信号与系统上机实验报告-信号与系统实验报告实验一

合集下载

信号与系统实验一连续时间信号分析实验报告

信号与系统实验一连续时间信号分析实验报告

实验一 连续时间信号分析一、实验目的(一)掌握使用Matlab 表示连续时间信号1、学会运用Matlab 表示常用连续时间信号的方法2、观察并熟悉常用信号的波形和特性(二)掌握使用Matlab 进行连续时间信号的相关运算1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换2、学会运用Matlab 进行连续时间信号微分、积分运算3、学会运用Matlab 进行连续时间信号相加、相乘运算4、学会运用Matlab 进行连续时间信号卷积运算二、实验条件装用Matlab R2015a 的电脑。

三、实验内容1、利用Matlab 命令画出下列连续信号的波形图。

(1))4/3t (2cos π+ 程序:t=-3:0.01:3; ft=2*cos(3*t+pi/4); plot(t,ft)图像:(2))t (u )e 2(t--程序:t=-6:0.01:6; ut=(t>=0);ft=(2-1*exp(-t)).*ut; plot(t,ft)图像:(3))]2()(u )][t (cos 1[--+t u t π 程序:t=-6:0.01:6; ut=(t>=0); ut2=(t>=2);ft=(1+cos(pi*t)).*(ut-ut2); plot(t,ft)图像:2、利用Matlab 命令画出复信号)4/t (j 2e )t (f π+=的实部、虚部、模和辐角。

程序:t=0:0.01:20;ft=2*exp(1j*(t+pi/4));subplot(2,2,1);plot(t,real(ft));title('ʵ²¿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,2);plot(t,imag(ft));title('Ð鲿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,3);plot(t,abs(ft));title('Ä£');axis([-0.5,20,-0.5,2.5]); subplot(2,2,4);plot(t,angle(ft));title('·ø½Ç');axis([-0.5,20,-3.5,3.5]);图像:3、已知信号的波形如下图所示:试用Matlab 命令画出()()()()2332----t f t f t f t f ,,,的波形图。

北航信号与系统上机实验报告

北航信号与系统上机实验报告

信号与系统上机实验报告我是 buaa 快乐的小2B目录实验一、连续时间系统卷积的数值计算 (3)一、实验目的 (3)二、实验原理 (3)三、实验程序源代码、流图实验程序源代码 (4)4.1源代码与程序框图: (4)4.2数据与结果 (5)4.3数据图形 (6)实验二、信号的矩形脉冲抽样与恢复 (7)一、实验目的: (7)二、实验原理: (7)三、实验内容 (9)四、实验程序流程图和相关图像 (9)4.1、画出f(t)的频谱图即F(W)的图像 (9)4.2、对此频域信号进行傅里叶逆变换,得到相应的时域信号,画出此信号的时域波形f(t) (11)4.3、三种不同频率的抽样 (14)4.4、将恢复信号的频谱图与原信号的频谱图进行比较 (17)实验五、离散时间系统特性分析 (21)一、实验目的: (21)二、实验原理: (21)三、实验内容 (21)四、程序流程图和代码 (22)五、实验数据: (23)5.1单位样值响应 (23)5.2幅频特性 (24)六、幅频特性和相频特性曲线并对系统进行分析。

(25)6.1幅频特性曲线 (25)6.2相频特性曲线 (26)实验一、连续时间系统卷积的数值计算一、实验目的1 加深对卷积概念及原理的理解;2 掌握借助计算机计算任意信号卷积的方法。

二、实验原理1 卷积的定义卷积积分可以表示为2 卷积计算的几何算法卷积积分的计算从几何上可以分为四个步骤:翻转→平移→相乘→叠加。

3 卷积积分的应用卷积积分是信号与系统时域分析的基本手段,主要用于求系统零状态响应,它避开了经典分析方法中求解微分方程时需要求系统初始值的问题。

设一个线性零状态系统,已知系统的单位冲激响应为h(t),当系统的激励信号为e(t)时,系统的零状态响应为由于计算机技术的发展,通过编程的方法来计算卷积积分已经不再是冗繁的工作,并可以获得足够的精度。

因此,信号的时域卷积分析法在系统分析中得到了广泛的应用。

卷积积分的数值运算实际上可以用信号的分段求和来实现,即:如果我们只求当t )时r(t)的值,则由上式可以得到:1 1 2t = nΔt (n为正整数, nΔt 记为当 1 Δt 足够小时,( ) 2 r t 就是e(t)和h(t)卷积积分的数值近似,由上面的公式可以得到卷积数值计算的方法如下:1、将信号取值离散化,即以Ts 为周期,对信号取值,得到一系列宽度间隔为Ts 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;2、将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为t=0 时的卷积积分的值。

