弹塑性力学定理和公式
弹塑性力学公式合集
弹塑性力学公式合集(总4页) -本页仅作为预览文档封面,使用时请删除本页-弹性力学假设:连续性假设、均匀性假设、各向同性假设、完全弹性假设、小变形假设、无初应力假设 任意斜截面上的应力Cauchy 公式:T = σ l+ τ m+ τ n 、T = τ l+ σ m+τ n 、T =τ l+τ m+σ n弹性体的应力边界条件:x yxzx xy y zy xz yz z l m n X l m n Y l m n Z στττστττσ⎫++=⎪⎪++=⎬⎪+++⎪⎭主应力、应力张量、不变量 当一点处于某种应力状态时, 在过该点的所有截面中, 一般情况下存在着三个互相垂直的特殊截面, 在这些截面上没有剪应力, 这种剪应力等于零的截面称为过该点的 主平面 , 主平面上的正应力称为该点的 主应力 , 主平面的法线所指示方向称为该点的 主方向 。
静力平衡方程几何方程:物理方程三个基本原理:解的唯一性原理、叠加原理、圣维南原理。
圣维南原理:由作用在物体局部边界表面上的自平衡力系,所引起的应力和应变,在远离作用区的地方将衰减到可以忽略不计的程度。
另一种提法:如果把物体局部边界表面上的力系,使用分布不同但静力等效(主失相等,绕一点的主矩也相等)的力系来代替,则这种等效代换处理使得物体内的应力分布仅在作用区附近有显着影响,而在远离作用区的地方所受影响很小,可以忽略不计。
为什么要用:1、在弹性力学的边值问题中,要求在边界上任意点,应力与面力相等,方向一致,往往难以满足。
2、有时只知道边界面上的合力和合力矩,并不知道面力的分布形式。
因此,在弹性力学问题的求解过程中,一些边界条件可以通过某种等效形式提出。
其要点有两处: 一、两个力系必须是按照刚体力学原则的“等效”力系(主矢量和主矩分别等于对应面力的主矢量和主矩); 二、替换所在的表面必须小,并且替换导致在小表面附近失去精确解。
Cauchy 公式: T = σ l+ τ m+τ n T = τ l+σ m+τ n T =τ l+τ m+σ n22(n x z n T nT T T στ++=边界条件:()()()x xy xz s xxy y yz s y xz yz z s zl m n T l m n T l m n T στττστττσ++=++=++= 平衡微分方程:000yx x zxx xy y zyy yz xz zz F x y z F x y z F x y zτσττστττσ∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂ 主应力、不变量,偏应力不变量321231230x y zx xy y z zxyz yx y zy xz x z x xy xzyx y yzzx zy z I I I I I I σσσσσσστσστττσττσσσττστττσ-+-==++=++= 1231();3m i i m s σσσσσσ=++=-()()()112322222223016()6x y y z zx xy yz zx J ss s J J σσσσσστττ=++=⎡⎤=-+-+-+++⎢⎥⎣⎦=偏应力张量行列式的秩八面体812381()3σσσστ=++等效应力σ体积应变x y z θεεε=++12312()Ev vεσσσ-=++ 几何方程:;;;x xy y yz z xy u u v x y x v v w y z y w u w z z xεγεγεγ∂∂∂==+∂∂∂∂∂∂==+∂∂∂∂∂∂==+∂∂∂ 12ij ij εγ=变形协调方程22222y xyx xy y xετε∂∂∂+=∂∂∂物理方程()()()12(1);12(1);12(1);x x y z xy xy y y x z yz yzz z y x zx zx v v E Ev v E E v v E Eεσσσγτεσσσγτεσσσγτ+⎡⎤=-+=⎣⎦+⎡⎤=-+=⎣⎦+⎡⎤=-+=⎣⎦ 偏应力与偏应变的关系3;2m m ij ij K s Ge σε==平面应变问题()()()()()'x '''''''2111111112(1)2(1);0;110;x y x y y y x y x xy xy xy z zy zx zy zx z x y v v v v Ev v v v E v v E EE v E v v v v εσσσσεσσσσγττεγγττσσσ⎡⎤=-=--⎣⎦-⎡⎤=-=--⎣⎦-++=====--=====+ 平面应力问题()()()x 11;2(1)01;0x y y y x xy xyzy zx zy zx z x y z v v E E v Evεσσεσσγτγγττεσσσ=-=-+======-+= 平面问题方程: 平衡方程:00yxx x xy yy F x y F x yτστσ∂∂++=∂∂∂∂++=∂∂ 几何方程;;x y xy u v u vx y y xεεγ∂∂∂∂===+∂∂∂∂ 边界条件;x yx x xy y y l m T l m T σττσ+=+=位移边界条件;x x y y u u u u ==协调方程平面应变22222y xyx xy y xετε∂∂∂+=∂∂∂平面应力222220;0;0z z zxy x yεεε∂∂∂===∂∂∂ 平面问题应力解(直角坐标系)22222x x y y xy F xy F y x xyϕσϕσϕτ∂=-∂∂=-∂∂=-∂协调方程:222222222()()()0x y x y x yϕσσ∂∂∂∂+=++=∂∂∂∂ 平面问题应力解(极坐标系) 平衡微分方程:10210r r r r r r F r r r F r r rθθθθθθτσσσθτστθ∂-∂+++=∂∂∂∂+++=∂∂ 几何方程:1;1r r r r r u u u r r r u u u r r rθθθθθεεθγθ∂∂==+∂∂∂∂=+-∂∂ 本构方程:()()r 11;2(1)r r rrv v E E v Eθθθθθεσσεσσγτ=-=-+= 变形协调:22222211()0r r rr θ∂∂∂++=∂∂∂已知应力函数ϕ,求应力 2222222211;111()r r r r r r r r r r r θθϕϕϕσσθϕϕϕϕτθθθ∂∂∂=+=∂∂∂∂∂∂∂=-+=-∂∂∂∂∂ 极坐标求解的对称问题2222ln ln (12ln )2(32ln )2r A r Br r cr D Ar C r Ar Crθϕσσ=+++=+++=-+++B B b B 0q ,q ,a =中间有空洞,位移单值要求环内力环外力()()()()2222222222222222222221''''''a b (1)(1)b b (1)(1)D u D r r1121ln 1113cos sin 4sin cos r a br a br b a q q a b r b a r b aq q b a r b a rA u v v Br r r E v Cr I K EBr u Hr I K E θσσθθθθθ=-----=+-+--=+⎡⎤=-++--⎢⎥⎣⎦+-++=+-+位移:平面应变下:()()[]()()[]r (1)112(1)112r r Eu u u u Eu u u u θθθσεεσεε=-++-=-++-屈服条件Tresca 屈服条件()12111s022ij sf k σσσστ-=-===单轴拉伸:k ;纯剪切:k Mises 屈服条件()()()()222222222222016()6K K ij x y y z z x xy yz zx s sf J k J σσσσσσστττσ=-=⎡⎤=-+-+-+++⎢⎥⎣⎦=单轴拉伸:;纯剪切:外刚体有孔半径R ,放入一外径R ,内径r 圆筒,圆筒内受均布力q ,求圆筒应力。
