高一数学-分段函数练习题-(1)
微专题20 分段函数问题(解析版)
微专题20 分段函数问题【题型归纳目录】 题型一:函数三要素的应用 题型二:函数性质与零点的应用 题型三:分段函数的复合题型四:特殊分段函数的表示与应用 【典型例题】题型一:函数三要素的应用例1.已知函数223,0()2,0x x x f x x x x ⎧+=⎨-<⎩,若f (a )()2f a f --(1),则a 的取值范围是( )A .[0,8]B .[8,)+∞C .(-∞,8]D .[8-,8]【解析】解:f (1)4=,f ∴(a )()8f a --,当0a =时,满足条件;0a >时,223[()2]6a a a a +--+-,整理得:8a , (0a ∴∈,8]0a <时,222[()3]8a a a a ----,整理得:8a , (,0)a ∴∈-∞综上可得:(a ∈-∞,8] 故选:C .例2.已知函数22,0(),0x x e x x f x e x x -⎧+=⎨+<⎩,若()f a f -+(a )2f (1),则a 的取值范围是( ) A .(-∞,1][1,)+∞ B .[0,1] C .[1-,0] D .[1-,1]【解析】解:22,0(),0x x e x x f x e x x -⎧+=⎨+<⎩, ()f x ∴为偶函数,()f a f -+(a )2f (1), 2f ∴(a )2f (1), f ∴(a )f (1),当0x 时,函数()f x 为增函数, ||1a ∴,11a ∴-,故选:D .例3.设函数22,0,(),0.x x x f x x x ⎧+<=⎨-⎩若(f f (a ))2,则实数a 的取值范围是( )A .[2-,)+∞B .(-∞,2]-C .(-∞2]D .(2)+∞【解析】解:()y f x =的图象如图所示,(f f (a ))2,f ∴(a )2-,由函数图象可知2a .故选:C .变式1.当函数2,1()66,1x x f x x x x ⎧⎪=⎨+->⎪⎩取得最小值时,(x = ) A 6B .26C 66 D .266【解析】解:当1x 时,2()0f x x =; 当1x >时,66()626266f x x x x x=+--=, 当且仅当6x x=,即6x 时等号成立. 2660<,∴函数2,1()66,1x x f x x x x ⎧⎪=⎨+->⎪⎩取得最小值为266, 对应的x 6. 故选:A .变式2.已知函数()1f x x =-+,0x <,()1f x x =-0x ,则不等式(1)(1)1x x f x +++的解集( )A .{|21}x x-B .{|12}x x +C .{|12}x x <+D .{|12}x x >【解析】解:当10x +<即1x <-时,不等式(1)(1)1x x f x +++同解于 (1)[(1)1]1x x x ++-++即21x -此时1x <-当10x +即1x -时,不等式(1)(1)1x x f x +++同解于 2210x x +-解得1221x --此时121x--总之,不等式的解集为{|21}x x -故选:A .变式3.已知23,0()(),0x x f x g x x ⎧->=⎨<⎩为奇函数,则((1))f g -= .【解析】解:根据题意,23,0()(),0x x f x g x x ⎧->=⎨<⎩为奇函数,则(1)(1)g f f -=-=-(1)(13)2=--=, 则((1))f g f -=(2)431=-=-, 故答案为:1.变式4.若函数3,0()(3),0log x x f x f x x >⎧=⎨+⎩,2()g x x =,则f (9)= ,[g f (3)]= ,1[()]9f f = .【解析】解:3,0()(3),0log x x f x f x x >⎧=⎨+⎩,2()g x x =,f ∴(9)3log 92==,[g f (3)3](log 3)g g ==(1)211==, 311[()](log )(2)99f f f f f ==-=(1)3log 10==.故答案为:2;1;0变式5.已知函数10()1x x f x x x -+<⎧=⎨-⎩,则不等式(1)(1)1x x f x +++的解集是 . 【解析】解:由题意22&,1(1)(1)2&,1x x x x f x x x x ⎧-<-+++=⎨+-⎩当0x <时,有21x -恒成立,故得0x < 当0x 时,221x x +,解得2121x-,故得021x-综上得不等式(1)(1)1x x f x +++的解集是(21]-∞- 故答案为(-∞21].变式6.设2,||1(),||1x x f x x x ⎧=⎨<⎩,()g x 是二次函数,若[()]f g x 的值域是[0,)+∞,则()g x 的值域是 .