信号与系统实验报告1抽样定理

信号与系统实验报告1抽样定理

本科实验报告课程名称:信号与系统实验项目:抽样定理实验地点:北区博学楼机房专业班级:电信1201 学号: ******** 学生姓名:指导教师:***一、实验目的:1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理,加深对抽样定理的认识和理解。

二、原理说明:离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。

抽样信号fs(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。

即:fs(t)=f(t)×s(t)对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限个经过平移的原信号频谱。

平移后的频率等于抽样频率fs及其各次谐波频率2fs、3fs、4fs、5fs......。

正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复为原信号。

只要用一个截止频率等于原信号频谱中最高频率fmax的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。

但原信号得以恢复的条件是fs>2B,其中fs为抽样频率,B为原信号占有的频带宽度。

而fmin=2B为最低的抽样频率,又称为“奈奎斯特抽样率”。

当fs<2B 时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中,我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频谱的信号是极少的,因此即使fs=2B,恢复后的信号失真还是难免的。

为了实现对连续信号的抽样和抽样信号的复原,可用以下实验原理方案:图1-3 抽样定理实验方框图三、实验内容及步骤:1、方波信号的抽样与恢复。

1)观察方波信号的抽样。

调节函数信号发生器,使其输出频率分别为1KHZ、3KHZ,s(t)的频率分别置3.9KHz、15.6KHz、62.5KHz,观察抽样后的波形,并记录之。

方波原始图62.5KHz的抽样图2)观察恢复后的波形。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

武大电气学院信号系统实验报告

武大电气学院信号系统实验报告

《信号与系统》上机实验实验一连续时间信号的表示及可视化一.实验目的熟练掌握连续时间信号的表示及可视化处理。

二.实验源程序δf(t))=)(tf=@(t)dirac(t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)= ε(t)(f=Heaviside(n))f=@(t)heaviside(t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)=at e(分别取a>0及a<0)a=1时f=@(t)exp(t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标a=-1时f=@(t)exp(-t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)=R(t)t=-5:0.01:5; %设定时间变量t的范围及步长y=rectpuls(t,2); %用rectpuls(t a)命令表示门函数,默认以零点为中心,宽度为aplot(t,y); %用plot函数绘制连续函数grid on; %显示网格命令title('门函数'); %用title函数设置图形的名称axis([-5 5 -0.5 1.5]);f(t)=Sa(wt)w=5时,f=Sa(5*t)f=@(t)Sinc(5*t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标axis([-5 5 -1.2 1.2])w=8时,f=Sa(8*t)f=@(t)sinc(8*t) %定义函数ezplot(f,[-4:4]); %利用eaplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)=Sin(2πft)(分别画出不同周期个数的波形)f(t)=Sin(t)f=@(t)sin(t) %定义函数ezplot(f,[-15:15]); %利用eaplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标axis([-15 15 -1.2 1.2])三.程序运行结果(1)(2)(3)-5-4-3-2-1012345-1-0.8-0.6-0.4-0.200.20.40.60.81(t)dirac(t)(f )-5-4-3-2-101234500.20.40.60.81(t)heav iside(t)(f )(4)-5-4-3-2-1012345010********607080(t)exp(t)(f )-5-4-3-2-1012345010********607080(t)exp(-t)(f )(5)-5-4-3-2-1012345-1-0.8-0.6-0.4-0.200.20.40.60.81(t)Sinc(5 t)(f )(6)-4-3-2-101234 -1-0.8-0.6-0.4-0.20.20.40.60.81(t)sinc(8 t)(f)-15-10-5051015 -1-0.8-0.6-0.4-0.20.20.40.60.81(t)sin(t)(f)实验二离散时间信号的表示及可视化一.实验目的学会对离散时间信号进行标识和可视化处理。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统课程实验报告

信号与系统课程实验报告

合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。

二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。

它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。

2.实验线路检查无误后,打开实验箱右侧总电源开关。

3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。

信号与系统实验报告一-连续时间信号

信号与系统实验报告一-连续时间信号

实验一 连续时间信号§1.2 连续时间复指数信号 基本题1.对下面信号创建符号表达式()()t t t x ππ2c o s2sin )(= 这两个信号应分别创建,然后用symmul 组合起来。

