则将无法实现平移,那么怎样确定这两点呢?A. .若给出带箭头的线段:从箭尾到箭头的方向表示平移方向,而带箭头的线段的长度,表示平移距离,也有时另给平移距离的长度。

B. 若给出由小正方形组成的方格纸:在方格中的平移,从方向上看往往是要求用横纵两次平移来完成(有特殊要求例外),而移动距离是由最终要达到的位置确定的。

C. 具体给出从某点P到另一点P\\\\\'的方向为平移方向,线段PP\\\\\'的长度为平移距离。

D. 给出具体方位(如向东或者西北等)和移动长度(如10CM)。

(2)图形平移后,平移方向与平移距离的确定。

图形平移后,原图形与新图形中的任意一对前后对应点的射线方向就是原平移方向,这对对应点间的线段长度就是原平移距离。

5、平移性质图形平移的实质是图形上的每一点都沿着同一个方向移动了相同的距离。

平移后的图形与原图形:(1)对应线段平行(或在同条一直线上)且相等;(2)对应点连线平行(或在同一条直线上)且相等;(3)图形的形状与大小都不变(全等);(4)图形的顶点字母的排列顺序的方向不变。

6、如果两个图形的位置给定,怎样判别其中一个图形能否经另一个图形平移得到呢?除根据定义判别外,还可以根据平移特征,从中去掉那些能互相替代和包含的内容,只要具备以下三条:(1)这两个图形必须是全等形;(2)这两个全等形的对应线段必须互相平行(或者在同一条直线上);(3)这两个全等形的对应点连线必须互相平行(或在同一条直线上)。

北师大版八年级数学下册教案 3-1 第1课时 图形的平移

北师大版八年级数学下册教案 3-1 第1课时 图形的平移

第三章图形的平移与旋转3.1图形的平移第1课时图形的平移教学目标【知识与技能】1.理解并能够说出平移的意义和特征;2.能够进行简单的平移作图.【过程与方法】经历探索图形平移基本性质的过程,进一步提高空间观念,增强审美意识.【情感、态度与价值观】通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中存在的平移图形与学生自己设计的平移图案,使学生感受数学之美.教学重难点【教学重点】平移的主要特征和基本性质.【教学难点】平移性质的探索与理解.教学过程一、情境导入1.图片欣赏2.观察图片,回答以下问题:(1)手扶电梯上的人做什么运动?行驶的汽车呢?(2)手扶电梯上的人的形状、大小在运动前后是否发生了改变?行驶的汽车呢?(3)手扶电梯上的人,如果某部位向前移动了80 cm,那么人的其他部位向什么方向移动?移动了多少距离?(4)如果把推拉前后的一扇窗分别记为四边形ABCD和四边形EFGH,那么四边形ABCD与四边形EFGH 的形状、大小是否相同?二、合作探究探究点1平移的定义及特征典例1如图,某住宅小区内有一片长方形地块,想在长方形地块内修筑同样宽的两条小路(图中阴影部分),余下部分绿化,小路的宽为2 m,则两条小路的总面积是()A.108 m 2B.104 m 2C.100 m 2D.98 m 2[解析] 利用平移可得,两条小路的总面积是30×22-(30-2)×(22-2)=100(m 2).[答案] C探究点2 平移的性质典例2 如图,将一个Rt △ABC 沿着直角边CA 所在的直线向右平移得到Rt △DEF .已知BC =a ,CA =b ,F A =13b ,则四边形DEBA 的面积等于 ( )A.13abB.12abC.23abD.ab[解析] 由题意可得FD =CA =b ,BC =EF =a ,∴AD =FD -F A =b -13b =23b ,∴四边形DEBA 的面积为AD ·EF =23ab.[答案] C平移的性质:一个图形和它经过平移得到的图形中,对应点所连线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.探究点3 平移作图典例3 如图,每个小正方形的边长都相等,△ABC 的三个顶点都在格点(小正方形的顶点)上.(1)平移△ABC ,使顶点A 平移到点D 的位置,得到△DEF ,请在图中画出△DEF ;(点B 的对应点为E )(2)若∠A =50°,则直线AC 与直线DE 相交所得锐角的度数为 °,依据是.[解析] (1)△DEF 如图所示.(2)50;两直线平行,同位角相等(或两直线平行,内错角相等).平移作图的一般步骤:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计图形的平移图形的平移{平移的意义及特征平移的性质{对应点的连线平行且相等对应线段平行且相等对应角相等平移作图教学反思在研究图形平移的定义、特征和性质时,对小组讨论给予适当的指导,包括知识的启发引导、学生的交流合作、对困难学生的帮助等,使小组合作学习更具效率.注意不要让一些思维活跃的学生的回答完全代替其他学生的思考,从而掩盖其他学生的疑问.。

北师大版八年级下册数学3.1《1图形的平移》教案

北师大版八年级下册数学3.1《1图形的平移》教案
3.平移的作图方法:利用三角板和直尺进行平移作图,学会在实际问题中运用平移。
4.平移在实际中的应用:分析生活中存在的平移现象,并能运用平移知识解决简单问题。
二、核心素养目标
1.培养学生的空间观念:通过图形的平移教学,使学生能够理解和感知图形在空间中的位置关系,发展空间想象力。
2.提升几何直观能力:让学生在观察、分析、操作图形平移过程中,培养几何直观思维,提高解决问题的能力。
三、教学难点与重点
பைடு நூலகம்1.教学重点
-图形平移的定义:使学生理解平移的概念,明确图形平移是在平面内所有点按照同一方向、相同距离的移动。
-平移的性质:掌握平移后图形的对应点、对应线段、对应角的关系,即对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
-平移的作图方法:学会利用三角板和直尺进行平移作图,掌握作图步骤和技巧。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你们还能想到哪些生活中的平移现象?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
-平移作图的方法:在作图过程中,学生可能会对如何准确、快速地进行平移作图感到困惑。
-平移在实际问题中的应用:学生可能难以将理论知识与实际情境相结合,需要教师引导和举例说明。
举例:在突破平移作图的难点时,可以引导学生按照以下步骤进行操作:
a.确定需要平移的图形。
b.确定平移的方向和距离。
c.利用三角板和直尺,按照确定的方向和距离,将图形的每个点进行平移。
3.增强逻辑推理能力:通过分析平移的性质和规律,培养学生严谨的逻辑推理能力,使他们能够运用逻辑思维解决问题。

