用图象表示的变量间关系(绝对经典)
用图像表示变量间的关系
⑥ 90
60 ②
⑤
⑦
20 24 时间/分
判断速度随时间的变化情况:
怎样看图:
从左往右若图象上升,表明速度增大;
若图象下降,表明速度减小;
若图象与横轴平行;则表明速度保持不变,
尝试
探究 洪峰公司根据工作需要,准备租一辆面包车,
经考察,个体车与出租车公司的月租金计算方法如图所示,请 你根据图中提供的信息,与同伴讨论一个租车方案,
__关__系_式__法__
给定一个变量的值可求出另一个变量的值
__图__象__法_
能够直观地看出变量间的变化__趋__势_
在图象中
上升线------表示因变量随自变量的增大而增大; 水平线-----表示因变量随自变量的增大而不变; 下降线------表示因变量随自变量的增大而减小, 以上三点是打开“解决图象类问题”的一把万能钥匙 ,
y元
200 150 100 50
0
乙 1 当每月通话时间为多少时,两
A
甲
公司的收费相同 2 当每月通话时间在什么范围
时, t/分钟 应选择乙公司 100 200 300 3 当每月通话时间在什么范围
时,
应选择
甲公司
变量之间关系的三种表示方法
变量之间关系的表示 __列__表__法_
特征 能看出两个变量之间的_变__化__关系
随堂练习:
1.柿子熟了,从树上落下来.下面的那一幅图可以 大致刻画出柿子下落过程中 即落地前 的速度的 变化情况
速
速
度
度
0
时间
1
0
时间
2
速
度
正确
0 3
时间
速 度
0 4 时间
七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版
例1 新成药业集团研究了一种新药,在试验药效时发现,如果儿童按规 定剂量服用,那么2时时血液中的含药量最高,接着逐步衰减,每毫升血液 中的含药量y(微克)随时间x(时)的变化情况如图3-3-1所示,当儿童按规 定剂量服药后:
图3-3-1
(1)何时血液中的含药量最高?是多少微克? (2)A点表示什么意义? (3)每毫升血液中含药量为2微克以上时治疗疾病有效,那么这个有效时 间多长?
解析 (1)2时时血液中的含药量最高,为4微克. (2)A点表示体内的含药量衰减到0微克. (3)服药后达到2微克的时间是1时,衰减到2微克的时间是6时,因此有效 时间是5时.
知识点二 行程问题 “路程与时间”图象和“速度与时间”图象 (1)在路程与时间关系的图象中,通常用横轴表示时间,用纵轴表示路程, “水平线”表示停止. (2)在速度与时间关系的图象中,通常用横轴表示时间,用纵轴表示速度, “水平线”表示匀速运动. (3)在行程问题中,“速度与时间”图象和“路程与时间”图象是从两 个不同的角度描述行程问题中变量之间的关系,它们既有区别又有联 系.现将“速度与时间”图象和“路程与时间”图象各部分所表示的意 义作如下对比:
易错警示 由于不理解函数的意义,特别是不理解函数图象中平行于x 轴的线段表示“一段时间内离家的距离保持不变”,只能根据图象的形 状来选择行走的路线.
从图象中获取信息的直观想象 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与 变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括: 借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、 分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决 问题的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形 成论证思路、进行数学推理、构建抽象结构的思维基础. 在直观想象核心素养的形成过程中,学生能提升数形综合的能力,发展 几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意 识;形成数学直观,在具体的情境中感悟事物的本质.
数学七年级下册知识点总结之变量之间的关系
数学七年级下册知识点总结之变量之间的关系变量之间的关系知识点:一理论理解1、若Y随X的变化而变化,则X是自变量 Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
2、能确定变量之间的关系式:相关公式①路程=速度时间②长方形周长=2(长+宽)③梯形面积=(上底+下底)高2 ④本息和=本金+利率本金时间。
⑤总价=单价总量。
⑥平均速度=总路程总时间3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2. 随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算) 对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.拓展:数学学习技巧一、课内重视听讲,课后及时复习。
北师大数学七年级下册 第三章3.3 用图像表示的变量间关系 《板块专题20道—期中真题-能力培养》
用图像表示的变量间关系1.(2019春•罗湖区期中)小芳离开家不久,发现把作业忘在家里,于是返回家里找到了作业本再去学校;在如图所示的三个图象中,能近似地刻画小芳离开家的距离与时间的关系的图象是()A.①B.②C.③D.三个图象都不对2.(2019春•罗湖区期中)小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早餐用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1B.2C.3D.43.(2019春•定安县期中)张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则较符合题意的图形是()A.B.C.D.4.(2019春•成都期中)下列各图象所反映的是两个变量之间的关系,表示匀速运动的是()A.①②B.②C.①③D.无法确定5.(2019春•建宁县期中)如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.6.(2019春•灵石县期中)小明看到了一首诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,读完后,他想用图象描述这首诗的内容,如果用纵轴表示父亲与儿子行进中离家的距离,横轴表示父亲离家的时间,那么下列图象中大致符合这首诗含义的是()A.B.C.D.7.(2019春•中山市校级期中)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮8.(2019春•叙州区期中)周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离s(千米)与时间t(时)之间的函数关系可以用图中的折线表示.现有如下信息:(1)小李到达离家最远的地方是14时;(2)小李第一次休息时间是10时;(3)11时到12时,小李骑了5千米;(4)返回时,小李的平均车速是10千米/时.其中,正确的信息有()A.1个B.2个C.3个D.4个9.(2019秋•岑溪市期中)一辆客车从霍山开往合肥,设客车出发t(h)后与合肥的距离为S(km),则下列图象中能大致反映S与t之间的函数关系是()A.B.C.D.10.(2019春•璧山区期中)小红骑自行车到离家为2千米书店买书,行驶了5分钟后,遇到一个同学因说话停留10分钟,继续骑了5分钟到书店.下图中的哪一个图象能大致描述她去书店过程中离书店的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.11.(2019春•郫都区期中)小王周末骑电动车从家出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往商场,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小王在新华书店停留了多长时间?(2)买到书后,小王从新华书店到商场的骑车速度是多少?12.(2019春•靖远县期中)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)在这个变化过程中,自变量、因变量分别是、.(2)体育场离张阳家千米.(3)体育场离文具店千米.(4)张阳在文具店逗留了时间.(5)张阳从文具店到家的速度是.13.(2019春•槐荫区期中)已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E ﹣F﹣A的路径运动,记△ABP的面积为S(cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC=cm,CD=cm,DE=cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.14.(2019秋•高州市期中)某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图所示是小明从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?15.(2019春•长春期中)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?16.(2019春•济南期中)小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米,小明在书店停留了分钟;(2)本次上学途中,小明一共行驶了米,一共用了分钟;(3)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分;(4)小明出发多长时间离家1200米?17.(2019春•锦江区校级期中)如图①,在长方形ABCD中,AB=10 cm,BC=8 cm,点P从A出发,沿A、B、C、D路线运动,到D停止,点P的速度为每秒1 cm,a秒时点P的速度变为每秒bcm,图②是点P出发x秒后,△APD的面积S1(cm2)与y(秒)的函数关系图象:(1)根据图②中提供的信息,a=,b=,c=.(2)点P出发后几秒,△APD的面积S1是长方形ABCD面积的四分之一?18.(2019春•邛崃市期中)如图反映的是小华从家里跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小华离家的距离.根据图象回答下列问题:(1)小华在体育场锻炼了分钟;(2)体育场离文具店千米;(3)小华从家跑步到体育场、从文具店散步回家的速度分别是多少千米/分钟?19.(2019春•城关区校级期中)如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系,请根据图象回答下列问题:(1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间?(3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?20.(2019春•雨城区校级期中)A、B两地相距50km,甲于某日骑自行车从A地出发驶往B 地,乙也于同日下午骑摩托车从A地出发驶往B地,在这个变化过程中,甲和乙所行驶的路程用变量s(km)表示,甲所用的时间用变量t(时)表示,图中折线OPQ和线段MN分别表示甲和乙所行驶的路程s与t的变化关系,请根据图象回答:(1)直接写出:甲出发后小时,乙才开始出发;(2)求乙行驶几小时后追上甲,此时两人距B地还有多少千米?(3)请分别求出甲、乙的行驶速度?。
变量之间的关系用图像表示变量间的关系
纵轴
横轴Leabharlann 议一议:骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(1)一天中,骆驼的体温 的变化范围是什么? 它的体温从最低上升 到最高需要多少时间?
(2)从16时到24时,骆 驼的体温下降了多少?
议一议:
骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(3)在什么时间范围内 骆驼的体温在上升? 在什么时间范围内 骆驼的体温在下降?
(4)你能看出第二天8时 骆驼的体温与第一天 8时有什么关系吗? 其他时刻呢?
议一议:
骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(5)A点表示的是什么? 还有几时的温度与A点 所表示的温度相同?
(6)你还知道哪些关于 骆驼的趣事? 与同伴进行交流.
海水受日月的引力而产生潮汐现象,早晨海水上涨叫做 潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活 有着密切的联系.下面是某港口从0时到12时的水深情况.
第三章 变量之间的关系 用图像表示变量间的关系
青铜峡市回民中学 李德鸿
图象是我们表示变量之间关系的又一种方法, 它的特点是可以直观的表示出自变量与因变量的 变化过程和变化趋势.
在用图象表示变量之间的关系时,通常用水平 方向的数轴(称为横轴)上的点表示自变量, 用竖直方向的数轴(称为纵轴)上的点表示因变量.