对于T=4,8和16,利用ezplot 画出320≤≤t 内的信号。

什么是)(t x 的基波周期?x(t) =cos((pi*t)/2)*sin((pi*t)/2)=1/2sin(pi*t) (T=4)若令f1=1 /T1=1/2,很容易得到其基波分量:1/2sin(pi*t)同理可得:x(t)=cos((pi*t)/4)*sin((pi*t)/4)=1/2sin((pi*t)/2) (T=8)其基波分量为1/2sin((pi*t)/2),基频为f1=1/T1=1/4x(t)= cos((pi*t)/8)*sin((pi*t)/8)=1/2sin((pi*t)/4) (T=16)其基波分量为1/2sin((pi*t)/4),基频为f1=1/T1=1/8 中等题2.对下面信号创建一个符号表达式()t e t x at π2cos )(-=对于81,41,21=a ,利用ezplot 确定d t ,d t 为)(t x 最后跨过0.1的时间,将d t 定义为该信号的消失的时间。

利用ezplot 对每一个a 值确定在该信号消失之前,有多少个完整的余弦周期出现,周期数目是否正比于品质因素a T Q 2)2(π=?1)当a=1/2时: x(t)= cos(2*pi*t)/exp(t/2)利用Tool菜单中的data cursor项目可大致确定d t=4.548在该信号消失之前,有个约4(4.5)完整的余弦周期出现,对应的品质因数为6.28。

2)当a=1/4时: x(t)= cos(2*pi*t)/exp(t/4)利用Tool菜单中的data cursor项目可大致确定d t=9.053在该信号消失之前,有个约9完整的余弦周期出现,对应的品质因数为12.57。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告在现代科学与工程领域中,信号与系统是一个至关重要的研究方向。