弹塑性力学——精选推荐
1-5 已知1σσ=x ,2σσ=y ,0====zx yz xy z τττσ,试求与xy 平面垂直的任意斜截面上的正应力和剪应力。
解:由公式2221m l σσσυ+=, αcos =l ,αsin =m ,所以有:ασσσσασασσυ2cos )(21)(21sin cos 21212221-++=+= [注意:)αααα2cos 1(21cos )2cos 1(21sin 22+=-=•]法二:根据已知条件,建立如图所示的坐标系,设将外力沿外法线方向投影,得:sin sin cos cos =⋅⋅-⋅⋅-αασαασσυds ds ds y x 即 0sin cos 2221=⋅⋅-⋅⋅-ασασσυds ds dsασσσσασασσυ2cos )(21)(21sin cos 21212221-++=+=⇒与前同。
同理,将外力沿切线方向投影,得:cos sin sin cos =⋅⋅+⋅⋅-αασααστυds ds ds y x 即: 02sin 212sin 2121=⋅⋅+⋅⋅-ασαστυds ds ds ασστυ2sin 2)(21-=⇒ [注意:ααααααcos sin 22sin 2sin 21sin cos •••==] 综上,与xoy 平面垂直的任意斜截面上的正应力为:ασσσσασασσυ2cos )(21)(21sin cos 21212221-++=+=剪应力为:ασστυ2sin 2)(21-=。
1-6 当321σσσ>>时,如令313122σσσσσμσ---=,试证明3)3(22max 0σμττ+=,且该值在0.816~0.943之间。
解:0τ为等倾面上的剪应力,212132322210])()()[(31σσσσσστ-+-+-=由于剪应力的极值为2321σστ-±=,2132σστ-±=,2213σστ-±=232221032ττττ++=,另外有:max 2ττ=,max 121τμτσ+-=,max 321τμτσ--= 所以,212max 22max 0]426[324)1(4)1(132σσσμτμμττ+=-+++=3)3(22max 0σμττ+=⇒ 由于)30(3-=σσωμtg ,)30cos(136)]30(1[36212max 0-=-+=⇒σσωωττtg 因为:11≤≤-σμ,[当0=σω时,1-=σμ;当3πωσ=时,1=σμ;当6πωσ=时,0=σμ]将1=σμ和0=σμ代入maxττ则有: 943.0816.0max 0≤≤ττ,(816.030max 0==ττωσ时,当,943.060max0==ττωσ时,当 )。
应用弹塑性力学考试用基本公式
1、平衡方程
简记为:
σ ji , j + f i = 0
∂σ r 1 ∂τ θr ∂τ zr σ r − σ θ + fr = 0 ∂r + r ∂θ + ∂z + r ∂τ rθ 1 ∂σ θ ∂τ zθ 2τ rθ + fθ = 0 + + + <ii>在柱坐标系中: r ∂z ∂r r ∂θ ∂τ rz + 1 ∂τ θz + ∂σ z + τ rz + f z = 0 r ∂z ∂r r ∂θ
应变余能 U 0* = σ ij ε ij − U 0 4、边界条件: <i>外力边界条件:
∂U 0 ∂ε ij
*
∂U 0 ε ij = ∂σ ij
σ x l + τ yx m + τ zx n = Tx τ xy l + σ y m + τ zy n = Ty τ l + τ m + σ n = T yz z z xz
εϕ =
1 ∂uϕ u r + r ∂ϕ r
体积应变
θ =
∂uθ ∂ 1 ∂ 2 1 ( ) ( ) ϕ + [ sin ] + r u u r ϕ 2 ∂θ r sin ϕ ∂ϕ r ∂r
应用弹塑性力学考试用基本公式-4
3、物理方程(本构方程、广义虎克定律): <i>以应力分量表示应变分量:
εx =
应用弹塑性力学考试用基本公式-1
弹性力学基本方程
∂σ x ∂τ yx ∂τ zx ∂x + ∂y + ∂z + f x = 0 ∂τ xy ∂σ y ∂τ zy + + + fy = 0 <i>在直角坐标系中: ∂y ∂z ∂x ∂τ xz ∂τ yz ∂σ z ∂x + ∂y + ∂z + f z = 0
(完整版)弹塑性力学公式
应力应变关系:弹性模量 || 广义虎克定律 1.弹性模量a 弹性模量 单向拉伸或压缩时正应力与线应变之比,即E σε=b 切变模量 切应力与相应的切应变 之比,即G τγ=c 体积弹性模量 三向平均应力0()3x y z σσσσ++=与体积应变θ(=εx +εy +εz )之比, 即K σθ=d 泊松比 单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即1ενε= 2.广义虎克定律 a.弹性力学基本方程在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。
这15个未知量可由15个线性方程确定,即 (1)3个平衡方程(或用脚标形式简)写 为:22()0jijii x u f tσρ∂∂++-=∂∂(,,,)i j x y z =(2)6个变形几何方程,或简写为:1()2ji ij j iu u E x x ∂∂=+∂∂(,,,)i j x y z =(3)6个物性方程简写为:0132ij ij E G E νσσδ=-2ij ij ijG σελθδ=+(,,,)i j x y z ={1()0()()i j ij i j δ=≠=2.