冀教版三年级上册数学教案-3.1 图形的运动(一) 平移 |

冀教版三年级上册数学教案-3.1 图形的运动(一)  平移 |
课题
三1:图形的运动(一) 平移 (36—37)
课时
1




1、结合具体事例,初步感受、认识平移现象的过程。
2、能找出生活中的平移现象,能辨认简单图形平移后的图形。
3、经历平移现象的过程,在对物体平移运动的探索过程中发展初步的空间观念
4、感受数学与日常生活的密切联系,体会数学活动的乐趣。
重点
难点
重点:认识平移现象,能辨认简单图形平移后的图形。
学生按要求完成。
学生发表自己的见解:从书包中拿出书是平移,在桌面上摆书也是平移。
生列举生活中的平移:玩滑梯、滑沙、电梯、拉动窗户的玻璃窗、小孩堆积木等。
生:电梯门的开、关是平移
生:推拉窗的开、关是平移
生:电梯的上、下是平移
生:溜滑梯是平移
生:滑沙是平移
生:上下移动。
生:左右移动。
学生思考后得出:平移就直着的运动,只是位置变了,但没有转动。
在生活中,你看到过哪些平移现象?
师:看来生活中平移现象很常见。
2、认识平移现象
师:那么,这些平移现象是怎样的移动?什么叫平移?你能举例说明吗?
3、师:我们说了那么多的平移现象,请大家闭上眼睛想一想,到底什么是平移?平移现象有什么特点?
4、小结
平移有什么特点?
师:位置变了,但没有转动。
师:你能用我们学到的平移的知识说明我们拿出书本,在桌面上摆放书本是平移吗?
5、辨认简单图形平移后的图形。
师:想一想,我们在方格纸上写字,一个字写五遍,这个过程是不是平移?
教学平移格数问题。
6、组织学生完成37页“小动物怎样才能吃到线表示出来。
交流答案。
三、实践应用。
组织学生在方格纸上画出一个长方形或三角形,并按要求平移。

北师大版八年级数学下册3.1图形的平移(1)

北师大版八年级数学下册3.1图形的平移(1)
活动二:探究平移的性质
内容:用多媒体演示图形的平移过程,让学生通过对图形平移现象的观察,探索其中的性质。
教师提出问题:(1)在上图中,线段AE,BF,CG,DH有怎样的位置关系?(2)图中每对对应线段之间有怎样的位置关系?(3)图中有哪些相等的线段、相等的角?
平移的性质:____________________________________________________________________________
第三环节:例题讲解
活动内容:
例1(课件演示)如图所示,△ABE沿射线XY的方向平移一定距离后成为△CDF。找出图中存在的平行且相等的三条线段和一组全等三角形。
第四环节:展示应用评价自我BC经过平移得到的,∠ABC=33O,求∠DEF的度数。
2.下列B组中的图形能否由A组中的图形经过平移后得到?
学生观察多媒体展示的图片。
提问:①你能发现传送带上的箱子、手扶电梯上的人在平移前后什么没有改变,什么发生了改变吗?
②在传送带上,如果箱子的某一按键向前移动了80cm,那么电视机的其它部位(如屏幕左上角的图标)向什么方向移动?移动了多少距离?③如果把移动前后的同一箱子看成长方体(多媒体演示书上的图3-2),那么四边形与四边形的形状、大小是否相同?
第二环节:活动探究
活动一:探求平移的定义
内容:根据上述分析,你能说明什么样的图形运动称为平移?
平移定义:__________________________________________________________________________
注意:平移三要素:_________________________________________________________________

三年级上册数学课件3.1图形的运动平移现象冀教版共18张PPT1

三年级上册数学课件3.1图形的运动平移现象冀教版共18张PPT1
ቤተ መጻሕፍቲ ባይዱ
做一做
将你的数学书在桌子上平移,你 能把书怎样平移呢?
• 生活中的平移和旋转现象还有很多。同学 观察下面物体的运动图片,你能判断是平 移还是旋转?
生活中的平移现象
生活中的平移现象
生活中的旋转现象
我们的朋友小白兔搬家了,我们一起来看看它把家搬到哪?
下面哪些现象是旋转?哪些是平移?
填一填


{ 火箭图向( )平移
了( )格

观察下图,判断从前面到后面每
次发生了怎样的变化,填上“平移”或 “旋转”。
教学目标
• 1、通过观察初步认识物体的平移和旋转的 运动特点。
• 2.通过观察、操作等活动,能正确判断简 单图形在方格纸上平移的方向和距离。
游乐场
生活中的这些现象
• 观察讨论:
通过上面的图片同学讨论: 它们的运动相同吗? 你能根据它们的运动方式把它 们分类吗?
平移和旋转的定义
• 像缆车、滑梯、小火车等是沿着直线 运动的,我们把这样的运动方式称为 平移 。
• 像旋转木马、摩天轮、风车等都是绕 着一个固定的点 或轴转动的,这样的 运动方式我们就称为旋转。
做一做
同学生做一个平移和旋转的动作。
(如:向上平移、向左平移、 等)
平移和旋转的特点和区别
• 平移的特点:平移时物体的形状,大小, 方向都不改变,只是物体的位置改变了, 整体过程是直线运动。
• 旋转的特点:旋转时物体的形状,大小都 不改变,只是本身的方向和位置发生了变 化。

北师大版数学八年级下册3.1 图形的平移(第1课时) 教学设计(含教学反思)

北师大版数学八年级下册3.1 图形的平移(第1课时) 教学设计(含教学反思)

北师大版数学八年级下册《3.1 图形的平移(第1课时)》教学设计天上飞着的飞机提出问题:仔细观察图片中的运动主体,你能找到它们的共同特征吗?学生讨论归纳.平移前后两个物体的形状和大小没有改变,位置发生了改变。

(引出本课课题)二、合作学习,自主探究(一)探求平移的定义根据上述分析,你能说明什么样的图形运动称为平移?教师引导学生从语句的主谓分析来看待以上几个句子,让学生自己总结平移的概念:(主语――状语――谓语)“一个物体沿着某个方向移动一定的距离”在学生发现和归纳的基础上板书:平移定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形的形状和大小。

