2020最新人教版七年级数学上册期末考试题及答案

合集下载

2020人教版七年级上册数学期末考试试题(附答案)

2020人教版七年级上册数学期末考试试题(附答案)

人教版七年级上册数学期末考试考试试题一、选择题(10小题,每题3分,共30分)1.用一个平面截圆柱,则截面形状不可能是()A.圆B.正方形C.长方形D.梯形2.下列各图中,表示数轴的是()A.B.C.D.3.地球上的海洋面积约为361000000km2,用科学记数法可表示为()A.361×106km2 B.36.1×107km2 C.0.361×109km2 D.3.61×108km24.如果A、B、C在同一条直线上,线段AB=6cm,BC=2cm,则A、C两点间的距离是()A.8cm B.4cm C.8cm或4cm D.无法确定5.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.6.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场8.如果一个角的补角是它的余角的3倍,那么这个角的度数是()A.30° B.45° C.60° D.90°9.如果a+b=0,那么a,b两个有理数一定是()A.一正一负B.互为倒数C.互为相反数D.无法确定10.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20° B.25° C.30° D.70°二、填空题(10小题,每题3分,共30分)11.如图,C是线段AB上任意一点,M,N分别是AC,BC的中点,如果AB=12cm,那么MN的长为cm.12.若|x﹣2|+(y+5)2=0,则y x=.13.已知ab≠0,则+的值是.14.若x=2是方程的解,则的值是.15.李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明轮到计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,得.16.﹣的相反数是;﹣的系数是;(﹣1)101=.17.绝对值小于2008的所有整数的和为;在数轴上,到原点距离为4的数是;3600″=°.18.单项式﹣的系数是,次数是;多项式﹣﹣2xy2+1的次数.19.已知x=3是方程ax﹣6=a+10的解,则a=.20.将弯曲的河道改直,可以缩短航程,是因为:两点之间的所有连线中,最短.三、解答题21.解方程①=﹣1②x﹣=﹣3.22.计算①﹣22+(﹣2)2﹣|﹣4×5|+81÷(﹣3)3②(1.2﹣3.7)2×(﹣1)2005÷()3×0.5.23.化简:,其中x=.24.列方程解应用题:①一件工程,甲独做需10天,乙独做需12天,丙独做需15天,甲、乙合作3天后,甲因事离开,丙参加工作,问还需多少天完成?②从A地到B地,水路比公路近40km,上午9点一艘轮船从A地驶往B地,中午12点一辆汽车也从A地开往B地,它们同时到达,轮船的速度为每小时24km,汽车的速度为每小时40km,求从A地到B地的公路和水路的长.25.已知|a﹣1|+(b+2)2=0,求(a+b)2007+a2008的值.26.如图所示,O为直线AB上一点,过O点作射线OC.已知OD平分∠AOC、OE平分∠BOC,请问OD与OE有什么位置关系?并说明理由.参考答案与试题解析一、选择题(10小题,每题3分,共30分)1.用一个平面截圆柱,则截面形状不可能是()A.圆B.正方形C.长方形D.梯形考点:截一个几何体.分析:根据圆柱的特点,考虑截面从不同角度和方向截取的情况.解答:解:本题中用平面截圆柱,横切就是圆,竖切就是长方形,如果这个圆柱特殊点,底面圆的直径等于高的话,那有可能是正方形,唯独不可能是梯形.故选D.点评:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.2.下列各图中,表示数轴的是()A.B.C.D.考点:数轴.分析:根据数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向分析得出即可.解答:解:A、缺少原点,不表示数轴,故此选项错误;B、负数排列错误,应从原点向左依次排列,故此选项错误;C、是正确的数轴,故此选项正确;D、缺少正方向,故此选项错误.故选C.点评:此题主要考查了数轴的概念,熟练掌握数轴的定义是解题关键.3.地球上的海洋面积约为361000000km2,用科学记数法可表示为()A.361×106km2 B.36.1×107km2 C.0.361×109km2 D.3.61×108km2考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:361000000=3.61×108,故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如果A、B、C在同一条直线上,线段AB=6cm,BC=2cm,则A、C两点间的距离是()A.8cm B.4cm C.8cm或4cm D.无法确定考点:两点间的距离.专题:计算题;分类讨论.分析:分点B在A、C之间和点C在A、B之间两种情况讨论.解答:解:(1)点B在A、C之间时,AC=AB+BC=6+2=8cm;(2)点C在A、B之间时,AC=AB﹣BC=6﹣2=4cm.所以A、C两点间的距离是8cm或4cm.故选:C.点评:本题考查的是两点间的距离,分两种情况讨论是解本题的难点也是解本题的关键.5.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及正方体的展开图解题.解答:解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选B.点评:正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.6.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元考点:一元一次方程的应用.专题:销售问题.分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.解答:解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80% 解这个方程得:x=125则这种服装每件的成本是125元.故选:B.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场考点:一元一次方程的应用.专题:应用题.分析:设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.解答:解:设共胜了x场,则平了(14﹣5﹣x)场,由题意得:3x+(14﹣5﹣x)=19,解得:x=5,即这个队胜了5场.故选C.点评:此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.8.如果一个角的补角是它的余角的3倍,那么这个角的度数是()A.30° B.45° C.60° D.90°考点:余角和补角.分析:设这个角为x,则余角为90°﹣x,补角为180°﹣x,列出方程求解即可.解答:解:设这个角为x,则余角为90°﹣x,补角为180°﹣x,由题意得,180°﹣x=3(90°﹣x),解得:x=45,即这个角的度数为45°.故选B.点评:本题考查了余角和补角的知识,属于基础题,解答本题的关键是熟练掌握:互补的两角之和为180°,互余的两角之和为90°.9.如果a+b=0,那么a,b两个有理数一定是()A.一正一负B.互为倒数C.互为相反数D.无法确定考点:相反数.分析:根据有理数的加法,可得a、b的关系,可得答案.解答:解:果a+b=0,那么a,b两个有理数一定是互为相反数,故选:C.点评:本题考查了相反数,互为相反数的两个数的和为0是解题关键.10.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C. 30°D. 70°考点:角的计算;角平分线的定义.专题:计算题;压轴题.分析:先根据平角的定义求出∠COB的度数,再由OD平分∠BOC即可求出∠2的度数.解答:解:∵∠1=40°,∴∠COB=180°﹣40°=140°,∵OD平分∠BOC,∴∠2=∠BOC=×140°=70°.故选D.点评:本题考查的是平角的定义及角平分线的定义,熟知以上知识是解答此题的关键.二、填空题(10小题,每题3分,共30分)11.如图,C是线段AB上任意一点,M,N分别是AC,BC的中点,如果AB=12cm,那么MN的长为6cm.考点:比较线段的长短.专题:计算题.分析:由于点M是AC中点,所以MC=AC,由于点N是BC中点,则CN=BC,而MN=MC+CN=(AC+AB)=AB,从而可以求出MN的长度.解答:解:∵点M是AC中点∴MC=AC∵点N是BC中点∴CN=BCMN=MC+CN=(AC+AB)=AB=6.所以本题应填6.点评:本题考点为:线段的中点.不管点C在哪个位置,MC始终等于AC的一半,CN 始终等于BC的一半,而MN等于MC加上CN等于AB的一半,所以不管C点在哪个位置MN始终等于AB的一半.12.若|x﹣2|+(y+5)2=0,则y x=25.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出x、y的值,进而可求出y x的值.解答:解:∵|x﹣2|+(y+5)2=0∴x﹣2=0,y+5=0,即x=2,y=﹣5.故y x=(﹣5)2=25.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.13.已知ab≠0,则+的值是0或±2.考点:绝对值.分析:分四种情况讨论即可求解.解答:解:①当a>0,b>0时,+=1+1=2,②当a>0,b<0时,+=1﹣1=0,③当a<0,b>0时,+=﹣1+1=0,④当a<0,b<0时,+=﹣1﹣1=﹣2,综上所述:+的值是0或±2.故答案为:0或±2.点评:本题主要考查了绝对值,解题的关键是分类讨论a,b的取值.14.若x=2是方程的解,则的值是﹣2.考点:一元一次方程的解.专题:计算题.分析:先将x=2代入方程,求得a值;然后将a值代入所求并解答.解答:解:∵x=2是方程的解,∴x=2满足方程,∴3×2﹣4=﹣a,解得a=﹣1;∴=(﹣1)2011+=﹣1﹣1=﹣2.故答案为:﹣2.点评:此题考查的是一元一次方程的解,根据a的取值,来求的值.15.李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明轮到计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,得﹣8.考点:有理数的混合运算.专题:新定义.分析:根据新定义得到=2×5﹣3×6,再进行乘法运算,然后进行减法运算即可.解答:解:=2×5﹣3×6=10﹣18=﹣8.故答案为﹣8.点评:本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.16.﹣的相反数是;﹣的系数是﹣;(﹣1)101=1.考点:相反数;有理数的乘方;单项式.分析:根据只有符号不同的两个数互为相反数,可得答案;根据单项式的系数是数字因数,可得答案;根据负数的偶次幂是正数,可得答案.解答:解:﹣的相反数是;﹣的系数是﹣;(﹣1)101=1,故答案为:,﹣,1.点评:本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.17.绝对值小于2008的所有整数的和为0;在数轴上,到原点距离为4的数是±4;3600″=1°.考点:数轴;绝对值;有理数的加法;有理数的乘方.分析:利用数轴的特点及度秒的换算求解即可.解答:解:绝对值小于2008的所有整数是﹣2007,﹣2006,﹣2005,…2005,2006,2007,其和为﹣2007+(﹣2006)+(﹣2005)+…+2005+2006+2007=0.到原点距离为4的数是±4,3600″=1°.故答案为:0,±4,1.点评:本题主要考查了数轴,绝对值,有理数的加法及乘方,解题的关键是熟记数轴的特点及度秒的换算.18.单项式﹣的系数是﹣,次数是3;多项式﹣﹣2xy2+1的次数3.考点:多项式;单项式.分析:根据单项式和多项式的概念求解.解答:解:单项式﹣的系数是﹣,次数为3;多项式﹣﹣2xy2+1的次数为3次.故答案为:﹣,3;3.点评:本题考查了单项式和多项式,解答本题的关键是掌握单项式和多项式的概念.19.已知x=3是方程ax﹣6=a+10的解,则a=8.考点:一元一次方程的解.专题:计算题.分析:将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.解答:解:∵x=3是方程ax﹣6=a+10的解,∴x=3满足方程ax﹣6=a+10,∴3a﹣6=a+10,解得a=8.故答案为:8.点评:本题主要考查了一元一次方程的解.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.20.将弯曲的河道改直,可以缩短航程,是因为:两点之间的所有连线中,线段最短.考点:线段的性质:两点之间线段最短.分析:考查最短路径问题,即两点之间,线段最短.解答:解:线段;因为两点之间,线段最短.点评:掌握两点之间,线段最短的实际应用.三、解答题21.解方程①=﹣1②x﹣=﹣3.考点:解一元一次方程.专题:计算题.分析:①方程去分母,去括号,移项合并,把x系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:①去分母得:8x﹣4=3x+6﹣12,移项合并得:5x=﹣2,解得:x=﹣0.4;②去分母得:15x﹣3x+6=10x﹣25﹣45,移项合并得:2x=76,解得:x=38.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.计算①﹣22+(﹣2)2﹣|﹣4×5|+81÷(﹣3)3②(1.2﹣3.7)2×(﹣1)2005÷()3×0.5.考点:有理数的混合运算.专题:计算题.分析:①原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果;②原式先计算乘方运算,再计算乘除运算,即可得到结果.解答:解:①原式=﹣4+4﹣20﹣3=﹣23;②原式=6.25×(﹣1)×8×0.5=﹣25.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.化简:,其中x=.考点:整式的加减—化简求值.分析:运用整式的加减运算顺序化简后代入值计算即可.解答:解:原式=2x2﹣0.5+3x﹣4x+4x2﹣2+x+2.5=6x2;当x=时,原式=6×=.点评:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,是各地中考的常考点.注意一定先化简,再求值.24.列方程解应用题:①一件工程,甲独做需10天,乙独做需12天,丙独做需15天,甲、乙合作3天后,甲因事离开,丙参加工作,问还需多少天完成?②从A地到B地,水路比公路近40km,上午9点一艘轮船从A地驶往B地,中午12点一辆汽车也从A地开往B地,它们同时到达,轮船的速度为每小时24km,汽车的速度为每小时40km,求从A地到B地的公路和水路的长.考点:一元一次方程的应用.分析:①设还需x天完成,工程总量为1,由题意可得出三人每天各自能完成的工作量,再由题意和工程总量1,可列出关于x的一元一次方程,解这个方程即可求得还需要的天数.②设水路长为x km,则公路长为(40+x)km,则依据等量关系:轮船比汽车多用了3小时,列出方程并解答.解答:解:①设还需x天完成,工程总量为1,则:∵一件工程,甲独做需10天,乙独做需12天,丙独做需15天,∴甲、乙、丙三人每天分别能完成的工程进度为、、,∵甲、乙合作3天后,甲因事离开,丙参加工作,∴由题意可得出关于x的一元一次方程为:(++)×3+(+)x=1,解得:x=3.答:还需3天完成.②解:设水路长为x km,则公路长为(40+x)km,根据题意得:﹣=3,解得:x=240,则40+x=280.答:甲地到乙地的水路路程与公路路程分别是240km、280 km.点评:此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.已知|a﹣1|+(b+2)2=0,求(a+b)2007+a2008的值.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用非负数的性质求出a与b的值,代入原式计算即可得到结果.解答:解:∵|a﹣1|+(b+2)2=0,|a﹣1|≥0,(b+2)2≥0,∴a﹣1=0且b+2=0,解得:a=1且b=﹣2,则(a+b)2007+a2008=(1﹣2)2007+12008=﹣1+1=0.故答案为0.点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.26.如图所示,O为直线AB上一点,过O点作射线OC.已知OD平分∠AOC、OE平分∠BOC,请问OD与OE有什么位置关系?并说明理由.考点:角平分线的定义.分析:先根据角平分线的定义得出∠DOC=∠AOC,∠COE=∠BOC,再根据平角的定义即可得出结论.解答:解:OD⊥OE.∵OD平分∠AOC、OE平分∠BOC,∴∠DOC=∠AOC,∠COE=∠BOC,∴∠DOE=∠DOC+∠COE=(∠AOC+∠BOC)=×180°=90°,∴OD⊥OE.点评:本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.。

2020—2021年人教版七年级数学上册期末考试【及参考答案】

2020—2021年人教版七年级数学上册期末考试【及参考答案】

2020—2021年人教版七年级数学上册期末考试【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.2C.2 D.42.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④ B.①②④ C.①③④D.①②③3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB=6.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x /kg 0 1 2 3 4 5 y /cm 1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm 7.数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,且11c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为何?( ) A . B . C .D .8.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm9.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >10.将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则1∠的度数是( )A.95︒B.100︒C.105︒D.110︒二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.3.已知23的整数部分为a,小数部分为b,则a-b=________.4.写出一个数,使这个数的绝对值等于它的相反数:__________.5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.6.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x﹣1)=15 (2)711 32x x-+-=2.已知方程组351ax by x cy +=⎧⎨-=⎩,甲正确地解得23x y =⎧⎨=⎩,而乙粗心地把C 看错了,得36x y =⎧⎨=⎩,试求出a ,b ,c 的值.3.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________; (2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.4.如图,已知直线AB ∥CD ,直线EF 分别与AB ,CD 相交于点O ,M ,射线OP 在∠AOE 的内部,且OP ⊥EF ,垂足为点O.若∠AOP =30°,求∠EMD 的度数.5.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.6.某超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进2价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、B5、C6、B7、A8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)<<1、1a42、40°3、4、1-(答案不唯一)5、2或2.56、同位角相等,两直线平行.三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、a=3,b=﹣1,c=3.3、(1)∠BOD;∠AOE;(2)152°.4、60°5、(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.6、(1) 该超市第一次购进甲种商品150件、乙种商品90件.(2) 1950元.。

人教版七年级上册数学期末试卷及答案2020

人教版七年级上册数学期末试卷及答案2020

人教版七年级上册数学期末试卷及答案2020一、选择题:认真是成功的保证。

精心选一选,相信你选得准!本大题共8小题,每小题4分,共32分。

每小题给出的四个选项中有且只有一个是准确的,请把准确选项的代号写在题后的括号内。

1.下列说法准确的是 ( )A.平方等于它本身的数只有0 B.立方等于本身的数只有±1C.绝对值等于它本身的数只有正数 D.倒数等于它本身的数只有±12.下列关于单项式的说法中,准确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是33. 下列计算错误的是()A. B. C. D.4.把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点之间,射线最短B.两点确定一条直线C.两点之间,线段最短 D.两点之间,直线最短5. 如图所示的几何体,从上面看所得到的图形是()A B C D6.某物品的标价为132元,若以9折出售,仍可获利10%,则该物品的进价是()A.118元 B.108元 C.106元 D. 104元7.如图,按照上北下南,左西右东的规定画出东南西北的十字线,其中点A位于点O的( )A.北偏西方向B.北偏东方向C.南偏东方向D.南偏西方向8.如图,BC= AB,D为AC的中点,,则AB的长是( )A、3cmB、4cmC、5cmD、6cm二、填空题:沉着冷静是成功的法宝。

细心填一填,相信你填得对!本大题共8小题,每小题4分,共32分。

直接把答案填在题中的横线上。

9. 某地区一月份早晨平均气温是-5℃,中午平均气温是15℃,则该地区一月份早晨与中午的温差是℃10. 2020年上海世博会的园区规划用地面积约为5 280 000 ,将5 280 000用科学记数法表示为11. 如图, , ,点B、O、D在同一直线上,则的度数为 .12.已知是方程的解,则 =_______13.如果方程 +3=0是关于的一元一次方程,那么的值是14.若与是同类项,则15.已知∠ 与∠ 互余,且∠ =35&ordm;18&acute;,则∠=__________16. 观察下列各式:……请将猜想的规律用含有 ( 为正整数)的等式表示出来三、解答题:细心是成功的关键。

人教版2020---2021学年度七年级数学(上)期末考试卷及答案(含四套题)

人教版2020---2021学年度七年级数学(上)期末考试卷及答案(含四套题)