5
A
B (5)A,B两点分
4
别表示什么?还有
3
几时水的深度与A点
2
所表示的深度相同
1
0
(6)说一说这个港
0
1
2
3
4
5
用图象表示的变量间关系
多变量柱状图
总结词
用于展示三个或更多变量的关系,通 过增加更多的维度来展示更复杂的数 据结构。
详细描述
在多变量柱状图中,通常使用不同的 形状、颜色或标签来表示不同的变量。 这种图表可以用于展示多个维度的数 据,例如比较不同产品在不同地区、 不同时间的销售情况。
04
饼状图
单变量饼状图
总结词
通过扇形面积展示单一变量的占比关系。
02
折线图
单变量折线图
总结词
展示一个变量随时间变化的情况
详细描述
单变量折线图用于表示一个变量随时间变化的情况,通过将时间轴和数值轴分开,可以清晰地观察到 变量的变化趋势和规律。
双变量折线图
总结词
展示两个变量之间的相关性
详细描述
双变量折线图通过将两个变量的数值分别表示在横轴和纵轴 上,可以清晰地展示两个变量之间的相关性。通过观察折线 交叉、倾斜程度等特征,可以分析两个变量之间的关联和影 响。
多变量热力图
总结词
展示多个变量在不同类别的数据点上的关系
详细描述
多变量热力图使用多个颜色层来表示多个变量在不同类 别的数据点上的关系。每个颜色层表示一个变量的值, 通过颜色的叠加和透明度的调整,可以直观地看出多个 变量的关联程度和变化趋势。多变量热力图能够同时展 示多个变量的关系,有助于更全面地了解数据的特点和 规律。
多变量折线图
总结词
展示多个变量随时间变化的情况
详细描述
多变量折线图用于表示多个变量随时间变化的情况,通过在同一张图上绘制多个折线, 可以同时观察多个变量的变化趋势和相互影响。这种图表对于分析多个因素之间的关联
和相互制约关系非常
总结词
用于展示某一变量的不同类别数据的 大小关系。
两个变量之间的关系(经典和完整版)(强力推荐)
领航两个变量之间的关系一、知识要点表示变量的三种方法:列表法、解析法(关系式法)、图象法◆要点1 变量、自变量、因变量(1) 在一变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量,常量和变量往往是相对的,相对于某个变化过程。
(2) 在一变化的过程中,主动发生变化的量,称为自变量,而因变量是随着自变量的变化而发生变化的量。
例如小明出去旅行,路程S、速度V、时间T三个量中,速度V一定,路程S则随着时间T的变化而变化。
则T为自变量,路程为因变量。
◆要点2 列表法与变量之间的关系(1) 列表法是表示变量之间关系的方法之一,可表示因变量随自变量的变化而变化的情况。
(2) 从表格中获取信息,找出其中谁是自变量,谁是因变量。
找自变量和因变量时,主动发生变化的是自变量,因变量随自变量的增大而增大或减小◆要点3 用关系式表示变量之间的关系(1) 用来表示自变量与因变量之间关系的数学式子,叫做关系式,是表示变量之间关系的方法之一。
(2) 写变化式子,实际上根据题意,找到等量关系,列方程,但关系式的写法又不同于方程,必须将因变量单独写在等号的左边。
即实质是用含自变量的代数式表示因变量。
(3) 利用关系式求因变量的值,①已知自变量与因变量的关系式,欲求因变量的值,实质就是求代数式的值;②对于每一个确定的自变量的值,因变量都有一个确定的与之对应的值。
◆要点4 用图象法表示变量的关系(1) 图象是刻画变量之间关系的又一重要方式,特点是非常直观。
(2) 通常用横轴(水平方向的数轴)上的点表示自变量,用纵轴(竖直方向的数轴)上的点表示因变量。
(3) 从图象中可以获取很多信息,关键是找准图象上的点对应的横轴和纵轴上的位置,才能准确获取信息。
如利用图象求两个变量的对应值,由图象得关系式,进行简单计算,从图象上变量的变化规律进行预测,判断所給图象是否满足实际情景,所给变量之间的关系等。
BL—01(4) 对比看:速度—时间、路程—时间两图象★若图象表示的是速度与时间之间的关系,随时间的增加即从左向右,“上升的线段”①表示速度在增加;“水平线段”②表示速度不变,也就是做匀速运动,“下降的线段”③表示速度在减少。
《用图象表示的变量关系》变量之间的关系
实例分析
例如,在物理学中,匀速直线运动的位移与时间之间 的关系是线性的,其图像为一条直线;而自由落体运 动的位移与时间之间的关系是非线性的,其图像为一 条抛物线。再如,在经济学中,某商品的需求量与价 格之间的关系可能是非线性的,其图像可能呈现为一 条向下弯曲的曲线;而供给量与价格之间的关系可能 是线性的,其图像为一条向上倾斜的直线。
两者对比及实例分析
对比
正相关和负相关的主要区别在于变量之间的变化趋势。正相关中,变量之间变化趋势相同;负相关中,变量之间 变化趋势相反。
实例分析
例如,研究身高和体重之间的关系。随着身高的增加,体重一般也会增加,因此两者之间呈现正相关关系。再例 如,研究广告投入和销售收益之间的关系。在一定范围内,随着广告投入的增加,销售收益可能会增加,但当广 告投入过多时,销售收益可能会下降,因此两者之间呈现负相关关系。
《用图象表示的变量关系》 变量之间的关系
汇报人: 2023-12-15
目录
• 引入 • 线性关系与非线性关系 • 正相关与负相关 • 离散型数据和连续型数据 • 图像变换与变量关系解读 • 总结与展望
01
引入
变量与函数概念回顾
变量
在某一变化过程中,数值发生变化的量称为变量。
函数
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的 值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
非线性关系的图像在坐标系中呈 现为一条曲线,可能具有不同的 弯曲程度和方向。
02
03
变化速率不均等
可能有界
非线性关系中,当一个变量发生 变化时,另一个变量的变化速率 可能会随之改变。
非线性关系的图像在坐标系中可 能有界,即变量的取值范围有限 。
初一变量之间的关系知识点归纳实用-变量之间的关系知识点
变量之间的关系【基础知识】知识网络自变量变量的概念因变量变量之间的关系 1.表格法2.关系式法变量的表达方法速度时间图象3.图象法路程时间图象知识点一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。
3、自变量与因变量如何确定:(方法技巧)(1)自变量是先发生变化的量;因变量是后发生变化的量。
(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。
(3)利用具体情境来体会两者的依存关系。
知识点二:变量的表示方法1.列表法1.定义:表格是采用数表相结合的形式,运用表格表示两个变量之间的关系,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个变量;(2)分清哪一个量为自变量,哪一个量为因变量;列表时一般第一行代表自变量,第二行代表因变量.(3)自变量从小到大的顺序列出,再分别求出对应的因变量的值。
结合实际情境理解它们之间的关系。
特点:优点:直观,可以直接从表中找出自变量与因变量的对应值,缺点:具有局限性,只能表示因变量的一部分。
2.关系式法(又叫解析式法)1、定义:关系式(即解析式)是利用数学式子来表示变量之间关系的等式,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学等量关系式叫做关系式。
2、本质:是数学等量关系式3.写法注意,必须将因变量单独写在等号的左边。
3、求关系式的方法:--(就是找等量关系)类型:(1)将自变量和因变量看作两个未知数,根据等量关系,并最终写成关系式的形式。
(2)根据表格中所列的数据相同的变化关系写出变量之间的关系式;(例如:y变化一样都和第一个比)(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。
注:有些表达式要分段写出(分类讨论思想),例如:分段收水费(煤气费、电话费)等.4、关系式的应用:(代入法)(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;代入法格式:当x= ,y=(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;当y= ,x=5.特点:优点:关系简洁,清楚、准确,知一变量可求另一变量。
北师大版七年级数学下册第三章变量之间的关系PPT课件全套
2、测量小车从不同的高 度下滑的时间,并将得 到的数据填入下表:
支撑物高 度/厘米 小车下滑 时间/秒
10 20 30 40 50 60 70 80 90 100
(1)支撑物高度为70厘米时,小车下滑时间是多少 ? (2)如果用h表示支撑物高度,t表示小车下滑时间 ,随着h逐渐变大,t的变化趋势是什么? (3)h每增加10厘米,t的变化情况相同吗?
氮肥施用 量/千克/ 公顷 土豆产量/ 吨/公顷
15.18
21.36
25.72
32.29
34.03
39.45
43.15
43.46
40.83
30.75
(3)根据表格中的数据,你认为氮肥的施用量 是多少时比较适宜?说说你的理由. (4)粗略说一说氮肥的施用量对土豆产量的影 响.