注意:平移三要素:几何图形——运动方向——运动距离(二)探究平移的性质用多媒体演示图形的平移过程,让学生通过对图形平移现象的观察,探索其中的性质.同学们通过刚才的观察,总结出一个结论,即:“图形的位置改变了,但形状和大小没有改变”.现在我们一起来探索:平移前后对应点、对应线段以及对应角之间在做怎样的变化1、找一找如图△ABC 经过平移得到△DEF,点A,B,C分别平移到了点D,E,F.点A与点D是一组对应点,线段AB与线段DE是一组对应线段,∠BAC与∠EDF是一组对应角.对应点:点B与点___对应;点C与点___对应.对应线段:线段AC与线段___对应;线段BC与线段____对应.对应角:∠ACB与∠____对应;∠ABC与∠____对应.学生自主完成任务.2、做一做将图3-2所示的四边形硬纸片按某一方向平移一定距离.图3-3画出了平移前的四边形ABCD和平移后的四边形EFGH.(1)在图中任意选一组对应线段,这两条线段之间有怎样的关系?(2)在图中任意选一组对应角,这两个角之间有怎样的关系?(3)线段AE,BF,CG,DH分别是对应点所连成的线段,它们之间有怎样的关系?学生分组讨论,共同探讨平移的性质.讨论分析:①变换前后对应点的连线平行且相等:平移变换是图形的每一个点的变换,一个图形沿某个方向移动一定距离,那么每一个点也沿着这个放向移动一定距离,所以对应点的连线平行且相等。

初二数学下册(北师大版)《3.1 图形的平移(1)》【教案匹配版】最新中小学课程

初二数学下册(北师大版)《3.1 图形的平移(1)》【教案匹配版】最新中小学课程

练习2.经过平移,对应点所连的线段(
C

A 、平行 B 、相等
C 、平行(或在同一条直线上)且相等
D、 既不平行,又不相等
练习3.经过平移,△ABC的顶点A移到了点D,如图.
作出平移后的三角形.
解:如图,过B,C点分别作线段BE,CF,使得它们线 段AD平行并且相等 则△DEF就是△ABC平移后的图形.
A
•D
பைடு நூலகம்
C
F
B E
四、课堂小结
平移的 概念
图形平移
在平面内,将一个图形沿着某个方向 移动一定的距离,这样的图形运动称 为平移。 平移不改变图形的形状和大小。
平移的 性质
1.对应点所连的线段平行(或在同一 条直线上)且相等; 2.对应线段平行(或在同一条直线上) 且相等, 3.对应角相等.
五、当堂练习
六、作业布置
1.下列平移作图错误的是( C )
A.
B.
C.
D.
2.如图,下列图案分别是一些汽车的车标, 其中,可以看作由平移得到的是( C )
A.
B.
C. D.
3.某景点拟在如图的矩形荷塘上架设小桥, 若荷塘中小桥的总长为100米,则荷塘周 长为 200米.
4.如图所示,某住宅小区内有一长方形地块,
想在长方形地块内修筑同样宽的两条”之” 字路,余下部分绿化,道路的宽为2米,则绿
平行且相等的线段:
D
AB和DE;BC和EF;
A
AC和DF;AD、BE和CF。
相等的角:
E
F ∠ABC和∠DEF ,
B
C
∠BAC和∠EDF ,
全等三角形:△ABC和△DEF 。 ∠ACB和∠DFE。

图形的平移和旋转(经典教案和习题)

图形的平移和旋转(经典教案和习题)

图形的平移和旋转(经典教案和习题)§3.1生活中的平移一、新知要点(1)平移的概念(2)平移的特点(3)平移的基本性质火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,那么在运动的过程中这些物体的形状、大小、位置等因素中,哪些没有发生改变哪些发生了变化这种运动就叫做什么?1.图形的平移例1:下图中的图形A向右平移了6格得到图形A′A′A(1)平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小。

(2)平移的特点:①平移是指整个图形平行移动,包括图形的每一条线段,每一个点。

经过平移,图形上的每一个点都沿同一个方向移动相同的距离。

②平移不改变图形的形状、大小,方向,只改变图形的位置。

例2、观察下图△ABE沿射线某Y的方向平移一定距离后成为△CDF。

找出图中存在的平行且相等的三条线段和一组全等三角形。

(3)平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

二、新知巩固(练习)1.平移改变的是图形的()A位置B大小C形状D位置、大小和形状2.经过平移,对应点所连的线段()A平行B相等C平行且相等D既不平行,又不相等3.经过平移,图形上每个点都沿同一个方向移动了一段距离,下面说法正确的是()A不同的点移动的距离不同B既可能相同也可能不同C不同的点移动的距离相同D无法确定4.如图,四边形ABCD平移后得到四边形EFGH,填空(1)CD=______,(2)∠F=______(3)HE=,(4)∠D=_____,(5)DH=_________。

5.如图,若线段CD是由线段AB平移而得到的,则线段CD、AB关系是__________.6.试着做一做:(1)把图形向右平移7格后得到(2)把图形向左平移5格后到的图形涂上颜色。

的图形涂上颜色。

(3)画出小船向右平移6格后的图形(4)画出向右平移6格后的图形三、归纳小结●通过本节课的学习,我们明白了什么叫平移。

图形的平移图形平移的概念及其性质 公开课

图形的平移图形平移的概念及其性质  公开课
3.1.1图形的平移
3.1.1图形的平移
(图形平移的概念及其性质)
学习目标
1、认识
通过具体实例认识平面图形的平移
2、探索
探索平移的基本性质
3、操作
会进行简单的平移画图
3.1.1图形的平移
3.1.1图形的平移
1 平移概念
7
生活中的平移现象
3.1.1图形的平移
高楼的升降电梯 人在竖向运动
生活中的平移现象
平移的概念
3.1.1图形的平移
【平移的定义】 在平面内,将一个图形沿着某个方向移动一定的距离, 这样的图形运动称为平移。 【注意】
①平移的两个要素: 平移方向 、平移距离
②“某个方向”意味着“图形上的每个点都沿同一个 方向直线移动,“一定的距离”意味着“图形上的每 个点都移动了相同的距离”Biblioteka 平移的概念平移的基本性质
3.1.1图形的平移
【平移的基本性质】 一个图形和它经过平移所得的图形中, 对应点所连的线段平行(或在一条直线上)且相等; 对应线段平行(或在一条直线上)且相等; 对应角相等
平移基本性质的练习
3.1.1图形的平移
1、平移改变的是图形的 ( A )
A 位置 B 大小 C 形状 D 位置、大小和形状
3.1.1图形的平移
平移的基本性质
3.1.1图形的平移
四边形ABCD平移一定距离,得到四边形EFGH。
平移的基本性质
3.1.1图形的平移
1、在图中任意选一组对应线段,这两条线段之间有怎样的关系?
答:平行且相等。
平移的基本性质
3.1.1图形的平移
2、在图中任意选一组对应角,这两个角之间有怎样的关系?
3.1.1图形的平移