第1页,共36页 第2页,共36页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)一、选择题(每小题4分,共48分)1.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米. A .0.34×108B .3.4×106C .34×106D .3.4×1072.如图所示的几何体,从上面看得到的平面图形是( )3.已知12a =-,1b =-,0.1c =,则a 、b 、c 的大小关系是( ) A.b a c << B.a b c << C.c a b << D.c b a << 4.如果2=-x 是关于方程5280+-=x m 的解,则m 的值是( ). A.-1 B.1 C.9 D.-95.如图,能用∠1、∠ABC 、∠B 三种方法,表示同一个角的是( )6.下列计算正确的是( ).A .527a b ab += ;B .32532a a a -= ;C .22243a b ba a b -= ;D .224113244y y y --=- .7.下列去括号正确的是 ( )A.()a b c a b c --=--B.[]22()x x y x x y ---+=-+C.2()2m p q m p q --=-+D.(2)2a b c d a b c d +--=+-+ 8.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么||a b a b -++化简的结果为( )A.2aB.﹣2aC.0D.2b9.下列说法:①平方等于其本身的数有0,±1;②233xy 是4次单项式;③将方程121.20.30.5x x -+-=中的分母化为整数,得101010201235x x -+-= ,④平面内有4个点,过两点画直线,可画6条,其中正确的有( ).A.1个B.2个C.3个D.4个 10.某车间原计划小时生产一批零件,后来每小时多生产件,用了小时不但完成了任务,而且还多生产件.设原计划每小时生产个零件,则所列方程为( ) A.1312(10)60x x =++ B.12(10)1360x x +=+13101260x 题号一 二 三 四 五 总分 得分A.B.C. D.A. B. C.D.第3页,共36页 第4页,共36页题C.60101312x x +-= D.60101213x x+-= 11.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是( )A.71B.78C.85D.89 12.如图,O 是直线AB 上一点,OE 平分∠AOB ,∠COD =90°.则图中互余的角、互补的角各有( )对.A.3,3B.4,7C.4,4D.4,5 二、填空题(每小题4分,共24分)13.福布斯2020年全球富豪榜出炉,中国上榜人数仅次于美国,其中马云以432亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为 _______________美元.14.把58°18′化成度的形式,则58°18′=__________度. 15.已知多项式42223546xxy x y x +--+.将其按x 的降幂排列为________________________.16.若单项式623m x y +和 3n x y 是同类项,则2017()m n +=17. 已知线段AB =5cm ,点C 为直线AB 上一点,且BC =3线段AC 的长是__________cm.18.一列火车匀速行驶,经过一条长600米的隧道需要时间,隧道的顶部一盏固定灯,秒,则火车的长为 .三、解答题(共2个小题,每小题8分,共16分) 19.计算:(1)135()366412-+-⨯;(2)223110.524(1)42-+-----20.个面上的数互为相反数.(1)填空:a = ,b = ,c = ;(2)先化简,再求值:222523(2)4a b a b abc a b abc ⎡⎤---+⎣⎦.四、解答题(共4个小题,每小题10分,共40分) 21.解方程:(1)3(3)2(57)6(1)x x x ---=-;(2)235126x x ---=22.填空,完成下列说理过程如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠第5页,共36页 第6页,共36页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数.23.甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?(2)如果甲组工人实际完成的此月人均工作量比乙组的多2件,则此月人均定额是多少件?(3)如果甲组工人实际完成的此月人均工作量比乙组的少2件,则此月人均定额是多少件?24.直线上有A ,B ,C 三点,点M 是线段AB 的中点,点N 是线段BC 的一个三等分点,如果AB =6,BC =12,求线段MN 的长度. 五、解答题(共2个小题,25小题10分,26小题12分,共22分)25.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么? (注:投资收益率=×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?26.已知,A ,B 在数轴上对应的数分别用a ,b 表示,且211002002||ab a ++-=(),P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离. (2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足PB =2PC 时,求P 点对应的数.(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四第7页,共36页 第8页,共36页次向右移动7个单位长度,….点P 能移动到与A 或B 重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合?参考答案 一、选择题(每小题4分,共48分)1.A .2.B .3.A .4.D .5.B .6.C .7.B .8.B .9.A .10.B .11.D . 12.4;7.二、填空题(每小题4分,共24分)13.4.3×1010. 14.58.3度. 15.42234562x x y xy x --++. 16.-1. 17. 2或8. 18.300.三、解答题(共2个小题,每小题8分,共16分) 19.解:(1)原式=1353636366412-⨯+⨯-⨯=62715-+-=6; (2)原式=22311160.524(1)4227-+-----⨯=11271644()44827-+-----⨯=118244-+-+=-6【答案】(1)6;(2)-6.20.解:(1)3与c 是对面;2与b 是对面;a 与﹣1是对面. ∵纸盒中相对两个面上的数互为相反数,∴a =1,b =﹣2,c =﹣3.(2)原式=22252[]634a b a b abc a b abc --++22252634a b a b abc a b =-+--22252364a b a b a b abc abc =--+-2abc =.当a =1,b =﹣2,c =﹣3时,原式=2×1×(﹣2)×(﹣3)(2)先去括号,然后再合并同类项,最后代入计算即可.【答案】(1)a =1,b =﹣2,c =﹣3; (2)原式=2abc ,当a b =﹣2,c =﹣3时,原式=12.四、解答题(共4个小题,每小题10分,共40分) 21.解:(1)去括号,得39101466x x x --+=-; 移项,得31066914x x x -+=+-; 合并同类项,得1x -=, 系数化为1,得1x =-.(2)去分母,得3(23)(5)62(73)x x x ---=-- 去括号,得6956146x x x --+=-+ 移项,得6661495x x x --=-+-合并同类项,得4x -=-, 系数化为1,得4x =【答案】(1)1x =-;(2)4x =. 22.第9页,共36页 第10页,共36页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:(1)如图,因为OD 是∠AOC 的平分线,所以∠COD = 12∠AOC .因为OE 是∠BOC 的平分线, 所以= 12∠BOC .所以∠DOE =∠COD + = 12(∠AOC +∠BOC )= 12∠AOB = °.(2)由(1)可知∠BOE =∠COE = ﹣∠COD = °. 所以∠AOE = ﹣∠BOE = °. 【知识点】角平分线的定义.【解题过程】解:(1)如图,因为OD 是∠AOC 的平分线,所以∠COD= 12∠AOC .因为OE 是∠BOC 的平分线,所以∠COE= 12∠BOC .所以∠DOE=∠COD+∠COE= 12(∠AOC+∠BOC )= 12∠AOB=90°.(2)由(1)可知∠BOE=∠COE=∠DOE ﹣∠COD=25°,所以∠AOE=∠AOB ﹣∠BOE=155°.【答案】(1)∠COE ;∠COE ;90;(2)∠DOE (或者90°);25;∠AOB (或者180°);155.23.解: 设此月人均定额为x 件,则甲组的总工作量为420x +()件,人均为4204x +件;乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件,乙组的总工作量为620x -()件,乙组人均为6205x -件.(1)∵两组人均工作量相等,∴4204x +=6205x -,解得:45x =.所以,此月人均定额是45件;(2)∵甲组的人均工作量比乙组多2件,∴4204x +2-=6205x -,解得:35x =,所以,此月人均定额是35件;(3)∵甲组的人均工作量比乙组少2件,∴4204x +6205x -=2-,解得:55x =,所以,此月人均定额是55件.【答案】(1)此月人均定额是45件;(2)此月人均定额是35件;(3)此月人均定额是55件. 24.解:(1)点C 在射线AB 上,如图:点M 是线段AB 的中点,点N 是线段BC 的三等分点, MB=12AB=3,BN=13CB=4,或BN=23BC=8,MN=BM+BN=3+4=7,或MN=BM+BN=3+8=11; (2)点C 在射线BA 上,如图:点M是线段AB的中点,点N是线段BC三等分点,MB=12AB=3,BN=13CB=4,或BN=23BC=8,MN=BN﹣BM=4﹣3=1,或MN=BN﹣BM=8﹣3=5.【答案】MN=7,或MN =11,MN=1,或MN =5.五、解答题(共2个小题,25小题10分,26小题12分,共22分)25.解:(1)设商铺标价为x万元,则按方案一购买,则可获投资收益(120%1)10%50.7x x x-+⨯=,投资收益率为0.7xx×100%=70%,按方案二购买,则可获投资收益120%80%9%530.58x x x-+⨯-=()(),投资收益率为0.580.8xx×100%=72.5%,故投资者选择方案二所获得的投资收益率更高;(2)设商铺标价为y万元,则甲投资了y万元,乙投资了0.8y 万元.由题意得0.70.587.2y y-=,解得:60y=,乙的投资是60×0.8=48万元故甲投资了60万元,乙投资了48万元.(2)利用(1)的表示,根据二者的差是7.2万元,即可列方程求解.【答案】(1)投资者选择方案二所获得的投资收益率更高;(2)甲投资了60万元,乙投资了48万元.26.解:(1)∵211002002||ab a++-=(),∴12ab+100=0,20a-∴a=20,b=﹣10,∴AB=20﹣(﹣10)=30,数轴上标出AB(2)∵6BC=且C在线段OB上,∴(10)6cx--=,∴C x =﹣4∵PB=2PC,当P在点B左侧时PB<PC,此种情况不成立,当P在线段BC上时,2P B c px x x x=--(),∴1024p px x+=-(-),6px=-,当P在点C右侧时,2p B p cx x x x=--(),∴1028p px x+=+,解得:p x=综上所述P点对应的数为﹣6或2.(3)第一次点P表示﹣1,第二次点P表示2,依次﹣3,﹣5,6…则第n次为1n n(-),点A表示20,则第20次移动P与A重合;点B表示﹣10 P与点B不重合.【答案】(1)AB=30,数轴上标出AB得:(2)P点对应的数为﹣6或2.(3)点A表示20,则第20次移动P与A重合;第11页,共36页第12页,共36页第13页,共36页 第14页,共36页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期末测试卷及答案(总分:120分 时间: 90分钟)一、选择题(每小题3分,共30分) 1.-6的相反数是( )A.16 B .-16 C .6 D .-6 2.下列算式:①(-1)2020=2020;②0-(-1)=1;③-12+13=-16;④12÷(-12)=-1;⑤2×(-3)2=36;⑥-3÷12×2=-3.其中正确的个数是( )A .1个B .2个C .3个D .4个 3.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000 kg 的煤所产生的能量.把130000000 kg 用科学记数法可表示为( )A .13×107kg B .0.13×108kg C .1.3×107kg D .1.3×108kg 4.下列运算正确的是( )A .x -(y -z)=x -y -zB .a -2(b -1)=a -2b+1C .4x 2y -3xy 2=1 D .2m 2n -3nm 2=-m 2n 5.如图是一个正方体,则它的表面展开图可以是( B )6.如图是某测绘装置上的一枚指针,原来指向南偏西50°,把这枚指针按逆时针方向旋转14周,则指针的指向是( )A.南偏东50° B .北偏西50° C .南偏东40° D .北偏西40°7.一支水笔与一把直尺平靠放在一起(如图),小明发现:水笔的笔尖端(A 点)正好对着直尺刻度约为5.6 cm 处,另一端(B 点)正好对着直尺刻度约为20.6 cm ,则水笔的中点位置的刻度约为( )A .15 cmB .7.5 cmC .13.1 cmD .12.1 cm8.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是( )题号一 二 三 总分 得分封线内不A.160元B.180元 C.200元 D.220元9.如图,∠AOD=∠BOC=60°,∠AOB=100°,下列结论:①∠COD=20°;②∠AOC=∠BOD;③∠BOD=40°;④∠AOC=40°.其中正确的是()A.① B.①②③ C.①②D.①②③④10.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈……按此规律排列,则第⑦个图形中小圆圈的个数为()A.64个B.77个 C.80个 D.85个二、填空题(每小题3分,共24分)11.如图,小明家在点A处,学校在点B处,则小明家到学校有____条路可走,一般情况下,小明通常走____路,其中的数学道理是__ __.12.若单项式mx5y n+1与23x a y4的和等于0,则m=___,____,n=___.13.如图是由6方体的边长为1看得到的平面图形中,最小面积为____.14.若3x n-(m-1)x+1为三次二项式,则-m+n2=15.A,B两点在数轴上,且点A对应的数为2,若线段的长为3,则点B对应的数为__ __.16.七(1)费人均15元,后来又有4果每人可以少摊3元,设原来兴趣小组的同学有x方程为____17.在数轴上表示a,b,c示,下列各式:①b+a+(-c)>0;②a|a|+b|b|+c|c|=1第15页,共36页第16页,共36页第17页,共36页 第18页,共36页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题bc -a >0;④|a -b|-|c +b|+|a -c|=-2b.其中正确的有__ __.(填序号)18.如图,下面每个图形中的四个数都是按相同的规律填写的,根据规律确定x 的值为__370__.三、解答题(共66分) 19.(8分)计算: (1)-23-3×(-1)2017-9÷(-3); (2)(13-37)×42-(3-9)2×|-16|.20.(7分)已知(x +1)2+|y -12|=0,求2(xy 2+x 2y)-[2xy2-3(1-x 2y)]-2的值.21.(7分)已知A =-3x 2-2mx +3x +1,B =2x 2+2mx -1,且2A +3B 的值与x 无关,求m 的值.22.(8分)已知关于x 的方程x -m 2=x +m 3与x +23=3x -2的解互为倒数,求m 的值.23.(8分)某书店出售词典和数学练习册,词典每本24元,练习册每本5元,该书店规定两种优惠方法:①买一本词典赠送一本练习册;②按总价的90%付款.某学生购买词典5本,练习册若干本(不少于5本),若设购买练习册x 本.(1)计算两种不同的收费;(用含x 的代数式表示) (2)当该学生购买多少本练习册时,两种方法的付款相同?24.(8分)如图,已知点E 是AB 的中点,点F 是CD 的中点,且BD =13AB =14CD ,EF =10 cm ,求AC 的长.25.(10分)儿童公园的门票价格规定如下:购票人数1~50 51~100 100以上每人门票价 13元11元9元某校七年级甲、乙两班共104人去游公园,其中甲班人数较多,有50多人,经计算,如果两班都以班为单位分别购票,则一共应付1240元.问:(1)两班各有多少学生?(2)如果两班联合起来作为一个团体购票,可以省多少钱?26.(10分)已知点O 为直线AB 上的一点,∠COE 是直角,OF 平分∠AOE.(1)如图①,若∠COF =34°,则∠BOE =__ °__;若∠COF =m °,则∠BOE =__ __;∠BOE 与∠COF 的数量关系为__ __;(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.参考答案一、选择题(每小题3分,共30分)1.C 2.C 3.D 4.D 5.B 6. C 7.C 8.C 9.D 10.D二、填空题(每小题3分,共24分)11. _3__ __②__ __两点之间,线段最短__.12,m=__-23__,a=__5__,n=__3__.12,__3__.14.若3x n-(m-1)x+1为三次二项式,则-m+n2=__8__.15._-1或5__.16._15x=(15-3)(x+4)__17._②④__.18.__370__.三、解答题(共66分)19.解:原式=-2 解:原式=-1020.解:依题意,得x=-1,y=12,原式=1-x2y=1221.解:由已知得2A+3B=2(-3x2-2mx+3x+1)+3(+2mx-1)=(6+2m)x-1.因为2A+3B的值与x+2m=0,解得m=-322.解:解方程x+23=3x-2,得x=1.与1仍为1,则1-m2=1+m3,解得m=-3523.解:(1)①(5x+95)元;②(108+4.5x)元(2)由题意得5x+95=108+4.5x,解得x=26,则购买本练习册时,两种方法的付款相同24.解:设BD=x,因为13AB=14CD=BD,所以AB=3BD=CD=4BD=4x,因为点E为AB的中点,所以BE=12AB=32x 为点F为CD的中点,所以DF=12CD=2x,所以BF=DF-2x-x=x,所以EF=BE+BF=32x+x=52x,因为EF=1052x=10,解得x=4,所以AB=3x=12,CD=4x=16,DB=4,所以BC=CD-BD=16-4=12,所以AC=AB+BC=12=24(cm)第19页,共36页第20页,共36页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题25.解:(1)设甲班有学生x 人,则乙班有学生(104-x )人,分两种情况:①甲班多于50人,乙班也多于50人,则有11x +11(104-x )=1240,无解;②甲班多于50人,乙班少于50人,则有11x +13(104-x )=1240,解得x =56,则104-56=48(人),则甲班有学生56人,乙班有学生48人 (2)1240-9×104=304(元),则可以省304元26.(1),__68°__;,__2m °__;,__∠BOE =2∠COF __; (2),解:(2)∠BOE 和∠COF 的关系仍然成立.理由:因为∠COE 是直角,所以∠EOF =90°-∠COF.又因为OF 平分∠AOE ,所以∠AOE =2∠EOF ,所以∠BOE =180°-∠AOE =180°-2(90°-∠COF )=2∠COF人教版2020—2021学年度上学期七年级数学(上)期末测试卷及答案(总分:120分 时间: 90分钟)一、单项选择题(每题3分,共36分)1.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米. A .0.34×108B .3.4×106C .34×106D .3.4×1072.如图1所示,将一个正四棱锥(底面为正方形,四条侧棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是( ) A .PA ,PB ,AD ,BC B .PD ,DC ,BC ,AB C.PA ,AD ,PC ,BCD .PA ,PB ,PC ,AD3.已知2x 3y 2和﹣x 3m y 2是同类项,则式子4m ﹣24的值是( )A .20B .﹣20C .28D .﹣28题号 一 二 三 总分 得分内 不4.方程4(a-x)-4(x+1)=60的解是x=-2,则a 的值是( )A .22B .-14C .18D .125.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:甲:b ﹣a <0;乙:a+b >0;丙:|a|<|b|;丁:ab >0,其中正确的是( )A .甲、乙B .丙、丁C .甲、丙D .乙、丁 6.下列运算中结果正确的是( )A .3a+2b=5abB .﹣4xy+2xy=﹣2xyC .3y 2﹣2y 2=1 D .3x 2+2x=5x 37.下列四个生产生活现象,可以用基本事实“两点之间线段最短”来解释的是( )A .用两个钉子就可以把木条固定在墙上B .植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C .从A 地到B 地架设电线,总是尽可能沿着线段AB 来架设D .打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上8.如图,OA ⊥OB ,若∠1=40°,则∠2的度数是( )A .20°B .40°C .50°D .60°9.钟表在3点30分时,它的时针和分针所成的角是( A .75°B .80°C .85°D .90°10.如图,一条流水生产线上L 1、L 2、L 3、L 4、L 5人在工作,现要在流水生产线上设置一个零件供应站P 使五人到供应站P 置是( )A .L 2处B .L 3处C .L 4处D .生产线上任何地方都一样11.行绿化.的两端各栽一棵,并且每两棵树的间隔相等.如果每隔51棵,则树苗缺21棵;如果每隔6米栽1棵,原有树苗x 棵,则根据题意列出方程正确的是 ( )A .5(x+21-1)=6(x -l)B . 5(x+21)=6(x -l) C. 5(x+21-1)=6x D . 5(x+21)=6x12.观察算式,探究规律:密线学校 班级 姓名 学号密 封 线 内 不 得 答 题当n=1时,S 1=13=1=12;当n=2时,;当n=3时,;当n=4时,;…那么S n 与n 的关系为( )A .B .C .D .一 、填空题(每题3分,共18分)13.已知:|x|=3,|y|=2,且xy <0,则x+y 的值为等于 .14.35.36度= 度 分 秒.15.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的16个点最多可确定 条直线.16.如图所示,∠AOB 是平角,∠AOC=30°,∠BOD=60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,∠MON 等于 度.17.已知∠α=36°14′25″,则∠α的余角的度数是 .18.有一列数﹣,,﹣,,…那么第9个数是 . 二 、解答题(共66分)19.(8分)2(-3xy+x 2)-[2x 2-3(5xy-2x 2)-xy] 20.(8分)解方程:21.(9分)计算:32°45′48″+21°25′14″.22.(9分)化简:5(3x 2y-xy 2)-4(-xy 2+3x 2y)23.(10分)已知,x y y x -=-且3,4x y ==,试求3()x y +的值 24.(10分)一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池? 25.(12分)同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x ﹣3|也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=__________. (2)若|x ﹣2|=5,则x=__________(3)同理|x ﹣4|+|x+2|=6表示数轴上有理数x 所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得|x ﹣4|+|x+2|=6,这样的整数是__________.参考答案一、1.A。

