鸽巢原理教学反思
鸽巢问题教研活动反思(3篇)

第1篇一、活动背景鸽巢问题,又称抽屉原理,是数学中的一个基本原理。
它源于一个简单的实际问题:如果有n个鸽巢和n+1只鸽子,那么至少有一个鸽巢里会有两只鸽子。
这一原理在日常生活、科学研究以及工程技术中都有着广泛的应用。
为了提高教师对鸽巢问题的认识,探索有效的教学策略,我们学校近期组织了一次关于鸽巢问题的教研活动。
以下是本次教研活动的反思。
二、活动过程1. 专题讲座教研活动伊始,我们邀请了数学教育专家进行了专题讲座。
专家详细介绍了鸽巢问题的起源、基本原理及其在各个领域的应用。
讲座中,专家还结合实例,深入浅出地阐述了鸽巢问题的解题方法。
2. 课堂观摩随后,我们组织了观摩课,邀请优秀教师展示了一堂精彩的鸽巢问题教学课。
教师通过精心设计的教学环节,引导学生积极参与课堂讨论,培养学生的逻辑思维能力和解决实际问题的能力。
3. 交流研讨观摩课后,教师们展开了热烈的交流研讨。
大家围绕以下几个方面进行了深入探讨:(1)如何将鸽巢问题与学生的生活实际相结合,提高学生的学习兴趣?(2)如何引导学生运用鸽巢原理解决实际问题?(3)如何在教学中培养学生的逻辑思维能力?4. 总结经验教研活动最后,我们总结了以下经验:(1)加强教师对鸽巢问题的认识,提高教师的教学水平。
(2)注重培养学生的逻辑思维能力,提高学生的综合素质。
(3)关注学生的实际需求,将鸽巢问题与学生的生活实际相结合。
三、活动反思1. 鸽巢问题的重要性通过本次教研活动,我们深刻认识到鸽巢问题在数学教育中的重要性。
鸽巢原理不仅有助于学生掌握数学知识,还能培养学生的逻辑思维能力,提高学生的综合素质。
2. 教学策略的改进在教研活动中,我们发现教师在教学中存在以下问题:(1)对鸽巢问题的认识不足,导致教学过程中无法深入挖掘其内涵。
(2)教学方式单一,难以激发学生的学习兴趣。
针对这些问题,我们提出以下改进措施:(1)加强教师培训,提高教师对鸽巢问题的认识。
(2)丰富教学手段,运用多媒体、游戏等多种方式激发学生的学习兴趣。
鸽巢问题教学反思(通用6篇)

鸽巢问题教学反思鸽巢问题教学反思(通用6篇)在我们平凡的日常里,课堂教学是重要的工作之一,反思意为自我反省。
那么你有了解过反思吗?以下是小编为大家整理的鸽巢问题教学反思(通用6篇),欢迎大家借鉴与参考,希望对大家有所帮助。
鸽巢问题教学反思1鸽巢问题是我们数学中比较有意思且在生活中运用比较广泛的问题。
因此,在录制一师一优课时我想到了给学生讲这一节课,使学生更加清楚的认识到数学是源于生活,并运用于生活中的。
鸽巢问题又可以叫做抽屉原理,是一种在生活中常见的数学原理,许多游戏的设置都运用了该原理,例如抢凳子游戏,纸牌游戏等。
因此,在讲课开始我先用纸牌游戏中引出今天的鸽巢问题,让学生带着好奇心来学习本节课内容。
接着我出示例题,先找一位同学演示3支笔放进2个笔筒中应该怎么放,并记录下来,使学生明白小组应该怎样进行活动并记录。
接着出示课本例1的题目,学生小组内通过刚才的方法很轻易的就找出一共有几种方法,在找一位学生进行演示加强大家的认识。
我有介绍了刚才学生们实验的方法叫做枚举法。
并通过观察引出概念总有一个笔筒里至少有2支铅笔。
接着让学生们转换思想求实有没有更简单的方法得出结论,学生通过实验和讨论得出可以用平均分的方法得到同样的结论。
并把其转化为算式。
接着增加铅笔和笔筒的个数仍能得到相同的结论,由此学生发现当铅笔数比笔筒数多1时,总有一个笔筒至少有2支铅笔的结论。
把铅笔和笔筒换成其他物品学生还能相似的结论,说明学生已经可以学移致用了。
之后介绍鸽巢问题的发现者,增加学生的知识面。
最后,我又引到游戏揭示答案,再通过几道层次递进的题目的练习,使学生能够灵活运用鸽巢问题,从而达到本节课的教学目的。
鸽巢问题教学反思2《鸽巢问题》是六年级下册内容,最早指出这个数学原理的,是十九世纪的德国数学家狄里克雷,因此,这个原理被称为“狄里克雷原理”。
又因为在讲述这个原理时,人们经常以抽屉、鸽巢为例,所以它往往也被称“抽屉原理”或“鸽巢原理”。
鸽巢原理教学反思