【解析】解:在坐标系中作出函数()21111x x x f x x x ⎧-=⎨-<<⎩或的图象,观察图象可知,当纵坐标在[0,)+∞上时,横坐标在(-∞,1][0-,)+∞上变化, ()f x 的值域是(1,)-+∞,而(())f g x 的值域是[0,)+∞, ()g x 是二次函数()g x ∴的值域是[0,)+∞.故答案为:[0,)+∞. 题型二:函数性质与零点的应用例4.已知函数7(13)10,7(),7x a x a x f x a x --+⎧=⎨>⎩是定义域(,)-∞+∞上的单调递减函数,则实数a 的取值范围是()A .11(,)32B .1(3,6]11C .12[,)23D .16(,]211【解析】解:若()f x 是定义域(,)-∞+∞上的单调递减函数, 则满足77011307(13)101a a a a a -<<⎧⎪-<⎨⎪-+=⎩,即0113611a a a ⎧⎪<<⎪⎪>⎨⎪⎪⎪⎩,即16311a <,故选:B .例5.已知函数6(13)10,6(),6x a x a x f x a x --+⎧=⎨>⎩是定义域(,)-∞+∞上的单调递减函数,则实数a 的取值范围是() A .15(,)38B .15(,]38C .1(,1)3D .16(,]311【解析】解:函数6(13)10,6(),6x a x a x f x a x --+⎧=⎨>⎩,()f x 是定义域(,)-∞+∞上的单调递减函数,则满足13001681a a a -<⎧⎪<<⎨⎪-⎩,解得1538a <,故选:B .例6.函数21,0()(1),0axax x f x a e x ⎧+=⎨-<⎩在R 上单调,则a 的取值范围为( ) A .(1,)+∞ B .(1,2] C .(,2)-∞ D .(,0)-∞【解析】解:()f x 在R 上单调; ①若()f x 在R 上单调递增,则: 200101(1)a a a a e >⎧⎪>⎨⎪+-⎩; 12a ∴<;②若()f x 在R 上单调递减,则: 01a a <⎧⎨>⎩; a ∴∈∅;a ∴的取值范围为(1,2].故选:B .变式7.已知221,0()(1),0x x x f x f x x ⎧--+<=⎨-⎩,则()y f x x =-的零点有( )A .1个B .2个C .3个D .4个【解析】解:当0x 时,()(1)f x f x =-,()f x ∴在0x 的图象相当于在[1-,0)的图象重复出现是周期函数, [1x ∈-,0)时,22()21(1)2f x x x x =--+=-++对称轴为1x =-,顶点坐标为(1,2)-. 画出函数()y f x =与y x =的图象如图:则()y f x x =-的零点有2个. 故选:B .变式8.已知定义在R +上的函数33103()13949log x x f x log x x x x ⎧-<⎪=-<⎨⎪>⎩,设a ,b ,c 为三个互不相同的实数,满足,f(a )f =(b )f =(c ),则abc 的取值范围为 . 【解析】解:作出()f x 的图象如图: 当9x >时,由()40f x x ==,得16x =, 若a ,b ,c 互不相等,不妨设a b c <<, 因为f (a )f =(b )f =(c ),所以由图象可知039a b <<<<,916c <<, 由f (a )f =(b ),得331log log 1a b -=-, 即33log log 2a b +=,即3log ()2ab =, 则9ab =,所以9abc c =, 因为916c <<, 所以819144c <<, 即81144abc <<,所以abc 的取值范围是(81,144). 故答案为:(81,144).变式9.已知函数3||,03()13,3log x x f x x x <⎧⎪=⎨+>⎪⎩,设a ,b ,c 是三个互不相同的实数,满足f (a )f =(b )f=(c ),则abc 的取值范围为 .【解析】解:作出函数3||,03()13,3log x x f x x x <⎧⎪=⎨+>⎪⎩的图象如图,不妨设a b c <<,则3423c <<+由f (a )f =(b ),得33|log ||log |a b =,即33log log a b -=, 3log ()0ab ∴=,则1ab =,abc ∴的取值范围为(3,423)+.故答案为:(3,423)+.变式10.已知()f x 在R 上是奇函数,且当0x <时,2()f x x x =+,求函数()f x 的解析式. 【解析】解:当0x >时,0x -<, 0x <时,2()f x x x =+,22()()()f x x x x x ∴-=-+-=-, 又()f x 为奇函数,22()()()f x f x x x x x ∴=--=--=-+,∴当0x >时,2()f x x x =-+,又(0)0f =符合上式,综上得,22,0(),0x x x f x x x x ⎧-<=⎨-+⎩.变式11.已知函数()(0)h x x ≠为偶函数,且当0x >时,2,04()442,4x x h x x x ⎧-<⎪=⎨⎪->⎩,若()h t h >(2),求实数t 的取值范围.