2020年人教版七年级上学期数学期末考试测试试卷(附答案)

2020年人教版七年级上学期数学期末考试测试试卷(附答案)

人教版七年级上学期数学期末考试测试试卷一、选择题(本题共30分,每小题3分)下列每小题的四个选项中,只有一个是正确的.1.的相反数是( )A.B.2 C.﹣2 D.2.若收入500元记作500元,则支出237元应记作( )A.﹣500元B.﹣237元C.237元D.500元3.在一次扶贫助残活动中,共捐款2 580 000元.将2 580 000用科学记数法表示为( ) A.2.58×107B.0.258×107C.25.8×106D.2.58×1064.下列各组数中,相等的一组是( )A.(﹣3)2与﹣32B.﹣32与|﹣3|2C.(﹣3)3与﹣33D.|﹣3|3与(﹣3)35.下列各组中,不是同类项的是( )A.x3y4与x3z4B.3x与﹣xC.5ab与﹣2ba D.﹣3x2y与6.如果1是关于x方程x+2m﹣5=0的解,则m的值是( )A.﹣4 B.4 C.﹣2 D.27.如图,已知线段AB=12cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为( )A.5cm B.4cm C.3cm D.2cm8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32015的个位数字是( )A.3 B.9 C.7 D.19.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的有( )①a<b<0;②|a|>|b|;③a•b>0;④b﹣a>0;⑤a+b<0.A.5个B.4个C.3个D.2个10.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )A.B.C.D.二、填空题(本题共10分,每小题2分)11.如果|a﹣2|+(b+3)2=0,那么代数式(a+b)2015=__________.12.将16.8°换算成度、分、秒的结果是__________.[来源:学*科*网]13.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为__________元.14.要把一根木条在墙上钉牢,至少需要__________枚钉子.其中的道理是__________.15.用[x]表示不大于x的整数中最大整数,如[2.4]=2,[﹣3.1]=﹣4,请计算=__________.三、计算题(本题共22分,其中第16、17、18每小题4分,第19、20每小题4分)16.14﹣(﹣12)+(﹣25)﹣7.17..18..19..20.化简求值:(3a2﹣a﹣1)﹣2(3﹣a+2a2),其中a2﹣a=2.四、解方程(本题共12分,每小题4分)21.5x﹣(2x﹣5)=3.22.=.23.﹣=1.五、列方程解应用题(本题共10分,每小题5分)24.我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?25.某车间共有75名工人生产A、B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套,设车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?六、解答题(本题共16分.其中26题4分,27、28题各6分)26.如图,在直线MN的异侧有A、B两点,按要求画图取点,并注明画图取点的依据.(1)在直线MN上取一点C,使线段AC最短.依据是__________.(2)在直线MN上取一点D,使线段AD+BD最短.依据是__________.27.如图,∠AOB=90°.按要求完成下面画图和计算.(1)过点O画射线OC,使∠BOC=60°;(2)画∠AOC的平分线OD;(3)求出∠AOD的度数.28.如图,已知数轴上有A、B、C三点,分别表示有理数﹣26、﹣10、10,动点P从点A 出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.答案一、选择题(本题共30分,每小题3分)下列每小题的四个选项中,只有一个是正确的.1.的相反数是( )A.B.2 C.﹣2 D.考点:相反数.分析:直接利用相反数的定义得出即可.解答:解:的相反数是:.故选:A.点评:此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.若收入500元记作500元,则支出237元应记作( )A.﹣500元B.﹣237元C.237元D.500元考点:正数和负数.分析:根据正数和负数表示相反意义的量,收入记为正,可得支出表示方法.解答:解:收入500元记作500元,则支出237元应记作﹣237元,故选:B.点评:本题考查了正数和负数,相反意义的量用正数和负数表示.3.在一次扶贫助残活动中,共捐款2 580 000元.将2 580 000用科学记数法表示为( ) A.2.58×107B.0.258×107C.25.8×106D.2.58×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2 580 000用科学记数法表示为2.58×106,故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中,相等的一组是( )A.(﹣3)2与﹣32 B.﹣32与|﹣3|2C.(﹣3)3与﹣33 D.|﹣3|3与(﹣3)3考点:有理数的乘方;绝对值.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、(﹣3)2=9,﹣32=﹣9,不相等;B、﹣32=﹣9,|﹣3|2=9,不相等;C、(﹣3)3与﹣33=﹣27,相等;D、|﹣3|3=27,(﹣3)3=﹣27,不相等.故选C.点评:此题考查了有理数的乘方,以及绝对值,熟练掌握乘方的意义是解本题的关键.5.下列各组中,不是同类项的是( )A.x3y4与x3z4B.3x与﹣xC.5ab与﹣2ba D.﹣3x2y与考点:同类项.分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,即可作出判断.解答:解:A、所含的字母不同,不是同类项;B、C、D是同类项.故选A.点评:本题考查了同类项定义,定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了2015届中考的常考点.6.如果1是关于x方程x+2m﹣5=0的解,则m的值是( )A.﹣4 B.4 C.﹣2 D.2考点:一元一次方程的解.分析:将x=1代入即可得出m即可.解答:解:∵x=1是关于x方程x+2m﹣5=0的解,∴1+2m﹣5=0,∴m=2,故选D.点评:本题考查了一元一次方程的解,方程的解就是能够使方程左右两边相等的未知数的值.7.如图,已知线段AB=12cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为( )A.5cm B.4cm C.3cm D.2cm考点:两点间的距离.分析:根据线段中点的性质,可得MB的长,根据线段的和差,可得答案.解答:解:由M是AB中点,得MB=AB=×12=6cm,由线段的和差,得MN=MB﹣NB=6﹣2=4cm,故选:B.点评:本题考查了两点间的距离,利用了线段中点的性质,线段的和差.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32015的个位数字是( )A.3 B.9 C.7 D.1考点:尾数特征.分析:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,可知3的乘方的末位数字以3、9、7、1四个数字为一循环,用32015的指数2015除以4得到的余数是几就与第几个数字的末位数字相同,由此解答即可.解答:解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2015÷4=503…3,∴32015的末位数字与33的末位数字相同是7.故选C.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.9.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的有( )①a<b<0;②|a|>|b|;③a•b>0;④b﹣a>0;⑤a+b<0.A.5个B.4个C.3个D.2个考点:有理数大小比较;数轴.分析:根据数轴得出a<0<b,|a|>|b|,再根据有理数的加法、减法、乘法法则进行判断即可.解答:解:∵从数轴可知:a<0<b,|a|>|b|,∴①错误;②正确;ab<0,b﹣a>0,a+b<0,∴③错误;④正确;⑤正确;即正确的有3个,故选C.点评:本题考查了数轴,有理数的大小比较,有理数的加法、减法、乘法法则的应用,主要考查学生对法则的理解能力,难度不是很大.10.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )A.B.C.D.考点:展开图折叠成几何体.专题:探究型.分析:将A、B、C、D分别展开,能和原图相对应的即为正确答案.解答:解:A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.点评:本题考查了展开图折叠成几何体,熟悉其侧面展开图是解题的关键.二、填空题(本题共10分,每小题2分)11.如果|a﹣2|+(b+3)2=0,那么代数式(a+b)2015=﹣1.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:根据绝对值和偶次方的非负性求出a、b的值,再代入求出即可.解答:解:∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,∴(a+b)2015=(2﹣3)2015=﹣1,故答案为:﹣1.点评:本题考查了绝对值和偶次方的非负性,求代数式的值的应用,解此题的关键是求出a、b的值,难度不是很大.12.将16.8°换算成度、分、秒的结果是16°48′.考点:度分秒的换算.分析:根据将高级单位化为低级单位时,乘以60,即可求得答案.解答:解:16.8°=16°+0.8×60′=16°+48′=16°48′.故答案为:16° 48'.点评:此类题考查了进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.13.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为96元.考点:有理数的乘法.专题:应用题.分析:本题考查的是商品销售问题.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为120×80%.解答:解:根据题意可得:120×80%=96元.故答案为:96.点评:本题比较容易,考查根据实际问题进行计算.14.要把一根木条在墙上钉牢,至少需要两枚钉子.其中的道理是两点确定一条直线.考点:直线的性质:两点确定一条直线.分析:根据两点确定一条直线解答.解答:解:把一根木条钉牢在墙上,至少需要两枚钉子,其中的道理是:两点确定一条直线.故答案为:两,两点确定一条直线.点评:本题主要考查了直线的性质,熟记两点确定一条直线是解题的关键.15.用[x]表示不大于x的整数中最大整数,如[2.4]=2,[﹣3.1]=﹣4,请计算=0.考点:有理数大小比较.专题:新定义.分析:根据题意得出[5.5]及[﹣4]的值,进而可得出结论.解答:解:∵用[x]表示不大于x的整数中最大整数,∴[5.5]=5,[﹣4]=﹣5,∴原式=5﹣5=0.故答案为:0.点评:本题考查的是有理数的大小比较,此题属新定义型题目,比较简单.三、计算题(本题共22分,其中第16、17、18每小题4分,第19、20每小题4分)16.14﹣(﹣12)+(﹣25)﹣7.考点:有理数的加减混合运算.分析:先把减法变成加法,再写出省略加号的形式,最后按加法法则计算即可.解答:解:14﹣(﹣12)+(﹣25)﹣7=14+12+(﹣25)+(﹣7)=26﹣25﹣7=1﹣7=﹣6.点评:本题考查了有理数的加减混合运算,主要考查学生的计算能力,注意:运算步骤①先把减法变成加法,②再写出省略加号的形式,③最后按加法法则计算.17..考点:有理数的混合运算.分析:先算除法,再算乘法,最后算加法,由此顺序计算即可.解答:解:原式=﹣1+(﹣2)×(﹣)×=﹣1+1=0.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.18..考点:有理数的乘法.专题:计算题.分析:原式利用乘法分配律计算即可得到结果.解答:解:原式=18﹣4+9=23.点评:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.19..考点:有理数的混合运算.分析:先算乘方,再算乘法和除法,最后算减法,由此顺序计算即可.解答:解:原式=﹣16÷(﹣8)﹣×4=2﹣1=1.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.20.化简求值:(3a2﹣a﹣1)﹣2(3﹣a+2a2),其中a2﹣a=2.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把已知等式代入计算即可求出值.解答:解:原式=3a2﹣a﹣1﹣6+2a﹣4a2=﹣a2+a﹣7=﹣(a2﹣a)﹣7,把a2﹣a=2代入得:原式=﹣2﹣7=﹣9.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.四、解方程(本题共12分,每小题4分)21.5x﹣(2x﹣5)=3.考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,把x系数化为1,即可求出解.解答:解:去括号得:5x﹣2x+5=3,移项合并得:3x=﹣2,解得:x=﹣.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.=.考点:解一元一次方程.专题:计算题.分析:方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:去分母得:4(2x﹣1)=3(x﹣3),去括号得:8x﹣4=3x﹣9,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.23.﹣=1.考点:解一元一次方程.专题:计算题.分析:方程整理后,去分母,去括号,移项合并,把未知数系数化为1,即可求出解.解答:解:方程整理得:﹣=1,去分母得:4x+4﹣9x+15=12,移项合并得:﹣5x=﹣7,解得:x=.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.五、列方程解应用题(本题共10分,每小题5分)24.我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?考点:二元一次方程组的应用.专题:应用题.分析:设中国人均淡水资源占有量为xm3,美国人均淡水资源占有量为ym3,根据题意所述等量关系得出方程组,解出即可得出答案.解答:解:设中国人均淡水资源占有量为xm3,美国人均淡水资源占有量为ym3.根据题意得:,解得:.答:中、美两国人均淡水资源占有量各为2300m3,11500m3.点评:此题考查了二元一次方程组的应用,解答本题的关键是设出未知数,根据题意所述等量关系得出方程组,难度一般.25.某车间共有75名工人生产A、B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套,设车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?考点:一元一次方程的应用.专题:应用题.分析:设该车间分配x名工人生产A种工件,(75﹣x)名工人生产B种工件才能保证连续安装机械时两种工件恰好配套,根据题意列出方程,求出方程的解即可得到结果.解答:解:设该车间分配x名工人生产A种工件,(75﹣x)名工人生产B种工件才能保证连续安装机械时两种工件恰好配套,根据题意得2×15x=20(75﹣x),解得:x=30,则75﹣x=45,答:该车间分配30名工人生产A种工件,45名工人生产B种工件才能保证连续安装机械时两种工件恰好配套.点评:此题考查了一元一次方程的应用,弄清题意是解本题的关键.六、解答题(本题共16分.其中26题4分,27、28题各6分)26.如图,在直线MN的异侧有A、B两点,按要求画图取点,并注明画图取点的依据.(1)在直线MN上取一点C,使线段AC最短.依据是垂线段最短.(2)在直线MN上取一点D,使线段AD+BD最短.依据是两点之间线段最短.考点:垂线段最短;线段的性质:两点之间线段最短.分析:(1)过A作AC⊥MN,AC最短;(2)连接AB交MN于D,这时线段AD+BD最短.解答:解:(1)过A作AC⊥MN,根据:垂线段最短.(2)连接AB交MN于D,根据是:两点之间线段最短.点评:此题主要考查了垂线段的性质和线段的性质,关键是掌握垂线段最短;两点之间线段最短.27.如图,∠AOB=90°.按要求完成下面画图和计算.(1)过点O画射线OC,使∠BOC=60°;(2)画∠AOC的平分线OD;(3)求出∠AOD的度数.考点:作图—基本作图.分析:首先分两种情况:①OC在∠AOB内,②OC在∠AOB外,然后再画出图形,根据角平分线的性质求解即可.解答:解:如图所示:∵∠AOB=90°,∠BOC=60°,∴图1:∠AOC=90°﹣60°=30°图2:∠AOC=90°+60°=150°,∵OD平分∠AOC,∴∠AOD=∠AOC=15°或∠AOD=75°.点评:此题主要考查了角平分线的性质和画法,关键是正确画出图形.28.如图,已知数轴上有A、B、C三点,分别表示有理数﹣26、﹣10、10,动点P从点A 出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.考点:一元一次方程的应用;数轴.分析:分两种情况:(1)点Q追上点P之前相距2个单位长度.设此时点Q从A点出发t 秒钟.根据点P和点Q相距2个单位长度列出方程(16+t)﹣3t=2;(2)点Q追上点P之后相距2个单位长度.设此时点Q从A点出发m秒钟.根据点P和点Q相距2个单位长度列出方程3m﹣(16+m)=2.解答:解:有两种情况:(1)点Q追上点P之前相距2个单位长度.设此时点Q从A点出发t秒钟.依题意,得(16+t)﹣3t=2,解得,t=7.此时点Q在数轴上表示的有理数为﹣5;(2)点Q追上点P之后相距2个单位长度.设此时点Q从A点出发m秒钟.依题意,得3m﹣(16+m)=2,解得,m=9.此时点Q在数轴上表示的有理数为1.综上所述,当点Q从A点出发7秒和9秒时,点P和点Q相距2个单位长度,此时点Q在数轴上表示的有理数分别为﹣5和1.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