4.某电影院地面的一部分是扇形,座位按 下列方式设置: 排数 1 座位数 60 2 64 3 68 4 72
1.如果正方形的边长为 a ,则正方形的周长C=( 4a ) 2.圆的半径为r,则圆的面积S=(
1 ) ah 2
r
2
)
3.三角形的一边为a,这边上的高为h,则三角形 的面积S=(
4.梯形的上底,下底分别为a, b,高为h,则梯形的面积
1 2 5.圆锥的底面半径为r, 高为h,则圆锥的体积V=(3 r h )
高不变 底面半径变
底面半径不变 高变
变化中的圆锥
h r
h
r
2、 如图,圆锥的底面半径是2厘米,当圆锥的 高由小到大变化时,圆锥的体积也随之变化。 (1)在这个变化过程中,自变量、因 变量各是什么? (2)如果圆锥的高为h(厘米),那么 3 圆锥的体积V( 厘米 )与h之间的关系 式为 . (3)当高由1厘米变化到10厘米时,2㎝
变量之间的关系
变量之间的关系知识梳理1.概念变量:在某一变化过程中,数值发生变化的量是变量。
自变量、因变量:一般地,在一个变化过程中,如果有两个变量x和y,其中y随x 的变化而变化,我们就说x是自变量,y是因变量。
常量:在某一个变化过程中,数值始终保持不变的量是常量。
表格法:借助表格,可以表示因变量随自变量的变化而变化的情况。
表格法的基本特征是:表示两个变量之间的表格,一般第一栏表示自变量,第二栏表示因变量,从表格中可以发现因变量随自变量变化而存在一定的变化规律,从而可以利用变化趋势对结果作出预测。
关系式法:利用等式表示两个变量之间的关系。
关系式的基本特征是:(1)等式的左边是因变量,等式的右边是关于自变量的代数式;(2)等式中只含有自变量和因变量两个变量,其他的量都是常数;(3)自变量可在允许的范围内任意取值。
图像:将一个变量随着另一个变量的变化而变化的情况绘制成一条曲线,这条曲线称为两个变量之间关系的图像。
图像法:用图像来表示一个变量与另一个变量之间关系的方法,叫做图像法。
例题精讲考点1.变量、自变量、因变量、常量例1.甲、乙两城市相距300千米,在甲城市有一列火车以每小时100千米的速度向乙城市行驶,t 小时后火车与乙城市的距离为y 千米,在这个问题中, 是常量, 是自变量, 是因变量。
变式1.下列各题中,哪些量在发生变化?其中的自变量与因变量各是什么?(1)用总长为60m 的篱笆围城一个边长为l (m)、面积为S (㎡)的矩形场地; (2)正方形边长是3,若边长增加x ,则面积增加y 。
变式2.小明帮妈妈预算家庭4月份电费的开支情况,下表是小明家4月处连续8天每天早上电表显示的读数。
(1)表格中反映的变量是 ,自变量是 ,因变量是 。
(2)估计小明家4月份(按30天计)用电量是 ,若每度电0.55元,估计他家4月份应交电费 元。
考点2.表格法表示变量之间的关系例2.下表是一次秋汛期某河流在一天内涨水情况,警戒水位是25米。
人教版苏科版初中数学—变量之间的关系(经典例题 )
班级小组姓名成绩满分(120)一、用表格表示的变量间关系(一)变量、自变量和因变量的定义(共4小题,每题3分,题组共计12分)例1.小明的妈妈自小明出生时起每隔一段时间就给小明称一下体重,得到下面的数据:从表中可以得到:小明体重的变化是随小明的的变化而变化的,这两个变量中,是自变量,是因变量,虽然随着年龄的增大,小明的体重,但体重增加的速度越来越.例1.变式1.据国家统计局统计,新中国成立以来至2000年我国各项税收收入合计如下表:从表中可以得出:新中国成立以来我国的税收收入总体趋势是,其中,年与5年前相比,增长百分数最大,年与5年前相比增长百分数最小,算一算,2000年与1950年相比,税收收入增长了倍.(保留一位小数)例1.变式2.某电动车厂2014年各月份生产电动车的数量情况如下表:(1)为什么称电动车的月产量y为因变量?它是谁的因变量?(2)哪个月份电动车的产量最高?哪个月份电动车的产量最低?(3)哪两个月份之间产量相差最大?根据这两个月的产量,电动车厂的厂长应该怎么做?例1.变式3.某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.(1)找出题目中的自变量和因变量.(2)印制一本纪念册的制版费为多少元?(3)若印制2千册,则共需多少费用?(二)用表格表示的变量间关系(共4小题,每题3分,题组共计12分)cm的长方形,其长为x cm,宽为y cm,在这一变化过程中,常量与变量例2.要画一个面积为202分别为()A.常量为20,变量为,x yB.常量为20,y,变量为xC.常量为20,x变量为yD.常量为x,y,变量为20例2.变式1.赵先生手中有一张记录他从出生到24岁期间的身高情况表:下列说法错误的是()A.赵先生的身高增长速度总体上先快后慢B.赵先生的身高在21岁以后基本不长了C.赵先生的身高从0岁到24岁平均每年增高7.1cmD.赵先生的身高从0岁到24岁平均每年增高5.1cm例2.变式2.2002年1~12月某地大米的平均价格如下表表示:(1)表中反映了哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大?(3)该地哪一段时间大米的平均价格在上涨?哪一段时间大米的平均价格在下落?(4)从表中可以得到该地大米的平均价格变化方面的哪些信息?平均价格比年初降低了,还是上涨了?例2.变式3.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y (cm)与所挂物体的质量x (kg)的一组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为3kg 时,弹簧多长?不挂重物呢?(3)若所挂重物为6kg 时(在弹簧的允许范围内)你能说出此时弹簧的长度吗?二、用关系式表示的变量间关系(一)用关系式表示两个变量之间的关系(共4小题,每题3分,题组共计12分)例3.我国政府为解决老百姓看病难的问题,决定大幅度下调药品价格.某种药品在2009年涨价30%,2013年降价70%至a ,那么这种药品在2009年涨价前的价格为.例3.变式1.如图,ABC ∆的底边BC 的长是10cm ,当顶点A 在BC 的垂线PD 上由点D 向上移动时,三角形的面积随之发生了变化.(1)在这个变化的过程中,自变量是,因变量是.(2)如果AD 长为x (cm ),面积为y (2cm ),则y =.(3)当AD BC =时,ABC ∆的面积为.例3.变式2.如图,圆柱的底面半径为2cm ,当圆柱的高由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化过程中,自变量是,因变量是.(2)如果圆柱的高为x (cm ),圆柱的体积V (3cm )与x 的关系式为.(3)当圆柱的高由2cm 变化到4cm 时,圆柱的体积由3cm 变化到3cm .(4)当圆柱的高每增加1cm 时,它的体积增加3cm .例3.变式3.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温升高8℃,烧了x 分钟后的水温为y ℃,当水烧开时就不再烧了.(1)y 与x 的关系式为,其中自变量是,它应在范围内变化.(2)1x =时,y =;5x =时,y =.(3)x =时,48y =;x =时,80y =.(二)列关系式并求值(共4小题,每题3分,题组共计12分)例4.学校为优胜班级买篮球作为奖品,若一个篮球30元,总价y 元随篮球个数x 的变化而变化,写出y 与x 的关系式:,其中自变量是,因变量是.当篮球个数为10时,总价为.例4.变式1.齿轮每分钟转120转,如果n (转)表示转数,t (分)表示转动时间,那么n 与t 之间的关系式是,其中为变量,为常量.当10t =时,n=.例4.变式2.一个梯形,它的下底比上底长2cm ,它的高为3cm ,设它的上底长为x cm ,它的面积为y 2cm .(1)写出y 与x 之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x 由5变到7时,y 如何变化?(3)用表格表示当x 从3变到10时(每次增加1),y 的相应值.(4)当x 每增加1时,y 如何变化?说明你的理由.(5)这个梯形的面积能等于92cm 吗?能等于22cm 吗?为什么?例4.变式3.ABC ∆的底边BC 为8cm ,当BC 边上的高从小到大变化时,ABC ∆的面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)ABC ∆的面积y 2cm 与高x cm 之间的关系式是什么?(3)当x 增加1cm 时,y 如何变化?(三)关系式的综合应用(共4小题,每题3分,题组共计12分)例5.根据如图所示的程序计算y 值,若输入的x 值为1-,则输出的结果为()A.72B.94C.1D.92例5.变式1.在关系式35y x =+中,下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是自变量,它的值与x 的值无关;④y 与x 的关系不能用表格表示;⑤y 与x 的关系可以用表格表示。
专题03用图像表示的变量间关系(解析版)-2020-2021学年七年级数学下册常考题专练(北师大版)
专题03用图像表示的变量间关系知识点解析本节的教学重点是使学生能够理解变量与常量,并能与实际结合举出相应的变量关系的例子。
在充分理解常量与变量的意义的基础上再去学习变量之间关系的三种表示方法,能将三种表示方法进行转换,并能进行简单的计算。
学生学习本节时可能会在以下三个方面感到困难:1.变量与常量的意义;2.两个变量之间的关系;3.两个变量之间的三种表示方法。
题型与方法一、选择题1. 如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【答案】B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选:B.2.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0 B.1 C.2 D.3【答案】C【解析】解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,故①与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为:1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,故②符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5;当点P在CD上运动时,S△ABP不变,这段时间为4;当点P在DA上运动时,S△ABP减小,这段时间为3,故③符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选:C.3.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为-3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降【答案】C【解析】试题分析:A.℃由图象可知,在凌晨4点函数图象在最低点﹣3,℃凌晨4时气温最低为﹣3℃,故本选项正确;B.℃由图象可知,在14点函数图象在最高点8,℃14时气温最高为8℃,故本选项正确;C.℃由图象可知,从4时至14时,气温随时间增长而上上升,不是从0点,故本选项错误;D.℃由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选C.4.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.【答案】D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.5.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd【答案】C【解析】解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C.二、填空题6.李小勇的爸爸让他去商店买瓶酱油,下图近似地描述了李小勇和家之间的距离与他离家后的时间之间的关系,则(1)李小勇去买瓶酱油共花了___min,其中在路上行走了____min,他走路的平均速度是_____;(2)李小勇在买酱油的过程中有_______次停顿,其中第_____次是因为买酱油付钱而停顿的;(3)李小勇在途中另一处停顿的原因是_____________.(只要写得合理都对)【答案】(1)8,6,150米/分;(2)2,2;(3)略【解析】根据图象分析判断。