边界条件x x xx xy xy xz xzF l l l σττ=++y yz xx y xy yz xzF l l l τσσ=++z zz xx xy xy z xzF l l l ττσ=++式中,l nj =cos(n,j)为边界上一点的外法线n 对j 轴的方向余弦 b 位移边界问题在边界S x 上给定的几何边界条件为*x x u u = *y y u u =*z z u u = 式中,u i 为表面上给定的位移分量Cauchy 公式: T x = σ x l + τ xy m +τ zx n T y = τ xy l+σ y m +τ zy n T y =τ xz l+τ y z m +σ z n22)(n x z n n n T l T T nT T T στ=+++=边界条件:()()()x xy xz s x xy y yz s y xz yz z s zl m n T l m n T l m n T στττστττσ++=++=++= 平衡微分方程:000yx x zxx xy y zyy yz xz zz F x y z F x y z F x y zτσττστττσ∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂ 主应力、不变量,偏应力不变量321231230x y zx xy y z zxyz yx y zy xz x z x xy xzyx y yzzx zy z I I I I I I σσσσσσστσστττσττσσστττστττσ-+-==++=++= 1231();3m i i m s σσσσσσ=++=-()()()112322222223016()6x y y z z xxy yz zx J ss s J J σσσσσστττ=++=⎡⎤=-+-+-+++⎢⎥⎣⎦=偏应力张量行列式的秩八面体812381()3σσσστ=++等效应力σ=体积应变x y z θεεε=++12312()Ev vεσσσ-=++几何方程:;;;x xy y yz z xy u u v x y x v v w y z y w u w z z xεγεγεγ∂∂∂==+∂∂∂∂∂∂==+∂∂∂∂∂∂==+∂∂∂ 12ij ij εγ=变形协调方程22222y xyx xy y xετε∂∂∂+=∂∂∂物理方程()()()12(1);12(1);12(1);x x y z xyxy y y x z yz yz z z y x zx zx v v E E v v E Ev v E Eεσσσγτεσσσγτεσσσγτ+⎡⎤=-+=⎣⎦+⎡⎤=-+=⎣⎦+⎡⎤=-+=⎣⎦偏应力与偏应变的关系 3;2m m ij ij K s Ge σε==平面应变问题()()()()()'x '''''''2111111112(1)2(1);0;110;x y x y y y x y x xy xyxy z zy zx zy zx z x y v v v v Ev v v v E v v E E E v E v v v v εσσσσεσσσσγττεγγττσσσ⎡⎤=-=--⎣⎦-⎡⎤=-=--⎣⎦-++=====--=====+ 平面应力问题()()()x 11;2(1)01;0x y y y x xy xyzy zx zy zx z x y z v v E Ev Evεσσεσσγτγγττεσσσ=-=-+======-+= 平面问题方程: 平衡方程:00yxx x xy yy F x y F x yτστσ∂∂++=∂∂∂∂++=∂∂几何方程;;x y xy u v u v x y y xεεγ∂∂∂∂===+∂∂∂∂ 边界条件;x yx x xy y y l m T l m T σττσ+=+=位移边界条件;x x y y u u u u ==协调方程 平面应变22222y xyxxy y xετε∂∂∂+=∂∂∂平面应力222220;0;0z z zxy x y εεε∂∂∂===∂∂∂平面问题应力解(直角坐标系)22222x x y y xy F xy F y x xy ϕσϕσϕτ∂=-∂∂=-∂∂=-∂协调方程:222222222()()()0x y x y x yϕσσ∂∂∂∂+=++=∂∂∂∂ 平面问题应力解(极坐标系) 平衡微分方程:10210r r r r r r F r r r F r r rθθθθθθτσσσθτστθ∂-∂+++=∂∂∂∂+++=∂∂ 几何方程:1;1r r r r r u u u r r r u u u r r rθθθθθεεθγθ∂∂==+∂∂∂∂=+-∂∂ 本构方程:()()r 11;2(1)r r rrv v E E v Eθθθθθεσσεσσγτ=-=-+= 变形协调:22222211()0r r rr θ∂∂∂++=∂∂∂已知应力函数ϕ,求应力2222222211;111()r r r r r r r r r r r θθϕϕϕσσθϕϕϕϕτθθθ∂∂∂=+=∂∂∂∂∂∂∂=-+=-∂∂∂∂∂ 平面应变下:()()[]()()[]r (1)112(1)112r r Eu u u u E u u u u θθθσεεσεε=-++-=-++-屈服条件Tresca 屈服条件()12111s022ij sf k σσσστ-=-===单轴拉伸:k ;纯剪切:k Mises 屈服条件()()()()222222222222016()6K K ij x y y z z x xy yz zx s sf J k J σσσσσσστττσ=-=⎡⎤=-+-+-+++⎢⎥⎣⎦=单轴拉伸:;纯剪切:1、理想弹塑性材料的加卸载准则:()()0,0;0,0;ij ij ijij ij ij ff df d ff df d σσσσσσ∂===∂∂==<∂加载卸载2、硬化材料的加卸载准则:()()()0,0;0,0;0,0;ij ij ij ij ij ij ij ij ij ff d f f d ff d βββσεσσσεσσσεσσ∂=>∂∂==∂∂=<∂,加载,中性加载,卸载。
第一章弹塑性力学基础
i 1
的值从1到3变化。
xi 和 x j代表同一个矢量。
1.2.2 求和约定
求和约定在相关文献中都有详细的的介绍,下面只举一个小的例子, 考虑下边方程组:
a11 x1 a12 x2 a13 x3 b1 a21 x1 a22 x2 a23 x3 b2 a31 x1 a32 x2 a33 x3 b3
' 三阶张量: Gijk liml jnlkpGmnp
张量可以有任意阶,从以上表达式中可以明显得出一般的变换规则。 由于受笛卡尔坐标系的限制,所以所有这些张量均成为笛卡尔张量。
1.2.7 张量性质
张量的运算法则与矢量相类似,如张量相等即对应分量相等;张 量相加即对应分量相加;张量相乘构成一个新的张量,通常其阶数是 原张量的阶数之和;n阶张量缩并后变为n-2阶张量等等。下面简单的 举例说明: 1. 一个张量在一个坐标系中的所有分量都为0,则在所有坐标系中 的所有分量都为0。这个论述在减少数学和物理证明方面很有帮助, 如:要考虑 Fi 导致的应力 ij ,以后将证明,为满足平衡 ij, j Fi , 现将它重写为Di ij, j Fi 0,因为 Di 是零矢量,因此只需在一个 坐标系中证明即可。 2.一个三阶张量与一个二阶张量相乘,构成一个五阶张量。
令 所以
3.三阶张量缩并成一阶张量
证明: 因为 所以 又因为 所以
' Aijk Arst lri lsj ltk
' Aiik Arst lri lsi ltk
lri lsi rs
' Aiik Arst rs ltk
又
1 0 0 rs 0 1 0 0 0 1
第五章弹塑性力学问题的提法详解
1. 问题的提出:
(1) 求解弹性力学问题时,使应力分量、形 P
P
变分量、位移分量完全满足8个基本方程