人教版2020年七年级上册数学期末试题带答案

人教版2020年七年级上册数学期末试题带答案

七年级上册数学期末试题年七年级上册期末考试学试题,每题 3 分,共计30分,))A.−(−2)B.|−2|C.(−2)3D.(−2)22. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么−80元表示()A.支出20元B.收入20元C.支出80元D.收入80元3. 若|x−2|与(y−1)2互为相反数,则多项式−y−(x2+2y2)的值为()A.−7B.5C.−5D.−134. 如果15a2b2与−14a x+1b4x−y是同类项,则x、y的值分别是()A.{x=1y=2 B.{x=2y=2 C.{x=1y=1 D.{x=2y=35. 解方程x−13=1−3x+16,去分母后,结果正确的是()A.2(x−1)=1−(3x+1)B.2(x−1)=6−(3x+1)C.2x−1=1−(3x+1)D.2(x−1)=6−3x+16. 某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x人生产甲种零件,则根据题意可列方程( )A.12x=62(23−x)B.3×12x=2×23(62−x)C.2×12x=3×23(62−x)D.35×23(62−x)=12x7. 如图,点A,B,C顺次在直线上,点M是线段AC的中点,点N是线段BC的中点,已知AB=16cm,MN=( )A.6cmB.8cmC.9cmD.10cm8. 如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为( )A.20cm 2B.100cm 2C.64cm 2D.80cm 29. 若整数a 使关于x 的方程x +2a =1的解为负数,且使关于的不等式组{−12(x −a)>0x −1≥2x+13 无解,则所有满足条件的整数a 的值之和是( ) A.5 B.7 C.9 D.1010. 如图,把一张长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠AED′=50∘,则∠D′EF 等于( )A.50∘B.55∘C.60∘D.65∘二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 , )11. 计算:(−7)−(+5)+(+13)=________.12. 数轴上,点B 在点A 的右边,已知点A 表示的数是−2,且AB =5.那么点B 表示的数是________.13. 已知代数式2a 3b n+1与−3a m−2b 2是同类项,则2m +3n =________.14. 按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a +b)c =________.15. M 、N 是数轴上的二个点,线段MN 的长度为3,若点M 表示的数为−1,则点N 表示的数为________.16. 方程2x−◼2−x−32=1中有一个数字被墨水盖住了,查后面的答案,知道这个方程的解是x =−1,那么墨水盖住的数字是________.17. 已知整式(m −n −1)x 3−7x 2+(m +3)x −2是关于x 的二次二项式,关于y 的方程(3n −3m)y =−my −5的解为________=56.七年级上册数学期末试题 18. 一列方程如下排列:x 4+x−12=1的解是x=2,x 6+x−22=1的解是x=3,x 8+x−32=1的解是x=4,…根据观察得到的规律,写出其中解是x=6的方程:________.三、解答题(本题共计 8 小题,每题 10 分,共计80分,)19. 计算:(1)(32−23+34)×(−24)(2)−42−56÷22×(−17)−120. 化简(1)3(4m2−3m+2)−2(1−4m2+m)(2)3x2y−[2xy2−(5x2y−3xy2)+4x2y]−xy21. 先化简,再求值:(−2ab+3a)−2(2a−b)+2ab,其中a=3,b=1.22. 如图,点A、B、C为数轴上的点,请回答下列问题:(1)将点A向右平移3个单位长度后,点A,B,C表示的数中,哪个数最小?(2)将点C向左平移6个单位长度后,点A表示的数比点C表示的数小多少?(3)将点B向左平移2个单位长度后,点B与点C的距离是多少?23. 已知代数式A=2x2+3xy+2y−1,B=x2−xy+x−1.2(1)当x=y=−2时,求A−2B的值;(2)若A−2B的值与x的取值无关,求y的值.24. 如图,OB为∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOB=40∘,∠DOE=30∘,那么∠BOD为多少度?(2)如果∠AOE=140∘,∠COD=30∘,那么∠AOB为多少度?25. 为了鼓励市民节约用水,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如表:请根据上表的内容解答下列问题:(1)若某户居民11月份用水a立方米(其中8<a<12),请用含a的代数式表示应收水费.(2)若某户居民12月份交水费56元,则用水量为多少立方米?七年级上册数学期末试题26. 如图,在数轴上点A,点B,点C表示的数分别为−2,1,6.(1)线段AB的长度为________个单位长度,线段AC的长度为________个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为________个单位长度,点P在数轴上表示的数为________;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x 秒.点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.参考答案与试题解析一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.C2.C3.A4.A5.B6.C7.B8.D9.D10.D二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 ) 11.112.313.1314.11615.−4或216.017.y 18.x 12+x−52=1三、 解答题 (本题共计 8 小题 ,每题 10 分 ,共计80分 ) 19.【答案】(32−23+34)×(−24) =−36+16+(−18)=−38;−42−56÷22×(−17)−1 =−16−56÷4×(−17)−1=−16−14×(−17)−1 =−16+2−1=−15.20.【答案】3(4m 2−3m +2)−2(1−4m 2+m)=12m 2−9m +6−2+m 2−2m=13m 2−11m +4;3x 2y −[2xy 2−(5x 2y −3xy 2)+4x 2y]−xy=3x 2y −[2xy 2−5x 2y +3xy 2+4x 2y]−xy=3x 2y −2xy 2+5x 2y −3xy 2−4x 2y −xy=4x 2y −5xy 2−xy .21.【答案】原式=−2ab +3a −4a +2b +2ab =−a +2b ,当a =3,b =1时,原式=−3+2=−1.22.【答案】如图所示,则点B 表示的数最小;如图所示:−2−(−3)=1.故点A 表示的数比点C 表示的数小1;七年级上册数学期末试题如图所示:点B与点C的距离为4−(−3)=4+3=7.23.【答案】)解:(1)A−2B=2x2+3xy+2y−1−2(x2−xy+x−12=2x2+3xy+2y−1−2x2+2xy−2x+1=5xy+2y−2x,当x=y=−2时,A−2B=5xy+2y−2x=5×(−2)×(−2)+2×(−2)−2×(−2)=20;(2)由(1)可知A−2B=5xy+2y−2x=(5y−2)x+2y,若A−2B的值与x的取值无关,则5y−2=0,.解得y=2524.【答案】解:(1)如图,∵OB为∠AOC的平分线,OD是∠COE的平分线,∴∠AOB=∠BOC,∠DOE=∠DOC,∴∠BOD=∠BOC+∠DOC=∠AOB+∠DOE=40∘+30∘=70∘.(2)如图,∵OD是∠COE的平分线,∠COD=30∘,∴∠EOC=2∠COD=60∘.∵∠AOE=140∘,∠AOC=∠AOE−∠EOC=80∘,又∵OB为∠AOC的平分线,∴∠AOB=1∠AOC=40∘.225.【答案】该户居民11月份应交水费(3.6a−6.4)元.(2)设该户居民12月份用水量为x立方米,当x≤8时,有2.8x=56,解得:x=20(舍去);当8<x≤12时,有3.6x−6.4=56,(舍去);解得:x=523当x>12时,有2.8×8+(12−8)×3.6+4.8(x−12)=56,解得:x=16.答:该户居民12月份用水量为16立方米.26.【答案】3,8(3−t)或(t−3),−2+t ;−2+t。

2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。

2020年人教版七年级上册数学期末试卷及答案

2020年人教版七年级上册数学期末试卷及答案

人教版七年级第一学期期末试卷四数学(满分100分,考试时间100分钟)一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后括号内.1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,则“”内应填的实数是( )A .32B .23C .23-D .32-3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab <D .0a b -<4. 下面说法中错误的是( ).A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×104 5. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是( )A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱6. 如果a <0,-1<b <0,则a ,ab ,2ab 按由小到大的顺序排列为( )A .a <ab <2abB .a <2ab <abC .ab <2ab <aD .2ab <a <ab7.在解方程5113--=x x 时,去分母后正确的是( ) A .5x =15-3(x -1) B .x =1-(3 x -1) C .5x =1-3(x -1) D .5 x =3-3(x -1) 8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -2 9. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )bA .2m n - B .m n - C .2m D .2n图1 图2 从正南方向看 从正西方向看第7题 第8题 10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这 个几何体最多可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个 二、填空题:本大题共10小题,每小题3分,共30分. 11.多项式132223-+--x xy y x x 是_______次_______项式12.三视图都是同一平面图形的几何体有 、 .(写两种即可) 13.若ab ≠0,则等式a b a b +=+成立的条件是______________. 14.若2320a a --=,则2526a a +-= .15.多项式223368x kxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果 是________________.18.一个角的余角比它的补角的32还少40°,则这个角为 度. 19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。

2020人教版七年级上册期末数学试卷(附答案)

2020人教版七年级上册期末数学试卷(附答案)

一、选择题(共12小题,每小题2分,满分24分))2.下列调查方式的选取不合适的是())3.以下四个语句中,错误的是(A.两点确定一条直线B.0.1°=6′C.最大的负整数是﹣1D.射线A B 与射线B A 是同一条射线)5.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2D.3x2y﹣2yx2=x2y)A.8.2×107B.82×105C.8.2×106D.0.82×1077.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国8.用代数式表示“a与﹣2014的差的2倍”是()的是()方形,则此正方形的边长是())A. 5 或﹣5 B.13或﹣13 C.5 或13 D.5 或﹣13)二、填空题(共5小题,每小题3分,满分15分)...是.(2)1×[3×()2﹣1]﹣4÷(﹣2)3.19.如图,是由3 个相同的小立方块搭成的几何体,请分别画出从正面、左面、上面看到名学生;.22.观察如表三行数的规律,回答下列问题:第1 列第2列第3 列第4列第5 列第6列…第1 行﹣24﹣8a﹣3264…;第3 行的第六个数b 是;;(2)若|a+1|+(b﹣2)2=0,求A 的值.因和方法.(1)阅读下列材料:问题:利用一元一次方程将0.7化成分数.解:设0.7=x.可解得x= ,即0.7=.(2)填空:将0.2写成分数形式为.(3)请你仿照上述方法把0.化成分数,要求写出利用一元一次方程进行解答的过程.(3)当点P 以每秒5个单位长度的速度从原点向右运动时,点A 以每秒5 个单位长度的速度向右运动,点B 以每秒4个单位长度的速度向右运动,问它们同时出发,几秒后P 到点A,点B 的距离相等?参考答案与试题解析),)C.为了解人们保护水资源的意识,采取抽样调查的方式D.为了解全班同学的睡眠状况,采用普查的方式考点:全面调查与抽样调查.分析:根据全面调查和抽样调查的特点和它们的优缺点对各选项进行判断.解答:解:A、为了解全市初中生每周“阳光体育”的时间,采取抽样调查的方式,调查方式的选取合适;B、对“嫦娥三号”卫星零部件的检查,采取全面调查的方式,调查方式的选取不合适;C、为了解人们保护水资源的意识,采取抽样调查的方式,调查方式的选取合适;D、为了解全班同学的睡眠状况,采用普查的方式,调查方式的选取合适.故选B.点评:本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.3.以下四个语句中,错误的是()A.两点确定一条直线B.0.1°=6′C.最大的负整数是﹣1D.射线A B 与射线B A 是同一条射线考点:直线、射线、线段;有理数;直线的性质:两点确定一条直线;度分秒的换算.分析:根据直线的性质判断A;根据1°=60′可得0.1°=6′,从而判断B;根据有理数的定义判断C;根据射线的表示方法判断D.解答:解:A、两点确定一条直线,说法正确;B、0.1°=6′,说法正确;C、最大的负整数是﹣1,说法正确;D、射线A B 与射线B A 是同一条射线,说法错误.故选D.点评:本题考查了射线的表示方法:可用一个小写字母表示,如:射线l;还可用两个大写字母表示,端点在前,如:射线O A.注意:用两个字母表示时,表示端点的字母放在前边.也考查了直线的性质公理,度分秒的换算以及有理数的定义.4.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()A.①②④B.①②③C.②③④D.①③④考点:截一个几何体.分析:根据圆锥、圆柱、球、五棱柱的形状特点判断即可.解答:解:圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2D.3x2y﹣2yx2=x2y考点:合并同类项.点评:本题考查了合并同类项,系数相加字母部分不变,注意不是同类项的不能合并.)A.8.2×107B.82×105C.8.2×106D.0.82×107考点:科学记数法—表示较大的数.7.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国8.用代数式表示“a与﹣2014的差的2倍”是()A.a﹣(﹣2014)×2 B.a+(﹣2014)×2 C.2(a﹣2014)D.2(a+2014)考点:列代数式.分析:首先算出a与﹣2014的差为a+2014,再乘2 列出代数式即可.解答:解:“a与﹣2014的差的2倍”是2[a﹣(﹣2014)]=2(a+2014).故选:D.点评:此题考查列代数式,找出题目叙述的运算顺序与方法是解决问题的关键.9.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8 元.设每个双肩背书包的进价是x 元,根据题意列一元一次方程,正确的是()A.(1+50%)x•80%﹣x=8 B.50%x•80%﹣x=8C.(1+50%)x•80%=8 D.(1+50%)x﹣x=8考点:由实际问题抽象出一元一次方程.分析:首先根据题意表示出标价为(1+50%)x,再表示出售价为(1+50%)x•80%,然后利用售价﹣进价=利润即可得到方程.解答:解:设每个双肩背书包的进价是x 元,根据题意得:(1+50%)x•80%﹣x=8.故选:A.点评:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,根据等量关系列出方程.10.一个长方形的周长是18cm,若这个长方形的长减少1,宽增加2,就可以成为一个正方形,则此正方形的边长是()A.5c m B.6cm C.7c m D.8cm考点:一元一次方程的应用.专题:几何图形问题.分析:让周长除以2减去长方形的长即为长方形的宽,等量关系为:长﹣1=宽+2,把相关数值代入即可.解答:解:设长方形的长为xcm,则长方形的宽为(18÷2﹣x)cm,∵长减少1cm 为(x﹣1),宽增加2cm 为:(18÷2﹣x+2),∴列的方程为:x﹣1=18÷2﹣x+2,解得:x=6.∴x﹣1=6﹣1=5,即正方形的边长是5cm.故选:A.点评:此题主要考查了一元一次方程的应用,得到长方形的宽是解决本题的突破点,根据正方形的边长相等得到等量关系是解决本题的关键.11.若|a|=9,|b|=4,且a+b>0,那么a﹣b值为()A. 5 或﹣5 B.13或﹣13 C.5 或13 D.5 或﹣13考点:有理数的减法;绝对值;有理数的加法.分析:根据绝对值的性质,先求出a,b的值,然后根据a+b>0,确定a,b的值,最后代入a﹣b即可.解答:解:∵|a|=9,|b|=4,∴a=±9,b=±4,且a+b>0,∴a=9,b=4 或a=9,b=﹣4;∴a﹣b=5或a﹣b=13.则a﹣b的值是5或13,故选:C.点评:此题考查了有理数的减法及绝对值的意义,此题应注意的是:正数和负数的绝对值都是正数.如:|a|=9,则a=±9.12.如果有4 个不同的整数m、n、p、q满足=4,那么m+n+p+q 等于()A.8064 B.8060 C.8056 D.8052考点:有理数的乘法.分析:根据有理数的乘法运算法则列出结果为4 的运算算式,然后求解即可.解答:解:∵m、n、p、q 是四个不同的整数,(﹣1)×(﹣2)×1×2=4,∴2015﹣m,2015﹣n,2015﹣p,2015﹣q四个数的值分别为﹣1、﹣2、1、2,∴2015﹣m+2015﹣n+2015﹣p+2015﹣q=(﹣1)+(﹣2)+1+2,∴m+n+p+q=2015×4=8060.故选B.点评:本题考查了有理数的乘法,熟记运算法则并列式4的运算式是解题的关键.二、填空题(共5小题,每小题3分,满分15分)13.﹣0.5的倒数是﹣2 .考点:倒数.分析:根据倒数的定义,互为倒数的两数乘积为1,﹣0.5×(﹣2)=1 即可解答.解答:解:根据倒数的定义得:﹣0.5×(﹣2)=1,因此倒数是﹣2.故答案为:﹣2.点评:本题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.现规定一种运算a*b=ab+a﹣b,其中a,b为有理数,则3*5的值为13.考点:有理数的混合运算.专题:新定义.分析:原式利用题中的新定义计算即可得到结果.解答:解:根据题中的新定义得:3*5=15+3﹣5=13,故答案为:13点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.考点:同类项.分析:根据同类项的概念求解.解答:解:∵2x6y2和﹣x3m y n是同类项,∴m=2,n=2,故答案为:2.同字母的指数相同.形.考点:规律型:数字的变化类.0+4=42+4=64+4=8,所以第四个正方形右上角的数为,6+4=10.8=2×4﹣022=4×6﹣244=6×8﹣4所以m=8×10﹣6=74.故答案为:74.(2)1×[3×()2﹣1]﹣4÷(﹣2)3.考点:有理数的混合运算.专题:计算题.(2)原式=×(﹣1)+=+=1.19.如图,是由3个相同的小立方块搭成的几何体,请分别画出从正面、左面、上面看到解答:解:绘图如下,每画对一个得,共.趣小组为了解本市七年级学生最喜爱的体育运动项目,对全市七年级学生进行了跳绳、踢毽请你根据图中提供的信息,解答下列问题:(1)这次抽样调查中,共调查了200名学生;(2)补全条形统计图;;故答案是:4800.21.解方程:.移项合并得:7x=21,解得:x=3.考点:规律型:数字的变化类.由此规律解决问题即可.解得:x=2014.(2)若|a+1|+(b﹣2)2=0,求A的值.(2)依题意得:a+1=0,b﹣2=0,原式A=﹣(﹣1)2+5×(﹣1)×2+14=3.(1)阅读下列材料:可解得x=,即0.7=..考点:一元一次方程的应用.故答案是:;由0.=0.7373…,可知100×0.=73.7373…=73+0.73即73+m=100m可解得m=,即0.=.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(2)当P在A左侧时,3﹣x+(﹣1﹣x)=5,解得:x=﹣;当P在B右侧时,x﹣3+x﹣(﹣1)=5,解得:x=;当P在A、B之间时,x不存在;(3)当P点在AB之间时,此时B到P点距离等于A点到P点距离,当P点在A B右侧时,此时A、B重合,则4x+4=5x,解得:x=4故它们同时出发,2秒或4秒后P到点A、点B的距离相等.点评:此题主要考查了一元一次方程的应用以及数轴上点的坐标与距离表示方法等知识,利用分类讨论得出是解题关键.由0.=0.7373…,可知100×0.=73.7373…=73+0.73即73+m=100m可解得m=,即0.=.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(2)当P在A左侧时,3﹣x+(﹣1﹣x)=5,解得:x=﹣;当P在B右侧时,x﹣3+x﹣(﹣1)=5,解得:x=;当P在A、B之间时,x不存在;(3)当P点在AB之间时,此时B到P点距离等于A点到P点距离,当P点在A B右侧时,此时A、B重合,则4x+4=5x,解得:x=4故它们同时出发,2秒或4秒后P到点A、点B的距离相等.点评:此题主要考查了一元一次方程的应用以及数轴上点的坐标与距离表示方法等知识,利用分类讨论得出是解题关键.。

2020—2021年人教版七年级数学上册期末考试题及答案【完美版】

2020—2021年人教版七年级数学上册期末考试题及答案【完美版】

2020—2021年人教版七年级数学上册期末考试题及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙3.如图,ABCD为一长方形纸带,AB∥CD,将ABCD沿EF折,A、D两点分别与A D''、对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°4.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.65.将长方形ABCD纸片沿AE折叠,得到如图所示的图形,已知∠CED'=70°,则∠EAB的大小是()A .60°B .50°C .75°D .55°6.下列方程组中,是二元一次方程组的是( )A .4237x y x y +=⎧⎨+=⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .284x y x y +=⎧⎨-=⎩7.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个8.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠59.温度由﹣4℃上升7℃是( )A .3℃B .﹣3℃C .11℃D .﹣11℃10.关于x 的不等式组12x x m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m 的取值范围为( )A .m >-3B .m <-2C .m -3≤<-2D .m -3<≤-2二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.已知一个多边形的内角和为540°,则这个多边形是________边形.5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第________块。