北师大版数学七年级下册第三章变量之间的关系第3节用图像表示的变量间关系课后练习
第三章变量之间的关系第3节用图像表示的变量间关系课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度2.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.3.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米B.2千米C.15千米D.37千米4.小刚徒步到同学家取自行车,在同学家逗留几分钟后他骑车原路返回,他骑车速度是徒步速度的3倍.设他从家出发后所用的时间为t(分钟),所走的路程为s(米),则s 与t的函数图象大致是()A.B.C.D.5.某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)的关系的图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花时间少于回家所花时间D.小王去时走上坡路施,回家时走下坡路6.如图,向高为H的圆柱形空水杯中注水,表示注水量y与水深x的关系的图象是下面哪一个?()A.B.C.D.7.梅梅以每件6元的价格购进某商品若干件到市场去销售,销售金额y(元)与销售量x(件)的函数关系的图象如图所示,则降价后每件商品销售的价格为()A.5元B.15元C.12.5元D.10元评卷人得分二、填空题8.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是________(只需填序号)9.用图象来表示两个变量之间的关系的方法叫做__________,在利用图象法表示变量之间的关系时,通常用__________方向的数轴(称为__________)上的点表示自变量,用__________方向的数轴(称为__________)上的点表示因变量.10.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务,收割亩数与天数之间的关系如图所示,那么乙参与收割________天.11.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了22元,那么小明姥姥乘车路程为__________千米.12.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,则隧道长度为________米.13.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;①甲的平均速度为15千米/小时;①乙走了8km后遇到甲;①乙出发6分钟后追上甲.其中正确的有_____________(填所有正确的序号).14.某城市用电收费实行阶梯电价,收费标准如下表所示,用户5月份交电费45元,则所用电量为_____度.月用电量不超过12度的部分超过12度不超过18度的部分超过18度的部分收费标准(元/度)2.00 2.503.00评卷人得分三、解答题15.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆16.温度的变化是人们在生活中经常谈论的话题,请你根据下图回答下列问题:(1)上午9时的温度是多少?这一天的最高温度是多少?(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(3)在什么时间范围内温度在下降?图中的A点表示的是什么?17.下图表示购买某种商品的个数与付款数之间的关系(1)根据图形完成下列表格购买商品个数(个)2467付款数(元)(2)请写出表示付款数y(元)与购买这种商品的个数x(个)之间的关系式.18.小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是_________,因变量是_________,小南家到该度假村的距离是_____km.(2)小南出发___________小时后爸爸驾车出发,爸爸驾车的平均速度为___________km/h,图中点A表示.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是___________km.19.巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?20.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;①当t等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案:1.C【解析】【详解】A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.2.B【解析】【详解】①y轴表示当天爷爷离家的距离,X轴表示时间又①爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,①刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多①选项B中的图形满足条件.故选B.3.A【解析】【详解】解:由图象可以看出菜地离小徐家1.1千米.故选A.点睛:本题考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题的关键.4.B【解析】【分析】根据小刚取车的整个过程共分三个阶段:慢匀速步行,图像是坡直线,然后休息反应时间变化路程不变,再快匀速骑自行车,图像是陡直线即可.【详解】解:小刚取车的整个过程共分三个阶段:①徒步从家到同学家,s随时间t的增大而增大;①在同学家逗留期间,s不变;①骑车返回途中,速度是徒步速度的3倍,s随t的增大而增大,并且比徒步时的直线更陡;纵观各选项,只有B选项符合,故选B.【点睛】本题考查图像识别,掌握图形的特征和表示的意义是解题关键.5.B【解析】【分析】A、根据速度=路程÷时间,可求出小王去时的速度和回家的速度,比较后可得出A不正确;B、观察函数图象,求出小王在朋友家停留的时间,故B正确;;C、先求出小王回家所用时间,比较后可得出C不正确;D、题干中未给出路况如何,故D不正确.综上即可得出结论.【详解】解:A、小王去时的速度为2000÷20=100(米/分),小王回家的速度为2000÷(40−30)=200(米/分),①100<200,①小王去时的速度小于回家的速度,A不正确;B、①30−20=10(分),①小王在朋友家停留了10分,B正确;C、40−30=10(分),①20>10,①小王去时所花时间多于回家所花时间,C不正确;D、①题干中未给出小王去朋友家的路有坡度,①D不正确.故选B.【点睛】本题考查了函数图象,观察函数图象逐一分析四条结论的正误是解题的关键.6.A【解析】【详解】由于圆柱形水杯是均匀的物体,随着水的深度变高,需要的注水量也是均匀升高的.可知,只有选项A适合均匀升高这个条件.故选A.7.D【解析】【详解】(1000-600)÷(80-40)=10(元)8.①①【解析】【详解】①小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,①表示母亲离家的时间与距离之间的关系的图象是①;①父亲看了10分报纸后,用了15分返回家,①表示父亲离家的时间与距离之间的关系的图象是①9.图象法水平横轴竖直纵轴【解析】【详解】用图象来表示两个变量之间的关系的方法叫做图象法,在利用图象法表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量,故答案为图象法,水平,横轴,竖直,纵轴.10.4【解析】【详解】解:由图可知,甲、乙收割机每天共收割350-200=150亩,共同收割600亩,所以,乙参与收割的天数是600÷150=4天.故答案为4.【点睛】此题主要考查学生的读图获取信息的能力,要注意分析其中的“关键点”.11.13【解析】【详解】设AB的解析式为y=kx+b,由题意,得63148k bk b=+⎧⎨=+⎩,解得:1.61.2kb=⎧⎨=⎩,①直线AB的解析式为y=1.6x+1.2(x≥3),当y=22时,22=1.6x+1.2,解得:x=13,故答案为13.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.12.900【解析】【分析】根据图象可知,火车的长度为150米,火车的速度可用火车的长度除以火车本身出(或进)隧道内所用的时间即35-30=5秒,列式计算即可得到火车行驶的速度;隧道的长度等于火车走过的总路程减去火车的长度,可列式为35×30-150,列式计算即可得到答案.【详解】解:由图象可直接得到火车的长度为150米,火车的速度是:150÷(35−30)=150÷5=30(米/秒),隧道的长度:35×30−150=1050−150=900(米).故答案为900.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.13.①①①【解析】【详解】①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;①根据甲到达目的地时的路程和时间知:甲的平均速度=10÷4060=15千米/时;故①正确;①设乙出发x分钟后追上甲,则有:102818-×x=1040×(18+x),解得x=6,故①正确;①由①知:乙第一次遇到甲时,所走的距离为:6×102818-=6km,故①错误;所以正确的结论有三个:①①①,故答案为①①①.14.20【解析】【详解】设所用电量为x度,由题意得:12×2+6×2.5+3(x﹣18)=45,解得:x=20,故答案为20.【点睛】本题考查了一元一次方程的应用,解题的关键是读懂表格,根据表格列出相应的方程进行求解.15.(1) 5元(2) 0.5元/千克;y=12x+5(0≤x≤30);(3)他一共带了45千克土豆.【解析】【分析】(1)根据题意得出自带的零钱;(2)根据图象可知降价前售出的土豆数量为30千克,总金额为15元,然后计算单价;根据降价后的价格和金额求出降价后售出的数量,然后计算总质量.【详解】(1)根据图示可得:农民自带的零钱是5元.x+5(0≤x≤30)(2)(20-5)÷30=0.5(元/千克)①y=12答:降价前他出售的土豆每千克是0.5元.(3)(26-20)÷0.4+30=15+30=45(千克)答:他一共带了45千克土豆.考点:一次函数的应用.16.(1)27①,37①;(2)14①,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【解析】【分析】(1)观察函数图象找出时间9时的温度和这一天的最高温度;(2)找出函数图象的最高点(最高温度)和最低点(最低温度),然后再找最高点和最低点分别对应的时间;用最高温度减去最低温度得到这天的温差,最低温度到最高温度经过的时间等于最高点和最低点对应的时间的差;(3)观察图象0时到3时和15时到24时温度在下降.【详解】解:(1)利用图象得出上午9时的温度是27①,这一天的最高温度是37①.(2)这一天的温差是37-23=14(①),从最低温度到最高温度经过了15-3=12(小时).(3)温度下降的时间范围为0时至3时及15时至24时,图中的A点表示的是21点时的气温.故答案为(1)27①,37①;(2)14①,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【点睛】本题考查了函数图象,利用函数图象反映两变量之间的变化规律,通过该规律解决有关的实际问题.17.(1)4;8;12;14;(2)付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【解析】【分析】根据折线统计图即可写得答案根据题意可得关系式为y=kx,代入x与y的值即可解得k为2,及关系式为y=2x.