北师大版数学八年级下册3.1《图形的平移》教案1

北师大版数学八年级下册3.1《图形的平移》教案1

北师大版数学八年级下册3.1《图形的平移》教案1一. 教材分析《图形的平移》是北师大版数学八年级下册第三章的第一节内容。

本节课主要让学生了解平移的概念,掌握平移的性质,会画平移的图形,并能够运用平移解决一些实际问题。

教材通过丰富的实例,引导学生探究图形的平移规律,培养学生的动手操作能力和抽象思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了图形的基本概念,具有一定的观察和操作能力。

但是,对于图形的平移,他们可能还比较陌生,需要通过实例和操作来理解和掌握。

同时,学生可能对平移在实际生活中的应用还不够了解,需要通过实例来启发和引导。

三. 教学目标1.知识与技能:理解平移的概念,掌握平移的性质,会画平移的图形。

2.过程与方法:通过观察、操作、交流,探索图形的平移规律。

3.情感态度价值观:培养学生的动手操作能力,提高学生对数学的兴趣。

四. 教学重难点1.重点:平移的概念和性质。

2.难点:平移图形的画法。

五. 教学方法1.采用问题驱动法,引导学生观察和操作,发现平移的规律。

2.利用多媒体辅助教学,展示平移的实例,增强学生的直观感受。

3.采用合作学习法,让学生分组讨论和操作,提高学生的参与度和合作意识。

六. 教学准备1.多媒体教学设备。

2.平移的实例图片。

3.练习题和作业。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的平移现象,如电梯、滑滑梯等,引导学生关注平移,激发学生的学习兴趣。

2.呈现(10分钟)展示一些平移的实例,让学生观察和操作,引导学生发现平移的规律。

同时,给出平移的定义和性质,让学生理解和掌握。

3.操练(10分钟)让学生分组讨论和操作,尝试画出一些平移的图形,巩固对平移的理解和掌握。

4.巩固(10分钟)出示一些练习题,让学生独立完成,检验对平移的掌握程度。

同时,引导学生思考平移在实际生活中的应用。

5.拓展(5分钟)出示一些拓展题,让学生思考和讨论,提高学生的思维能力和解决问题的能力。

北师大版八年级数学下册 图形的平移导学案(含简单答案)

北师大版八年级数学下册 图形的平移导学案(含简单答案)

3.1.1图形的平移预习案一、预习目标及范围1、认识平移、理解平移的基本内涵;2、理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

二、预习要点经过平移,对应点所连的线段;对应线段,对应角。

三、预习检测1、下列现象中,属于平移的是:(1)火车在笔直的铁轨上行驶(2)冷水受热过程中小气泡上升变成大气泡(3)人随电梯上升(4)钟摆的摆动(5)飞机起飞前在直线跑道上滑动2、下列那幅图可以通过(1)平移而得?探究案一、合作探究(9分钟),要求各小组组长组织成员进行合作探究、讨论。

探究:平移的基本内涵1、小明和小华每天骑自行车沿着笔直的马路来学校上学.2、在车站以及百货大楼,人们乘自动电梯上楼或下楼.3、在工厂,产品整齐地在传送带上沿着生产线从一个生产工位流向另一个生产工位.请大家思考并分组讨论一下,以上几种运动现象有什么共同点?想一想:根据上述分析,你能说明什么样的图形运动称为平移吗?在平面内,将一个沿着某个一定,这样的图形运动称作.------传送带上的电视想一想:1.在上图中传送带上的电视机的形状,大小在运动前后是否发生了改变?2. 如果电视机的屏幕向前移动了80cm,那么电视机的其他部位(如电视机的左上角)向什么方向移动?移动了多少距离?-----手扶电梯上的人想一想:1、手扶电梯上的人的形状、大小在运动前后是否发生了改变?2、如果人的脚斜向上移动了10米,那人的身子向什么方向移动?移动了多少距离?找一找上面两个例子的共同点。

平移运动中,变化的是运动主体(图形)的位置,有什么是保持不变的吗?特征:例1、如图,四边形ABCD沿某方向平移后成为四边形EFGH,思考:(1)找出图中对应线点、对应线段、对应角?(2)在上图中,对应点连接的线段AE,BF,CG,DH有怎样的位置、数量关系?(3)每对对应线段之间有怎样的位置、数量关系?(4)图中有哪些相等的线段、相等的角?对应点:对应线段:对应角:例2、如图,∠DEF是∠ABC经过平移得到的,∠ABC=33˚,求∠DEF的度数.二、小组展示(7分钟)每小组口头或利用投影仪展示, 一个小组展示时,其他组要积极思考,勇于挑错,谁挑出错误或提出有价值的疑问,给谁的小组加分(或奖星)交流内容展示小组(随机)点评小组(随机)____________ 第______组第______组____________ 第______组第______组三、归纳总结经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

平移与旋转教案 (2)

平移与旋转教案 (2)
三、例题讲解:
例1:如图,经过平移,△ABC的顶点A移到了点D
(1)指出平移的方向和平移的距离;
(2)画出平移后的三角形.
例2:(2013.湖南郴州)在下面的方格纸中.
(1)作出△ABC关于MN对称的图形△A1B1C1;
(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?
例3:如图,将四边形ABCD平移后得到四边形EFGH,已知EF=13,GF=12,GH=3,EH=4,且∠D=90 ,求四边形ABCD的周长和面积.
二、基础练习:
1.(2013.湖南湘西)在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后,那么平移后对应点A1的坐标是.
2.在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A.B两点的坐标分别为
(-2,3),(-3,1),若点A1的坐标为(3,4),则点B1的坐标为.
三、例题讲解:
2.平移的性质:平移不改变图形的和,故平移前后的两个图形是的.因此平移具有以下性质:(1)对应点所连的线段(或在同一条直线上)且.(2)对应线段(或在同一条直线上)且.(3)对应角.
二、基础练习:
1.下列现象属于平移的是_______________
A.打开抽屉;B.健身时做呼啦圈运动;C.风扇扇叶的转动;D.小球从高空竖直下落;
五、课堂小结
作业布置