2020最新人教版七年级数学上册期末考试试题及答案

2020最新人教版七年级数学上册期末考试试题及答案

精选完整教案文档,希望能帮助到大家,祝心想事成,万事如意!完整教案@_@2020最新人教版七年级数学上册期末考试试题及答案一、选择题:(本大题共10小题,每小题3分,共30分.)1.如果+20%表示增加20%,那么-6%表示( )A.增加14% B.增加6% C.减少6%D.减少26%A.B.C.D.2.13-的倒数是( )A.3 B.13C .-3 D.13-3、如右图是某一立方体的侧面展开图,则该立方体是( )4、青藏高原是世界上海拔最高的高原,它的面积约为 2500 000平方千米.将 2 500 000用科学记数法表示为()A.70.2510⨯B.72.510⨯C.62.510⨯D.52510⨯5、已知代数式3y2-2y+6的值是8,那么32y2-y+1的值是( )A .1B .2C .3D .46、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5个数中负数共有 ( )A .1 个B . 2个C . 3个D . 4个 7.在解方程时,去分母后正确的是 ( )A .5x =15-3(x -1)B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x-1)8.如果,,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -29. 如图1,把一个长为、宽为的长方形()沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )5113--=x x x y 3=)1(2-=y z m n m n >A. B. C.D.图1 图2第9题10.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )第10题A.这是一个棱锥B.这个几何体有4个面C.这个几何体有5个顶点D.这个几何体有8条棱二、填空题:(本大题共10小题,每小题3分,共30分)2m n-m n-2m2nnnmn11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.12.三视图都是同一平面图形的几何体有 、 .(写两种即可)13.多项式132223-+--x xy y x x 是_______次_______项式 14.多项式223368x kxy y xy --+-不含xy 项,则k = ; 15.若x=4是关于x的方程5x-3m=2的解,则m= .16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.已知线段AB =10cm ,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC =2 cm ,则线段DC = . 18.钟表在3点30分时,它的时针和分针所成的角是 .19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .从正面看从左面看从上面看三、解答题:本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤.21.计算:(共6分,每小题3分)(1) 3x2+6x+5-4x2+7x-6, (2) 5(3a2b-ab2)—(ab2+3a2b)22.计算(共12分,每小题3分)(1)12-(-18)+(-7)-15 (2)(-8)+4÷(-2)(2)(-10)÷551⨯⎪⎭⎫⎝⎛- (4)121()24234-+-⨯-23.解方程:(共12分,每小题3分)(1)7104(0.5)x x -=-+ (2)0.5y —0.7=6.5—1.3y(3)3421x x =- (4)513x +-216x -=1.24.(5分)先化简,再求值:14×(-4x2+2x-8)-(12x-1),其中x=12.25.(5分)已知一个角的余角是这个角的补角的41,求这个角.26.(5分)跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?27.(7分)如图,∠AOB =∠COD =900,OC 平分∠AOB ,∠BOD =3∠DOE 试求 ∠COE 的度数。

2020年七年级上期末数学试卷(含答案解析)

2020年七年级上期末数学试卷(含答案解析)

七年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2的相反数是()A.2B.﹣2C.D.﹣2.地球上陆地的面积约为149000000km2,数149000000用科学记数法可表示为()A.1.49×108B.1.49×109C.14.9×108D.14.9×1093.下列各选项中的图形能够绕虚线旋转一周得到如图所示几何体的是()A.B.C.D.4.下列计算正确的是()A.a+2a2=3a2B.x3﹣4x3=﹣3x3C.2xy2+3x2y=5x2y2D.﹣x2﹣2x2=3x25.已知等式a=b,那么下列变形不正确的是()A.2a+c=2b+c B.﹣3a﹣c=﹣3b﹣cC.2ac=2bc D.6.已知|a|=2,|b|=3,且b>a,则a+b=()A.1B.5C.1或5D.±1或±5二、填空题(本大题共6小题,每小题2分,共12分)7.写出3x3y2的一个同类项.8.一个角的余角是54°26′,则这个角的补角是.9.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行千米(用含a的式子表示).10.已知一组数2,4,8,16,32,…,按此规律,则第n个数是.11.某车间有22名工人,每人每天可以生产600个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应如何安排生产螺钉和螺母的工人各多少名?设该车间每天有x人生产螺钉,则根据题意列出的方程为.12.下列现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两个树坑的位置,就能使同一行树坑在一直线上了;③把原来弯曲的河道改直,以缩短路程;④现实生活中,总有一些人不愿意选择过街天桥而是直接横穿马路.其中可以用数学“两点之间,线段最短”来解释的有(填序号).三、解答题(本大题共3小题,共22分,解答应写出必要的文字说明、证明过程或演算步骤)13.(8分)计算题(1)2×(﹣3)3﹣4×(﹣3)+15(2)32+14.(6分)小杨对算式“(﹣24)×(﹣+)+4÷(﹣)”进行计算时的过程如下:根据小杨的计算过程,回答下列问题:(1)小杨在进行第①步时,运用了乘法的律;(2)他在计算中出现了错误,其中你认为在第步出错了(只填写序号);(3)请你给出正确的解答过程.15.(8分)解方程(1)x﹣3=x+1(2)﹣1=2+四、解答题(本大题共2小题,共16分,解答应写出必要的文字说明、证明过程或演算步骤)16.(8分)一驾校学员在东西走向的公路上练习驾驶技术,某天他的行驶情况记录如下:行驶情况向东行驶5公里向西行驶2公里向东行驶3公里向西行驶7公里向东行驶1公里再向东行驶4公里向西行驶6公里记作+5公里(1)请将上面表格补充完整;(2)请直接回答,当他停止行驶时,离出发地多远?在出发地的什么位置?(3)若他行驶过程中,每公里油耗0.1升,那么他这一天将消耗多少升的油?17.(8分)如图,点C在线段AB上,点D为线段CA的中点,点E为线段CB的中点.(1)若AB=6厘米,AC=2厘米时,求DE的长;(2)若只知道AB=6厘米,其它条件都不变时,能否求出DE的长?如果能,请求出DE的长.五、解答题(本大题共2小题,共16分,解答应写出必要的文字说明、证明过程或演算步骤)18.(8分)已知A=3(2x3+3ax﹣y+4)﹣(bx3+5y+1),B=.(1)若A的值与x无关,求a、b的值;(2)在(1)的条件下,求B的值.19.(8分)十一黄金周期间,小赵和他的一些同学前往红海滩道观光旅游,景点门票为每人120元,10人以上(包括10人)的可以享受八折的优惠待遇.(1)小赵他们若有9人,那么小赵他们单独买个人的还是买10人的团体票省钱?(2)若小赵他们买的是团体票,结果发现比单独每人买票总共少花了360元,那么小赵他们一共有几人?六、解答题(本大题共1小题,共10分,解答应写出必要的文字说明、证明过程或演算步骤)20.(10分)如图,OC、OD为∠AOB内部的两条射线,OM平分∠AOC,ON平分∠BOD.(1)若∠AOB=90°,∠MON=70°,求∠COD的度数;(2)若∠AOB=α,∠M0N=β,求∠COD的度数(用含有α、β的式子表示).七、解答题(本大题共1小题,共12分,解答应写出必要的文字说明、证明过程或演算步骤)21.(12分)已知A、B两点在数轴上分别沿数轴同时向左、向右匀速运动,下表记录了它们运动的部分运动时间:运动时间对应位置0秒3秒6秒A点的位置(A在6﹣3数轴上对应的数)B点的位置(B在28数轴上对应的数)(1)请你将上面表格补充完整;(2)点A、点B运动过程中是否会相遇,如果能相遇,请求出相遇的时间;(3)点A、点B两点间的距离能否为5个单位长度?若能,请求出它们运动的时间.2017-2018学年辽宁省盘锦市兴隆台区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.地球上陆地的面积约为149000000km2,数149000000用科学记数法可表示为()A.1.49×108B.1.49×109C.14.9×108D.14.9×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将149000000用科学记数法表示为:1.49×108.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列各选项中的图形能够绕虚线旋转一周得到如图所示几何体的是()A.B.C.D.【分析】根据面动成体判断出各选项中旋转得到立体图形即可得解.【解答】解:A、旋转一周为球体,故本选项错误;B、旋转一周为圆锥,故本选项错误;C、旋转一周能够得到如图图形圆柱,故本选项正确;D、旋转一周为圆台体,故本选项错误.故选:C.【点评】本题考查了点、线、面、体,熟悉并判断出旋转后的立体图形是解题的关键.4.下列计算正确的是()A.a+2a2=3a2B.x3﹣4x3=﹣3x3C.2xy2+3x2y=5x2y2D.﹣x2﹣2x2=3x2【分析】根据合并同类项的法则判断即可.【解答】解:A、2a2与a不是同类项,不能合并,错误;B、x3﹣4x3=﹣3x3,正确;C、2xy2与3x2y不是同类项,不能合并,错误;D、﹣x2﹣2x2=﹣3x2,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则计算.5.已知等式a=b,那么下列变形不正确的是()A.2a+c=2b+c B.﹣3a﹣c=﹣3b﹣cC.2ac=2bc D.【分析】根据等式的性质,依次分析各个选项,选出变形不正确的选项即可得到答案.【解答】解:A.a=b,则2a=2b,则2a+c=2b+c,A项正确,B.a=b,则﹣3a=﹣3b,则﹣3a﹣c=﹣3b﹣c,B项正确,C.a=b,则2ac=2bc,C项正确,D.若c=0,则和无意义,D项不正确,故选:D.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.6.已知|a|=2,|b|=3,且b>a,则a+b=()A.1B.5C.1或5D.±1或±5【分析】先由绝对值求出a,b的值,再由b>a确定a,b的正确取值,再代入计算即可求解.【解答】解:∵|a|=2,|b|=3,∴a=±2,b=±3,又∵b>a,∴a=±2,b=3,∴a+b=1或5故选:C.【点评】本题主要考查了有理数的加法、绝对值,解题的关键是由b>a得出b,a的数值.二、填空题(本大题共6小题,每小题2分,共12分)7.写出3x3y2的一个同类项x3y2.【分析】根据同类项的概念即可求出答案.【解答】解:3x3y2与x3y2是同类项,故答案为:x3y2【点评】本题考查同类项的概念,解题的关键是正确理解同类项的概念,本题属于基础题型.8.一个角的余角是54°26′,则这个角的补角是144°26′.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°26′,∴这个角为:90°﹣54°26′=35°34′,∴这个角的补角为:180°﹣35°34′=144°26′.故答案为:144°26′.【点评】本题考查余角和补角,通过它们的定义来解答即可.9.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行(7a﹣20)千米(用含a的式子表示).【分析】根据两次行程总和=顺风飞行的路程+逆风飞行的路程=(无风速度+风速)×顺风时间+(无风速度﹣风速)×逆风时间,把相关数值代入即可求解.【解答】解:顺风飞行3小时的行程=(a+20)×3千米,逆风飞行4小时的行程=(a﹣20)×4千米,两次行程总和为:(a+20)×3+(a﹣20)×4=3a+60+4a﹣80=7a﹣20(千米).故答案为(7a﹣20).【点评】本题主要考查了用代数式表示行程问题中的路程,注意顺风速度=无风速度+风速,逆风速度=无风速度﹣风速,难度适中.10.已知一组数2,4,8,16,32,…,按此规律,则第n个数是2n.【分析】先观察所给的数,得出第几个数正好是2的几次方,从而得出第n个数是2的n次方.【解答】解:∵第一个数是2=21,第二个数是4=22,第三个数是8=23,∴第n个数是2n;故答案为:2n.【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决实际问题,本题的关键是第几个数就是2的几次方.11.某车间有22名工人,每人每天可以生产600个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应如何安排生产螺钉和螺母的工人各多少名?设该车间每天有x人生产螺钉,则根据题意列出的方程为1000(22﹣x)=2×600x.【分析】设分配x名工人生产螺钉,则(22﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(22﹣x)人生产螺母,由题意得1000(22﹣x)=2×600x,故C答案正确,故答案是:1000(22﹣x)=2×600x.【点评】考查了由实际问题抽象出一元一次方程,需要掌握列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.12.下列现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两个树坑的位置,就能使同一行树坑在一直线上了;③把原来弯曲的河道改直,以缩短路程;④现实生活中,总有一些人不愿意选择过街天桥而是直接横穿马路.其中可以用数学“两点之间,线段最短”来解释的有③④(填序号).【分析】直接利用线段的性质以及直线的性质分析得出答案.【解答】解:①用两个钉子就可以把一根木条固定在墙上,是两点确定一条直线;②植树时,只要定出两个树坑的位置,就能使同一行树坑在一直线上了,是两点确定一条直线;③把原来弯曲的河道改直,以缩短路程,是两点之间,线段最短;④现实生活中,总有一些人不愿意选择过街天桥而是直接横穿马路,是两点之间,线段最短;故答案为:③④.【点评】此题主要考查了线段的性质以及直线的性质,正确把握相关性质是解题关键.三、解答题(本大题共3小题,共22分,解答应写出必要的文字说明、证明过程或演算步骤)13.(8分)计算题(1)2×(﹣3)3﹣4×(﹣3)+15(2)32+【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)2×(﹣3)3﹣4×(﹣3)+15=2×(﹣27)+12+15=﹣54+12+15=﹣27;(2)32+=9+×=9+1=10.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(6分)小杨对算式“(﹣24)×(﹣+)+4÷(﹣)”进行计算时的过程如下:根据小杨的计算过程,回答下列问题:(1)小杨在进行第①步时,运用了乘法的分配律;(2)他在计算中出现了错误,其中你认为在第②步出错了(只填写序号);(3)请你给出正确的解答过程.【分析】先算乘除,后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的灵活运用.【解答】解:(1)小杨在进行第①步时,运用了乘法的分配律.故答案为:分配;(2)他在计算中出现了错误,其中你认为在②步出错了(只填写序号).故答案为:②;(3)(﹣24)×(﹣+)+4÷(﹣)=(﹣24)×﹣(﹣24)×+(﹣24)×)+4÷=﹣3+8﹣6+24=23.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.15.(8分)解方程(1)x﹣3=x+1(2)﹣1=2+【分析】(1)依次移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)x﹣x=1+3,﹣x=4,x=﹣8;(2)2(x+1)﹣4=8+2﹣x,2x+2﹣4=8+2﹣x,2x+x=8+2﹣2+4,3x=12,x=4.【点评】本题主要考查了解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.四、解答题(本大题共2小题,共16分,解答应写出必要的文字说明、证明过程或演算步骤)16.(8分)一驾校学员在东西走向的公路上练习驾驶技术,某天他的行驶情况记录如下:行驶情况向东行驶5公里向西行驶2公里向东行驶3公里向西行驶7公里向东行驶1公里再向东行驶4公里向西行驶6公里记作+5公里﹣2公里+3公里﹣7公里+1公里+4公里﹣6公里(1)请将上面表格补充完整;(2)请直接回答,当他停止行驶时,离出发地多远?在出发地的什么位置?(3)若他行驶过程中,每公里油耗0.1升,那么他这一天将消耗多少升的油?【分析】(1)根据正数和负数的知识即可求解;(2)将各数据相加,最终结果可得答案.(3)将各数绝对值相加,得出行走总路程,再由每公里油耗0.1升,可得他这一天将消耗多少升的油.【解答】解:(1)填表如下:行驶情况向东行驶5公里向西行驶2公里向东行驶3公里向西行驶7公里向东行驶1公里再向东行驶4公里向西行驶6公里记作+5公里﹣2公里+3公里﹣7公里+1公里+4公里﹣6公里(2)+5﹣2+3﹣7+1+4﹣6=﹣2.故当他停止行驶时,离出发地2远公里,在出发地的西位置;(3)(5+2+3+7+1+4+6)×0.1=28×0.1=2.8(升).答:他这一天将消耗2.8升的油.故答案为:﹣2公里,+3公里,﹣7公里,+1公里,+4公里,﹣6公里.【点评】本题考查了数轴、正数和负数的知识,解答本题的关键是理解正数及负数所表示的实际意义.17.(8分)如图,点C在线段AB上,点D为线段CA的中点,点E为线段CB的中点.(1)若AB=6厘米,AC=2厘米时,求DE的长;(2)若只知道AB=6厘米,其它条件都不变时,能否求出DE的长?如果能,请求出DE的长.【分析】(1)根据已知条件得到BC=AB﹣AC=4厘米,根据线段中点的定义得到CD=AC=1,CE=BC=2,求得DE=CD+CE=3厘米;(2)根据点D为线段CA的中点,点E为线段CB的中点,得到CD=AC,CE=BC,根据线段的和差即可得到结论.【解答】解:(1)∵AB=6厘米,AC=2厘米,∴BC=AB﹣AC=4厘米,∵点D为线段CA的中点,点E为线段CB的中点,∴CD=AC=1,CE=BC=2,∴DE=CD+CE=3厘米;(2)能求出DE的长,∵点D为线段CA的中点,点E为线段CB的中点,∴CD=AC,CE=BC,∴DE=CD+CE=(AC+BC)=AB=3cm.【点评】本题考查的是两点间的距离的计算,掌握线段的中点的定义、正确运用数形结合思想是解题的关键.五、解答题(本大题共2小题,共16分,解答应写出必要的文字说明、证明过程或演算步骤)18.(8分)已知A=3(2x3+3ax﹣y+4)﹣(bx3+5y+1),B=.(1)若A的值与x无关,求a、b的值;(2)在(1)的条件下,求B的值.【分析】(1)A去括号合并后,由结果与x无关确定出a与b的值即可;(2)B去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:(1)A=3(2x3+3ax﹣y+4)﹣(bx3+5y+1)=6x3+9ax﹣3y+12﹣bx3﹣5y﹣1=(6﹣b)x3+9ax﹣8y+11,由A的值与x无关,得到6﹣b=0,a=0,解得:a=0,b=6;(2)当a=0,b=6时,B=a3﹣2b2+a3+3b2=a3+b2=36.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.(8分)十一黄金周期间,小赵和他的一些同学前往红海滩道观光旅游,景点门票为每人120元,10人以上(包括10人)的可以享受八折的优惠待遇.(1)小赵他们若有9人,那么小赵他们单独买个人的还是买10人的团体票省钱?(2)若小赵他们买的是团体票,结果发现比单独每人买票总共少花了360元,那么小赵他们一共有几人?【分析】(1)利用总价=单价×数量,分别求出小赵他们单独购买及购买10人的团体票所需费用,比较后即可得出结论;(2)设小赵他们一共有x人,分x<10及x≥10两种情况考虑,根据小赵他们单独购买比购买团体票多花360元,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)120×9=1080(元),120×0.8×10=960(元).∵1080>960,∴小赵他们买10人的团体票省钱.(2)设小赵他们一共有x人,当x<10时,有120x﹣120×0.8×10=360,解得:x=11(舍去);当x≥10时,有120x﹣120×0.8x=360,解得:x=15.答:小赵他们一共有15人.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.六、解答题(本大题共1小题,共10分,解答应写出必要的文字说明、证明过程或演算步骤)20.(10分)如图,OC、OD为∠AOB内部的两条射线,OM平分∠AOC,ON平分∠BOD.(1)若∠AOB=90°,∠MON=70°,求∠COD的度数;(2)若∠AOB=α,∠M0N=β,求∠COD的度数(用含有α、β的式子表示).【分析】由OM平分∠AOC,ON平分∠BOD可知∠AOC=2∠AOM,∠BOD=2∠BON.(1)将∠AOB=90°,∠MON=70°代入可得∠AOM+∠BON=20°,那么∠AOC+∠BOD=40°,∠COD=∠AOB﹣(∠AOC+∠BOD)=50°;(2)将∠AOB=α,∠MON=β代入可得∠AOM+∠BON=α﹣β,那么∠AOC+∠BOD=2(α﹣β),∠COD=∠AOB﹣(∠AOC+∠BOD)=2β﹣α.【解答】解:∵OM平分∠AOC,ON平分∠BOD,∴∠AOC=2∠AOM,∠BOD=2∠BON.(1)∵∠AOB=90°,∠MON=70°,∴∠AOM+∠BON=∠AOB﹣∠MON=20°,∴∠AOC+∠BOD=2∠AOM+2∠BON=2(∠AOM+∠BON)=40°,∴∠COD=∠AOB﹣(∠AOC+∠BOD)=90°﹣40°=50°;(2)∵∠AOB=α,∠MON=β,∴∠AOM+∠BON=∠AOB﹣∠MON=α﹣β,∴∠AOC+∠BOD=2∠AOM+2∠BON=2(∠AOM+∠BON)=2(α﹣β)=2α﹣2β,∴∠COD=∠AOB﹣(∠AOC+∠BOD)=α﹣(2α﹣2β)=2β﹣α.【点评】本题是有关角的计算,考查了角平分线的定义及角的和差倍分,注意利用数形结合的思想.七、解答题(本大题共1小题,共12分,解答应写出必要的文字说明、证明过程或演算步骤)21.(12分)已知A、B两点在数轴上分别沿数轴同时向左、向右匀速运动,下表记录了它们运动的部分运动时间:0秒3秒6秒运动时间对应位置A点的位置(A在6﹣3﹣12数轴上对应的数)B点的位置(B在﹣428数轴上对应的数)(1)请你将上面表格补充完整;(2)点A、点B运动过程中是否会相遇,如果能相遇,请求出相遇的时间;(3)点A、点B两点间的距离能否为5个单位长度?若能,请求出它们运动的时间.【分析】(1)根据两点之间的距离,从而可填写表格;(2)根据相遇的路程和时间的关系,求解即可;(3)根据两种情况分别列式求解即可.【解答】解:(1)因为点A、B都是匀速运动,所以点A或点B在0秒、3秒和6秒时间段内的距离是相等的,故答案是:﹣12;﹣4;(2)能相遇,理由如下:A的运动速度是3个单位每秒,B的运动速度是2个单位每秒,AB=10,根据题意可得:10÷(3+2)=2(秒),答:能在第2秒时相遇;(3)第一种:A、B相遇前相距5个单位.(10﹣5)÷(2+3)=1,第二种:A、B相遇后相距9个单位.(10+5)÷(2+3)=3,能在第1或3秒时相距5个单位.【点评】考查了一元一次方程的应用,数轴,解答本题的关键是表示出时间和位置的关系,注意分类讨论.。