【详解】(1)当购买商品个数为2个时,付款数为4元;当购买商品个数为4个时,付款数为8元;当购买商品个数为6个时,付款数为12元;当购买商品个数为7个时,付款数为14元;故答案为4;8;12;14;(2)设付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=kx,根据题意得:4=2k,解得k=2,∴付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【点睛】本题考查一元一次方程,根据题意列出关系式并解出k的值是解题的关键.18.(1)t,s,60;(2) 1,60,小南出发2.5小时后,离家的距离为50km ;(3)30或45.【解析】【分析】(1)直接利用常量与变量的定义得出答案;直接利用函数图象结合纵坐标得出答案;(2)利用函数图象求出爸爸晚出发1小时,根据速度=路程÷时间求解即可;根据函数图象的横纵坐标的意义得出A点的意义;(3)利用函数图象得出交点的位置进而得出答案.【详解】(1)自变量是时间或t,因变量是距离或s;小亮家到该度假村的距离是:60;(2)小亮出发1小时后爸爸驾车出发:爸爸驾车的平均速度为60÷1=km/h;图中点A表示:小亮出发2.5小时后,离度假村的距离为10km;(3)当20t=60(t-1),解得:t=1.5则离家20×1.5=30(千米)当20t=120-60(t-1),解得:t=2.25则离家20×2.25=45(千米)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是30或45.【点睛】此题主要考查了函数图象以及常量与变量,利用函数图象获取正确信息是解题关键.19.(1)t,s;(2)2,6;(3)小明距起点的距离为300米【解析】【分析】(1)观察函数图象即可找出谁是自变量谁是因变;(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答.【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度420200110=2(米/秒),小明的速度为42070=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师,根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题的关键在于看懂图中数据,通过数形结合来求解.20.(1) ①甲,甲,3小时;①3和193;(2) 甲在5~7时的生产速度最快,每小时生产零件15个.【解析】【分析】(1)根据图象不难得出结论;(2)从图上看出甲在5~7时直线斜率最大,即生产速度最快.【详解】解:(1) ①甲、乙中,甲先完成一天的生产任务;在生产过程中,甲因机器故障停止生产3小时;①由图象可知,甲、乙两条折线相交时,表示甲、乙所生产的零件个数相等.当t=3时,甲乙第一次相交;设甲乙第二次相交时生产时间为t2,得:10+()24010575t ---=4+40482--(2t -2), 解得:t 2=193, ①当t 等于3和193时,甲、乙所生产的零件个数相等; (2)甲在5~7时的生产速度最快,①(40-10)÷(7-5)=15,①他在这段时间内每小时生产零件15个.故答案为(1) ①甲,甲,3小时;①3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.【点睛】从图象中获取信息是学习函数的基本功,要结合题意熟练掌握.。
变量之间的关系知识点及常见题型
变量之间的关系及常见题型一、基础知识1、常量:在变化过程中一组数据中或者关系式中数值保持不变的量;2、变量:数值发生变化的量在一变化过程中一般有两个变量1自变量:在一定范围内主动发生变化的变量;2因变量:随自变量的变化而变化的变量.二、表示方式1、表格法1一般第一栏表示自变量,第二栏表示因变量;2从表格中可以获取一些信息,发现因变量随自变量的变化存在一定规律;2、关系式1表示自变量与因变量之间关系的数学式子叫关系式;关系式一般用含自变量的代数式表示因变量的等式2能利用关系式进行计算;3、图像法(1)水平方向的数轴横轴表示自变量;竖直方向的数轴纵轴表示因变量;(2)利用图像尽可能地获取自变量因变量的信息,特点是直观.练习:1、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是A、明明B、电话费C、时间D、爷爷2、某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有个、个座位;第排有个座位.3、据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐地增加,如果用t表示时间,y表示人口数量, 是自变量, 是因变量.4、下表中的数据是根据某地区入学儿童人数编制的:1上表反映了哪两个变量之间的关系哪个是自变量哪个是因变量2随着自变量的变化,因变量变化的趋势是什么3你认为入学儿童的人数会变成零吗5、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x单位:分之间有如下关系其中0≤x≤301上表中反映了哪两个变量之间的关系那个是自变量哪个是因变量2当提出概念所用时间是10分钟时,学生的接受能力是多少3根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强4从表格中可知,当时间x在什么范围内,学生的接受能力逐步增强当时间x 在什么范围内,学生的接受能力逐步降低5 根据表格大致估计当时间为23分钟时,学生对概念的接受能力是多少6 下表是某同学做“观察水的沸腾”实验时所记录的数据:1时间为8分钟时,水的温度是多少2上表反应了哪两个变量之间的关系哪个是自变量哪个是因变量3水的温度是怎样随时间变化的4根据表格,你认为13分钟、14分钟时水的温度是多少5为了节约能源,在烧开水时,你认为应在几分钟左右关闭煤气巩固练习:一、选择题每小题3分,共24分1.我们都知道,圆的周长计算公式是c=2πr,下列说法正确的是A. c,π,r 都是变量B. 只有r 是变量C. 只有c 是变量D. c,r 是变量2.一汽车以平均速度60千米/时速度在公路上行驶,则它所走的路程s 千米与所用的时间t 时的关系式为 A.t s +=60 B. ts 60= C. 60ts =D. t s 60= 3.雪撬手从斜坡顶部滑了下来,下图中可以大致刻画出雪撬手下滑过程中速度—时间变化情况的是4.“人间四月芳菲尽,山寺桃花始盛开”,说明温度随者海拔的升高而降低,已知某地面温度为20℃,且每升高1千米温度下降6℃,则山上距离地面h 千米处的温度t 为 A. 206t h =- B. 206h t =-C. 206h t -= D. 206t h -=5.根据图示的程序计算变量y 的对应值,若输入变量x 的值为-1,则输出的结果为A. –2B. 2C. –1D. 0 6.如下图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S 阴影部分,则S 与t 的大致图象为7.星期天,小王去朋友家借书,下图是他离家的距离y 千米与时间x 分钟的图象,根据图象信息,下列说法正确的是 A .小王去时的速度大于回家的速度 B .小王在朋友家停留了10分钟C .小王去时所花的时间少于回家所花的时间D .小王去时走上坡路,回家时走下坡路DCBA时间时间时间速度速度速度时间速度100y 千米x 分钟220 30 40 stOA .st OB .stOC .stOD .8.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A B C D →→→的路径以1cm/s 的速度运动点P 不与A D ,重合.在这个运动过程中,APD △的面积2(cm )S 随时间()t s 的变化关系用图象表示,正确的为二、填空题:每小题3分,共24分9.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中________是自变量, 是因变量.10.在体积为20的圆柱中,底面积S 高h 的关系式是 .11.飞机着陆后滑行的距离s 单位:米与滑行时间t 单位:秒之间的关系是s=60t -,当t=40时,s=______________.12.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩钱数y 元与买邮票的枚数x 枚之间的关系式为 .13.声音在空气中传播的速度y m/s 与气温x oC 之间在如下关系:33153+=x y .当气温x =15 oC 时,声音的速度y = m/s.若某人看到烟花燃放5s 后才听到声音响,则此人与燃放的烟花所在地相距 m.14.如图所示的图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时15.一支原长为20cm 的蜡烛,点燃后,其剩余长度与燃烧时间的关系可以从下表看出:则剩余长度y cm 与燃烧时间x 分的关系式为______________,估计这支A . O t s 1 2BO ts12CO ts 12 DO ts12 AD CB P蜡烛最多可燃烧___________分钟.16.有一本书,每20页厚为1mm,设从第1页到第x 页的厚度为y mm,则y 与x 之间的关系式为_______________.三、解答题:本大题共8小题,共52分17.本题6分小华粉刷他的卧室共花去10小时,他记录的完成工作量的百分数如下:15小时他完成工作量的百分数是 ; 2小华在 时间里工作量最大;3如果小华在早晨8时开始工作,则他在 时间没有工作.18.本题8分弹簧挂上物体后会伸长, 已知一弹簧的长度cm 与所挂物体的质量kg 之间的关系如下表:1上表反映的变量之间的关系中哪个是自变量 哪个是因变量 2当所挂物体是3kg 时,弹簧的长度是多少 不挂重物时呢19.本题8分如图,长方形ABCD 的边长分别为AB=12cm,AD=8cm,点P 、Q 都从点A 出发,分别沿AB,AD 运动,且保持AP=AQ,在这个变化过程中,图中的阴影部分的面积也随之变化.当AP 由2cm 变到8cm 时,图中阴影部分的面积是增加了,还是减少了增加或减少了多少平方厘米20.本题10分如图是一辆汽车的速度随时间变化的图象.根据图象填空: 1汽车在整个行驶过程中,最高时速是________千米/时;2汽车在________,________保持匀速行驶,时速分别是________,________;3汽车在________、________、________时段内加速行驶,在________、________时 段内减速行驶;4出发后,12分到14分之间可能发生________情况;21.本题10分如图,小明的爸爸去参加一个重要会议,小明坐在汽车上用所学知识绘制了一张反映小车速度与时间的关系图,第二天,小明拿着这张图给同学看,并向同学提出如下问题,你能回答吗 1在上述变化过程中,自变量是什么因变量是什么 2小车共行驶了多少时间最高时速是什么 3小车在哪段时间保持匀速行驶,时速达到多少 4用语言大致描述这辆汽车的行驶情况PQ DCBA102030405060708090100110102040503060速度(千米/时)时间/分课后练习:1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是A、沙漠B、体温C、时间D、骆驼2、正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同.下图反映了一天24小时内小明体温的变化情况,下列说法错误的是A.清晨5时体温最低 B.下午5时体温最高C.这一天中小明体温T单位:℃的范围是≤T≤D.从5时至24时,小明体温一直是升高的.3、下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系.水温水温水温水温0 时间 0 时间 0 时间 0A.B.C. D.4.某市一天的温度变化如图所示,看图回答下列问题:1这一天中什么时间温度最高是多少度什么时间温度最低是多少度2在这一天中,从什么时间到什么时间温度开始上升在这一天中,从什么时间到什么时间温度开始下降5某种动物的体温随时间的变化图如图示:1一天之内,该动物体温的变化范围是多少2一天内,它的最低和最高体温分别是多少是几时达到的.3一天内,它的体温在哪段时间内下降.4依据图象,预计第二天8时它的体温是多少课堂检测1、在平地上投掷手榴弹,下面哪幅图可以大致刻画出手榴弹投掷过程中落地前速度变化情况A B C D2、某种储蓄的月利率是%,现存入本金100元,本金与利息的和y 元与所存月数x 月之间的关系式为A 、x y 36.0100+=B 、x y 6.3100+=C 、x y 36.11+=D、x y 36.1001+= 3、有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是A 、1000元B 、800元C 、600元D 、400元4、某人骑车外出,所行的路程S 千米与时间t 小时的关系如图所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快; ②第3小时中的速度比第1小时中的速度慢; ③第3小时后已停止前进; ④第3小时后保持匀速前进.其中说法正确的是A 、②、③B 、①、③C 、①、④D 、②、④5、李老师骑车外出办事,离校不久便接到学校要他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是 S 距离距离 S 距离距离0 0 0 0t 时间 t 时间 t 时间t 时间A 、B 、C 、D 、6、三峡大坝从6月1日开始下闸蓄水,如果平均每天流入库区的水量为a 立方米米时,a b <;当天变化的大致图象是A 、B 、C 、D 、。