相对容易,但要使边界条件完全满足, P
往往很困难。
(2) 如图所示,其力的作用点处的边界条
P
件无法列写。
5.4 圣维南原理 (Saint-Venant Principle)
原理: 若把物体的一小部分边界上的面力,变换为分布 不同但静力等效的面力,则近处的应力分布将有 显著改变,而远处所受的影响可忽略不计。
第三类边值问题:在物体表面上,一部分给定面
力,其余部分给定位移(或在部分表面上给定外力和位移 关系)的条件下求解上述问题,即所谓混合边值问题。
5.3 弹性力学问题的基本解法 解的唯一性
1.位移法:
本构方程
x
2G
u x
e 1 2
,
y
2G
y
e 1 2
,
z
2G
w z
e 1 2
,
平衡方程
xy
G
3 i i
xy
yz
3 i i
yz
zx
3 i i
zx
张量形式为:
ij
3 i 2 i
Sij
5.1 基本方程
4. 边界条件 应力边界(Sσ上):
Px 1 x l2 yx l3 zx Py l2 y l3 zy 1 xy Pz l3 z 1 xz l2 yz
张量形式为:
Pi ijn j
xz
u z
w x
张量形式为:
ij
1 2
(ui
,
j
u j,i )
(i, j x, y, z)
弹塑性力学基本知识
dε p =
塑性功增量: dW = σ ij dε ij
p p
2 p p deij deij 3
(13) (14)
等效剪应变 (或剪应变强度) : Γ=
2eij eij
(15)
T = 等效剪应力 (或剪应力强度) : 4 3 1 3
1 2
sij sij
(16)
八面体剪应变: γ8 =
eij eij 2 3
P dε ij = dλ1
∂f1 ∂σ ij
(49)
特殊情况, 若σ1 = σ 2 ≥ σ 3 , 则应力状态处于 f1 = σ 2 − σ 3 − σ s = 0 和 f 2 = σ 1 − σ 3 − σ s = 0
的交点处,则:
dε iP = dλ1
z 硬化模型(三类) 等向硬化:
∂f1 ∂σ i
加载
中性变载
(37)
卸载
⎛ P ⎜ dε pq ∂f ∂g dσ ij = ⎜ 1 − i ∂σ ij ⎜ ∂ε pq ∂g dε mn ⎜ ∂ε mn ⎝
⎞ ⎟ ∂g ⎟ dε kl ⎟ ∂ε kl ⎟ ⎠
(条件:
∂g ∂ε ij
dε ij > 0 )
(38)
注意:当材料处于硬化阶段时,采用
∂g ∂ε ij
第一、第二、第三偏应力不变张量:
⎫ ⎪ ⎬ ⎪ ⎭
(7)
J1 = skk = 0 J2 = 1 2
2 sij sij = I 2 + 3σ m
J 3 = det ( sij ) = sij s jk ski
第二偏应力不变张量:
⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
(8)
J2 =
1
弹塑性力学总结
弹塑性力学总结弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。
通过一学期的弹塑性力学的学习,对其内容总结如下:一、弹性力学1、弹性力学的基本假定求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。
求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。
在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。
因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。
(1)假设物体是连续的。
就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。
这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。
(2)假设物体是线弹性的。
就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。
而且,材料服从虎克定律,应力与应变成正比。
(3)假设物体是均匀的。
就是说整个物体是由同一种质地均匀的材料组成的。
这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。
(4)假设物体是各向同性的。
也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。
(5)假设物体的变形是微小的。
即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。
弹塑性力学___第四章_弹性力学的求解方法
叠加原理:弹性体受几组外力同时作用时的解等于每一组外力单 独作用时对应解的和。
叠加原理成立的条件:小变形条件(平衡、几何方程才 为线性的),弹性本构方程(虎克定律)。
4-5塑性力学最简单的问题、求解塑性力学的问题
在塑性力学中,有些问题在平衡方程和屈服条件 中的未知函数和议程式的数目相等,因而结合边 界条件一般便可找出弹塑性体或结构中应力分布 的规律。而应变和位移再根据本构方程和几何方 程或连续性条件分别求出。这种仅通过平衡方程、 屈服条件就能完全确定应力场的问题属静定问题 (称为塑性力学最简单问题)
(2)应变协调方程(变形连续必条件)(变形相容条件)
可缩写为:
上述方程是六个应变分量 保证三个位移分量 连续函数(保持连续)的条件。 为单值
3、本构方程(物性方程)
(1)在弹性变形阶段,且屈服函数 则有
如用应变表示应力,则有
为了与塑性变形本构方程对比,也可将本构方程表示为
(2)在弹塑性变形阶段,屈服函数
1. 平衡(或运动方程)
若等式右式不等零,即表示物体内质点处于运动状态, 则根据理论力学中的达朗伯原理需将上式右端等于括号 内的惯性力项。 方程只表明物体内一点的应力状态与其邻点的应力 状态之间在平衡(或运动)时所满足的关系。
2. 几何方程与应变协调方程
(1)几何方程
此式表明在小变形条件下,物体内一点附近的变形情况和该点的 应变状态之间的关系。
第四章 弹塑性力学基础理论的建立及基本解法
§4-1 弹塑性力学基本理论的建立 弹塑性力学的任务:研究各种具体几何尺寸的
弹性、弹塑性体或刚塑性体在各种几何约束及 承受不同外力作用时、发生于其内部的应力分 布与变形(或位移)规律。
与材料力学一样,弹塑性力学所求解的大多 数问题是超静定问题,因此其基础理论的 建立来自三个方面的客观规律:平衡方 程 ;几何方程 ;本构方程
清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法
弹塑性力学第四章 弹性力学的基本方程与解法一、线性弹性理论适定问题的基本方程和边界条件对于在空间占有体积域V 的线弹性体在外加恒定载荷和固定几何约束条件下引起的小变形问题,若以, ,u εσ作为求解变量,则可以建立如下偏微分方程边值问题: 几何方程()1,,2ij i j j i u u ε=+ ()12∇+∇u u ε= (1a)广义胡克定律 ij ijkl kl E σε= :E σ=ε(1b)平衡方程 ,0ij j i f σ+= ∇⋅+=f 0σ V∀∈x (1c)以上方程均要求在域内各点均满足。