信号与系统研究的是信号的产生、传输和处理,以及系统对信号的响应和影响。

在这个实验报告中,我们将讨论一些关于信号与系统实验的内容,以及实验结果的分析和讨论。

实验一:信号的采集与展示在这个实验中,我们学习了信号的采集与展示。

信号是通过传感器或其他仪器采集的电压或电流的变化,可以是连续的或离散的。

我们使用示波器和数据采集卡来采集信号,并在计算机上进行展示和分析。

实验二:线性时不变系统的特性线性时不变系统是信号与系统中的重要概念。

在这个实验中,我们通过观察系统对不同的输入信号作出的响应来研究系统的特性。

我们使用信号发生器产生不同的输入信号,并观察输出信号的变化。

通过比较输入信号和输出信号的频谱以及幅度响应,我们可以了解系统的频率响应和幅频特性。

实验三:系统的时域特性分析在这个实验中,我们将研究系统的时域特性。

我们使用了冲击信号和阶跃信号作为输入信号,观察输出信号的变化。

通过测量系统的冲击响应和阶跃响应,我们可以了解系统的单位冲激响应和单位阶跃响应。

实验四:卷积与系统的频域特性在这个实验中,我们学习了卷积的概念和系统的频域特性。

卷积是信号与系统中的重要运算,用于计算系统对输入信号的响应。

我们通过使用傅里叶变换来分析系统的频域特性,观察输入信号和输出信号的频谱变化。

实验五:信号的采样与重构在这个实验中,我们研究了信号的采样与重构技术。

信号的采样是将连续时间的信号转换为离散时间的过程,而信号的重构是将离散时间的信号恢复为连续时间的过程。

我们使用数据采集卡来对信号进行采样,并使用数字滤波器来进行信号的重构。

通过观察信号的采样和重构结果,我们可以了解采样率对信号质量的影响。

实验六:系统的稳定性与性能在这个实验中,我们研究了系统的稳定性与性能。

系统的稳定性是指系统对输入信号的响应是否有界,而系统的性能是指系统对不同频率信号的响应如何。

我们使用极坐标图和Nyquist图来分析系统的稳定性和性能,通过观察图形的变化来评估系统的性能。

信号与系统分析实验报告

信号与系统分析实验报告

信号与系统分析实验报告信号与系统分析实验报告引言:信号与系统分析是电子工程领域中的重要课程之一,通过实验可以更好地理解信号与系统的基本概念和原理。

本实验报告将对信号与系统分析实验进行详细的描述和分析。

实验一:信号的采集与重构在这个实验中,我们学习了信号的采集与重构。

首先,我们使用示波器采集了一个正弦信号,并通过数学方法计算出了信号的频率和幅值。

然后,我们使用数字信号处理器对采集到的信号进行重构,并与原始信号进行比较。

实验结果表明,重构后的信号与原始信号非常接近,证明了信号的采集与重构的有效性。

实验二:线性系统的时域响应本实验旨在研究线性系统的时域响应。

我们使用了一个线性系统,通过输入不同的信号,观察输出信号的变化。

实验结果显示,线性系统对于不同的输入信号有不同的响应,但都遵循线性叠加的原则。

通过分析输出信号与输入信号的关系,我们可以得出线性系统的传递函数,并进一步研究系统的稳定性和频率响应。

实验三:频域特性分析在这个实验中,我们研究了信号的频域特性。

通过使用傅里叶变换,我们将时域信号转换为频域信号,并观察信号的频谱。

实验结果显示,不同频率的信号在频域上有不同的分布特性。

我们还学习了滤波器的设计和应用,通过设计一个低通滤波器,我们成功地去除了高频噪声,并得到了干净的信号。

实验四:系统辨识本实验旨在研究系统的辨识方法。

我们使用了一组输入信号和对应的输出信号,通过数学建模的方法,推导出了系统的传递函数。

实验结果表明,通过系统辨识可以准确地描述系统的特性,并为系统的控制和优化提供了基础。

结论:通过本次实验,我们深入学习了信号与系统分析的基本概念和原理。

实验结果证明了信号的采集与重构的有效性,线性系统的时域响应的线性叠加原则,信号的频域特性和滤波器的设计方法,以及系统辨识的重要性。

这些知识和技能对于我们理解和应用信号与系统分析具有重要的意义。

通过实验的实际操作和分析,我们对信号与系统的理论有了更深入的理解,为我们今后的学习和研究打下了坚实的基础。

信号与系统的实验报告

信号与系统的实验报告

信号与系统的实验报告信号与系统的实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础学科,它研究的是信号的传输、处理和变换过程,以及系统对信号的响应和特性。

在本次实验中,我们将通过实际操作和数据分析,深入了解信号与系统的相关概念和实际应用。

实验一:信号的采集与重构在这个实验中,我们使用了示波器和函数发生器来采集和重构信号。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和幅度,我们可以观察到信号的不同特性,比如频率、振幅和相位等。

然后,我们将示波器上的信号通过数据采集卡进行采集,并使用计算机软件对采集到的数据进行处理和重构。

通过对比原始信号和重构信号,我们可以验证信号的采集和重构过程是否准确。

实验二:信号的时域分析在这个实验中,我们使用了示波器和频谱分析仪来对信号进行时域分析。

首先,我们通过函数发生器产生了一个方波信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和占空比,我们可以观察到方波信号的周期和占空比等特性。

然后,我们使用频谱分析仪对方波信号进行频谱分析,得到信号的频谱图。

通过分析频谱图,我们可以了解信号的频率成分和能量分布情况,进而对信号的特性进行深入研究。

实验三:系统的时域响应在这个实验中,我们使用了函数发生器、示波器和滤波器来研究系统的时域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到滤波器上进行输入。

然后,我们通过示波器观测滤波器的输出信号,并记录下其时域波形。

通过改变滤波器的参数,比如截止频率和增益等,我们可以观察到系统对信号的响应和滤波效果。

通过对比输入信号和输出信号的波形,我们可以分析系统的时域特性和频率响应。

实验四:系统的频域响应在这个实验中,我们使用了函数发生器、示波器和频谱分析仪来研究系统的频域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到系统中进行输入。

然后,我们通过示波器观测系统的输出信号,并记录下其时域波形。

《信号与系统》实验报告

《信号与系统》实验报告

信号与系统实验报告班级:姓名:信息与通信工程学院实验一 系统的卷积响应实验性质:提高性 实验级别:必做 开课单位:信息与通信工程学院 学 时:2一、实验目的:深刻理解卷积运算,利用离散卷积实现连续卷积运算;深刻理解信号与系统的关系,学习MATLAB 语言实现信号通过系统的仿真方法。

二、实验设备: 计算机,MATLAB 软件 三、实验原理: 1、 离散卷积和: 调用函数:conv ()∑∞-∞=-==i i k f i f f f conv S )()(1)2,1(为离散卷积和,其中,f1(k), f2 (k) 为离散序列,K=…-2, -1, 0 , 1, 2, …。

但是,conv 函数只给出纵轴的序列值的大小,而不能给出卷积的X 轴序号。

为得到该值,进行以下分析:对任意输入:设)(1k f 非零区间n1~n2,长度L1=n2-n1+1;)(2k f 非零区间m1~m2,长度L2=m2-m1+1。

则:)(*)()(21k f k f k s =非零区间从n1+m1开始,长度为L=L1+L2-1,所以S (K )的非零区间为:n1+m1~ n1+m1+L-1。

2、 连续卷积和离散卷积的关系:计算机本身不能直接处理连续信号,只能由离散信号进行近似: 设一系统(LTI )输入为)(t P ∆,输出为)(t h ∆,如图所示。