两个变量之间的关系(经典和完整版)(强力推荐)(20210125231231)
领航两个变量之间的关系、知识要点表示变量的三种方法:列表法、解析法(关系式法) 、图象法◆要点 1 变量、自变量、因变量(1)在一变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量,常量和变量往往是相对的,相对于某个变化过程。
(2)在一变化的过程中,主动发生变化的量,称为自变量,而因变量是随着自变量的变化而发生变化的量。
例如小明出去旅行,路程S、速度V、时间T 三个量中,速度V一定,路程S则随着时间T的变化而变化。
则T 为自变量,路程为因变量。
◆要点 2 列表法与变量之间的关系(1)列表法是表示变量之间关系的方法之一,可表示因变量随自变量的变化而变化的情况。
(2)从表格中获取信息,找出其中谁是自变量,谁是因变量。
找自变量和因变量时,主动发生变化的是自变量,因变量随自变量的增大而增大或减小◆要点 3 用关系式表示变量之间的关系(1)用来表示自变量与因变量之间关系的数学式子,叫做关系式,是表示变量之间关系的方法之一。
(2)写变化式子,实际上根据题意,找到等量关系,列方程,但关系式的写法又不同于方程,必须将因变量单独写在等号的左边。
即实质是用含自变量的代数式表示因变量。
(3)利用关系式求因变量的值,①已知自变量与因变量的关系式,欲求因变量的值,实质就是求代数式的值;②对于每一个确定的自变量的值,因变量都有一个确定的与之对应的值。
◆要点 4 用图象法表示变量的关系(1)图象是刻画变量之间关系的又一重要方式,特点是非常直观。
(2)通常用横轴(水平方向的数轴)上的点表示自变量,用纵轴(竖直方向的数轴)上的点表示因变量。
(3)从图象中可以获取很多信息,关键是找准图象上的点对应的横轴和纵轴上的位置,才能准确获取信息。
如利用图象求两个变量的对应值,由图象得关系式,进行简单计算,从图象上变量的变化规律进行预测,判断所給图象是否满足实际情景,所给变量之间的关系等。
(4)对比看:速度—时间、路程—时间两图象★若图象表示的是速度与时间之间的关系,随时间的增加即从左向右,“上升的线段” ①表示速度在增加;“水平线段” ②表示速度不变,也就是做匀速运动,“下降的线段” ③表示速度在减少。
第9讲 变量之间的关系七年级数学下册同步精品讲义
第9讲 变量之间的关系1.一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t ,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量.2.表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等.3.关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式.4.图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色.知识点01.常量与变量(1)变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量. (2)方法:①常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化; ②常量和变量是相对于变化过程而言的.可以互相转化; ③不要认为字母就是变量,例如π是常量.【知识拓展1】(2021春•成华区期末)汽车以每小时100千米的速度匀速行驶,行驶的路程随时间的变化而变化,在这个变化过程中,自变量是( ) A .汽车B .路程C .速度D .时间【即学即练1】(2021秋•天长市月考)一本笔记本5元,买x 本共付y 元,则5和x 分别是( ) A .常量,变量B .变量,变量C .常量,常量D .变量,常量【即学即练2】(2021春•莱阳市期末)已知声音在空气中的传播速度与空气的温度有关,在一定范围内其关系如表所示: 温度℃ ﹣20 ﹣10 0 10 20 30 传播速度318324330336342348知识精讲目标导航(m/s)则下列说法错误的是()A.自变量是传播速度,因变量是温度B.温度越高,传播速度越快C.当温度为10℃时,声音10s可以传播3360mD.温度每升高10℃,传播速度增加6m/s知识点02.函数关系式用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:①函数解析式是等式.②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.③函数的解析式在书写时有顺序性,例如,y=x+9时表示y是x的函数,若写成x=﹣y+9就表示x是y的函数.【知识拓展2】(2021秋•成都期末)现有一小树苗高100cm,以后平均每年长高50cm.x年后树苗的总高度y(cm)与年份x(年)的关系式是.【即学即练1】(2021秋•龙口市期末)如图,在平面直角坐标系xOy中,以O为圆心,适当长为半径画弧,交x轴于点A,交y轴于点B,再分别以点A,B为圆心,大于AB的长为半径画弧,两弧在第二象限交于点C,若点C的坐标为(x﹣2,2y),则y与x的函数关系式为.【即学即练2】(2021秋•三水区期末)一辆车的油箱有80升汽油,该车行驶时每1小时耗油4升,则油箱的剩余油量y(升)与该车行驶时间x(小时)(0≤x≤20)之间的函数关系式为.【即学即练3】(2021秋•香洲区期末)某种产品今年的年产量是20t,计划今后两年增加产量.如果每年的产量都比上一年增加x倍,两年后这种产品的产量y与x之间的函数表达式是.【即学即练4】(2021秋•杜尔伯特县期末)如图所示,梯形的上底长是5cm,下底长是13cm.当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是,因变量是.(2)梯形的面积y(cm2)与高x(cm)之间的关系式为.(3)当梯形的高由10cm变化到1cm时,梯形的面积由cm2变化到cm2.【即学即练5】(2021秋•密云区期末)如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是()A.S=4x+6B.S=4x﹣6C.S=x2+3x D.S=x2﹣3x【即学即练6】(2021秋•临漳县期末)某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数关系式是()A.y=0.12x B.y=60+0.12xC.y=﹣60+0.12x D.y=60﹣0.12x【即学即练7】(2021秋•滨海县期末)某商场为了增加销售额,推出“元月销售大酬宾”活动,其活动内容为:“凡元月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x 的函数关系式是.知识点03.函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..【知识拓展3】(2021秋•綦江区期末)小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h(米)与小强出发后的时间t(分钟)的函数关系如图所示,下列结论正确的是()A.爷爷比小强先出发20分钟B.小强爬山的速度是爷爷的2倍C.l1表示的是爷爷爬山的情况,l2表示的是小强爬山的情况D.山的高度是480米【即学即练1】(2021秋•长丰县期末)小明上午8:00从家里出发,跑步去他家附近的抗日纪念馆参加抗美援朝70周年纪念活动,然后从纪念馆原路返回家中,小明离家的路程y(米)和经过的时间x(分)之间的函数关系如图所示,下列说法不正确的是()A.从小明家到纪念馆的路程是1800米B.小明从家到纪念馆的平均速度为180米/分C.小明在纪念馆停留45分钟D.小明从纪念馆返回家中的平均速度为100米/分【即学即练2】(2021秋•大东区期末)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种.甲地经过a天后接种人数达到30万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示,当乙地完成接种任务时,甲地未接种疫苗的人数为万人.【即学即练3】(2021秋•南岸区期末)一司机驾驶汽车从甲地到乙地,他以60km/h的平均速度行驶4h到达目的地,并按照原路返回甲地.(1)返回过程中,汽车行驶的平均速度v与行驶的时间t有怎样的函数关系?(2)如果要在3h返回甲地,求该司机返程的平均速度;(3)如图,是返程行驶的路程s(km)与时间t(h)之间的函数图象,中途休息了30分钟,休息后以平均速度为85km/h的速度回到甲地.求该司机返程所用的总时间.【即学即练4】(2021秋•徐汇区校级期末)某空军加油飞机接到命令,立即给另一架正在飞行的运输机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油箱余油量为Q2吨,加油时间为t(分),Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油之前,加油飞机的加油油箱中装载了吨油;运输飞机的油箱有余油量吨油;(2)这些油全部加给运输飞机需分钟;(3)运输飞机的飞行油耗为每分钟吨油;(4)运输飞机加完油后,以原速继续飞行,如果每分钟油耗相同,最多能飞行小时.【即学即练5】(2021秋•沛县期末)小明爸爸开车从单位回家,沿途部分路段正在进行施工改造,小明爸爸回家途中距离家的路程ykm与行驶时间xmin之间的函数关系如图所示.结合图象,解决下列问题:(1)小明爸爸回家路上所花时间为min;(2)小明爸爸说:“回家路上,有一段路连续4分钟恰好行驶了2.4千米.”你认为该说法有无可能?若有,请求出这4分钟的起止时间;若没有,请说明理由.【即学即练6】(2021秋•龙凤区校级期末)如图是一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是80km,请你根据图象解决下面的问题.(1)谁出发较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)若用y表示自行车行驶过的路程,用x表示自行车行驶过的时间,写出y与x的关系.知识点04.动点问题的函数图象函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.【知识拓展4】((2021秋•东阳市期末)已知两个等腰直角三角形的斜边放置在同一直线l上,且点C与点B重合,如图①所示.△ABC固定不动,将△A′B′C′在直线l上自左向右平移.直到点B′移动到与点C重合时停止.