单元

教学内容
3.2图形的旋转(一)
课时
1




1、学会分析生活中的图形的旋转现象,发展初步的审美能力,增强对图形的欣赏的意识。
2、通过具体事例认识旋转,理解旋转的性质。

新北师大版八年级数学下册《三章 图形的平移与旋转 1. 直角坐标系中图形的平移与坐标的变化》教案_12

新北师大版八年级数学下册《三章 图形的平移与旋转  1. 直角坐标系中图形的平移与坐标的变化》教案_12

第三章图形的平移与旋转3.1图形的平移第1课时平移的认识1.通过具体实例理解平移的概念,掌握平移的基本性质(重点).2.通过观察、分析、操作、欣赏以及抽象、概括等过程,体会平移来源于生活.自学指导:阅读教材P65~66内容,完成下列问题.知识探究1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫平移.平移不改变图形的形状和大小,改变的是位置.2.平移的性质:(1)平移前后的两个图形大小、形状一样;(2)经过平移,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.自学反馈1.下列现象中,属于平移的是(1)(3)(5).(1)火车在笔直的铁轨上行驶;(2)冷水受热过程中小气泡上升变成大气泡;(3)人随电梯上升;(4)钟摆的摆动;(5)飞机起飞前在直线跑道上滑动.2.如图,若线段CD是由线段AB平移而得到的,则线段CD、AB关系是平行且相等.活动1小组讨论例1如图,经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.解:如图,过点B、C分别作线段BE、CF,使得它们与线段AD平行并且相等,连接DE,DF,EF,则△DEF就是△ABC平移后的图形.设顶点B、C分别平移到了点E、F,根据“经过平移,对应点所连的线段平行且相等”,可知线段BE、CF与AD平行且相等.例2如图,点A,B,C,D分别平移到了点E,F,G,H;点A与点E,点B与点F,点C与点G,点D与点H 分别是一对对应点,AB与EF是一对对应线段,∠BAD与∠FEH是一对对应角.(1)在下图中,线段AE、BF、CG、DH有怎样的位置关系?(2)在下面图中,有哪些相等的线段、相等的角?(3)由(1)(2)两个问题,你能归纳出什么结论?解:(1)四边形EFGH是由四边形ABCD平移得到的,由演示可知:线段AE、BF、CG、DH是互相平行的,并且这四条线段又相等.(2)图中相等的线段:AB=EF、BC=FG、CD=GH、AD=EH、AE=BF=CG=DH.图中相等的角:∠ABC=∠EFG、∠BAD=∠FEH、∠ADC=∠EHG、∠BCD=∠FGH.(3)平移的基本性质:经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.活动2跟踪训练如图,四边形ABCD平移后得到四边形EFGH.填空:(1)CD=GH;(2)∠F=∠B;(3)HE=DA;(4)∠D=∠H.活动3课堂小结1.通过本节课的学习,我们明白了什么叫平移.(在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.)2.总结出了平移的性质.(平移不改变图形的形状和大小.经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等.)第2课时沿x轴或y轴方向平移的坐标变化探究横向或纵向平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系.(重点)自学指导:阅读教材P68~69内容,完成下列问题.知识探究在平面直角坐标系中,一个图形沿x轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标加上(减去)a,纵坐标不变;图形沿y轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标不变,纵坐标加上(减去)a.自学反馈1.如图,在平面直角坐标系中,将点A(-2,3)向右平移3个长度单位,那么平移后对应的点A′的坐标是(C)A.(-2,-3) B.(-2,6) C.(1,3) D.(-2,1)2.将点M(-1,-5)向左平移3个单位长度得到点N,则点N所处的象限是(C)A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例1在平面直角坐标系中,点A(-2,3)平移后能与原来的位置关于y轴对称,则应把点A(C) A.向右平移2个单位长度B.向左平移2个单位长度C.向右平移4个单位长度D.向左平移4个单位长度解析:关于y轴成轴对称的两个点的纵坐标相同,横坐标互为相反数,∴点A(-2,3)平移后的坐标为(2,3).∵横坐标增大,∴点A是向右平移得到,平移距离为|2-(-2)|=4.故选C.例2点P(-2,1)向下平移2个单位长度后,关于x轴对称的点P′的坐标为(C)A.(-2,-1) B.(2,-1)C.(-2,1) D.(2,1)沿x轴或y轴方向平移的坐标变化可简记为“横坐标,右移加,左移减;纵坐标,上移加,下移减”.活动2跟踪训练1.将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC(B) A.向左平移3个单位长度得到的B.向右平移3个单位长度得到的C.向上平移3个单位长度得到的D.向下平移3个单位长度得到的2.将点P(2m+3,m-2)向上平移1个单位长度得到P′,且P′在x轴上,则m=1.3.线段AB是由线段CD平移得到,点A(-2,1)的对应点为C(1,1),则点B(3,2)的对应点D的坐标是(6,2).活动3课堂小结1.图形沿x轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着x轴向右(或向左)平移a个单位长度.2.图形沿y轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着y轴向上(或向下)平移a个单位长度.第3课时沿x轴,y轴方向两次平移的坐标变化探究一次平移既有横向又有纵向时坐标的变化特点.(重点)自学指导:阅读教材P71~73内容,完成下列问题.知识探究一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.自学反馈1.将点A(3,2)沿x轴向左平移4个单位长度,再沿y轴向下平移4个单位长度后得到点A′,则点A′的坐标是(D) A.(1,2)B.(1,-2)C.(-1,2) D.(-1,-2)2.在平面直角坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于(D) A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例如图所示,四边形ABCD各顶点的坐标为A(-3,5),B(-4,3),C(-1,1),D(-1,4),将四边形ABCD先向上平移3个单位长度,再向右平移4个单位长度,得到四边形A′B′C′D′.(1)四边形A′B′C′D′与四边形ABCD对应点的横坐标有什么关系?纵坐标呢?分别写出点A′,B′,C′,D′的坐标;(2)如果将四边形A′B′C′D′看成是由四边形ABCD经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(1)四边形A′B′C′D′与四边形ABCD相比,对应点的横坐标分别增加了4,纵坐标分别增加了3,A′(1,8),B′(0,6),C′(3,4),D′(3,7).(2)连接AA′,由图可知,AA′=32+42=5,四边形A′B′C′D′可认为是由四边形ABCD沿着由A到A′的方向,平移5个单位长度得到的.一个图形一次沿x轴方向,y轴方向平移后所得的图形,可以看成是由原来图形经过一次平移得到的.活动2跟踪训练1.如果将平面直角坐标系中的点P(a-3,b+2)平移到点(a,b)的位置,那么下列平移方法中正确的是(C) A.向左平移3个单位长度,再向上平移2个单位长度B.向下平移3个单位长度,再向右平移2个单位长度C.向右平移3个单位长度,再向下平移2个单位长度D.向上平移3个单位长度,再向左平移2个单位长度2.在平面直角坐标系中,将点(3,-1)向下平移3个单位长度,可以得到对应点(3,-4);将得到的点向右平移2个单位长度,可以得到对应点(5,-4).3.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C的对应点分别是A1,B1,C1,且点A1的坐标为(3,1),请分别写出点B1,C1的坐标.解:B1(1,-3),C1(7,-2).活动3课堂小结学生试述:这节课你学到了些什么?3.2图形的旋转第1课时旋转的认识掌握旋转、旋转中心和旋转角的概念,并理解旋转的性质.