【解析】解:函数()(0)h x x ≠为偶函数,且当0x >时,2,04()442,4x x h x x x ⎧-<⎪=⎨⎪->⎩,当4x >时,()42h x x =-递减,且()4h x <-,当04x <时,2()4x h x =-递减,且()[4h x ∈-,0),且0x >,()h x 连续,且为减函数, ()h t h >(2),可得(||)h t h >(2), 即为||2t <,且0t ≠, 解得22t -<<,且0t ≠,则t 的取值范围是(2-,0)(0⋃,2). 题型三:分段函数的复合例7.设函数,0(),0x e x f x lnx x ⎧=⎨>⎩,若对任意给定的(1,)a ∈+∞,都存在唯一的x R ∈,满足22(())2f f x ma m a =+,则正实数m 的最小值是( ) A .12B .1C .32D .2【解析】解:由已知条件知:2220ma m a +>,∴若0x ,则()0x f x e =>,(())0x f f x lne x ∴==,∴这种情况不存在,若01x <,则()0f x lnx =,(())1lnx f f x e x ∴==,1x >时,()0f x lnx =>,(())()f f x ln lnx R =∈,∴只有(())1f f x >,即2221ma m a +>时,对任意给定的(1,)a ∈+∞,都存在唯一的x R ∈,满足22(())2f f x ma m a =+,(1,)a ∈+∞,221m m ∴+,即2210m m +-,0m >,∴解得12m, ∴正实数m 的最小值是12. 故选:A .例8.已知函数12,1()2,1x xx f x x x --⎧⎪=⎨⎪<⎩,2()2g x x x =-,若关于x 的方程[()]f g x k =有四个不相等的实根,则实数(k ∈ ) A .1(2,1)B .1(4,1)C .(0,1)D .(1,1)-【解析】解:对于函数12,1()2,1x xx f x x x --⎧⎪=⎨⎪<⎩,当1x 时,()f x 单调递减且1()1f x -<; 当1x <时,()f x 单调递增且0()1f x <<; 故实数k 一定在区间(0,1)之间, 若2()()g x k g x -=;则可化为22()21g x x x k=-=+; 显然有两个不同的根,若()12g x k -=,则22()21log g x x x k =-=+; 故△2444log 0k =++>; 即14k >; 综上所述,实数1(,1)4k ∈;故选:B .例9.已知函数1|(1)|,1()21,1x ln x x f x x -->⎧=⎨+⎩,则方程3(())2[()]04f f x f x -+=的实根个数为( )A .3B .4C .5D .6【解析】解:设()f x t =,可得 3()2()04f t t -+=,分别作出()y f x =和322y x =+的图象, 可得它们有两个交点,即方程3()2()04f t t -+=有两根,一根为10t =,另一个根为2(1,2)t ∈, 由()0f x =,可得2x =; 由2()f x t =,可得x 有3个解,综上可得方程3(())2[()]04f f x f x -+=的实根个数为4.故选:B .变式12.(多选题)已知函数21,0()log ,0kx x f x x x +⎧=⎨>⎩下列是关于函数[()]1y f f x =+的零点的判断,其中正确的是( )A .在(1,0)-内一定有零点B .在(0,1)内一定有零点C .当0k >时,有4个零点D .当0k <时,有1个零点【解析】解:令[()]10f f x +=得,[()]1f f x =-,令()t f x =,则()1f t =-, ①当0k >时,作出函数()f x 的草图如下,由图象可知,此时()1f t =-的解满足101t <<,20t <,由1()f x t =可知,此时有两个解,由2()f x t =可知,此时有两个解,共4个解,即[()]1y f f x =+有4个零点; ②当0k <时,作出函数()f x 的草图如下,由图象可知,此时()1f t =-的解满足101t <<,由1()f x t =可知,此时有1个解,共1个解,即[()]1y f f x =+有1个零点; 综上,选项BCD 正确. 故选:BCD .变式13.(多选题)设函数||,0()(1),0x lnx x f x e x x >⎧=⎨+⎩,若函数()()g x f x b =-有三个零点,则实数b 可取的值可能是( ) A .0B .13C .12D .1【解析】解:函数()()g x f x b =-有三个零点,则函数()()0g x f x b =-=,即()f x b =有三个根, 当0x 时,()(1)x f x e x =+,则()(1)(2)x x x f x e x e e x '=++=+, 由()0f x '<得20x +<,即2x <-,此时()f x 为减函数, 由()0f x '>得20x +>,即20x -<<,此时()f x 为增函数, 即当2x =-时,()f x 取得极小值21(2)f e -=-, 作出()f x 的图象如图: 要使()f x b =有三个根, 则01b <, 故选:BCD .