《鸽巢原理》教学反思
本节课是通过几个直观例子,借助实际操作,引导学生探究“鸽巢原理”,初步经历“数学证明“的过程,并有意识的培养学生的“模型思想。
1、激趣是新课导入的抓手,喜欢和好奇心比什么都重要,本节课以“抢凳子”的游戏,让学生置身游戏中开始学习,为理解鸽巢原理埋下伏笔。
通过小组合作,动手操作的探究性学习把鸽巢原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。
特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
2、借助直观操作,经历探究过程。
教师注重让学生在操作中,经历探究过程,感知、理解抽屉原理。
3、教师注重培养学生的“模型”思想。
通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决鸽巢原理的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。
4、在活动中引导学生感受数学的魅力。
本节课的“鸽巢原理”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。
特别以游戏引入,既调动了学生学习的积极性,又学到了鸽巢原理的知识,同时锻炼了学生的思维。
在整节课的教学活动中使学生感受了数学的魅力。
但是在这节课里还有部分学生不能理解“总有”、“至少”的意思,有一部分同学不能准确快速的判断出谁是“鸽子数”,谁是“鸽巢数”。
因此,在今后的教学中,还要多下一些功夫,以求在课堂上让学生更好地理解、消化所授知识。
课后还要让多做相关的练习加以巩固。
“鸽巢”问题教学反思

“鸽巢”问题教学反思
•相关推荐
“鸽巢”问题教学反思
“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现本章知识。
例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的',是抽屉原理的一个逆向的应用。
本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。
让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。
兴趣是学习最好的老师。
所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。
借机引入本节课的重点“总有……至少……”。
这样设计使学生在生动、活泼的数学活动中主动参与。
小学数学_《鸽巢原理》教学设计学情分析教材分析课后反思

第五单元《数学广角---鸽巢原理》年级:六年级课型:新授课教学内容:教科书第68-69页例1、例2及做一做。
【教学内容】最简单的鸽巢问题(教材第68页例1和第69页例2)。
【教学目标】1.理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行列举及假设法探究“鸽巢问题”。
2.体会数学知识在日常生活中的广泛应用,培养学生的探究意识。
【重点难点】了解简单的鸽巢问题,理解“总有”和“至少”的含义。
【教学准备】课件,每组5个杯子和若干枝铅笔。
教学过程一、游戏激趣,初步体验。
教师:同学们,之前玛雅人有一个预言你们听过?他们说2012年是世界末日,这个预言实现了?没有。
我们顺利活到了2019年,他们的这个预言准吗?-不准。
我有一个预言特别准,一副牌,取出大小王,还剩52张,随意抽5张,我预言是:一定至少有2张牌是同花色的。
相信吗?然后五名同学上台抽牌验证。
就在刚才的预言中就运用到了我们数学中一个很重要的数学原理---鸽巢原理(板书课题)二、操作探究,发现规律。
(一)经历“鸽巢原理”的探究过程,理解原理。
1.自主猜想,初步感知。
(提出问题)把4枝铅笔放进3个文具盒中。
不管怎么放,总有一个杯子至少放进()根小棒。
让学生猜测“至少会是”几根?2.验证结论。
不管学生猜测的结论是什么,教师都必须要求学生借助实物进行操作,来验证结论。
学生以小组为单位进行操作和交流时,教师深入了解学生操作情况,找出列举所有情况的学生。
(1)先请列举所有情况的学生进行汇报,一说明列举的不同情况,二结合操作说明自己的结论。
(教师根据学生的回答板书所有的情况)学生汇报完后,教师再利用列法的示意图,指出每种情况(2)提出问题。
不用一一列举,想一想还有其它的方法来证明这个结论吗?学生汇报了自己的方法后,教师围绕假设法,组织学生展开讨论:为什么每个杯子里都要放1根小棒呢?请相互之间讨论一下。
在讨论的基础上,教师小结:假如每个杯子放入一支铅笔,剩下的一支还要放进一个杯子里,无论放在哪个杯子里,一定能找到一个杯子里至少有2支小棒。
鸽巢问题教学反思