2020年 七年级 数学上册 期末考试卷 带答案

2020年 七年级 数学上册 期末考试卷  带答案

2020—2021学年度上学期阶段质量验收七年级数学试题参考答案一、1.A , 2.C , 3.D , 4.C,5.D, 6.B二、7.-2 ,8 .2 ,9.4,10.140,11.43֯32',12.两点之间,线段最短,13.2 ,14.20三、15.解:|-3|-(-6+4)÷(-)3+(-1)2021=3-2×8+(-1)-------------------------------3分=3-16-1------------------------------------------4分=-14------------------------------------------------5分16.去分母,可得:5(x-1)=10+2(x+1),-------------2分去括号,可得:5x-5=10+2x+2,------------------------3分移项,合并同类项,可得:3x=17,-------------------4分系数化为1,可得:x= -----------------------------5分17.(1)18条棱,12个顶点;-----------------------------2分(2)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.--------------------------------3分18.解:(1)3分(2)2分四、19.解:(1)每空2分,共4分(2)理由:此程序为(m2-m)÷m+1.-------------2分化简这个算式:(m2-m)÷m+1=m-1+1=m.------------------------------------------------3分所以,输出的结果总是与输入的数相同.20.去分母得:2(2x-1)-3(5x+1)=6,----------------4分去括号得:4x-2-15x-3=6,--------------------5分移项合并得:-11x=11,------------------------6分解得:x=-1.-------------------------------------7分21.解:设这些学生共有x人,根据题意得-=2,-------------5分解得x=48.------------------------------------7分答:这些学生共有48人22.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.-----------------------------------3分∴∠BOD=180°-52°=128°.------------------------------4分∵OE平分∠DOB,∴∠BOE= ∠DOB---------5分= ×128°--------6分=64°.--------------7分五、23.解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,-----------------------------------------------------------------1分∵AP:PB=5:2.∴BP= AB=8cm,---------------------------------------------------------3分∴OP=OB-BP=14-8=6(cm);---------------------------------------------------4分②当M点在P点的左边时,AM=AB-(PM+BP)=28-(4+8)=16(cm),------------------------------2分当M点在P点的右边时,AM=AB-BM=AB-(BP-PM)=28-(8-4)=24(cm).--------------------2分综上,AM=16cm或24cm.24.解:(1)任选两种方法:各2分共4分(2)根据题意,得3x+1+x+3=0,------------------------------------------------1分解得x=-1,------------------------------------------------------------------------2分x+y=0 -------------------------------------------------------------------------------3分解得y=1.-------------------------------------------------------------------------4分六、25.解:(1)设甲、乙两车合作还需要x天运完垃圾,依题意,得:+ =1,-------------------------------------------------5分解得:x=8.---------------------------------------------------------------------------6分答:甲、乙两车合作还需要8天运完垃圾.(2)设乙车每天的租金为y元,则甲车每天的租金为(y+100)元,依题意,得:(8+3)(y+100)+8y=3950,-----------------------2分解得:y=150,-------------------------------------------------------3分∴y+100=250.-------------------------------------------------------4分答:甲车每天的租金为250元,乙车每天的租金为150元.26.解:(1)∠AOC=180°-∠BOC=180°-100°=80°;--------------------------------2分(2)由(1)得∠AOC=80°,∵∠COD=90°,∴∠AOD=∠COD-∠AOC=10°,--------------------------------------------2分∵OM是∠AOC的平分线,∴∠AOM= ∠AOC= ×80°=40°,------------------------------------------------------3分∴∠MOD=∠AOM+∠AOD=40°+10°=50°;--------------------------4分(3)由(2)得∠AOM=40°,∵∠BOP与∠AOM互余,∴∠BOP+∠AOM=90°,---------------------------------------------------------1分∴∠BOP=90°-∠AOM=90°-40°=50°,-----------------------------------2分①当射线OP在∠BOC内部时,∠COP=∠BOC-∠BOP=100°-50°=50°;-------------------------------3分②当射线OP在∠BOC外部时,∠COP=∠BOC+∠BOP=100°+50°=150°.----------------------------4分综上所述,∠COP的度数为50°或150°.。

2020人教版七年级上册期末数学测试题(附答案)

2020人教版七年级上册期末数学测试题(附答案)

人教版七年级上册期末数学测试题一、选择题(共8小题,每小题3分,满分24分)1.既不是正数,也不是负数的数是()A.5 B.﹣5 C.9 D.02.整数和分数统称为()A.有理数B.无理数C.实数D.虚数3.﹣2的相反数是()A.0 B. 2 C.﹣2 D.44.乘积是1的两个数互为()A.倒数B.相反数C.绝对值D.有理数5.单项式与多项式统称为()A.分式B.整式C.等式D.方程6.用科学记数法表示9.06×105,则原数是()A.9060 B.90600 C.906000 D.90600007.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体8.关于直线、射线和线段的描述正确的是()A.直线、射线和线段的长度都不确定B.射线是直线长度的一半C.直线最长,线段最短D.直线没有端点,射线有一个端点,线段有两个端点二、填空题(每题3分,共24分)9.如果把一个物体向右移动3米记作+3米,那么这个物体又向左移动5米记作米.10.=.11.(﹣5)+(﹣3)=.12.﹣(8)5中,指数是.13.用式子表示x的3倍与y的5倍的和是.14.某商品降价20%以后的价格是120元,则降价前的价格是元.15.在梯形面积公式s=(a+b)h中,已知s=60,b=4,h=12,则a=.16.线段AB=9cm,C是线段AB上的一点,BC=3cm,则AC=.三、解答题(共72分)17.(1)计算:18+(﹣7)(2)计算:(+3)×(﹣2)(3)计算:﹣32+(﹣2)3×2(4)化简:﹣(x2﹣2x﹣3)﹣2(﹣x2+x+1)(5)解方程:2x+4=16.18.一个三角形的三边长分别是3x,4x,5x,周长是24,求各边的长.19.如图所示,C是线段AB的中点,D是线段AC的中点,已知线段AB长度是36,求线段DB的长度.20.分别画出下列平面图形:长方形,正方形,三角形,圆.21.用式子表示:(1)一个数x的与6的和;(2)甲数为x,乙数比甲数的一半大5,则乙数为多少?22.当x为何值时,代数式3x+的值比2x﹣的值大1.23.先化简,再求值:ab﹣2ab+3b2+b2+2ab,其中,b=.24.一份试卷共25道题,每道题都给出了四个答案,其中只有一个是正确的.要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分.如果一个学生得90分,那么他选对几道题?现有500名学生参加考试,有得83分的同学吗?为什么?参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.既不是正数,也不是负数的数是()A.5 B.﹣5 C.9 D.0考点:正数和负数.分析:根据正数和负数的意义,可得答案.解答:解:大于零的数是正数,小于零的数是负数,0既不是正数也不是负数.故选:D.点评:本题考查了正数和负数,0既不是正数也不是负数.2.整数和分数统称为()A.有理数B.无理数C.实数D.虚数考点:有理数.分析:根据有理数的定义,可得答案.解答:解:A、整数和分数统称有理数,故A正确;B、无理数是无限不循环小数,故B错误;C、有理数和无理数统称实数,故C错误;D、含有i的数是虚数,故D错误;故选:A.点评:本题考查了有理数,整数和分数统称有理数,有理数和无理数统称实数,实数和虚数统称复数.3.﹣2的相反数是()A.0 B. 2 C.﹣2 D.4考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣2的相反数是2.故选B.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.4.乘积是1的两个数互为()A.倒数B.相反数C.绝对值D.有理数考点:倒数.分析:根据倒数的定义,可得答案.解答:解:乘积是1的两个数互为倒数,故A正确;故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.单项式与多项式统称为()A.分式B.整式C.等式D.方程考点:整式.分析:直接利用整式的定义作答.解答:解:单项式与多项式统称为整式.故选:B.点评:此题主要考查了整式的定义,正确把握定义是解题关键.6.用科学记数法表示9.06×105,则原数是()A.9060 B.90600 C.906000 D.9060000考点:科学记数法—原数.分析:根据科学记数法的定义,由9.06×105的形式,可以得出原式等于9.06×100000=906000,即可得出答案.解答:解:9.06×105=906000,故选:C.点评:本题主要考查科学记数法化为原数,得出原式等于9.06×100000=906000是解题关键.7.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.解答:解:A、球体的三视图都是圆,不符合题意;B、长方体的三视图都是矩形,不符合题意;C、圆锥体的主视图,左视图都是等腰三角形,俯视图是圆和中间一点,不符合题意;D、圆柱体的主视图,左视图都是长方形,俯视图是圆,符合题意.故选D.点评:本题考查了几何体的三种视图,掌握定义是关键.8.关于直线、射线和线段的描述正确的是()A.直线、射线和线段的长度都不确定B.射线是直线长度的一半C.直线最长,线段最短D.直线没有端点,射线有一个端点,线段有两个端点考点:直线、射线、线段.分析:根据直线、射线及线段的定义解答即可.解答:解:A、线段的长度可以确定,故本选项错误;B、射线和直线都能无限延伸,是没有长度的,故本选项错误;C、直线没有长度,故本选项错误;D、直线没有端点,射线有一个端点,线段有两个端点,故本选项正确.故选:D.点评:本题考查直线、射线及线段的知识,属于基础题,注意基本概念的掌握.二、填空题(每题3分,共24分)9.如果把一个物体向右移动3米记作+3米,那么这个物体又向左移动5米记作﹣5米.考点:正数和负数.分析:根据正数和负数表示相反意义的量,向右移动记为正,可得向左移动的表示方法.解答:解:把一个物体向右移动3米记作+3米,那么这个物体又向左移动5米记作﹣5米,故答案为:﹣5.点评:本题考查了正数和负数,相反意义的量用正数和负数表示.10.=6.考点:相反数.分析:根据相反数的定义求解即可.解答:解:本题就是求(﹣6)的相反数,故﹣(﹣6)=6.点评:本题考查了相反数的定义.根据定义我们知道只有符号不同的两个数,我们就说其中一个是另一个的相反数.11.(﹣5)+(﹣3)=﹣8.考点:有理数的加法.分析:根据同号相加,取相同符号,并把绝对值相加即可求解.解答:解:(﹣5)+(﹣3)=﹣8.故答案为:﹣8.点评:考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.12.﹣(8)5中,指数是5.考点:有理数的乘方.分析:根据有理数的乘方的定义解答即可.解答:解:﹣(8)5中,指数是5.故答案为:5.点评:本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.13.用式子表示x的3倍与y的5倍的和是3x+5y.考点:列代数式.分析:用x乘3加上y乘5列式即可.解答:解:表示x的3倍与y的5倍的和是3x+5y.故答案为:3x+5y.点评:此题考查列代数式,理解题意,找出叙述的运算方法是解决问题的关键.14.某商品降价20%以后的价格是120元,则降价前的价格是150元.考点:一元一次方程的应用.分析:可设降价前的价格是x元,根据等量关系:某商品降价20%以后的价格是120元,列出方程求解即可.解答:解:设降价前的价格是x元,依题意有(1﹣20%)x=120,解得x=150.答:降价前的价格是150元.故答案为:150.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.在梯形面积公式s=(a+b)h中,已知s=60,b=4,h=12,则a=6.考点:解一元一次方程.专题:计算题.分析:把s,b,h代入梯形面积公式求出a的值即可.解答:解:把s=60,b=4,h=12代入公式s=h(a+b)得:60=×12×(a+4),解得:a=6,故答案为:6点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.线段AB=9cm,C是线段AB上的一点,BC=3cm,则AC=6cm.考点:两点间的距离.分析:当点C在线段AB上时,AC+BC=AB,可据此求出AC的长度.解答:解:当点C在AB上时,∵AB=9cm,BC=3cm,∴AC=AC﹣BC=6cm;故答案为:6cm.点评:本题考查的是两点间的距离,熟知各线段之间的和、差关系是解答此题的关键.三、解答题(共72分)17.(1)计算:18+(﹣7)(2)计算:(+3)×(﹣2)(3)计算:﹣32+(﹣2)3×2(4)化简:﹣(x2﹣2x﹣3)﹣2(﹣x2+x+1)(5)解方程:2x+4=16.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用异号两数相乘的法则计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式去括号合并即可得到结果;(5)方程移项合并,把x系数化为1,即可求出解.解答:解:(1)原式=+(18﹣7)=11;(2)原式=﹣(3×2)=﹣6;(3)原式=﹣9+(﹣16)=﹣(9+16)=﹣25;(4)原式=﹣x2+2x+3+2x2﹣2x﹣2=x2+1;(5)方程移项合并得:2x=12,解得:x=6.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.一个三角形的三边长分别是3x,4x,5x,周长是24,求各边的长.考点:一元一次方程的应用.分析:根据等量关系:一个三角形的周长是24,列出方程求解即可.解答:解:依题意有:3x+4x+5x=24,解得x=2,3x=3×2=6,4x=4×2=8,5x=5×2=10.答:这个三角形的各边的长分别是6、8、10.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.如图所示,C是线段AB的中点,D是线段AC的中点,已知线段AB长度是36,求线段DB的长度.考点:两点间的距离.分析:先根据C是线段AB的中点,D是线段AC的中点,AB=36得出AC=CB,AD=DC,再由DB=DC+CB即可得出结论.解答:解:∵C是线段AB的中点,D是线段AC的中点,AB=36,∴AC=CB=18,AD=DC=9,∴DB=DC+CB=9+18=27.点评:本题考查的是两点间的距离,先根据中点的性质得出DC及CB的长是解答此题的关键.20.分别画出下列平面图形:长方形,正方形,三角形,圆.考点:认识平面图形.分析:根据长方形:有一个角是直角的平行四边形是矩形,可得长方形;根据正方形:有一个角是直角的菱形是正方形,可得答案;根据三条线段首位顺次连接的图形是三角形,可得答案;根据到定点的距离等于定长的店的集合是圆,可得答案.解答:解:如图:.点评:本题考查来了认识平面图形,利用了图形的定义.21.用式子表示:(1)一个数x的与6的和;(2)甲数为x,乙数比甲数的一半大5,则乙数为多少?考点:列代数式.分析:(1)先求x的再加上6即可;(2)用甲数的一半加上5即可.解答:解:(1)x+6;(2)x+5.点评:此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.22.当x为何值时,代数式3x+的值比2x﹣的值大1.考点:解一元一次方程.专题:计算题.分析:根据题意列出方程,求出方程的解即可得到x的值.解答:解:由题意得:3x+﹣1=2x﹣,移项,得3x﹣2x=﹣﹣+1,合并同类项,得x=.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.23.先化简,再求值:ab﹣2ab+3b2+b2+2ab,其中,b=.考点:整式的加减—化简求值.专题:计算题.分析:原式合并同类项得到最简结果,把a与b的值代入计算即可求出值.解答:解:ab﹣2ab+3b2+b2+2ab=(ab﹣2ab+2ab)+(3b2+b2)=ab+4b2,当a=﹣,b=时,原式=﹣+1=.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.一份试卷共25道题,每道题都给出了四个答案,其中只有一个是正确的.要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分.如果一个学生得90分,那么他选对几道题?现有500名学生参加考试,有得83分的同学吗?为什么?考点:一元一次方程的应用.专题:应用题.分析:设某同学做对了x道题,那么他做错或不做的(25﹣x)道题,他的得分应该是4x ﹣(25﹣x)×1,列出方程求解即可;利用上一问列方程的方法求出即可,看得出的答案是否为整数.解答:解:设该同学做对了x题,那么他做错或不做的(25﹣x)道题,根据题意列方程得:4x﹣(25﹣x)×1=90,解得:x=23,答:他做对了23道.设某同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=83,解得:x=21.6.∵21.6不是整数,∴没有得83分的同学.答:没有得83分的同学.点评:此题主要考查了一元一次方程的应用,解题的关键是读懂题意,找到符合题意的等量关系式,解此类(2)问题时,要注意未知数的限制条件,在本题中应是正整数.。