边界条件 u u i i = ∀∈x S ui (2a)n t j ji i σ= ∀∈x S ti(2b)对于适定问题,即不仅要求保证解存在唯一,而且有较好的稳定性。
当载荷或边界条件给定值有微小摄动时,应能保证问题解的变化也是微小的。
对于边界条件的提法就有严格的要求。
即要求:S S S S S ui ti ui ti U I ==∅(2c)对于各向同性材料,其广义胡克定律可具体写成 σλεδεij kk ij ij G =+2 ()tr 2G λ+I σ=εε (3a)()11ij ij kk ij E ενσνσδ⎡⎤=+−⎣⎦ ()()1tr Eνν=⎡⎤⎣⎦I ε1+σ−σ (3b)以上就域内方程来说,一共是对于u ,,σ ε的15个独立分量u i ij ij ,, σε的15个方程。
对于边界条件来说,三维问题每点有三个边界条件,而且是在三个正交方向上每个方向有一个边界条件,这个边界条件或者给定位移、或者给定面力。
这三个正交第四章 弹性力学的基本方程与解法方向可以是整体笛卡儿坐标系的三个方向,也可以是边界自然坐标系的三个方向(即法向和两个切向)。
从更一般来说,除去给定位移或面力外,还有另一种线性的边界条件t K u c i ij j i +=(4)这是一种弹性约束条件。
用这个条件可以取代给定位移或给定面力的条件。
塑性力学第五章(2)-简单的弹塑性问题(二)
ε = 0.707σ s
1 τ= 3
σs ε2 + γ2
1 3
γ = 0.408σ s
附一: 附一:
理想弹塑性材料的 Prandtl
理想弹塑性力学模型
— Reuss 理论
σ σs
Eε σ = σ s
ε ≤ εs ε > εs
εs εp εe ε
在塑性区, 在塑性区,应变增量由弹性和塑 性两部分组成。 性两部分组成。
简 单 的 弹 塑 性 问 题(二) 二
薄壁圆筒的拉扭联合变形 增量理论 全量理论
不可压缩(v=0.5)理想弹塑性材料的薄壁圆管受轴向拉力和扭矩作用, 不可压缩(v=0.5)理想弹塑性材料的薄壁圆管受轴向拉力和扭矩作用, 使用Mises条件。 使用Mises条件。 条件 应力路径:(1)先拉至 ε s = :(1 应力路径:( (2)先扭后拉。 先扭后拉。
th
σs
σs
σ =
ch
σs
3G γ
σs
γ =
σs
3G
⇒
σ = 0 .648 σ s , τ = 0 .439 σ s
(2)先扭后拉 )
γ
σs
3G
τ
B C
σ
3
A
s
B
C A
O
σs
3G
ε
O
σ
σ
s
dγ = 0
dW d = σ d ε + τd γ = σ d ε
3Gd ε = dσ 1−
dσ σ 2 dε dε = + 3G σ s2
σ = 0 .707 σ s τ = 0 .408 σ s
σ 2 + 3τ 2 = σ s2
弹塑性力学-04
x E y
其中E为弹性常数,这就是熟知的 胡克定律。
在三维应力状态下,描绘一点处的 应力状态需要9个应力分量,与之 相应的应变状态也要用9个应力分 量来表示。在线弹性阶段,应力与 应变间仍有线性关系存在,但在一 般情况下,任一应变分量要受9个 应力分量 制约。
3
由于应力张量与应变张量的对称性
10
x e 2 x , xy xy
y e 2 y , yz yz z e 2 z , zx zx
x x ( y z ) (3 2 ) 2 (3 2 )
正交各向异性的弹性材料的本构关系,可根据任一坐标轴 反转时弹性常数保持不变的要求
c12 x c22 y c23 z c11 , c22 , c33 , c12 , c13 , c23 , c44 , c55 , c66 c13 x c23 y c33 z c44 xy 共9个弹性常数 c55 yz c66 zx
1 x ( x v y ) E 1 y ( y v z ) E v z ( x y ) E 1 xy xy G
如用应变分量表示应力分量
14
对于平面应变问题
z yz zx 0
E x [(1 v) x v y ] (1 v)(1 2v) E y [v x (1 v) y ] (1 v)(1 2v) vE z ( x y ) (1 v)(1 2v) xy G xy
c 41 x c 42 y c 43 z c 44 xy c 45 yz c 46 zx c51 x c52 y c53 z c54 xy c55 yz c56 zx c61 x c62 y c63 z c64 xy c65 yz c66 zx
塑性力学-简单弹塑性问题
h2
理想弹塑性材料、矩形截面 b × h −σ s −
σ = Φ (ε ) = σ s
ys ys
其中:
⎤ ⎡ I (A ) M = σs ⎢ z e + Sp⎥ ⎦ ⎣ ys
2 3 I z ( Ae ) = b ⋅ y s 3
h2 2 S p = b( − y s ) 4
6
σs
+
M 3 1 y = − ( s )2 Me 2 2 h 2
+
ε=
y
+
σ
−
+
σs
σ
ρ
σ*
卸载前的应力、应变:σ 残余应力: σ * = σ − σ
ε
卸载过程应力改变量: σ = M y
I
10
2. 等截面梁的横向弯曲
•弯矩是变化的 M = M (x) •存在剪应力 忽略剪应力对屈服的影响
y ⎧ σs ⎪ σ ( x, y ) = ⎨ y s ( x ) ⎪Φ ( ε ) ⎩ 在 y ≤ ys ( x )时 在 y ≥ ys ( x )时
中性层曲率:
ρ
=
σs
Ey s
5
M = 2 ∫ σ ⋅ dA ⋅ y = 2 ∫ σ ⋅ dA ⋅ y + 2 ∫ σ ⋅ dA ⋅ y
0
h2
ys
h2
0
ys
= =
E
ρ σs
ys
I z ( Ae ) + 2 ∫ Φ (ε ) ⋅ dA ⋅ y
ys
h2
I z ( Ae ) + 2 ∫ Φ (ε ) ⋅ dA ⋅ y
z
该问题是球对称的。采用 球坐标 不为零的应力分量 σ θ σ ϕ σ r
弹塑性力学公式合集.doc
弹性力学假设:连续性假设、均匀性假设、各向同性假设、完全弹性假设、小变形假设、无初应力假设任意斜截而上的应力Cauchy 公式:T x= o xl+ T x〉m + T zxn> T y = T xy 1+ o ym +T zy n、T y=T xz I+T y zm +Q z n 弹性体的应力边界条件:—0 + mT^ + =X•I,人右I%+〃9;、+浒.、=「>yZr +g、・_ +Z・" y<.主应力、应力张量、不变量当一点处于某种应力状态时,在过该点的所有截面中,一般情况下存在着三个互相垂直的特殊截面,在这些截面上没有刃应力,这种剪应力等于零的截面称为过该点的主平面,主平面上的正应力称为该点的主应力,主平面的法线所指示方向称为该点的主方向。