变式14.(多选题)已知定义域为R 的奇函数()f x 满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<⎩,下列叙述正确的是()A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,但有12()()f x f x >C .若当(0x ∈,]a 时,()f x 的最小值为1,则5[1,]2a ∈D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =-E .对任意实数k ,方程()2f x kx -=都有解 【解析】解:因为该函数为奇函数, 所以,222,(2)2322,(20)()0,(0)22,(02)2,(2)23x x x x x f x x x x x x x ⎧<-⎪+⎪----<⎪⎪==⎨⎪-+<⎪⎪>⎪-⎩,该函数图象如下:对于A ;如图所示直线与该函数图象有7个交点,故A 正确; 对于B ;当1211x x -<<<时,函数不是减函数,故B 错误;对于C ;直线1y =,与函数图象交于(1,1),5(2,1,),故当()f x 的最小值为1时,[1a ∈,5]2,故C 正确;对于D ;3()2f x =时,若使得其与()f x m =的所有零点之和为0,则32m =-,或317m =-,故D 错误; 对于E ;当2k =-时,函数()f x 与2y kx =+没有交点.故E 错误. 故选:AC .变式15.(多选题)已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0x ∈,]a 时,()f x 的最小值为1,则5[1,]2a ∈D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =- 【解析】解:函数()f x 是奇函数,∴若2x <-,则2x ->,则2()()23f x f x x -==---,则2()23f x x =+,2x <-. 若20x -<,则02x <-,则2()22()f x x x f x -=++=-, 即2()22f x x x =---,20x -<, 当0x =,则(0)0f =. 作出函数()f x 的图象如图:对于A ,联立222y kxy x x =⎧⎨=-+⎩,得2(2)20x k x -++=, △22(2)844k k k =+-=+-,存在1k <,使得△0>,∴存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根,故A 正确;对于B ,当1211x x -<<<时,函数()f x 不是单调函数,则12()()f x f x >不成立,故B 不正确; 对于C ,当52x =时,52()152232f ==⨯-,则当(0x ∈,]a 时,()f x 的最小值为1,则[1a ∈,5]2,故C 正确;对于D ,函数()f x 是奇函数,若关于x 的两个方程3()2f x =与()f x m =所有根的和为0, ∴函数3()2f x =的根与()f x m =根关于原点对称, 则32m =-,但0x >时,方程3()2f x =有3个根, 设分别为1x ,2x ,3x ,且12302x x x <<<<, 则有23232x =-,得136x =,即3136x =, 122x x +=,则三个根之和为1325266+=, 若关于x 的两个方程3()2f x =与()f x m =所有根的和为0, 则()f x m =的根为256-,此时25263()2561682()36m f =-==-=-⨯-+,故D 错误, 故选:AC .变式16.已知函数2,0,()1,0,x k x f x x x -+<⎧=⎨-⎩其中0k .①若2k =,则()f x 的最小值为 ;②关于x 的函数(())y f f x =有两个不同零点,则实数k 的取值范围是 . 【解析】解:①若2k =,则22,0()1,0x x f x x x -+<⎧=⎨-⎩,作函数()f x 的图象如下图所示,显然,当0x =时,函数()f x 取得最小值,且最小值为(0)1f =-. ②令()m f x =,显然()0f m =有唯一解1m =,由题意,()1f x =有两个不同的零点,由图观察可知,1k <, 又0k ,则实数k 的取值范围为01k <. 故答案为:1-;[0,1). 题型四:特殊分段函数的表示与应用例10.