2020初一上册数学期末考试题及答案

2020初一上册数学期末考试题及答案

祝同学们期末考出好成绩!欢迎同学们下载,希望能帮助到你们!2020初一上册数学期末考试题及答案一、选择题:本大题共12小题,其中1-8小题每小题3分,9-12小题每小题3分,共40分.在每小题给出的四个选项中,只有一项是准确的,请将准确选项代号填入表格中.1.|﹣2010|倒数的相反数是()A.2010 B.﹣2010 C. D.【考点】倒数;相反数;绝对值.【分析】求一个数的相反数,即在这个数的前面加上负号;求一个数的倒数,即用1除以这个数.【解答】解:|﹣2010|倒数的相反数是=﹣,故选D【点评】本题主要考查相反数,倒数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.2013年12月15日,嫦娥三号着陆器、巡视器顺利完成互拍,把成像从远在地球38万km之外的月球传到地面,标志着我国探月工程二期取得圆满成功,将38万用科学记数法表示应为()A.0.38×106 B.0.38×105 C.3.8×104 D.3.8×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:38万=3.8×105,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要准确确定a的值以及n的值.3.有理数a,b在数轴上对应点的位置如图所示,下列各式准确的是()A.a+b<0 B.a﹣b<0 C.ab>0 D.>0【考点】数轴.【分析】根据a,b两数在数轴的位置依次判断所给选项的正误即可.【解答】解:∵﹣1<a<0,b>1,∴A、a+b>0,故错误,不符合题意;B、a﹣b<0,准确,符合题意;C、ab<0,错误,不符合题意;D、<0,错误,不符合题意;故选B.【点评】考查数轴的相关知识;用到的知识点为:数轴上左边的数比右边的数小;异号两数相加,取绝对值较大的加数的符号.4.关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程,则方程的解为()A.1 B.2 C.3 D.﹣2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:由x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程,得a﹣1=0,解得a=1,故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中 B.钓 C.鱼 D.岛【考点】专题:正方体相对两个面上的文字.【专题】常规题型.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“国”字相对的字是“鱼”.故选:C.【点评】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.下列说法中,准确的有()个①过两点有且只有一条直线②连接两点的线段叫做两点间的距离③两点之间,线段最短④若AB=BC,则点B是线段AC的中点⑤射线AB和射线BA是同一条射线⑥直线有无数个端点.A.2个 B.3个 C.4个 D.5个【考点】直线、射线、线段.【分析】利用直线,射线及线段的定义求解即可.【解答】解:①过两点有且只有一条直线,准确,②连接两点的线段叫做两点间的距离,不准确,应为连接两点的线段的长度叫做两点间的距离,③两点之间,线段最短,准确,④若AB=BC,则点B是线段AC的中点,不准确,只有点B在AC上时才成立,⑤射线AB和射线BA是同一条射线,不准确,端点不同,⑥直线有无数个端点.不准确,直线无端点.共2个准确,故选:A.【点评】本题主要考查了直线,射线及线段,解题的关键是熟记直线,射线及线段的联系与区别.7.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC长3cm,AC比BC长()A.6cm B.4cm C.3cm D.1.5cm【考点】两点间的距离.【分析】设NC=x,则MC=x+3,再根据点M是AC的中点,点N是BC的中点得出AC及BC的长,进而可得出结论.【解答】解:设NC=x,则MC=x+3,∵点M是AC的中点,点N是BC的中点,∴AC=2MC=2x+6,BC=2NC=2x,∴AC﹣BC=2x+6﹣2x=6cm.故选A.【点评】本题考查了线段中点的性质,能够利用方程解决此类问题.8.由3点15分到3点30分,时钟的分针转过的角度是()A.90° B.60° C.45° D.30°【考点】钟面角.【分析】根据分针旋转的速度乘以旋转的时间,可得答案.【解答】解:3点15分到3点30分,时钟的分针转过的角度是6×(30﹣15)=90°,故选:A.【点评】本题考查了钟面角,利用分针旋转的速度乘以旋转的时间是解题关键,注意分针每分钟旋转6°.9.在式子,﹣中,单项式的个数是()A.5个 B.4个 C.3个 D.2个【考点】单项式.【分析】根据单项式的概念对各个式子实行判断即可.【解答】解:﹣ abc,0,﹣2a,是单项式,故选B.【点评】本题考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.10.如果x=y,a为有理数,那么下列等式不一定成立的是()A.4﹣y=4﹣x B.x2=y2 C. D.﹣2ax=﹣2ay【考点】等式的性质.【分析】A、等式两边先同时乘﹣1,然后再同时加4即可;B、根据乘方的定义可判断;C、根据等式的性质2判断即可;D、根据等式的性质2判断即可.【解答】解:A、∵x=y,∴﹣x=﹣y.∴﹣x+4=﹣y+4,即4﹣y=4﹣x,故A一定成立,与要求不符;B、如果x=y,则x2=y2,故B一定成立,与要求不符;C、当a=0时,无意义,故C不一定成立,与要求相符;D、由等式的性质可知:﹣2ax=﹣2ay,故D一定成立,与要求不符.故选:C.【点评】本题主要考查的是等式的性质,掌握等式的性质是解题的关键.11.按如图所示的程序计算:若开始输入的x值为﹣2,则最后输出的结果是()A.352 B.160 C.112 D.198【考点】代数式求值.【专题】图表型.【分析】观察图形我们首先要理解其计算顺序,能够看出当x≥0时就计算上面那个代数式的值,反之计算下面代数式的值,不管计算哪个式子当结果出来后又会有两种情况,第一种是结果大于等于100,此时直接输出最终结果;第二种是结果小于100,此时刚要将结果返回再次计算,直到算出的值大于等于100为止,即可得出最终的结果.【解答】解:∵x=﹣2<0,∴代入代数式x2+6x计算得,(﹣2)2+6×(﹣2)=﹣8<100,∴将x=﹣8代入继续计算得,(﹣8)2+6×(﹣8)=16<100,∴需将x=16代入继续计算,注意x=16>0,所以应该代入计算得,结果为160>100,∴所以直接输出结果为160.故选:B.【点评】本题主要考查的是求代数式的值,解答本题的关键就是弄清楚题目所给出的计算程序并能够按照运算程序实行计算12.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).准确的有()A.4个 B.3个 C.2个 D.1个【考点】余角和补角.【专题】压轴题.【分析】根据角的性质,互补两角之和为180°,互余两角之和为90°,可将,①②③④中的式子化为含有∠α+∠β的式子,再将∠α+∠β=180°代入即可解出此题.【解答】解:∵∠α和∠β互补,∴∠α+∠β=180°.因为90°﹣∠β+∠β=90°,所以①准确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也准确;(∠α+∠β)+∠β= ×180°+∠β=90°+∠β≠90°,所以③错误;(∠α﹣∠β)+∠β= (∠α+∠β)= ×180°=90°,所以④准确.综上可知,①②④均准确.故选B.【点评】本题考查了角之间互补与互余的关系,互补两角之和为180°,互余两角之和为90°.二、填空题:本大题共4小题,每小题4分,共16分,把答案写在题中横线上.13.当k= 5 时,多项式x2﹣(k﹣3)xy﹣3y2+2xy﹣5中不含xy项.【考点】多项式;合并同类项;解一元一次方程.【专题】计算题;整式.【分析】多项式不含有xy项,说明整理后其xy项的系数为0,可得方程,解方程可得k的值.【解答】解:整理多项式中含xy的项,得[﹣(k﹣3)+2]xy,即(﹣k+5)xy∵多项式x2﹣(k﹣3)xy﹣3y2+2xy﹣5中不含xy项∴﹣k+5=0,解得:k=5,故答案为:5.【点评】本题考查多项式的概念.不含某项,说明整理后的这项的系数之和为0,列出方程是关键.14.已知:如图,点D是AB的中点,BC= ,DC=2,则AB的长为12 .【考点】两点间的距离.【分析】根据线段中点的性质,可得BD的长,根据线段的和差,可得关于AB的方程,根据解方程,可得答案.【解答】解:由点D是AB的中点,BC= ,得BD= AB.由线段的和差,得DC=DB﹣BC,即AB﹣ AB=2.解得AB=12.故答案为:12.【点评】本题考查了两点间的距离,利用线段的和差得出关于AB的方程是解题关键.15.若a2﹣3b=2,则6b﹣2a2+2015= 2011 .【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取﹣2变形后,将已知等式代入计算即可求出值.【解答】解:∵a2﹣3b=2,∴原式=﹣2(a2﹣3b)+2015=﹣4+2015=2011,故答案为:2011.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.观察下面的一列单项式:﹣2x、4x3、﹣8x5、16x7、…根据你发现的规律,第n个单项式为(﹣1)n2nx2n﹣1 .【考点】单项式.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵﹣2x=(﹣1)121x1;4x3=(﹣1)222x3;8x3=(﹣1)323x5;﹣16x4=(﹣1)424x7.第n个单项式为(﹣1)n2nx2n﹣1.故答案为:(﹣1)n2nx2n﹣1.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题:本大题共6小题,共64分,解答应写出文字说明、证明过程或演算步骤.17.(1)计算:﹣24(2)解方程:(3)已知:A=x2﹣5x,B=3x2+2x﹣6,求3A﹣B的值,其中x=﹣2.【考点】有理数的混合运算;整式的加减—化简求值;解一元一次方程.【专题】实数;整式;一次方程(组)及应用.【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)把A与B代入3A﹣B中,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=﹣16+4﹣(﹣1)×(﹣)+ ﹣2=﹣12﹣ + ﹣2=﹣14;(2)方程去分母得:5x﹣10﹣(2x+2)=3,去括号得:5x﹣10﹣2x﹣2=3,移项得:5x﹣2x=10+2+3,合并同类项得:3x=15,系数化为1得:x=5;(3)∵A=x2﹣5x,B=3x2+2x﹣6,∴3A﹣B=3x2﹣15x﹣3x2﹣2x+6=﹣17x+6,则当x=﹣2时,原式=34+6=40.【点评】此题考查了有理数的混合运算,整式的加减﹣化简求值,以及解一元一次方程,熟练掌握运算法则是解本题的关键.18.已知:如图所示,∠AOB:∠BOC=3:2,OD平分∠BOC,OE平分∠AOC,且∠DOE=36°,求∠BOE的度数.【考点】角的计算;角平分线的定义.【专题】常规题型.【分析】用比例巧设方程,用x去表示各角,利用角与角之间的关系从而得出结论.【解答】解:设∠AOB=3x,∠BOC=2x.则∠AOC=∠AOB+∠BOC=5x.∵OE是∠AOC的平分线,OD是∠BOC的平分线,∴∠COE═∠AOC= x∠COD= ∠BOC=x,∴∠DOE=∠COE﹣∠COD= x﹣x= x,∵∠DOE=36°,∴ x=36°,解得,x=24°,∴∠BOE=∠COE﹣∠COB= ×24﹣2×24=12°.【点评】本题主要考查的是角的计算,解题中巧设未知数为本题带来了解题的便利,解题的关键是角的平分线的使用.19.一项工程,如果由甲单独做,需要12小时完成;如果由乙单独做,需要15小时完成.甲先做3小时,剩下的工程由甲乙合作完成,则在完成此项工程中,甲一共干了多少小时?【考点】一元一次方程的应用.【分析】设设甲一共干了x小时,根据题意列出方程解答即可.【解答】解:设甲一共干了x小时,依题意有,解得x=8,答:在完成此项工程中,甲一共干了8小时.【点评】此题考查一元一次方程的应用,此题解答关键是把这项工程看作单位“1”,根据工作时间、工作效率、工作总量三者之间的数量关系,解答时要注意从问题出发,找出已知条件与所求问题之间的关系,再已知条件回到问题即可解决问题.20.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.【考点】角的计算;角平分线的定义.【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可.【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC= ∠AOC=75°,∠NOC= ∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∠MON= α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC= ∠AOC= α+30°,∠NOC= ∠BOC=30°∴∠MON=∠MOC﹣∠NOC=(α+30°)﹣30°= α.(3)如图3,∠MON= α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC= ∠AOC= (α+β),∠NOC= ∠BOC= β,∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+ β.∴∠MON=∠MOC﹣∠NOC= (α+β)﹣β= α即∠MON= α.【点评】本题考查了角平分线定义和角的相关计算,关键是求出∠AOC、∠MOC、∠NOC的度数和得出∠MON=∠MOC﹣∠NOC.21.列方程解应用题:五莲县新玛特购物中心第一次用5000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表(注:获利=售价﹣进价)甲乙进价(元/件) 20 30售价(元/件) 29 40(1)新玛特购物中心将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该购物中心第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得总利润比第一次获得的总利润多160元,求第二次乙种商品是按原价打几折销售?【考点】一元一次方程的应用.【分析】(1)设第一次购进甲种商品x件,则乙种商品的件数是( x+15),等量关系是:购进x件甲种商品的进价+购进( x+15)件乙种商品的进价=5000,依此列出方程求出其解即可;(2)设第二次乙种商品是按原价打y折销售,根据第二次两种商品都销售完以后获得总利润比第一次获得的总利润多160元建立方程,求出其解即可.【解答】解:(1)设第一次购进甲种商品x件,则乙的件数为( x+15)件,根据题意得,20x+30( x+15)=5000,解得 x=130,则 x+15=65+15=80(件),(29﹣20)×130+(40﹣30)×80=1970(元).答:两种商品全部卖完后可获得1970元利润;(2)设第二次乙种商品是按原价打y折销售,由题意,有(29﹣20)×130+(40×﹣30)×80×3=1970+160,解得 y=8.5.答:第二次乙种商品是按原价打8.5折销售.【点评】本题考查了列一元一次方程解实际问题的使用,利润=售价﹣进价的使用及一元一次方程的解法的使用.解答时根据题意建立方程是关键.22.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧是否存有点P,使点P到点A、点B的距离之和为8?若存有,请求出x的值;若不存有,说明理由;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?【考点】一元一次方程的应用;数轴.【分析】(1)由点P为AB的中点,而A、B对应的数分别为﹣1、3,根据中点公式即可确定点P对应的数;(2)根据题意可知,点P在B点右边时,根据点P到点A、点B的距离之和为8,列出方程求出x的值即可.(3)分两种情况讨论,①当点A在点B左边两点相距3个单位时,②当点A在点B右边时,两点相距3个单位时,分别求出t的值,然后求出点P对应的数即可.【解答】解:(1)∵点P是AB的中点,点A、B对应的数分别为﹣1、3,∴点P对应的数是(﹣1+3)÷2=1;(2)点P在B点右边时,x﹣3+x﹣(﹣1)=8,解得:x=5,即存有x的值,当x=5时,满足点P到点A、点B的距离之和为8;(3)①当点A在点B左边两点相距3个单位时,此时需要的时间为t,则3+0.5t﹣(2t﹣1)=3,解得:t= ,则点P对应的数为﹣6× +1=﹣3;②当点A在点B右边两点相距3个单位时,此时需要的时间为t,则2t﹣1﹣(3+0.5t)=3,1.5t=7解得:t= ,则点P对应的数为﹣6× +1=﹣27;综上可得当点A与点B之间的距离为3个单位长度时,求点P所对应的数是﹣3或﹣27.【点评】此题考查了一元一次方程的应用,比较复杂,读题是难点,所以解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。

2020人教版七年级上册期末数学试卷(附答案)

2020人教版七年级上册期末数学试卷(附答案)