)t)()(t h t P ∆∆→)()(lim )(lim )(0t h t h t P t =→=∆→∆∆→∆δ若输入为f(t):∆∆-∆=≈∑∞-∞=∆∆)()()()(k t P k f t f t f k得输出:∆∆-∆=∑∞-∞=∆∆)()()(k t hk f t y k当0→∆时:⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==ττδτd t f k t P k f t f t f k )()()()(lim)(lim )(0⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==τττd t h f k t hk f t y t y k )()()()(lim)(lim )(0所以:∆∆-∆=-==∑⎰→∆)()(lim)()()(*)()(212121k t f k fd t f f t f t f t s τττ如果只求离散点上的f 值)(n f ∆])[()()()()(2121∑∑∞-∞=∞-∞=∆-∆∆=∆∆-∆∆=∆k k k n f k f k n f k fn f所以,可以用离散卷积和CONV ()求连续卷积,只需∆足够小以及在卷积和的基础上乘以∆。

信号与系统实验报告一

信号与系统实验报告一

信号与系统实验报告一实验一:信号与系统实验报告实验目的:1. 了解信号与系统的基本概念和理论知识;2. 学习使用MATLAB 对信号进行分析和处理;3. 掌握系统的时域和频域分析方法。

实验内容:本次实验包括以下两个部分:1. 信号的生成与表示;2. 系统的时域和频域分析。

一、信号的生成与表示1. 在MATLAB 中生成并绘制以下信号的波形图:(1) 正弦信号:A*sin(2*pi*f*t);(2) 方波信号:sign(sin(2*pi*f*t));(3) 带噪声的正弦信号:(1+N)*sin(2*pi*f*t)。

2. 对以上生成的信号进行分析和处理:(1) 计算各种信号的幅值、频率和相位;(2) 绘制各种信号的功率谱密度图。

二、系统的时域和频域分析1. 在MATLAB 中定义以下信号系统的单位脉冲响应h(n):(1) 线性时不变系统:h(n) = (0.4)^n * u(n),其中,u(n) 表示单位阶跃函数;(2) 非线性时变系统:h(n) = n * u(n)。

2. 对定义的信号系统进行时域和频域分析:(1) 绘制并分析系统的单位脉冲响应;(2) 计算系统的单位脉冲响应的离散时间傅里叶变换;(3) 绘制系统的幅频响应函数。

实验结果:1. 信号的生成与表示:(1) 正弦信号:根据给定的振幅A、频率f 和时间t,在MATLAB 中生成相应的正弦信号,并绘制出波形图。

根据波形图可以观察到正弦信号的周期性和振幅。

(2) 方波信号:根据给定的频率f 和时间t,在MATLAB 中生成相应的方波信号,并绘制出波形图。

方波信号由正负两个幅值相等的部分组成,可以通过绘制图形来观察到。

(3) 带噪声的正弦信号:根据给定的振幅A、频率f、时间t 和噪声系数N,在MATLAB 中生成带噪声的正弦信号,并绘制出波形图。

可以通过观察波形图来分析噪声对信号的影响。

2. 系统的时域和频域分析:(1) 线性时不变系统的单位脉冲响应:根据给定的线性时不变系统的单位脉冲响应函数,计算并绘制出相应的单位脉冲响应图。

华工电信学院信号与系统实验一报告参考模板

华工电信学院信号与系统实验一报告参考模板

华工电信学院信号与系统实验信号与系统实验报告(一)实验项目名称:MATLAB 编程基础及典型实例 上机实验题目:信号的时域运算及MA TLAB 实现 一、实验目的学习并掌握使用MATLAB 产生基本信号、绘制信号波形、实现信号的可视化表示,为信号分析和系统设计奠定基础。

二、实验内容1. 利用Matlab 产生下列连续信号并作图。

(1) 51),1(2)(<<---=t t u t x(2) 2000,)8.0cos()1.0cos()(<<=t t t t x ππ 2. 利用Matlab 产生下列离散序列并作图。

(1) ⎩⎨⎧≤≤-=其他,055,1][k k x , 设1515-≤<k 。

(2) )]25.0cos()25.0[sin()9.0(][k k k x k ππ+=,设2020-≤<k 。

3. 已知序列]3,2,1,0,1,2;2,3,1,0,2,1[][--=-=k k x , ]21,0,1,1,1[][=-=k k h 。

(1) 计算离散序列的卷积和][][][k h k x k y *=,并绘出其波形。

(2) 计算离散序列的相关函数][][][n k y k x k R k xy +=∑∞-∞=,并绘出其波形。

(3) 序列相关与序列卷积有何关系?三、实验细节1. 利用Matlab 产生下列连续信号并作图。

(1) 51),1(2)(<<---=t t u t xt=-1:0.01:5;x=-2.*((t-1)>=0); plot(t,x);axis([-1,5,-2.2,0.2])-112345-2-1.5-1-0.5(2) 2000,)8.0cos()1.0cos()(<<=t t t t x ππ t=0:2:200;x=cos(0.1*pi*t).*cos(0.8*pi*t); plot(t,x);20406080100120140160180200-1-0.8-0.6-0.4-0.200.20.40.60.812. 利用Matlab 产生下列离散序列并作图。