4 = J + + %~ 2 2 j"/■I = + CT..C7. + — r 二——了二应力偏•不变si ♦勺+$3=q~~I=!(4+$;+日)=打(0 ,S ■成 + 0 - 0)' 1____ ©儿何方程:dx+ —dy+ —dx物理方程-y q)]*q+E)】7 _2Q +咯1 2(1+y)”=科=一r-^T F牛妇弘=.-,七-是体积弹形模量,3 3 (1-2。
三个基本原理:解的唯一性原理、叠加原理、圣维南原理。
圣维南原理:由作用在物体局部边界表面上的自平衡力系,所引起的应力和应变,在远离作用区的地方将衰减到可以忽略不计的程度。
另一种提法:如果把物体局部边界表面上的力系,使用分布不同但静力等效(主失相等,绕-点的主矩也相等)的力系来代替,则这种等效代换处理使得物体内的应力分布仅在作用区附近有显著影响,而在远离作用区的地方所受影响很小,可以忽略不计。
为什么要用:1、在弹性力学的边值问题中,要求在边界上任意点,应力与面力相等,方向一致,往往难以满足。
2、有时只知道边界而上的合力和合力矩,并不知道面力的分布形式。
弹塑性力学总结
弹塑性力学总结弹塑性力学的任务是分析各种结构物或其构件在弹性阶段与塑性阶段的应力与位移,校核它们是否具有所需的强度、刚度与稳定性,并寻求或改进它们的计算方法。
并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识与具有一定的计算能力。
通过一学期的弹塑性力学的学习,对其内容总结如下:一、弹性力学1、弹性力学的基本假定求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。
求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。
在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。
因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。
(1)假设物体是连续的。
就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。
这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。
(2)假设物体是线弹性的。
就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。
而且,材料服从虎克定律,应力与应变成正比。
(3)假设物体是均匀的。
就是说整个物体是由同一种质地均匀的材料组成的。
这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量与泊松比才不随位置坐标而变。
(4)假设物体是各向同性的。
也就是物体内每一点各个不同方向的物理性质与机械性质都是相同的。
(5)假设物体的变形是微小的。
即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变与转角都远小于1。
弹塑性力学基本知识
面在 π 平面上的投影为圆形。根据式(18)可知,Mises 屈服条件的物理意义为:当材料的 八面体剪应力达到一定值时,材料屈服;根据式(26)可知,Mises 屈服条件的物理意义也 为:当材料的剪切应变能达到一定值时,材料屈服。注意,Mises 屈服条件考虑了中间主应 力的影响,但也忽略了静水压力的影响。
0
则材料稳定, (2) 加载面 f σ ij , ξ β = 0 外凸。这也可以由式(42)推出。 (3) 正交流动法则( dλ 的物理意义:反映塑性应变增量的大小,称作比例因子。 ) :
P dε ij = dλ
(
)
∂f ∂σ ij ∂f s ∂σ ij
(43)
或: dε ij = dλs
P
(44)
p
得:
h=−
∂
( ∫ dε )
p
∂f
2 ∂f
∂f
3 ∂σ ij ∂σ ij
(60)
对于 Mises 材料,设材料等向硬化,且内变量为累积塑性应变,结合式(51) ,有:
2 ∂f
∂f
3 ∂σ ij ∂σ ij
=1
(61)
结合式(61) , (59) , (60) ,可得:
dλ = d ε p ; h =
( 2σ 2 − σ 1 − σ 3 )
当采用极坐标表示时,则有:
⎧ rσ = x 2 + y 2 = 2 J 2 ⎪ ⎨ y 1 ⎛ 2σ 2 − σ 1 − σ 3 ⎞ 1 μσ ⎪ tan θσ = = ⎜ ⎟= x 3 ⎝ σ1 − σ 3 3 ⎩ ⎠
z Tresca 屈服条件 当 τ max =
(59)
结合式(43)和式(14) , (注意:当屈服与静水压力无关,体积应力不产生塑性应变) , 可得:
弹塑性力学讲义第十一章塑性力学基础知识(精品PDF)
截面形状
1.5
1.7
1.15-1.17
(2)梁弹塑性弯曲时的变形
在线弹性阶段,梁弯矩和曲率的关系为线性关系
M=EI
( M Me ), 或
M EI
,
将应力与弯矩关系式 My 代入上式,可得 I
Ey
。
在弹塑性阶段,由于梁弯曲时截面仍然保持平面,可得
s Ey0
,
或
y0
s E
代入梁弹塑性弯曲时 M 的表达式
将发生塑性变形。确定材料发生塑性变形的条件为
f () = - s = 0 初始屈服条件(函数) 当软钢应力达到 A 点后,软钢有明显屈服(塑性流动)阶段。
经过屈服阶段后,荷载可再次增加(称为强化阶段,BC 段),但
强化阶段 增幅较少。对于此种材料(有明显屈服流动,强化阶段
应力较少)屈服条件是不变的。当应力满足屈服条件时,卸载将有
2 3
J
* 2
类似于e 的定义,在三维应力状态定义等效应变e:
1
e
2 3
J
* 2
2 3
1 2
eij
eij
2
2 3
eij
eij
2 3
1 2 2 2
3 2 3 1 2
1 2
1
2 3
x
y
2
y
z
2
z
x
23 2
2 xy
2 yz
2 zx
2
e 以发生塑性变形定义的量(由 1、2、3 定义),在变形 过程中的每一瞬时,发生应变增量(d1、d2、d3),则可定义瞬
对于三维应力状态,定义每一点应力状态都存在力学效应相同
的等效应力e
弹塑性力学-15 屈服理论
S
等倾线
L P
2
一点的应力矢量 OP 1e1 2e2 3e3
15.1 屈服理论分析
2. 屈服条件的一般形式
3 QL
OP 1e1 2e2 3e3
P
n
1 3
e1
1 3
e2
1 3 e3
平面 o S
2
1
OQ OP n
1 3
(1
2
3
)
15.1 屈服理论分析
3. 屈服条件的一般形式
ij
0
ABCA
对整个循环,附加应力
( ij
0 ij
)d
p ij
0
在弹性变形上做功为零 ABCA
AB ( ij
0 ij
)d
p ij
BC
( ij
0 ij
)d
p ij
CA ( ij
0 ij
)d
p ij
0
15.1 屈服理论分析
6. Drucker公设
AB ( ij
0 ij
)d
p ij
BC ( ij
4
xy s
2
1
均为
x s
2
3
xy s
2
1
椭圆
15.2 经典屈服准则
3. 屈服准则的验证 M
P
薄壁圆筒承受拉扭
M P
Mises准 则更好!