人教版七年级上册期末数学试卷一、选择题(共12小题,每小题2分,满分24分)1.有理数﹣1,﹣2,0,3中,最大的一个数是()A.﹣1 B.﹣2 C.0 D. 32.下列调查方式的选取不合适的是()A.为了解全市初中生每周“阳光体育”的时间,采取抽样调查的方式B.对“嫦娥三号”卫星零部件的检查,采取抽样调查的方式C.为了解人们保护水资源的意识,采取抽样调查的方式D.为了解全班同学的睡眠状况,采用普查的方式3.以下四个语句中,错误的是()A.两点确定一条直线B.0.1°=6′C.最大的负整数是﹣1D.射线AB与射线BA是同一条射线4.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()A.①②④ B.①②③ C.②③④ D.①③④5.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2 D.3x2y﹣2yx2=x2y6.将数8200000用科学记数法表示为()A.8.2×107 B.82×105 C.8.2×106 D.0.82×1077.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国8.用代数式表示“a与﹣2014的差的2倍”是()A.a﹣(﹣2014)×2 B.a+(﹣2014)×2 C.2(a﹣2014)D.2(a+2014)9.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A.(1+50%)x•80%﹣x=8 B.50%x•80%﹣x=8C.(1+50%)x•80%=8 D.(1+50%)x﹣x=810.一个长方形的周长是18cm,若这个长方形的长减少1,宽增加2,就可以成为一个正方形,则此正方形的边长是()A.5cm B.6cm C.7cm D.8cm11.若|a|=9,|b|=4,且a+b>0,那么a﹣b值为()A.5或﹣5 B.13或﹣13 C.5或13 D.5或﹣1312.如果有4个不同的整数m、n、p、q满足=4,那么m+n+p+q等于()A.8064 B.8060 C.8056 D.8052二、填空题(共5小题,每小题3分,满分15分)13.﹣0.5的倒数是.14.现规定一种运算a*b=ab+a﹣b,其中a,b为有理数,则3*5的值为.15.已知2x6y2和﹣x3m y n是同类项,则2m﹣n的值是.16.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是度.17.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是.三、解答题(共8小题,满分61分)18.计算:(1)(﹣1)2014+|﹣|×(﹣5)﹣8(2)1×[3×()2﹣1]﹣4÷(﹣2)3.19.如图,是由3个相同的小立方块搭成的几何体,请分别画出从正面、左面、上面看到的几何体的形状图.20.我市启动“阳光体育”活动以后,各中小学体育活动精彩纷呈,形式多样,某校教学兴趣小组为了解本市七年级学生最喜爱的体育运动项目,对全市七年级学生进行了跳绳、踢毽子、球类、跳舞等运动项目最喜爱人数的抽样调查,并根据调查结果绘制成如图两个不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)这次抽样调查中,共调查了名学生;(2)补全条形统计图;(3)根据抽样调查结果,请你估计该市12000名七年级学生中,大约有名学生最喜爱球类运动.21.解方程:.22.观察如表三行数的规律,回答下列问题:第1列第2列第3列第4列第5列第6列…第1行﹣2 4 ﹣8 a ﹣32 64 …第2行0 6 ﹣6 16 ﹣30 66 …第3行﹣1 2 ﹣4 8 ﹣16 b …(1)第1行的第四个数a是;第3行的第六个数b是;(2)若第1行的某一列的数为c,则第2行与它同一列的数为;(3)已知第n列的三个数的和为5037,若设第1行第n列的数为x,试求x的值.23.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.24.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将0.7化成分数.解:设0.7=x.方程两边都乘以10,可得10×0.7=10x.由0.7=0.777…,可知10×0.7=7.777…=7÷0.7.即7+x=10x(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.7=.(2)填空:将0.2写成分数形式为.(3)请你仿照上述方法把0.化成分数,要求写出利用一元一次方程进行解答的过程.25.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每秒5个单位长度的速度从原点向右运动时,点A以每秒5个单位长度的速度向右运动,点B以每秒4个单位长度的速度向右运动,问它们同时出发,几秒后P到点A,点B的距离相等?参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1.有理数﹣1,﹣2,0,3中,最大的一个数是()A.﹣1 B.﹣2 C.0 D. 3考点:有理数大小比较.分析:先在数轴上表示出各数,再根据数轴的特点即可得出结论.解答:解:如图所示,,由图可知,四个数中最大的是3.故选D.点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.2.下列调查方式的选取不合适的是()A.为了解全市初中生每周“阳光体育”的时间,采取抽样调查的方式B.对“嫦娥三号”卫星零部件的检查,采取抽样调查的方式C.为了解人们保护水资源的意识,采取抽样调查的方式D.为了解全班同学的睡眠状况,采用普查的方式考点:全面调查与抽样调查.分析:根据全面调查和抽样调查的特点和它们的优缺点对各选项进行判断.解答:解:A、为了解全市初中生每周“阳光体育”的时间,采取抽样调查的方式,调查方式的选取合适;B、对“嫦娥三号”卫星零部件的检查,采取全面调查的方式,调查方式的选取不合适;C、为了解人们保护水资源的意识,采取抽样调查的方式,调查方式的选取合适;D、为了解全班同学的睡眠状况,采用普查的方式,调查方式的选取合适.故选B.点评:本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.3.以下四个语句中,错误的是()A.两点确定一条直线B.0.1°=6′C.最大的负整数是﹣1D.射线AB与射线BA是同一条射线考点:直线、射线、线段;有理数;直线的性质:两点确定一条直线;度分秒的换算.分析:根据直线的性质判断A;根据1°=60′可得0.1°=6′,从而判断B;根据有理数的定义判断C;根据射线的表示方法判断D.解答:解:A、两点确定一条直线,说法正确;B、0.1°=6′,说法正确;C、最大的负整数是﹣1,说法正确;D、射线AB与射线BA是同一条射线,说法错误.故选D.点评:本题考查了射线的表示方法:可用一个小写字母表示,如:射线l;还可用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,表示端点的字母放在前边.也考查了直线的性质公理,度分秒的换算以及有理数的定义.4.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()A.①②④ B.①②③ C.②③④ D.①③④考点:截一个几何体.分析:根据圆锥、圆柱、球、五棱柱的形状特点判断即可.解答:解:圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.点评:本题考查几何体的截面,关键要理解面与面相交得到线.5.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2 D.3x2y﹣2yx2=x2y考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:A、不是同类项不能合并,故A错误;B、系数相加字母部分不变,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.点评:本题考查了合并同类项,系数相加字母部分不变,注意不是同类项的不能合并.6.将数8200000用科学记数法表示为()A.8.2×107 B.82×105 C.8.2×106 D.0.82×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将8200000用科学记数法表示为:8.2×106.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国考点:专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答:解:这是一个正方体的平面展开图,共有六个面,其中面“国”与面“我”相对,面“梦”与面“的”相对,“中”与面“梦”相对.故选C.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.用代数式表示“a与﹣2014的差的2倍”是()A.a﹣(﹣2014)×2 B.a+(﹣2014)×2 C.2(a﹣2014)D.2(a+2014)考点:列代数式.分析:首先算出a与﹣2014的差为a+2014,再乘2列出代数式即可.解答:解:“a与﹣2014的差的2倍”是2[a﹣(﹣2014)]=2(a+2014).故选:D.点评:此题考查列代数式,找出题目叙述的运算顺序与方法是解决问题的关键.9.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A.(1+50%)x•80%﹣x=8 B.50%x•80%﹣x=8C.(1+50%)x•80%=8 D.(1+50%)x﹣x=8考点:由实际问题抽象出一元一次方程.分析:首先根据题意表示出标价为(1+50%)x,再表示出售价为(1+50%)x•80%,然后利用售价﹣进价=利润即可得到方程.解答:解:设每个双肩背书包的进价是x元,根据题意得:(1+50%)x•80%﹣x=8.故选:A.点评:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,根据等量关系列出方程.10.一个长方形的周长是18cm,若这个长方形的长减少1,宽增加2,就可以成为一个正方形,则此正方形的边长是()A.5cm B.6cm C.7cm D.8cm考点:一元一次方程的应用.专题:几何图形问题.分析:让周长除以2减去长方形的长即为长方形的宽,等量关系为:长﹣1=宽+2,把相关数值代入即可.解答:解:设长方形的长为xcm,则长方形的宽为(18÷2﹣x)cm,∵长减少1cm为(x﹣1),宽增加2cm为:(18÷2﹣x+2),∴列的方程为:x﹣1=18÷2﹣x+2,解得:x=6.∴x﹣1=6﹣1=5,即正方形的边长是5cm.故选:A.点评:此题主要考查了一元一次方程的应用,得到长方形的宽是解决本题的突破点,根据正方形的边长相等得到等量关系是解决本题的关键.11.若|a|=9,|b|=4,且a+b>0,那么a﹣b值为()A.5或﹣5 B.13或﹣13 C.5或13 D.5或﹣13考点:有理数的减法;绝对值;有理数的加法.分析:根据绝对值的性质,先求出a,b的值,然后根据a+b>0,确定a,b的值,最后代入a﹣b即可.解答:解:∵|a|=9,|b|=4,∴a=±9,b=±4,且a+b>0,∴a=9,b=4或a=9,b=﹣4;∴a﹣b=5或a﹣b=13.则a﹣b的值是5或13,故选:C.点评:此题考查了有理数的减法及绝对值的意义,此题应注意的是:正数和负数的绝对值都是正数.如:|a|=9,则a=±9.12.如果有4个不同的整数m、n、p、q满足=4,那么m+n+p+q等于()A.8064 B.8060 C.8056 D.8052考点:有理数的乘法.分析:根据有理数的乘法运算法则列出结果为4的运算算式,然后求解即可.解答:解:∵m、n、p、q是四个不同的整数,(﹣1)×(﹣2)×1×2=4,∴2015﹣m,2015﹣n,2015﹣p,2015﹣q四个数的值分别为﹣1、﹣2、1、2,∴2015﹣m+2015﹣n+2015﹣p+2015﹣q=(﹣1)+(﹣2)+1+2,∴m+n+p+q=2015×4=8060.故选B.点评:本题考查了有理数的乘法,熟记运算法则并列式4的运算式是解题的关键.二、填空题(共5小题,每小题3分,满分15分)13.﹣0.5的倒数是﹣2.考点:倒数.分析:根据倒数的定义,互为倒数的两数乘积为1,﹣0.5×(﹣2)=1即可解答.解答:解:根据倒数的定义得:﹣0.5×(﹣2)=1,因此倒数是﹣2.故答案为:﹣2.点评:本题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.现规定一种运算a*b=ab+a﹣b,其中a,b为有理数,则3*5的值为13.考点:有理数的混合运算.专题:新定义.分析:原式利用题中的新定义计算即可得到结果.解答:解:根据题中的新定义得:3*5=15+3﹣5=13,故答案为:13点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.已知2x6y2和﹣x3m y n是同类项,则2m﹣n的值是2.考点:同类项.分析:根据同类项的概念求解.解答:解:∵2x6y2和﹣x3m y n是同类项,∴3m=6,n=2,∴m=2,n=2,则2m﹣n=2×2﹣2=2.故答案为:2.点评:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是160度.考点:钟面角.专题:计算题.分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.解答:解:∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×=10°,∴时针与分针的夹角应为150°+10°=160°.点评:本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.17.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是74.考点:规律型:数字的变化类.专题:规律型.分析:观察四个正方形,可得到规律,每个正方形中左下角的数比左上角的数大2、右上角的数比左上角的数大4.解答:解:0+2=2 2+2=4 4+2=6,所以第四个正方形左下角的数为,6+2=80+4=4 2+4=6 4+4=8,所以第四个正方形右上角的数为,6+4=10.8=2×4﹣0 22=4×6﹣2 44=6×8﹣4 所以m=8×10﹣6=74.故答案为:74.点评:此题是一个寻找规律性的题目,注重培养学生观察、分析、归纳问题的能力.关键是观察四个正方形,得规律,每个正方形中左下角的数比左上角的数大2、右上角的数比左上角的数大4.三、解答题(共8小题,满分61分)18.计算:(1)(﹣1)2014+|﹣|×(﹣5)﹣8(2)1×[3×()2﹣1]﹣4÷(﹣2)3.考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=1﹣1﹣8=﹣8;(2)原式=×(﹣1)+=+=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.如图,是由3个相同的小立方块搭成的几何体,请分别画出从正面、左面、上面看到的几何体的形状图.考点:作图-三视图.分析:观察图形可知,从正面看到的图形是2列,左边一列是2个正方形,右边一列是1个正方形在下面;从左面看到的图形是1列2个正方形;从上面看到的图形是一行2个正方形;据此即可画图.解答:解:绘图如下,每画对一个得,共.点评:此题考查了从不同方向观察物体和几何体和画简单图形的三视图的方法,是基础题型.20.我市启动“阳光体育”活动以后,各中小学体育活动精彩纷呈,形式多样,某校教学兴趣小组为了解本市七年级学生最喜爱的体育运动项目,对全市七年级学生进行了跳绳、踢毽子、球类、跳舞等运动项目最喜爱人数的抽样调查,并根据调查结果绘制成如图两个不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)这次抽样调查中,共调查了200名学生;(2)补全条形统计图;(3)根据抽样调查结果,请你估计该市12000名七年级学生中,大约有4800名学生最喜爱球类运动.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)跳绳的所占的百分比是15%,则其它类的人数是所占的百分比是75%,利用人数除以所占的百分比即可求解;(2)利用总人数减其余各组的人数即可求得喜欢球类的人数,从而完成直方图;(3)利用总人数乘以对应的比例即可求解.解答:解:(1)调查的总人数是:(30+20+60+10)÷(1﹣15%)=200(人),故答案是:200;(2)跳舞的人数是:200﹣30﹣20﹣80﹣10=60(人).;(3)最喜欢球类运动的人数是:12000×=4800(人).故答案是:4800.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.解方程:.考点:解一元一次方程.专题:计算题.分析:方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(x﹣1)=20﹣2(x+2),去括号得:5x﹣5=20﹣2x﹣4,移项合并得:7x=21,解得:x=3.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.22.观察如表三行数的规律,回答下列问题:第1列第2列第3列第4列第5列第6列…第1行﹣2 4 ﹣8 a ﹣32 64 …第2行0 6 ﹣6 16 ﹣30 66 …第3行﹣1 2 ﹣4 8 ﹣16 b …(1)第1行的第四个数a是16;第3行的第六个数b是32;(2)若第1行的某一列的数为c,则第2行与它同一列的数为c+2;(3)已知第n列的三个数的和为5037,若设第1行第n列的数为x,试求x的值.考点:规律型:数字的变化类.分析:(1)通过观察发现﹣2,4,﹣8,16,﹣32,64,…,后面一个数都是前面一个数的﹣2倍;(2)比较第二行数字与第一行数字,易得到第二行数字都是由第一行数字的每一个数加上2;(3)比较第三行数字与第一行数字,易得到第三行数字都是由第一行数字的每一个数除以2;由此规律解决问题即可.解答:解:(1)第1行的第四个数a是﹣8×(﹣2)=16;第3行的第六个数b是64÷2=32;(2)若第1行的某一列的数为c,则第2行与它同一列的数为c+2.(3)根据题意,这三个数依次为x,x+2,x得,x+x+2+x=5037,解得:x=2014.点评:本题考查了规律型:数字的变化类:从一组数字的每个数与这个数字的数位之间的关系发现规律;也可从一组数字的前后两个数之间的关系发现规律.23.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.考点:整式的加减;非负数的性质:绝对值;非负数的性质:偶次方.分析:(1)将B的代数式代入A﹣2B中化简,即可得出A的式子;(2)根据非负数的性质解出a、b的值,再代入(1)式中计算.解答:解:(1)∵A﹣2B=A﹣2(﹣4a2+6ab+7)=7a2﹣7ab,∴A=(7a2﹣7ab)+2(﹣4a2+6ab+7)=﹣a2+5ab+14;(2)依题意得:a+1=0,b﹣2=0,a=﹣1,b=2.原式A=﹣(﹣1)2+5×(﹣1)×2+14=3.点评:本题考查了非负数的性质和整式的化简,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.24.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将0.7化成分数.解:设0.7=x.方程两边都乘以10,可得10×0.7=10x.由0.7=0.777…,可知10×0.7=7.777…=7÷0.7.即7+x=10x(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.7=.(2)填空:将0.2写成分数形式为.(3)请你仿照上述方法把0.化成分数,要求写出利用一元一次方程进行解答的过程.考点:一元一次方程的应用.分析:(1)根据阅读材料设0.=x,方程两边都乘以10,转化为4+x=10x,求出其解即可;(2)设0.=m,程两边都乘以100,转化为73+m=100m,求出其解即可.解答:解:(1)设0.=x,则4+x=10x,∴x=.故答案是:;(2)设0.=m,方程两边都乘以100,可得100×0.=100m.由0.=0.7373…,可知100×0.=73.7373…=73+0.73即73+m=100m可解得m=,即0.=.点评:本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.25.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每秒5个单位长度的速度从原点向右运动时,点A以每秒5个单位长度的速度向右运动,点B以每秒4个单位长度的速度向右运动,问它们同时出发,几秒后P到点A,点B的距离相等?考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)利用数轴上两点A、B对应的数分别为﹣1、3,得出中点位置P点;(2)利用当P在A左侧时,当P在B右侧时,分别得出即可;(3)利用当P点在AB之间时,此时B到P点距离等于A点到P点距离,以及当P点在AB右侧时,此时A、B重合,求出即可.解答:解:(1)∵点P到点A,点B的距离相等∴点P对应的数x==1;(2)当P在A左侧时,3﹣x+(﹣1﹣x)=5,解得:x=﹣;当P在B右侧时,x﹣3+x﹣(﹣1)=5,解得:x=;当P在A、B之间时,x不存在;(3)当P点在AB之间时,此时B到P点距离等于A点到P点距离,则4x+3﹣5x=1,解得:x=2,当P点在AB右侧时,此时A、B重合,则4x+4=5x,解得:x=4故它们同时出发,2秒或4秒后P到点A、点B的距离相等.点评:此题主要考查了一元一次方程的应用以及数轴上点的坐标与距离表示方法等知识,利用分类讨论得出是解题关键.。

2020人教版七年级数学上册期末试卷与答案

2020人教版七年级数学上册期末试卷与答案

精选教育类文档,祝同学们考出好成绩,心想事成,万事如意@_@2020人教版七年级数学上册期末试卷与答案一、选择题:(本大题共10小题,每小题3分,共30分.)1.如果+20%表示增加20%,那么-6%表示 ( )A.增加14% B.增加6% C.减少6%D.减少26%2.13-的倒数是 ( )A.3 B.13 C .-3 D.13-3、如右图是某一立方体的侧面展开图,则该立方体是 ( )A.B.C.D.4、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示为()A.70.2510⨯B.72.510⨯C.62.510⨯D.52510⨯5、已知代数式3y2-2y+6的值是8,那么32y2-y+1的值是( )A .1B .2C .3D .46、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5个数中负数共有( )A.1 个 B. 2个 C. 3个 D. 4个7.在解方程时,去分母后正确的是()A.5x=15-3(x-1) B.x=1-(3 x-1)C.5x=1-3(x-1) D.5 x=3-3(x-1) 8.如果,,那么x-y+z等于()5113--=xxxy3=)1(2-=yzA.4x-1 B.4x-2 C.5x-1 D.5x-29.如图1,把一个长为、宽为的长方形()沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A. B. C.D.图1 图2第9题10.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )第10题A.这是一个棱锥 B.这个几何体有4个面m n m n>2m n-m n-2m2nnnmnC .这个几何体有5个顶点D .这个几何体有8条棱二、填空题:(本大题共10小题,每小题3分,共30分)11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.12.三视图都是同一平面图形的几何体有 、 .(写两种即可)13.多项式132223-+--x xy y x x 是_______次_______项式 14.多项式223368x kxy y xy --+-不含xy 项,则k = ; 15.若x=4是关于x的方程5x-3m=2的解,则m= .16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 .(用含m ,n 的式子表示)17.已知线段AB =10cm ,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC =2 cm ,则线段DC = .18.钟表在3点30分时,它的时针和分针所成的角是 .19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .从正面看从左面看从上面看三、解答题:本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤.21.计算:(共6分,每小题3分)(1) 3x2+6x+5-4x2+7x-6, (2) 5(3a2b-ab2)—(ab2+3a2b)22.计算(共12分,每小题3分)(1)12-(-18)+(-7)-15 (2)(-8)+4÷(-2)(2)(-10)÷551⨯⎪⎭⎫⎝⎛- (4)121()24234-+-⨯-23.解方程:(共12分,每小题3分)(1)7104(0.5)x x -=-+ (2)0.5y —0.7=6.5—1.3y(3)3421x x =- (4)513x +-216x -=1.24.(5分)先化简,再求值:14×(-4x2+2x-8)-(12x-1),其中x=12.25.(5分)已知一个角的余角是这个角的补角的41,求这个角.26.(5分)跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?27.(7分)如图,∠AOB =∠COD =900,OC 平分∠AOB ,∠BOD =3∠DOE 试求 ∠COE 的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

祝同学们期末考出好成绩!欢迎同学们下载,希望能帮助到你们!
2020最新人教版七年级数学上册期末考试题及答案
一、选择题:(本大题共10小题,每小题3分,共30分.)
1.如果+20%表示增加20%,那么-6%表示
( )
A.增加14% B.增加6% C.减少6%
D.减少26%
2.1
3
-的倒数是 ( )
A.3 B.1
3 C .-3 D.1
3
-
3、如右图是某一立方体的侧面展开图,则该立方体是( )

. B. C. D.
4、青藏高原是世界上海拔最高的高原,它的面积约为2
500 000平方千米.将2 500 000用科学记数法表示为 ( )
A.70.2510⨯
B.72.510⨯ C.62.510⨯
D.52510⨯
5、已知代数式3y 2-2y+6的值是8,那么32y 2-y+1的
值是 ( )
A .1
B .2
C .3
D .4
6、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5
个数中负数共有 ( )
A .1 个
B . 2个
C . 3个
D . 4个
7.在解方程
时,去分母后正确的是 ( )
5
113--=x x
A .5x =15-3(x -1)
B .x =1-(3 x -1)
C .5x =1-3(x -1)
D .5 x =3-3(x
-1) 8.如果,,那么x -y +z 等于 ( )
A .4x -1
B .4x -2
C .5x -1
D .5x -2
9. 如图1,把一个长为、宽为的长方形()沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )
A .
B .
C .
D .
图1 图2
x y 3=)1(2-=y z m n m n >2
m n -m n -2m 2n n
n m n
第9题
10.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )
第10题
A.这是一个棱锥
B.这个几何体有4个面
C.这个几何体有5个顶点
D.这个几何体有8条棱
二、填空题:(本大题共10小题,每小题3分,共30分)
11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.
12.三视图都是同一平面图形的几何体
有、.(写两种即可)。

相关文档
最新文档