对a ,b R ∈,记{max a ,()}()a ab b b a b ⎧=⎨<⎩,则函数(){|1|f x max x =+,2}()x x R ∈的最小值是( )A 35- B 35+ C 15+D 15-【解析】解:当2|1|x x +,即21x x +或21x x +-, 15152x-+时, (){|1|f x max x ∴=+,2}|1|1x x x =+=+,函数()f x 单调递减,1535()(min f x f --==, 当15x -<(){|1|f x max x =+,22}x x =,函数()f x 单调递减,1535()(min f x f --=, 当15x +2()f x x =,函数()f x 单调递增,1535()(min f x f ++== 综上所述:35()min f x -= 故选:A .例11.已知符号函数1,0()0,01,0x sgn x x x >⎧⎪==⎨⎪-<⎩,1()()3x f x =,()()()g x f kx f x =-,其中1k >,则下列结果正确的是( )A .(())()sgn g x sgn x =B .(())()sgn gx sgn x =-C .(())(())sgn g x sgn f x =D .(())(())sgn g x sgn f x =-【解析】解:符号函数1,0()0,01,0x sgn x x x >⎧⎪==⎨⎪-<⎩,1()()3x f x =,11()()()()()33kx x g x f kx f x ∴=-=-,其中1k >,11(())[()()]33kx x sgn g x sgn ∴=-,当0x >时,kx x >,11()()033kx x -<,11(())[()()]133kx x sgn g x sgn =-=-,()1sgn x =;当0x =时,0kx x ==,11()()033kx x -=,(())0sgn g x =,()0sgn x =;当0x <时,kx x <,11()()033kx x ->,11(())[()()]133kx x sgn g x sgn =-=,()1sgn x =-.(())()sgn g x sgn x ∴=-.故选:B .例12.定义全集U 的子集A 的特征函数1,()0,A x Af x x A ∈⎧=⎨∉⎩对于任意的集合A 、B U ⊂,下列说法错误的是()A .若AB ⊆,则()()A B f x f x ,对于任意的x U ∈成立 B .()()()A B A Bf x f x f x =+,对于任意的x U ∈成立 C .()()()A B ABf x f x f x =,对于任意的x U ∈成立D .若UA B =,则()()1A B f x f x +=,对于任意的x U ∈成立【解析】解:对于A ,因为A B ⊆,若x A ∈,则x B ∈, 因为1,1,()0,0,A U x Ax A f x x A x A ∈∈⎧⎧==⎨⎨∈∉⎩⎩, 1,()0,B U x Bf x x B∈⎧=⎨∈⎩,而UA 中可能有B 中的元素, 但UB 中不可能有A 中的元素,所以()()A B f x f x ,即对于任意的x U ∈,都有()()A B f x f x 成立, 故选项A 正确; 对于B ,因为1,()0,()ABU x A Bf x x A B ⎧∈⎪=⎨∈⎪⎩, 当某个元素x 在A 中且在B 中, 由于它在AB 中,故()1ABf x =,而()1A f x =且()1B f x =,可得()()()A B A Bf x f x f x ≠+,故选项B 错误; 对于C ,1,1,0,()0,()()ABU U U x A B x A Bf x A B x A B ⎧⎧∈∈⎪⎪==⎨⎨∈∈⎪⎪⎩⎩,1,1,1,()()0,0,0,()()A B U U U U x A x B x A Bf x f x x A x B x A B ⎧∈∈∈⎧⎧⎪⋅=⋅=⎨⎨⎨∈∈∈⎪⎩⎩⎩,故选项C 正确;对于D ,因为1,()0,U U A x Af x x A ∈⎧=⎨∈⎩,结合1,1,()0,0,A U x Ax A f x x A x A ∈∈⎧⎧==⎨⎨∈∉⎩⎩, 所以()1()B A f x f x =-, 即()()1A B f x f x +=, 故选项D 正确. 故选:B .变式17.定义全集U 的子集A 的特征函数为1,()0,A U x Af x x C A ∈⎧=⎨∈⎩,这里UA 表示集合A 在全集U 中的补集,已A U ⊆,B U ⊆,给出以下结论中不正确的是( ) A .若A B ⊆,则对于任意x U ∈,都有()()A B f x f x B .对于任意x U ∈,都有()1()U C A A f x f x =-C .对于任意x U ∈,都有()()()A B A Bf x f x f x =D .