鸽巢问题教学反思引言鸽巢问题,也被称为鸽笼原理或抽屉原理,是组合数学中的基本原理之一。
它在离散数学、概率论、统计学等领域有着广泛的应用。
本文将对教学中鸽巢问题的讲解和应用进行反思,并提出一些改进的建议。
教学反思1. 缺乏示例说明在教学鸽巢问题时,我发现自己过于依赖抽象的符号表示,缺乏具体的示例来说明问题。
这导致部分学生难以理解问题的实际意义和解题方法。
因此,在今后的教学中,我应该更加注重提供实际的例子,以帮助学生更好地理解鸽巢问题。
例如,我可以以班级选课为例子,将学生分为若干个小组,让他们在不同时间段内选择课程。
通过实际操作,学生可以体会到当班级人数多于可选课程数量时,必然会出现至少有一个时间段被两个小组选择的情况。
2. 缺乏足够的练习机会鸽巢问题需要学生掌握一定的组合数学知识,尤其是排列与组合的概念和计算方法。
然而,我在教学中发现,学生对这些基础知识的掌握程度不一,导致在解决鸽巢问题时遇到困难。
为了解决这个问题,我计划在教学中增加更多的练习机会。
这些练习可以包括计算排列组合的题目,以及应用鸽巢问题解决实际情境的练习题。
通过反复练习,学生将更好地理解和掌握鸽巢问题的相关概念和解题方法。
3. 缺乏与实际应用的联系鸽巢问题在离散数学中有着重要的应用,但在教学中往往缺乏与实际应用的联系。
学生可能会觉得鸽巢问题只是一个抽象的数学概念,难以看出其实际价值。
为了增加学生对鸽巢问题的兴趣和理解,我可以引入更多与实际情境相关的例子。
例如,可以讨论在公共汽车站等候车时,如果人数多于座位数量,那么至少会有两个人坐在同一座位上的情况。
通过与实际生活中的场景联系,可以帮助学生更好地理解鸽巢问题,并将其应用到实际问题的解决中。
结论通过对教学中鸽巢问题的反思,我意识到自己在解释概念、提供示例和培养学生兴趣等方面存在不足之处。
今后,我将更加注重实际示例的引入,增加学生的练习机会,并将鸽巢问题与实际应用进行有机结合。
相信这些改进措施将有助于提高学生对鸽巢问题的理解和应用能力,同时也丰富了教学内容的实用性。
《鸽巢原理》教学反思

《鸽巢原理》教学反思一堂好的数学课,我认为应该是原生态,充满“数学味”的课;应该立足课堂,立足知识点。
本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。
一、情境导入,初步感知兴趣是最好的老师。
在导入新课时,我以四人一小组的形式玩“抢凳子”的游戏,激发学生的兴趣,初步感受至少有两位同学相同的现象,这个游戏虽简单却能真实的反映“鸽巢原理”的本质。
通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
二、活动中恰当引导,建立模型采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。
在例2的教学中让学生借助直观操作发现,把书尽量多的“平均分”到各个鸽巢,看每个鸽巢能分到多少本书,剩下的书不管放到哪个鸽巢里,总有一个鸽巢比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。
大量例举之后,再引导学生总结归纳这一类“鸽巢问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。
由于我提供的数据比较小,为学生自主探究和自主发现“鸽巢原理”提供了很大的空间。
特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。
三、通过练习,解释应用适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。
如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张是同花色的。
试一试,并说明理由”。
在练习中,我采取游戏的形式,请3位同学上来分别抽5张牌,然后请同学们猜猜,至少有几张牌的花色是一样的。
学生兴趣盎然,达到了预期的效果。
不足之处是学生的语言表达能力还有待提高。
人教版六年级数学下《数学广角──鸽巢问题》教学反思