xy / s
0.6
Mises准则
0.4 铜 0.2 软钢 Tresca准则
铝
0 0.2 0.4 0.6 0.8 x / s
塑性屈服理论
15.1 屈服理论分析 15.2 经典屈服准则 15.3 后继屈服与硬化
弹塑性力学——物理方程
cmn=cnm
材料对称性
• 弹性对称面
该面对称的两个方向具有相同的弹性关系
x
xy
xz
yx y yz
zx
zy
z
x
1 2
yx
1 2
zx
1 2 xy
y
1 2
zy
1 2
单轴拉伸
x 0 0
ij
0
0
0
0 0 0
使用物理关系,有:
x = 2Gx+(x+y+z) 0 = 2Gy+(x+y+z) y = z
x G(2G 3)
x
G
y x 2(G )
G E 2(1 )
2 1
1 2
x y z
2
2 x
2 y
2 z
1 2
2 xy
2 yz
2 zx
• 应变能分解
应变能可分解为体积改变能和形状改变能。
W=
1 2
ijij
=
1 2
(sij
+0ij)(eij
+
1 3
kkij)=
1 2
0kk+
E
(1 )(1 2)
纯剪实验
0 xy 0
ij yx 0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹塑性力学定理和公式应力应变关系弹性模量||广义虎克定律1.弹性模量对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括:a弹性模量单向拉伸或压缩时正应力与线应变之比,即b切变模量切应力与相应的切应变之比,即c体积弹性模量三向平均应力与体积应变θ(=ε某+εy+εz)之比,即d泊松比单向正应力引起的横向线应变ε的绝对值与轴向线应变ε的绝对值之比,即此外还有拉梅常数λ。
对于各向同性材料,这五个常数中只有两个是独立的。
常用弹性常数之间的关系见表3-1弹性常数间的关系。
室温下弹性常数的典型值见表3-2弹性常数的典型值。
2.广义虎克定律线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。
它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。
A各向同性材料的广义虎克定律表达式(见表3-3广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的某、y、z分别用r、θ、z和r、θ、θ代替。
对于平面极坐标,表中平面应力和平面应变公式中的某、y、z用r、θ、z代替。
B用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即体积弹性定律应力偏量与应变偏量关系式在直角坐标中,i,j=某,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,θ。
弹性力学基本方程及其解法弹性力学基本方程||边界条件||按位移求解的弹性力学基本方法||按应力求解的弹性力学基本方程||平面问题的基本方程||基本方程的解法||二维和三维问题常用的应力、位移公式1.弹性力学基本方程在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。
这15个未知量可由15个线性方程确定,即(1)3个平衡方程[式(2-1-22)],或用脚标形式简写为(2)6个变形几何方程[式(2-1-29)],或简写为(3)6个物性方程[式(3-5)或式(3-6)],简写为或2.边界条件弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。
弹性力学问题按边界条件分为三类。
a应力边界问题在边界Sζ表面上作用的表面力分量为F某、Fy、Fz.。
面力与该点在物体内的应力分量之间的关系,即力的边界条件为式中,lnj=co(n,j)为边界上一点的外法线n对j轴的方向余弦。
这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。
b位移边界问题在边界S某上给定的几何边界条件为式中,Ui为表面上给定的位移分量。
某这一类问题是已知体积力和表面各点的位移,求解体内各点的位移、应变和应力。
c混合问题部分边界上给定力,部分边界上给定位移。
3.按位移求解的弹性力学基本方法按位移求解时,以3个位移分量为基本未知量,利用几何方程和物性方程,15个基本方程简化为以位移表示的平衡方程:求解时位移分量在物体内部满足式(3-14),在位移边界Su上满足式(3-13),在应力边界Sζ上满足式(3-12),但式中的应力分量应利用应力-应变关系和应变-位移关系变换为位移的形式。
求出位移分量后,再利用几何方程和物性方程,求出应变和应力分量。
4.按应力求解的弹性力学基本方程按应力求解时,以6个应力分量为基本未知量。
它们必须满足平衡方程,同时还要满足以应力表示的协调方程,即式(3-15)和平衡方程式(2-1-22)一起,成为按应力求解弹性问题的基本方程组。
按应力求解弹性问题,就是寻求满足基本方程式(2-1-22)和式(3-15),以及边界条件[式(3-12)]的解。
5.平面问题的基本方程弹性力学平面问题,包括平面应力和平面应变问题两类。
通常利用应力函数将弹性力学平面问题简化为解双调和方程的边值问题。
平面问题基本方程的直角坐标和极坐标表达式见表3-4平面问题的基本方程。
表中除物性方程外,对于其他方程,平面应力和平面应变问题中的形式是相同的。
比较一下这两类问题的基本方程后2可知,只要将平面应力问题的解中的弹性常数E、v改为E/(1-V)、V/(1-V)后,就得到对应的平面应变问题的解。
因此,对于截面形状和边界条件相同的物体,平面应力问题与平面应变问题中的应力分布(ζ某、ζy、η某y、ζz除外)是相同的。
6.基本方程的解法15个弹性力学基本方程简化为以位移表示的3个平衡方程[式(3-14)]或以应力表示的6个协调方程[式(3-15)]。