信号与系统实验报告实验一 信号与系统的时域分析

信号与系统实验报告实验一 信号与系统的时域分析

实验一信号与系统的时域分析一、实验目的1、熟悉与掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间与离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MA TLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。

基本要求:掌握用MA TLAB描述连续时间信号与离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换与运算,并且以图形的方式再现各种信号的波形。

掌握线性时不变连续系统的时域数学模型用MA TLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。

二、实验原理信号(Signal)一般都就是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都就是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就就是随着海拔高度的变化而变化的。

一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴与纵轴,因此,图像信号具有两个或两个以上的独立变量。

在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量就是否就是时间变量。

在自然界中,大多数信号的时间变量都就是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力与声音信号就就是连续时间信号的例子。

《信号与系统》实验报告

《信号与系统》实验报告

《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。

通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。

本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。

本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。

每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。

在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。

1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。

通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。

信号与系统实验报告-1(常用信号的分类与观察)

信号与系统实验报告-1(常用信号的分类与观察)

信号与系统实验报告-1(常用信号的分类与观察)实验一:信号的时域分析一、实验目的1.观察常用信号的波形特点及产生方法2.学会使用示波器对常用波形参数的测量二、实验仪器1.信号与系统试验箱一台(型号ZH5004)2.40MHz双踪示波器一台3.DDS信号源一台三、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。

因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。

在本实验中,将对常用信号和特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。

常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。

1、信号:指数信号可表示为f(t)=Ke at。

对于不同的a取值,其波形表现为不同的形式,如下图所示:图1―1 指数信号2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。

其波形如下图所示:图1-2 正弦信号3、指数衰减正弦信号:其表达式为其波形如下图:图1-3 指数衰减正弦信号4、Sa(t)信号:其表达式为:。

Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。

该函数在很多应用场合具有独特的运用。

其信号如下图所示:图1-4 Sa(t)信号5、钟形信号(高斯函数):其表达式为:其信号如下图所示:图1-5 钟形信号6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。

其信号如下图所示:f(t)…………0 t图1-6 脉冲信号7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示U(t)…………0 t图1-7 方波信号四、实验内容及主要步骤下列实验中信号产生器的工作模式为111、指数信号观察通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告信号与系统实验报告引言信号与系统是电子与通信工程领域中的重要基础课程,通过实验可以更好地理解信号与系统的概念、特性和应用。

本实验报告旨在总结和分析在信号与系统实验中所获得的经验和结果,并对实验进行评估和展望。

实验一:信号的采集与重构本实验旨在通过采集模拟信号并进行数字化处理,了解信号采集与重构的原理和方法。

首先,我们使用示波器采集了一个正弦信号,并通过模数转换器将其转化为数字信号。

然后,我们利用数字信号处理软件对采集到的信号进行重构和分析。

实验结果表明,数字化处理使得信号的重构更加准确,同时也提供了更多的信号处理手段。

实验二:滤波器的设计与实现在本实验中,我们学习了滤波器的基本原理和设计方法。

通过使用滤波器,我们可以对信号进行频率选择性处理,滤除不需要的频率分量。

在实验中,我们设计了一个低通滤波器,并通过数字滤波器实现了对信号的滤波。

实验结果表明,滤波器能够有效地滤除高频噪声,提高信号的质量和可靠性。

实验三:系统的时域和频域响应本实验旨在研究系统的时域和频域响应特性。

我们通过输入不同频率和幅度的信号,观察系统的输出响应。

实验结果表明,系统的时域响应可以反映系统对输入信号的时域处理能力,而频域响应则可以反映系统对输入信号频率成分的处理能力。

通过分析系统的时域和频域响应,我们可以更好地理解系统的特性和性能。

实验四:信号的调制与解调在本实验中,我们学习了信号的调制与解调技术。

通过将低频信号调制到高频载波上,我们可以实现信号的传输和远距离通信。

实验中,我们使用调制器将音频信号调制到无线电频率上,并通过解调器将其解调回原始信号。

实验结果表明,调制与解调技术可以有效地实现信号的传输和处理,为通信系统的设计和实现提供了基础。

结论通过本次信号与系统实验,我们深入了解了信号的采集与重构、滤波器的设计与实现、系统的时域和频域响应以及信号的调制与解调等基本概念和方法。

实验结果表明,信号与系统理论与实践相结合,可以更好地理解和应用相关知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名:学号:学院:Q1:0<=n<=31x1(n)=sin(pi*n/4)*cos(pi*n/4);x2(n)=cos(pi*n/4)*cos(pi*n/4)x3(n)=sin(pi*n/4)*cos(pi*n/8)分别画出图形,求出其周期。