(重点)自学指导:阅读教材P75~76内容,完成下列问题.知识探究1.在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转不改变图形的形状和大小.2.一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所组成的角都等于旋转角;对应线段相等,对应角相等.自学反馈1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.线段MN绕点P进行旋转后,得到线段M1N1,则点M与点P距离=点M1与点P的距离.(填“>”“<”或“=”)活动1小组讨论例1如图,点A,B,C,D都在方格纸的点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为(C)A.30°B.45°C.90°D.135°对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以旋转角∠BOD=90°.例2如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点.又∵∠DAB=90°,∴旋转了90°.(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.正确的理解旋转的定义和性质.活动2跟踪训练如图,已知P是等边△ABC内的一点,连接AP,BP,将△ABP旋转后能与△CBP′重合,根据图形回答:(1)旋转中心是哪一点?(2)旋转角是几度?(3)连接PP′后,△BPP′是什么三角形?解:(1)∵△ABC为等边三角形,∴AB=BC,∠ABC=60°.又∵将△ABP旋转后能与△CBP′重合,∴AB与CB重合.∴旋转中心是点B.(2)∵将△ABP绕点B顺时针旋转后能与△CBP′重合,∴旋转角等于∠ABC=60°.(3)△BPP′是等边三角形.理由如下:∵旋转角为60°,即∠PBP′=60°,BP=BP′,∴△BPP′是等边三角形.活动3课堂小结1.旋转的概念:将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.第2课时旋转作图能画出简单图形旋转后的对应图形.(重点)自学指导:阅读教材P78~79内容,完成下列问题.知识探究旋转作图的步骤:(1)确定旋转中心,旋转方向,旋转角;(2)找出图形的关键点;(3)作出关键点经旋转后的对应点;(4)按图形的顺序连接对应点,得到旋转后的图形.自学反馈1.如图,将左边叶片图案旋转180°后,得到的图形是(D)2.把如图所示的图形绕着O点顺时针旋转90°后,得到的图形是(C)活动1小组讨论例如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.解:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°;(2)在射线AX上取点C,使得AC=AB.线段AC就是线段AB绕点A按顺时针方向旋转60°后的线段.解决这类作图题,紧扣旋转的特征即可.活动2跟踪训练1.对如图所示的图形,下列说法错误的是(C)A.图1绕点“O”顺时针旋转270°到图4B.图1绕点“O”逆时针旋转180°到图3C.图3绕点“O”顺时针旋转90°到图2D.图4绕点“O”顺时针旋转90°到图12.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是(C)A.(1,4)B.(4,1)C.(4,-1)D.(2,3)3.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1,请用直尺和圆规作出旋转中心O.(不写作法,保留作图痕迹)解:如图所示,点O为所作.4.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),将△ABC 绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′.解:如图所示,△A′BC′即为所求.活动3课堂小结根据旋转的性质,掌握旋转作图的步骤.3.3中心对称1.理解中心对称、对称中心、中心对称图形等概念,能识别中心对称图形.(重点)2.通过作图探索成中心对称的两个图形的性质.(重点)3.能运用中心对称的性质作出一个图形关于某点对称的图形,并确定对称中心的位置.(重点)自学指导:阅读教材P81~82内容,完成下列问题.知识探究1.如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.2.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.3.把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.自学反馈1.下列手机软件图标中,属于中心对称图形的是(D)2.关于中心对称的两个图形中,对应线段的关系是(D)A.相等B.平行C.相等且平行D.相等且平行或相等且在同一直线上活动1小组讨论例1如图,在中心对称的两个图形中,对称点A,A′和对称中心O在一直线上,并且AO=OA′,另外分别在一直线上的三点还有B,O,B′和C,O,C′,并且BO=B′O,CO=C′O.在成中心对称的两个图形中,连接对称点的连线都经过对称中心,并且被对称中心平分.也就是:(1)对称中心在任意两个对称点的连线上.(2)对称中心到一对对称点的距离相等.根据这个,可以找到关于中心对称的两个图形的对称中心,通常只需连接中心对称图形上的一对对应点,所得线段的中点就是对称中心,同时在证明线段相等时也有应用.例2如图,四边形ABCD和点O,画出四边形A′B′C′D′,使它与已知四边形关于点O成中心对称.解:(1)连接AO并延长AO到A′,使OA′=OA,于是得到点A的对称点A′.(2)同样画出点B、点C和点D的对称点B′,C′和D′.(3)顺次连接A′B′,B′C′,C′D′,D′A′.四边形A′B′C′D′即为所求的四边形.活动2跟踪训练1.下列图形中,是中心对称图形但不是轴对称图形的是(B)2.如图,四边形ABCD与四边形FGHE关于点O成中心对称,则AD=EF,∠ABC=∠FGH.3.如图,已知六边形ABCDEF是以点O为对称中心的中心对称图形,画出六边形ABCDEF的全部图形,并指出所有的对应点和对应线段.解:作法如下:图中A的对应点是D,B的对应点是E,C的对应点是F;AB对应线段是DE,BC对应线段是EF,CD对应线段是AF.4.下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.活动3课堂小结1.把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,那么,我们就说这两个图形成中心对称,这个点叫做对称中心.2.识别中心对称的方法:如果两个图形的对应点连成的线段都经过某一点,并且被这一点平分,那么这两个图形一定关于这一点成中心对称.3.4简单的图案设计1.能利用平移、旋转或轴对称以及它们的组合解决一些简单的图案设计问题,并会利用它们分析图案.(重点) 2.通过观察、交流、创作,培养学生的动手操作能力和创新能力.(难点)自学指导:阅读教材P85的内容,完成下列问题.自学反馈1.平移、旋转、对称的联系:都是平面内的变换,都不改变图形的形状和大小,只改变图形的位置.2.如图所示的图案由四部分组成,每部分都包括两个小“十”字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?解:可以.归纳:图形的平移、旋转、对称是图形变换中最基本的三种变换方式.活动1小组讨论例欣赏图中的图案,并分析这个图案形成的过程.解:图中的图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(形状、大小完全相同).在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到的;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.活动2跟踪训练1.国旗上的四个小五角星,通过怎样的移动可以相互得到(D)A.轴对称B.平移C.旋转D.平移和旋转2.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是(C)A.30°B.45°C.60°D.90°3.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和旋转等.活动3课堂小结充分运用平移、旋转或轴对称,按照所要表达的意思,对基本图案进行操作,设计出相应图案.。