设△A′B′C′移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图②所示,则△ABC的直角边长是()A.4B.4C.3D.3【即学即练1】(2021秋•龙岩期末)如图,正方形ABCD的边长为2,点E和点F分别在BC和CD上运动,且保持∠EAF=45°.若设BE的长为x,EF的长为y,则y与x的函数图象是()A.B.C.D.【即学即练2】(2021秋•沛县期末)如图1,在矩形ABCD中,点P从点C出发,沿C→D→A→B方向运动至点B处停止.设点P运动的路程为x,△PBC的面积为y,已知y关于x的函数关系如图2所示,则长方形ABCD的面积为()A.15B.20C.25D.30【即学即练3】(2021秋•金湖县期末)如图(1),△ABC和△A'B'C'是两个腰长不相等的等腰直角三角形,其中,∠A=∠A'=90°.点B'、C'、B、C都在直线l上,△ABC固定不动,将△A'B'C'在直线l上自左向右平移,开始时,点C'与点B重合,当点B'移动到与点C重合时停止.设△A'B'C'移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图(2)所示,则BC的长是.【即学即练4】(2021秋•龙华区期末)如图1,动点P从长方形ABCD的顶点A出发,沿A→C→D以1cm/s 的速度运动到点D停止.设点P的运动时间为x(s),△P AB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则长方形ABCD的面积为cm2.知识点05.函数的表示方法函数的三种表示方法:列表法、解析式法、图象法.其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.【知识拓展5】(2021秋•紫金县期末)在实验课上,小亮利用同一块木板测得小车从不同高度(h)与下滑的时间(t)的关系如下表:支撑物高h(cm)1020304050…下滑时间t(s) 3.25 3.01 2.81 2.66 2.56…以下结论错误的是()A.当h=40时,t约2.66秒B.随高度增加,下滑时间越来越短C.估计当h=80cm时,t一定小于2.56秒D.高度每增加了10cm,时间就会减少0.24秒【即学即练1】(2021秋•肇源县期末)河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:行驶路程s(千米)050100150200…剩余油量Q(升)4035302520…则该汽车每行驶100千米的耗油量为升.【即学即练2】(2021春•富平县期末)在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s010203040油温y/℃1030507090王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.加热10s,油的温度是30℃B.在一定范围内,每加热10s,油的温度升高20℃C.估计这种食用油的沸点温度约是230℃D.加热50s,油的温度是100℃知识点06.分段函数(1)一次函数与常函数组合的分段函数.分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)(2)由文字图象信息确定分段函数.根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量.②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.【规律方法】用图象描述分段函数的实际问题需要注意的四点1.自变量变化而函数值不变化的图象用水平线段表示.2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.3.各个分段中,准确确定函数关系.4.确定函数图象的最低点和最高点.【知识拓展6】(2021春•滦南县期末)在国内投寄到外地质量为80g以内的普通信函应付邮资如下表:信件质量m/g0<m≤2020<m≤4040<m≤6060<m≤80邮资y/元 1.20 2.40 3.60 4.80某同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是()A.4.80B.3.60C.2.40D.1.20【即学即练1】((2021•永州)已知函数y =,若y=2,则x=.【即学即练2】((2021•锡山区校级模拟)某市地铁票价计费标准如表所示:乘车距离x,单位:公里.乘车距离x x≤66<x≤1212<x≤2222<x≤32x>32票价(元)3456每增加1元可乘20公里另外,使用市政交通一卡通,每个自然月每张卡片支出累计满100元后,超出部分打8折;满150元后,超出部分打5折;支出累计达400元后,不再打折.小红妈妈上班时,需要乘坐地铁15公里到达公司,每天上下班共乘坐两次,如果每次乘坐地铁都使用市政交通一卡通,那么每月第22次乘坐地铁上下班时,她刷卡支出的费用是元.能力拓展【考点1】:用表格表示变量间关系例题1.(2020·山东济南市·七年级期末)为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0 1 2 3 …油箱剩余油量Q(L)100 94 88 82 …①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.【变式1】(2019·广东深圳市·七年级期末)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中,是自变量,是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.【变式2】(2020·辽宁丹东市·七年级期末)某路公交车每月有x人次乘坐,每月的收入为y元,每人次乘坐的票价相同,下面的表格是y与x的部分数据.x/人次500 1000 1500 2000 2500 3000 …y/元1000 2000 4000 6000 …(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入-支出费用)【考点2】 :用关系式表示变量间关系例题2.(2020·甘肃酒泉市·七年级期末)如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm .(1)观察图形,填写下表: 链条的节数/节 2 3 4链条的长度/cm(2)如果x 节链条的长度是y ,那么y 与x 之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【变式1】(2020·江西九江市·七年级期末)在一次实验中,小明把一根弹簧的端固定,在其下端悬挂物体,下面是测得的弹簧的长度()y cm 与所挂物体的质量()x kg 的一组对应值:所挂物体的质量()x kg 012 3 4 5弹簧长度()y cm18 20 222426 28(1)在这个变化的过程中,自变量是 ;因变量是 ; (2)写出y 与x 之间的关系式,并求出当所挂重物为6kg 时,弹簧的长度为多少?【变式2】(2020·甘肃酒泉市·七年级期末)如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:链条的节数/节234链条的长度/cm(2)如果x节链条的长度是y,那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【考点3】:用图象表示变量间关系例题3、(2020·四川达州市·七年级期末)巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【变式1】(2020·四川达州市·七年级期末)巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【变式2】(2020·贵州毕节市·七年级期末)如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.【变式3】(2021·山东聊城市·七年级期末)如图是2020年1月15日至2月2日全国(除湖北省)新冠肺炎新增确诊人数的变化曲线,则下列说法:①自变量为时间,确诊总人数是时间的函数;②1月23号,新增确诊人数约为150人;③1月25号和1月26号,新增确诊人数基本相同;④1月30号之后,预测新增确诊人数呈下降趋势,其中正确的是____________.(填上你认为正确的说法的序号)分层提分题组A 基础过关练一.选择题(共5小题)1.(2021秋•龙泉驿区期末)小亮放学回家走了一段,发现一家新开的店在搞活动,就好奇地围观了一会,然后意识到回家晚了妈妈会着急,急忙跑步回到家.若设小亮与家的距离为s(米),他离校的时间为t (分钟),则反映该情景的图象为()A .B .C.D.2.(2021秋•丰台区期末)如图所示,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:cm3)表示注入容器内的水量,则表示V与h的函数关系的图象大致是()A.B.C.D.3.(2021秋•毕节市期中)油箱中存油60升,油从油箱中均匀流出,流速为0.3升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.3t B.t=60﹣0.3Q C.t=0.3Q D.Q=60﹣0.3t4.(2021秋•济阳区期中)一水池的容积是90m3,现有蓄水10m3,用水管以5m3/h的速度向水池注水,直到注满为止.则水池蓄水量V(m3)与注水时间t(h)之间的函数关系式为()A.V=5t B.V=10t C.V=5t+10D.V=80﹣5t5.(2021秋•无棣县期中)已知关于x与y之间的关系如表所示:x1234…y5+0.610+1.215+1.820+2.4…下面用的式子中,正确的是()A.y=5x+0.6B.y=(5+0.6)x C.y=5+0.6x D.y=5+0.6+x二.填空题(共3小题)6.(2021秋•成都期末)现有一小树苗高100cm,以后平均每年长高50cm.x年后树苗的总高度y(cm)与年份x(年)的关系式是.7.(2021秋•福田区期末)元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品数x(件)之间的关系式,化简后的结果是.8.(2021秋•李沧区期中)如图,甲、乙两地相距120km,现有一列火车从乙地出发,以80km/h的速度向丙地行驶.设x(h)表示火车行驶的时间,y(km)表示火车与甲地的距离,写出x,y之间的关系式.三.解答题(共4小题)9.(2021春•庄河市期末)如图,在平面直角坐标系中,点A坐标为(0,3),点C坐标为(6,0),AB∥x 轴,且OA=AB,动点P从点O出发以2个单位/秒的速度沿O→A→B→C的路线匀速运动,运动到点C 时终止.过点P作PQ⊥x轴,垂足为Q,设点P的运动时间为x(s),线段PQ的长为y.(1)求∠C的度数;(2)求y与x的函数关系式.10.(2021•罗庄区一模)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如表.x123456y632 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.11.(2021•寻乌县模拟)数学活动课上,老师提出问题:如图1,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大(已知长方体的体积=长×宽×高).下面是探究过程,请补充完整:(1)设小正方形的边长为xdm,体积为ydm3,y和x的关系式是;自变量x的取值范围是;(2)①列表:根据(1)中所求函数关系式计算并补全表格:x/dm…1…y/dm3… 1.3 2.2 2.73 2.8 2.5 1.50.9…②描点:根据表中的数值,继续描出2中剩余两个点(x,y);③在平面直角坐标系中用平滑的曲线画出该函数的图象.(3)结合画出的函数图象,解决问题:当图1中小正方形的边长约为dm时,盒子的体积最大,最大值约为dm3(结果精确到0.01).12.(2020•南山区校级开学)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)由表格猜想y与x关系式,并估计当每月乘车人数为3500人时,每月利润为多少元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.题组B 能力提升练易错点一:常量、变量(自变量、因变量)基本概念认识1.(2020·山东济南市·七年级期末)骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是( )A.沙漠B.体温C.时间D.骆驼2.(2020·贵州毕节市·七年级期末)甲以每小时20km的速度行驶时,他所走的路程S(km)与时间t(h)之间可用公式s=20t来表示,则下列说法正确的是()A.数20和s,t都是变量B.s是常量,数20和t是变量C.数20是常量,s和t是变量D.t是常量,数20和s是变量易错点二:列表法表示变量之间的关系1.(2020·山东青岛市·七年级期末)某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:现销售了105把水壶,则定价约为()A.115元B.105元C.95元D.85元2.(2020·山东济南市·七年级期末)为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.。