代码:n=0:31;x1=sin(pi*n/4).*cos(pi*n/4);x2=cos(pi*n/4).*cos(pi*n/4);x3=sin(pi*n/4).*cos(pi*n/8);stem(n,x1)stem(n,x2)stem(n,x3)结果:05101520253035由图形可知周期T1=4由图形可知周期T2=405101520253035由图形可知周期T3=16Q2:当0<=n<=5时,h(n)=n;其他h(n)=0;x(n)=h(n);求y(n)=x(n)*h(n);用stem函数画出y(n).代码:n=0:5;h=n;x=h;y=conv(x,h);stem(y)结果:Q3:(a).定义用向量a1和b1描述差分方程y(n)-0.8y(n-1)=2x(n)-x(n-2)表征的因果LTI系统,(b).用在(a)中的系数向量,利用freqz定义H1是在0和pi之间4个等份频率上频率响应的值,omega1是这些频率值。

(c).用在(a)中的系数向量,利用freqz定义H2是在0和2*pi之间4个等份频率上频率响应的值,omega2是这些频率值。

代码:n=4;a1=[5,0,-4]b1=[10,0,-5][H1,W1] = freqz(b1,a1,n)[H2,W2] = freqz(b1,a1,n,'whole')结果:a1 =5 0 -4b1 =10 0 -5H1 =5.00001.7073 - 0.3659i1.66671.7073 + 0.3659iW1 =0.78541.57082.3562H2 =5.00001.66675.00001.6667W2 =1.57083.14164.7124Q4: X1(n)=u(n)-u(n-8); 其周期N1=8,X2(n)=u(n)-u(n-8); 其周期N2=16,X3(n)=u(n)-u(n-8); 其周期N3=32,(1) 画出这些周期信号在0<=n<=63的图形(2) 求其对应的付氏级数,(分别为a1,a2,a3)并画图。

(3) 综合x3a. x31(n)=a3(1)*exp(j*2*pi*n/32)+ a3(2)*exp(j*2*2*pi*n/32)+ a3(30)*exp(j*2*30*pi*n/32) + a3(31)*exp(j*2*31*pi*n/32) + a3(32)*exp(j*2*32*pi*n/32)b. x32(n)=a3(1)*exp(j*2*pi*n/32)+……+ a3(8)*exp(j*2*8*pi*n/32) + a3(24)*e xp(j*2*24*pi*n/32) +……+ a3(32)*exp(j*2*32*pi*n/32)c.. x33(n)=a3(1)*exp(j*2*pi*n/32)+……+ a3(12)*exp(j*2*12*pi*n/32) + a3(20)*exp(j*2*20*pi*n/32) +……+ a3(32)*exp(j*2*32*pi*n/32)c.. x34(n)=a3(1)*exp(j*2*pi*n/32)+……+ a3(32)*exp(j*2*32*pi*n/32)yi=abs(x3i),用stem对yi作图,试比较其于x3的区别。

(1) (2) 代码:N=64;n=0:63;x1=zeros(1,64);x2=zeros(1,64);x3=zeros(1,64);flag1=0;flag2=0;for i=1:64x1(i)=1;endfor i=1:64if((i>=1&&i<=8)||(i>=17&&i<=24)||(i>=33&&i<=40)||(i>=49&&i<=56))x2(i)=1;elsex2(i)=0;endendfor i=1:64if((i>=1&&i<=8)||(i>=33&&i<=40))x3(i)=1;elsex3(i)=0;endendstem(n,x1);figure;stem(n,x2);figure;stem(n,x3);a1=fft(x1)figure;stem(a1)figure;a2=fft(x2) stem(a2) figure; a3=fft(x3) stem(a3)结果:x2010203040506070x310203040506070a1(3) 代码:x31=a3(1)*exp(1i*2*pi*n/32)+ a3(2)*exp(1i*2*2*pi*n/32)+ a3(30)*exp(1i*2*30*pi*n/32) + a3(31)*exp(1i*2*31*pi*n/32) + a3(32)*exp(1i*2*32*pi*n/32)10203040506070-25-20-15-10-50510152025a2010203040506070-15-10-551015a3stem(abs(x31)) figure;x32=sum(a3(1:8))*exp(1i*2*8*pi*n/32) + sum(a3(24:32))*exp(1i*2*32*pi*n/32) stem(abs(x32)) figure;x33=sum(a3(1:12))*exp(1i*2*12*pi*n/32) + sum(a3(20:32))*exp(1i*2*32*pi*n/32) stem(abs(x33))x34=a3(1)*exp(1i*2*pi*n/32)+ a3(32)*exp(1i*2*32*pi*n/32) figure; stem(abs(x34))结果:01020304050607024681012141618x31010203040506070051015202530354001020304050607005101520253035404550x33比较可知:第一个的拟合程度较好。