北师大版八年级下册第三章教案

北师大版八年级下册第三章教案

北师大版八年级下册《第三章图形的平移与旋转》3.1 图形的平移(第一课时)一.教学目标1、知识与技能目标:认识平移、理解平移的基本内涵;理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

2、过程与方法目标:①通过探究式的学习,培养学生的归纳总结与猜想的数学能力,培养学生的逆向思维能力。

通过知识的拓展,培养学生的分析问题与解决问题的能力。

②让学生经历观察、分析、操作、欣赏以与抽象概括等过程;经历探索图形平移性质的过程,以与与他人合作交流的过程,进一步发展空间观念,增强审美意识。

3、情感与价值观目标:①在探究式的教学活动中,培养学生主动探索,勇于发现的科学精神;通过多种途径,培养学生细致、严谨、求实的学习习惯;渗透由特殊到一般,化未知为已知的辩证唯物主义思想。

②引导学生观察生活中的图形运动变化现象,自己加以数学上的分析,进而形成正确的数学观,进一步丰富学生的数学活动经验和体验。

有意识的培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力与审美意识的发展。

③通过自己动手设计图案,把所学知识加以实践应用,体会数学的实用价值。

通过同学间的合作交流,培养学生的协作能力与学习的自主性。

二.教学重点平移的基本性质三.教学难点平移的基本内涵的理解.四.教学过程一.情景问题,引入课题情境问题引入同学们,还记得游乐园内的一些项目吗?如:旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?(也走了200米.)其实,数学就在我们身边,它有很多规律等待我们去探索,去发现!无论是年代久远的老牛上的辘轳;还是刚刚耸立起的高楼大厦里的电梯,无论是微观世界里的粒子运动,还是浩翰宇宙中的行星运转.其中最简捷的运动变化形式主要是平移和旋转,让我们走进图形变换的天地,继续探索图形变换的奥秘吧!从今天开始,我们就来探索第三章:图形的平移和旋转.二. 探究——经历新知形成过程,体验探究方法探究问题过程(一)自主学习:的图3—1,然后回答书下面我们来看第一节:图形的平移(同学们仔细观擦:P58上提出的问题)(1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的人呢?传送带上的电视机的形状、大小在运动前后没有发生改变.手扶电梯上的人也没有变化.(2)在传送带上,如果电视机的某一按键向前移动了80 cm,那么电视机的其他部位向什么方向移动?移动了多少距离?(电视机的其他部位也向前移动,也移动了80 cm).(3)如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?(四边形ABCD与四边形EFGH的形状、大小相同)(二)展示交流:1、传送带运送电视机的过程中,电视机的形状、大小、位置等因素中,哪些没有发生改变?哪些发生了变化?手扶电梯上的人呢?(学生讨论、发现、归纳结论)(在传送电视机的过程中,电视机的形状、大小没有变化,它的位置发生了变化.手扶电梯上的人也是位置发生了变化,人没有变化.)在电视机生产车间传输带运送电视机的过程中,对同一台电视机而言,不同时间的位置之间是相互平移的关系;人在电梯上两个不同时刻之间的位置关系也是平移那么,什么是平移呢?在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移(translation).注意:“将一个图形沿某个方向移动一定的距离”,意味着“图形上的每个点都沿.....同一个方向移动了相同的距离.............”.那大家想一想:平移有什么特征呢?(1.平移不改变图形的形状和大小............2平移改变图形的位置).2、想一想,议一议: (1)在下图中,线段AE、BF、CG、DH有怎样的位置关系? (2)在下面图中,有哪些相等的线段、相等的角?(3)由(1)、(2)两个问题,你能归纳出什么结论?(1)四边形EFGH是由四边形ABCD平移得到的,由演示可知:线段AE、BF、CG、DH是互相平行的,并且这四条线段又相等.(2)图中相等的线段:AB=EF、BC=FG、CD=GH、AD=EH、AE=BF=CG=DH.∠ABC=∠EFG、∠BCD=∠FGH∠BAD=∠FEH、∠ADC=∠EHG∠ABC=∠ADC、∠BAD=∠BCD、∠HEF=HGF、∠EFG=∠EHG(3)图形经过平移后,只是位置发生变化,即图形上的每个点都沿同一个方向移动了相同的距离,而线段的长短、角的大小没有发生变化.;经过平移,对应线段,对应角分别相等,对应点的连线是平行的,并且相等.平移的基本性质:1.经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.注意:平移三要素:几何图形——运动方向——运动距离三、应用——经历应用领悟构想,学会思考方法搭建问题交流平台 (突破难点,最具开放性,一题多解的问题)搭建问题交流平台 (突破难点,最具开放性,一题多解的问题)①出示问题[例1](课本59页例1)如图所示,△ABE沿射线XY的方向平移一定距离后成为△CDF。