《用图像表示的变量间关系》word教案 (公开课)2022年北师大版 (1)
3.3 用图象表示的变量间关系●教学目标〔一〕教学知识点1.经历从图象中分析变量之间的关系的过程,进一步体会变量之间的关系.2.结合具体情境理解图象上的点所表示的意义.3.能从图象中获取变量之间关系的信息,并能用语言进行描述.〔二〕能力训练要求1.培养学生从图象中获取信息的广泛性和准确性.2.在具体情境中锻炼学生对变量之间关系的敏感和语言描述的合理.〔三〕情感与价值观要求从解决大量实际问题和学生感兴趣的问题中提高学生用数学的意识,体验数学所蕴含的数学美.●教学重点1.用图象表示两个变量之间的关系.2.从图象中获取变量之间关系的信息,并能用语言合理地表示,并能结合具体情境理解图象上的点所表示的数学意义.●教学难点根据图象得出事物变化的规律.●教学方法自主探索法本节课的重点是使学生获得对图象反映变量之间关系的体验,学生可借助于以前读统计图的经验发现两个变量的关系,并尽可能多地从图象中获取信息.●教学过程一、温故知新1.某河受暴雨袭击,某天此河水的水位记录为下表:时间/小时0 4 8 12 16 20 24水位/米 2 3 4 5 6 8上表中反映了个变量之间的关系,自变量是,因变量是 .强调:借助表格,我们可以表示,因变量随自变量的变化而变化的情况.2.汽车油箱中原有汽油50升,汽车每行驶1小时耗油6升,请写出油箱中剩余油量y〔升〕与行驶时间t〔小时〕之间的关系式 .强调:利用关系式,我们可以根据一个自变量的值求出相应的因变量的值.二、创设情境,导入新课以以下图是我国某天的气温分布图,你能根据此图说一说家乡的气温吗?你还能从图中看出什么?三、探究交流,获取新知1.合作与探究——气温变化的情况请你根据图象,与同伴讨论某地某天温度变化情况.〔1〕上午9时的温度是多少?12时呢?〔2〕这一天的最高温度是多少?是几时到达的?最低温度呢?〔3〕这一天的温差是多少?从最低温度到最高温度经过了多长时间?〔4〕在什么时间范围内温度在上升?在什么时间范围内温度在下降?〔5〕图中的A点表示的是什么?B点呢?〔6〕你能预测次日凌晨1时的温度吗?说说你的理由.〔学生思考,交流〕2.知识归纳图象是我们表示变量之间关系的第三种方法,它的特点是非常直观.在用图象表示变量之间的关系时,通常用水平方向的数轴〔称为横轴〕上的点表示自变量,用竖直方向的数轴〔称为纵轴〕上的点表示因变量.如何从图象中获取关于两个变量的信息?(1)要明白图象上的点所表示的意义?(2)从自变量的值如何得到因变量的值?及从因变量的值如何得到自变量的值?(3)要明白因变量如何随自变量变化而变化的?3. 议一议——骆驼的体温骆驼被称为“沙漠之舟〞,它的体温随时间变化而发生较大的变化,下面是骆驼的体温随时间变化的图象,我们根据它来分析变量之间的关系.〔图中25时表示次日凌晨1时〕〔1〕一天中,骆驼体温变化范围是什么?它的体温从最低上升到最高需要多少时间?〔2〕从16时到24时,骆驼的体温下降了多少?〔3〕在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?〔4〕你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢?〔5〕A点表示的是什么?还有几时的温度与A点所表示的温度相同?〔6〕你还知道哪些关于骆驼的趣事?与同伴交流.〔学生思考交流〕四、达标检测,反响新知1.在夏天一杯开水放在桌面上,其水温T与放置时间 t 的关系大致图象为〔〕2.洗衣机在洗涤衣服时,每洗涤一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与洗涤一遍的时间x(分)之间关系的图象大致为( )3.以以下图是今年5月1日至5月6日某市旅游人数统计图:〔1〕你能从图中获得哪些信息?〔2〕你能预测5月7日的旅游人数吗?〔3〕你会选择这7天中的哪一天出游?4.下面是一位病人的体温记录图,看图答复以下问题:(1)护士每隔几小时给病人量一次体温?护士每隔6小时给病人量一次体温.(2)这位病人的最高体温是多少摄氏度?最低体温是多少摄氏度?(3)他在4月8日12时的体温是多少摄氏度?(4)图中的横线表示什么?(5)从图中看,这位病人的病情是恶化还是好转?5.下面是某港口“水上游乐场〞从0时到12时的水深情况变化图:864201234567891011121.此图反映哪两个变量之间的关系?2.假设规定水深超过6米时,不允许游客下海,图中有哪些时间段可以下海?五、知识拓展,提升能力人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐被遗忘,德国心理学家艾宾浩斯第一个发现了记忆遗忘规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
度更快?
80
(3)当小明到达终点时,小亮所跑 60
的路程是多少?
40
小明 小亮
(4)小明和小亮到达终点后如果 20
各自继续以原速度往前跑,他们 能否相遇?利用图象加以解释.
0
2 4 6 8 10 12 12.5
(1)小明和小亮的百米成绩各是多少?(2)两人的速度各是多少?谁的速度更 快?(3)当小明到达终点时,小亮所跑的路程是多少?(4)小明和小亮到达终点 后如果各自继续以原速度往前跑,他们能否相遇?利用图象加以解释.
A
S D
4
B
P
C
图(1)
0
4 图(2)
6x
如图一,在长方形MNPQ中,动点R从点N出发,沿
路程相同的情况发生,所以两人不会
相遇.
0 2 4 6 8 10 12 12.5
如图(1),在长方形ABCD中,AB=2,动点P从点B出发,
沿路线B→C→D作匀速运动,图(2)是此运动过程中,
三角形PAB的面积S与点P运动的路程x之间的关系图
D 象,则BC+CD的长为 A.3 B.4 C.5 D.6
1.一个变化过程中,有变量和常量。 2.两个变量: 自变量和因变量,表示的意义,书写形式 3.变量间的关系表示法 第一表格法 第二关系式法 (1)利用公式(2)根据表格(3)实际问题 第三图像法
第三章变量之间关系
用图象表示的变量间关系
知识点1用图象表示两个变量之间的关系
1.图象法:是指用图象来表示两个变量之间 关系的方法。 2.图象的基本特征:横轴(x轴)上的点表示自 变量,纵轴(y轴)上的点表示因变量.图象上 的每个点表示自变量和因变量之间的相互 关系. 3.优点:能直观、形象地反映因变量随着自 变量变化的趋势
的大致图象是 B
s/m
s/m
s/m
s/m
0
t/min 0
A
t/min 0
B
C t/min 0
D t/min
知识点2从图象中获取信息训练
如图是一辆汽车行驶的速度(千米/时)与时间
(分)之间的变化图,下列说法正确的是 D
A.时间是因变量,速度是自
速度/(千米/时)
变量
30
B.从3分到8分,汽车行驶的
路程是150千米
④小刚从学校回到家的平均速度是
100m/min.其中正确结论的个数有 0 A.4个 B.3个 C.2个 D.1个
8 10t/min
知识点2从图象中获取信息
小刚从家去学校,先匀速步行到车站,等了几分钟后坐
上了公交车,公交车匀速行驶一段时间后到达学校,小
刚从家到学校行驶路程s(m)与时间t(min)之间关系
(1)小明12s,小亮12.5s
(2)小明的速度100÷12≈8.33m/s,
s/m
小亮的速度100÷12.5=8m/s.小明100
的速度更快 (3)当小明到达终点时,用时12s,此
80
时小亮所跑的路程是12×8=96m 60
(4)不能相遇.因为两图象向右上方 40
小明 小亮
延长后没有交点,即没有时间相同、 20
20
பைடு நூலகம்
C.时间每增加1分钟,汽车 10 的速度增加10千米/时
D.第3分钟时汽车的速度是
30千米/时
0 123 8
12时间/分
某市为了鼓励居民节约用电,采用分段计费的方法按月计算
每户家庭的电费,分档收费:第一档是当月用电量不超过240
度时,实行”基础电价”;第二档是当月用电量超过240度时,
其中的240度仍按照”基础电价”计费,超过的部分按照”
知识点2从图象中获取信息
放学后,小刚和同学边聊边往家走,突然想起今天是妈
妈的生日赶紧加快速度,跑步回家,小刚离家的距离
s(m)和放学后的时间t(min)之间的关系如图,给出下
列结论:
③④
①小刚边走边聊阶段的行走速度是
s/m
125m/min;
1000
②小刚家离学校的距离是1000km; 600
③小刚回到家时已放学10min
当y=132时132=0.6x-24解得
x=260
240 400 x/度
甲、乙两同学从A地出发,骑自行车在同一条公路上行
驶到距A地60km的B地,他们距出发地的距离s(km)
和行驶时间t(h)之间的关系图象如图,根据图中提供
D 的信息,下列描述正确的是
A.乙在行驶过程中休息了一会 s/km
儿
60
甲乙
(1)0.5 0.6. 基础电价120÷240=0.5;
y/元
提高电价(216-120)÷(400- 216
240)=0.6. (2)75元 260度
120
150×0.5=75 法一:由图象可知240+(132- 0
120)÷0.6=260(度)
法二:自变量x与因变量y的关系
y=120+0.6(x-240)=0.6x-24.
提高电价”收费.设每个家庭月用电量为x度,应缴电费为y元,
具体收费情况如图,请根据图象回答下列问题:
(1)“基础电价”是____元/
y/元
度,“提高电价”是____元/度. 216
(2)若某户某月用电150度, 则应缴电费多少元?若某户某 120
月缴电费132元,则该户这个
月用电量为多少度?
0
240 400 x/度
知识点2从图象中获取信息
理解图象上某一点的意义,要注意 以下两点: 1.看横轴、纵轴分别表示哪个变量; 2.看该点所在的水平方向、竖直方 向的位置。
知识点从图象中获取信息的关键
1.要抓住图象的最高点与最低点以及这些点所对应的 自变量与因变量的值. 2.利用图象可以判断因变量的变化趋势. 当图象自左向右上升时,说明因变量随着自变量的增 大而增大; 当图象自左向右下降时,说明因变量随着自变量的增 大而减小; 当图象与横轴平行时,说明因变量随着自变量的增大 而保持不变.
S/路程
S/路程
S/路 程
S/路程
0
A t/时间0
0 B t/时间
0 C t/时间
D
t/时 间
某校为了选拔百米运动员,让学生进行百米比赛,小明和小亮
同时起跑,比赛情况如图,其中横轴表示时间t(s)纵轴表示距
起跑点的距离s(m),根据图象回答下列问题.
(1)小明和小亮的百米成绩各是
s/m
多少?
(2)两人的速度各是多少?谁的速100
B.甲在行驶过程中没有追上乙
C.甲比乙先出发1h
D.甲行驶速度比乙行驶速度快 0
1
4 5 t/h
第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比
赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次
我一定不睡觉,让乌龟先跑一段距离我再去追都可以
赢.结果兔子又一次输掉了比赛,则下列图象可以体现
B 这次比赛过程的是( )