Q1:Gibbs 现象:根据教材Example 3.5 验证Gibbs 现象,要求作出其一阶、三阶、五阶、七阶、九阶付氏级数展开的近似图。

代码:w=pi/4;t=-20:0.01:20;a=@(k)(sin(k.*pi/2)/(k.*pi));y1=1/2+2*a(1)*cos(w*t);y3=1/2+2*a(1)*cos(w*t)+2*a(3)*cos(3*w*t);y5=1/2+2*a(1)*cos(w*t)+2*a(3)*cos(3*w*t)+2*a(5)*cos(5*w*t);y7=1/2+2*a(1)*cos(w*t)+2*a(3)*cos(3*w*t)+2*a(5)*cos(5*w*t)+2*a(7)*cos (7*w*t);y9=1/2+2*a(1)*cos(w*t)+2*a(3)*cos(3*w*t)+2*a(5)*cos(5*w*t)+2*a(7)*cos (7*w*t)+2*a(9)*cos(9*w*t);plot(t,y1);figure;plot(t,y3);figure;plot(t,y5);figure;plot(t,y7);figure;plot(t,y9);结果:0102030405060700246810121416-20-15-10-505101520-0.200.20.40.60.811.2-20-15-10-505101520-0.200.20.40.60.811.2三阶拟合-20-15-10-505101520-0.200.20.40.60.811.2-20-15-10-505101520-0.200.20.40.60.811.2七阶拟合由上述图可知:Gibbs 现象成立。

Q2:已知微分方程 y ’’(t)+1.5y ’(t)+0.5y(t)=x ’(t)-2x(t)(1).求满足上式的因果LTI 系统的频率相应H(jw)。

定义向量b 和a 表示以(jw )的分子和分母多项式。

画出H(jw)的模和复角图。

(2),利用命令[r,p]=residue(b,a)计算出H(jw)的部分分式展开。

(1)代码:b=[0,1,-2];a=[-1,1.5,0.5];[h,w]=freqs(b,a);plot(w,abs(h))figure;plot(w,angle(h))[r,p]=residue(b,a)结果:-20-15-10-505101520-0.200.20.40.60.811.2(2)结果:r =0.1063-1.1063 01234567891000.511.522.533.540123456789101.61.822.22.42.62.833.2p =1.7808-0.2808故:H(jw)展开式为:H(jw)=0.1063/(jw-1.7828)-1.1063/(jw+0.2808) Q3:作出以下系统的零极点图:(1) H(s)=(s+5)/(s^2+2s+3)(2) H(s)=(2s^2+5s+12)/(s^2+2s+10)(3) H(s)=(2s^2+5s+12)/((s^2+2s+10)(s+2))(4)满足如下微分方程的因果LTI系统:y’(t)-3y(t)=x’’(t)+2x’(t)+5 x(t)(1)(2)(3) 代码:a1=[1,2,3];b1=[0,1,5];m1=roots(b1);plot(real(m1),imag(m1),'o')axis([-10 10 -10 10]);hold on;n1=roots(a1);plot(real(n1),imag(n1),'x')b2=[2,5,12];a2=[1,2,10];m2=roots(b2);figure;plot(real(m2),imag(m2),'o')axis([-2 0 -6 6]);hold on;n2=roots(a2);plot(real(n2),imag(n2),'x')b3=[0,2,5,12];a3=[1,4,14,20];m3=roots(b3);figure;plot(real(m3),imag(m3),'o')axis([-3 0 -4 4]);hold on;n3=roots(a3);plot(real(n3),imag(n3),'x')结果:-10-8-6-4-20246810-10-8-6-4-2246810-2-1.8-1.6-1.4-1.2-1-0.8-0.6-0.4-0.20-6-4-2246(2)(4)代码:%y’(t)-3y(t)=x’’(t)+2x’(t)+5 x(t)b4=[1,2,5];a4=[0,1,-3];m4=roots(b4);plot(real(m4),imag(m4),'o')axis([-10 10 -10 10]);hold on ;n4=roots(a4);plot(real(n4),imag(n4),'x')结果:-3-2.5-2-1.5-1-0.50-4-3-2-11234-6-4-20246810(4)Q4: 系统函数如下:H(z)=z^2/(z^2-0.9z+0.81) 其中:abs(z)>0.9(1). 画出H(z)的零极点图。

相关文档
最新文档