初中数学_图形的平移教学设计学情分析教材分析课后反思

初中数学_图形的平移教学设计学情分析教材分析课后反思

第三章图形的平移与旋转1.图形的平移(一)学习目标:1.能从具体实例中分析出平移现象的共性,直观认识平移,并通过抽象、归纳出平移的概念;2.借助实验或者说理概括出平移的基本性质;3.会进行简单的平移画图,并能够说出画图的依据;4.巧妙应用平移解决实际问题.教学过程:(一)情境引入活动内容:1.章前导语,引出学习目标.2.观看视频,体会平移在生活中的应用.提出问题:这些物体的运动过程有什么共同点?活动目的:通过生活实例,激发学生学习兴趣,使学生初步感受平移现象;并体会数学来源于实际生活,使学生感受到生活中处处有数学.活动效果:生动有趣的现实情境,激发学生学习兴趣.学生对平移有了初步认识,为归纳平移定义打下基础.(二)探索平移定义活动内容:1.以推拉窗为例探索平移,通过问题串引导学生得出结论:在平移过程中图形上每个点都向同一个方向移动了相同的距离.引导学生得出平移定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.在学生发现和归纳下板书:平移定义:①某个方向②一定的距离2.通过一系列练习进一步认识图形的平移,并提出问题:你能说出生活中还有哪些平移的例子吗?活动目的:通过具体实例分析出平移现象的共性,直观认识平移,并通过抽象、归纳出平移的概念;培养学生观察、分析、归纳、概括的能力;通过学生举例说平移,培养学生观察能力,以及数学应用意识.活动效果:对于平移概念的归纳、概括,学生掌握较好. (三)探索平移性质 活动内容:1. 用多媒体演示图形的平移过程,让学生通过对图形平移现象的观察,探索平移的性质.ΔABC 经过平移得到的ΔDEF,(1)找出图中对应线点、对应线段、对应角?(2)在上图中,对应点连接的线段有怎样的位置、数量关系? (3)每对对应线段之间有怎样的位置、数量关系? (4)每对对应角之间有怎样的数量关系?问题(1)比较简单,独立完成,问题(2)(3)(4)有一定难度,学生按四人小组,共同探讨完成,并由学生板演性质.平移性质:①全等②对应点所连的线段平行(或在同一条直线上)且相等③对应线段平行(或在同一条直线上)且相等④对应角相等 学生分析性质探索过程,并用符号语言叙述.2.给出对应练习,加深平移的定义和性质的理解和应用.(1).将线段AB 向右平移3cm 得到线段CD,如果AB=5 cm,则CD= cm.(2).将∠ABC 向上平移10cm 得到∠EFG ,如果∠ABC=52°,则∠EFG = °,BF= cm . (3).如图,△ ABE 沿射线XY 的方向平移一定距离后成为△ CDF.找出图中存在的平行且相等的线段和一组全等三角形.XCFXCF(4).变式训练如图,如果AB=6cm, AE=10cm,AC=20cm, ∠BAE= 400,∠B= 900,你能求出图中哪些线段的长度,哪些角的度数?说说你的理由.活动目的:活动1,平移性质的探索对学生稍有难度,通过动画演示,激发兴趣;把平移的性质设计成了四个问题,深刻理解平移的性质,并能全面地对平移的性质进行概括.使重点突出,难点突破;活动2,相应练习,由易到难,激发学生挑战欲望.活动效果:操作性强又富有挑战性的数学活动,激发了学生学习的兴趣,对平移的基本内涵和基本性质这两个重点,学生掌握得比较好.但是,在开发学生利用已有知识,主动进行新知探究方面还不理想.(四)体验平移画图活动内容:平移线段画图、平移三角形画图、平移A字形画图,归纳小结出1:平移画图三说明:基本图形、平移方向、平移距离; 2:平移画图基本步骤:找关键点、画对应点、连线.活动目的:通过三种图形作图,经历由易到难、由特殊到一般的过程,通过画图方法并说出理论依据,进一步体会图形平移性质及其应用,通过多种作图方法比较,归纳出平移画图的一般步骤,培养学生转化的数学思想.活动效果:多种方法激发学生探索兴趣,培养学生动手能力.(五)体验平移应用活动内容:拓展训练:1.如图所示,图中小正方形的边长为a,则阴影部分的面积是:2.如图:是一块长方形的草地, 长为21米.宽为15米在草地上有一条宽为1米的小道,长方形的草地上除小道外长满青草。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【母题变式】 (变换条件和问法)某酒店打算在一段楼梯面上铺上宽 为2米的地毯,台阶的侧面如图所示,如果这种地毯每平 方米售价为80元,则购买这种地毯至少需要 ( C )
A.2 560元 C.2 720元
B.2 620元 D.2 840元
第三章 图形的平移与旋转 1 图形的平移 第1课时
【新知预习】
定义
在__平_距_面_离_内__,_将,图一形个的图这形种沿移某动个,_叫__做方__平向__移__.移动一定的
平 移
二要素 性质
___方__向____与___距__离____. 平平平(或移移移在不只前同改 改 后一变变对直物物应线体体点上的的所)连__,__大的__形位__小线__状置关__段__系__的__是与,位__置____大相关____小等系____是_____.,__平__行__
【火眼金睛】 将△ABC沿CD方向平移,C点平移到点D,画出平移后的 △DEF.
正解:将△ABC沿CD方向平移,平移后得△EDF.如图所示:
【一题多变】 (2019·哈尔滨香坊区期末)如图,两只蚂蚁以相同的速 度沿甲、乙两条不同的路线,同时从A出发爬向终点B, 则 (C)
A.按甲路线走的蚂蚁先到终点 B.按乙路线走的蚂蚁先到终点 C.两只蚂蚁同时到终点 D.无法确定
平 移 作 图
一((_23_般))_字_找依步_母出次_骤_图找_:_(形出.1的各)确关_定_键_关平_点_键移_的_点的_________对__.方__应__向__点______,_,平并移标的上_相__距应__离的____. (4)顺次连接各___对__应__点____.
【基础小练】 请自我检测一下预习的效果吧! 1.(2019·泰州姜堰区期中)下列运动属于平移的是 (D)
★★3.(2019·临沂费县期中)张三打算在院落里种上 蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为 了行走方便,要修筑同样宽的三条道路:东西两条,南北 一条.南北道路垂直于东西道路,余下的部分要分别种 上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽 均为1 m,求蔬菜的总种植面积是多少?

知识点二 平移作图(P66例1拓展) 【典例2】(2019·天津塘沽区二模)平面点为P1(x+5,y+3),若将△AOB作同样的平移, 在坐标系中画出平移后得到的△A1O1B1,并写出点A1的 坐标是___(_2_,_7_)___.
【学霸提醒】 平移作图的四个步骤
A.小朋友荡秋千 B.自行车在行进中车轮的运动 C.地球绕着太阳转 D.小华乘手扶电梯从一楼到二楼
2.如图,将三角形ABC水平向右平移了a cm后,得到三角 形A′B′C′,已知BC=6 cm,BC′=17 cm,那么a= ___1_1___cm.
知识点一 平移的性质(P65“做一做”拓展) 【典例1】如图,将Rt△ABC沿着点B到C的方向平移到 △DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分 面积为 ( D )
A.4
B.96
C.84
D.48
【学霸提醒】 平移性质理解的两个角度 (1)位置:对应线段平行或在同一条直线上;对应点的连 线平行或在同一条直线上. (2)数量:对应线段相等;对应角相等;对应点的连线相 等.
【题组训练】 1.下列图形中可以由一个基础图形通过平移变换得到 的是 ( B )
★2.(2019·常州期中)一块矩形场地,长为101 m,宽为 70 m,从中留出如图所示的宽为1 m的小道,其余部分种 草,则草坪的面积为___6__9_0_0___m2. 世纪金榜导学号
【题组训练】 1.下列平移作图错误的是
(C)
★2.下列各组图形,可以通过平移得到的是 ( A )
A.③④⑤ B.③⑤⑥ C.①③⑤ D.②③④
★3.如图,在5×5方格纸中,将图①中的三角形甲平移 到图②中所示的位置,与三角形乙拼成一个矩形,那么 正确的平移方法是___向__右__平__移__2_个__格__,_再__向__下__平__移__3_个__ __格__(_或__先__向__下__平__移__3_个__格__,_再__向__右__平__移__2_个__格__)__.
相关文档
最新文档