《数学广角──鸽巢问题》教学反思一、教学目标达成情况通过本节课的教学,学生能够理解鸽巢问题的基本原理,掌握鸽巢问题的概念,并能够运用鸽巢问题解决实际问题。
同时,通过小组讨论和案例分析,学生的数学思维和解决问题的能力得到了提高。
二、教学内容和方法本节课的教学内容是鸽巢问题,这是一种与抽屉原理相关的数学问题。
通过实物鸽巢和鸽子模型,学生能够直观地理解鸽巢与鸽子的关系,从而引入鸽巢问题的概念。
在讲解过程中,我采用了讲解、示范、小组讨论和案例分析等多种教学方法,使学生能够深入理解鸽巢问题的基本原理和应用。
三、学生活动和表现在小组讨论环节,学生的参与度较高,能够积极发表自己的观点和看法。
通过案例分析,学生能够运用所学知识解决实际问题,提高了他们的思维能力和解题技巧。
同时,我也鼓励学生提出自己的问题和困惑,进行有针对性的指导和帮助。
四、教学亮点和不足本节课的教学亮点在于通过实物演示和小组讨论等多种教学方法,使学生能够深入理解鸽巢问题的基本原理和应用。
同时,我也注重学生的个体差异和需求,采用更加灵活多样的教学方法和手段,激发学生的学习兴趣和积极性。
然而,在教学过程中也存在一些不足之处。
例如,部分学生在理解鸽巢问题的基本原理时还存在一些困惑,需要进一步加强讲解和练习。
同时,在小组讨论环节,部分学生的参与度不够高,需要加强对学生的引导和激励。
五、改进措施和展望为了改进教学效果,我将进一步加强学生的讲解和练习,特别是对于存在困惑的学生要给予更多的指导和帮助。
同时,我也将注重学生的个体差异和需求,采用更加灵活多样的教学方法和手段,激发学生的学习兴趣和积极性。
展望未来,我希望能够继续探索更多与数学广角相关的数学问题,并将其应用于实际生活中,解决实际问题。
同时,我也希望能够在数学教学中提高学生的思维能力和解决问题的能力,为他们的未来学习和生活打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《鸽巢问题》教学反思
武汉市光谷豹澥第一小学马战勇《鸽巢原理》就是以前是的教学内容《抽屉原理》,新教材把这一部分内容纳入了数学广角。
当第一次看到《鸽巢问题》成为必学内容时,老师们都很困惑:什么是鸽巢问题?这么难的内容学生能理解吗?我的印象里《抽屉原理》也是非常坚深难懂的。
为了上好这一内容,我搜集学习了很多资料,文中对“抽屉原理”作了深入浅出的分析,使我对“抽屉原理”有了新的认识,也终于理出了头绪。
抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。
兴趣是学习最好的老师。
所以在本节课我就设计了“抢凳子”游戏来导入新课,在上课伊始我就说:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。
相机引入本节课的重点“总有……至少……”。
这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
只有学生主动参与到学习活动中,才是有效的教学。
在教学过程中,充分利用学具操作,如把4支小棒放入3个杯子学习中,把5支小棒放入4个杯子学习中等,都是让学生自己操作,这为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。
通过直观例子,借助实际操作,引导学生探究“鸽巢问题”,初步经历“数学证明“的过程,并有意识的培养学生的“模型思想。
为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解鸽巢问题。
在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。
不足之处在于教学过程中所设置的问题应具有针对性,应更多的关注学生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。