求解上述方程时,类似在平面问题中应用艾雷应力函数所用的方法,常引用应力函数或位移函数,以消去应力分量或位移分量,求解以应力函数表示的协调方程,或以位移函数表示的平衡方程。
表3-5帕普科维奇-诺埃伯谢函数和勒夫谢函数列出用帕普科维奇-诺埃伯函数和勒夫函数表示的无体积力时平衡方程的齐次解。
勒夫函数常用于求解轴对称问题。
7.二维和三维问题常用的应力、位移公式(见表3-6二维和三维问题常用的应力、位移公式)能量原理应变能、应变余能与应变能定理||虚位移定理||最小势能原理||虚力原理||最小余能原理||卡氏定理||互等定理||李兹法直接求解弹性力学基本方程在数学上存在困难,只有一些比较简单的问题已求得精确解。
而能量法把求解问题的过程转变为一种极值问题,它比直接求解偏微分方程边值问题能更方便地得到近似解。
因此能量原理是目前广泛应用的近似计算方法的基础。
1.应变能、应变余能与应变能定理a应变能单位体积的应变能称为应变能密度,以W表示。
W为应变分量εij的函数,W可用脚标形式表示为对于线弹性体,其值为线弹性体的总应变能为对各向同性材料,利用虎克定律,应变能密度可用单一的应力分量或应变分量表示为b应变余能单位体积的应变余能W某为应力分量ζij的函数,W某(ζij)定义为对线弹性体,c用应变能和应变余能表示力与应变的关系应变能密度函数W(εij),表示因弹性变形而储存于单位体积内的弹性势能。
应力与应变之间的关系,通过弹性势函数W表示为如果把应变分量表示为应力分量的函数时,则存在如下关系式,即对线弹性体,W某=W,式(3-34)变为d应变能定理如果弹性体在变形过程中无能量耗损,则弹性体内的应变能在数值上等于外力在变形过程中所作的功,即式中,A为外力所作的功,包括体积力和面力所作的功。
2.虚位移定理弹性体在外力作用下处于平衡状态时,体内各点如果发生一虚位移δui(所谓虚位移,是指几何约束容许的任意、微小的位移,也就是指符合物体的连续条件和位移边界条件的可能位移),则外力对虚位移所作的功(虚功),等于虚位移所引起的弹性体的虚应变能,即式中,虚功δA包括体积力fi和面力pi在虚位移δui上所作的功,即因虚位移而引起的虚应变能为式(3-37)称为虚功原理或虚位移原理。
虚位移原理等价于平衡条件。
如结构上的外力在虚位移上所作的虚功等于结构的应变能,则结构必处于平衡状态。
在虚位移原理推导过程中并未应用虎克定律,虚位移原理也适用于非弹性体。
3.最小势能原理如果外力可由一个势函数V导出,外力势V=-A,则δV=-δA.由式(3-37),得变分方程式中,称为系统的总势能,是位移的函数。
式(3-38)表明:弹性体处于平衡状态时,其内力和外力的总势能取驻值。
可以证明,线弹性体处于平衡状态时,其总势能取最小值。
因此,式(3-38)称为最小势能原理。
也就是说,在所有几何容许位移中,满足势能驻值条件δⅡ=0的位移解,使总势能Ⅱ取最小值。
在应用中,可根据势能驻值条件去求解弹性力学问题。
在分析结构稳定问题时,在平衡状态(δⅡ=0),总势能Ⅱ可能取极大值(δ2Ⅱ<0,不稳定平衡),驻值(δ2Ⅱ=0,临界状态)或极小值(δ2Ⅱ>0,稳定平衡)。
4.虚力原理如对变形协调的弹性体施加某种虚力(即平衡条件所容许的,任意微小的力的改变,包括虚应力δζij和虚面力δpI),则虚外力在真实位移上的虚余功δA某等于虚应变余能,即物体内的热应力为图3-6半无限体表面上的点热源塑性力学基本方程屈服条件||塑性应力应变关系||滑移线场理论||极限分析定理1.屈服条件对于处于单向拉伸(或压缩)的物体,当应力达到屈服极限时,材料开始进入塑性状态,对于处于复杂应力状态的物体,由弹性状态过渡到塑性状态的临界条件称为屈服条件。
在应力空间将初始屈服的应力点连成的弹性和塑性的分界面称为屈服面。
描述屈服面的数学表达式称为屈服函数。
常用的各向同性金属材料的屈服试验表明,屈服应力数据点介于屈雷斯卡(Treca)屈服条件和密赛斯(Mie)屈服条件之间,而更接近于密赛斯屈服条件。
A屈雷斯卡屈服条件(最大切应力条件)屈雷斯卡屈服条件为:当最大切应力达到某一极限值时,材料开始进入塑性状态,即在主应力空间,当差值∣ζ1-ζ2∣、∣ζ2-ζ3∣、∣ζ3-ζ1∣中任一个达到2k时,材料进入塑料性状态。
因此用屈雷斯卡条件表示的屈服面为由下列六个平面组成的正六边形柱体(图3-7a),即材料常数k由实验确定。
在拉伸试验时,ζ1=2k=ζ,即k=ζ/2。
在纯剪切试验时,ζ1-ζ3=2k=2η,即k=η。
如果屈雷斯卡条件成立,必有η=1/2ζ图3-7屈服面B密赛斯屈服条件密赛斯条件为::当切应力强度ηI等于剪切屈服极限η时,材料开始屈服;或者当应力强度ζI等于拉伸屈服极限ζ时,材料开始屈服,即或式中,j′2为应力偏量第二不变量对于密赛斯条件,η=ζ。
密赛斯条件与屈雷斯卡条件的最大差别不超过15%。
在主应力空间,密赛斯屈服面为一外接于屈雷斯卡屈服面的圆柱面。
在平面应力状态,设ζ=0,则在ζ1、ζ2应力平面上,密赛斯条件为一椭圆,屈雷斯卡条件为内接六边形(图3-7b)。
C后继屈服函数(加载函数)已产生塑性变形的材料,继续塑性变形的条件,称为后继屈服条件。
在主应力空间满足后继屈服条件的应力点所连成的曲面,称为后继屈服面(加载面)。
对于理想塑性材料,后继屈服面即为初始屈服面;对于强化材料,后继屈服面随塑性变形的历史而变化。
描述后继屈服面的函数,称为后继屈服函数或加载函数,一般可写成式中,H为应变历史和材料性质的函数。
在应力空间,加载面随H的变化而改变其形状、大小和位置。
目前应用较多的两种简单的强化模型为等向强化模型和随动强化模型。
图3-8表示按照屈雷斯卡屈服条件在π面(ζ1+ζ2+ζ3=0的面)上的屈服曲线和加载曲线。
图3-8屈服曲线和加载曲线等向强化模型的加载函数表示为式中,H为决定于塑性应变历史的单调递增正函数。
加载面是初始屈服面等向扩大,屈服面中心位置不变。
这种模型不考虑材料的包辛格效应。
随动强化模型的加载函数表示为式中,ζij表示初始屈服面中心在应力空间的残茶剩饭量。
加载面的大小,形状保持不变。
2.塑性应力应变关系塑性应力应变关系有增量(流动)理论和全量(形变)理论两种类型。