对于任意x U ∈,都有()()()A B A Bf x f x f x =【解析】解:由题意,可得对于A ,因为A B ⊆,可得x A ∈则x B ∈,1,()0,A U x A f x x C A ∈⎧=⎨∈⎩,1,()0,B U x Bf x x C B ∈⎧=⎨∈⎩,而UA 中可能有B 的元素,但UB 中不可能有A 的元素()()A B f x f x ∴,即对于任意x U ∈,都有()()A B f x f x 故A 正确; 对于B ,因为1,0,U U C A x C Af x A ∈⎧=⎨∈⎩,结合()A f x 的表达式,可得1()U C A A f f x =-,故B 正确; 对于C ,1,1,()0,()0,()()A BU U U x A B x A Bf x x C A B x C A C B ⎧⎧∈∈⎪⎪==⎨⎨∈∈⎪⎪⎩⎩1,1,()()0,0,A B U U x Ax Bf x f x x C Ax C B ∈∈⎧⎧==⎨⎨∈∈⎩⎩, 故C 正确; 对于D ,1,()0,()ABU x A B f x x C AB ⎧∈⎪=⎨∈⎪⎩当某个元素x 在A 中但不在B 中,由于它在A B 中,故()1ABf x =,而()1A f x =且()0B f x =,可得()()()A B A Bf x f x f x ≠由此可得D 不正确. 故选:D .变式18.对a ,b R ∈,记,(,),a a bmax a b b a b ⎧=⎨<⎩,函数()(|1|f x max x =+,|2|)()x x R -∈的最小值是 .【解析】解:由题意得, ()(|1|f x max x =+,|2|)x - 11,212,2x x x x ⎧+⎪⎪=⎨⎪-<⎪⎩,故当12x =时,()f x 有最小值13()22f =, 故答案为:32. 变式19.对a ,b R ∈,记{max a ,,},a a b b b a b⎧=⎨<⎩,函数(){|1|f x max x =+,||}()x m x R -∈的最小值是32,则实数m 的值是 .【解析】解:函数(){|1|f x max x =+,||}x m - |1|,|1|||||,|1|||x x x m x m x x m ++-⎧=⎨-+<-⎩, 由()f x 的解析式可得,11()()22m m f x f x --+=-, 即有()f x 的对称轴为12m x -=, 则113()||222m m f -+==, 解得2m =或4-, 故答案为:2或4-.变式20.设函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩,其中[]x 表示不超过x 的最大整数,如[ 1.2]2-=-,[1.2]1=,[1]1=,若直线10(0)x ky k -+=>与函数()y f x =的图象恰好有两个不同的交点,则k 的取值范围是 . 【解析】解:画出函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩和函数1()x g x k+=的图象, 若直线1(0)ky x k =+>与函数()y f x = 的图象恰有两个不同的交点, 结合图象可得:1PA PC k k k<, 112(1)3PA k ==--,111(1)2PC k ==--,故11132k <,求得23k <, 故答案为:23k <.【过关测试】 一、单选题1.(2022·辽宁·铁岭市清河高级中学高一阶段练习)若函数()22,14,1x t x f x tx x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则t的最大值为( ) A .32B .53C .74D .95【答案】B【解析】当1x ≤-时,2()2f x x t =-+为增函数,所以当1x >-时,()4f x tx =+也为增函数,所以0124t t t >⎧⎨-+≤-+⎩,解得503t <≤.故t 的最大值为53, 故选:B.2.(2022·云南师大附中高一期中)已知函数()()e e,1ln 21,1xx f x x x ⎧-<⎪=⎨-≥⎪⎩,若关于x 的不等式()()21f ax f ax <+的解集为R ,则实数a 的取值范围为( )A .()()2,11,4--⋃-B .()()1,22,4-C .[)1,2-D .[)0,4【答案】D【解析】当1x <时,()e e x f x =-在(),1-∞上单调递增且()()e e 10xf x f =-<=;当1x ≥时,()()ln 21f x x =-在[)1,+∞上单调递增且()()()ln 2110f x x f =-≥=; 所以()f x 在R 上单调递增,又由()()21f ax f ax <+,则有21ax ax <+,由题,可知210ax ax -+>的解集为R ,当0a =时,20010x x ⋅-⋅+>恒成立,符合题意;当0a ≠时,则有2Δ40a a a >⎧⎨=-<⎩, 解不等式组,得04a <<;综上可得,当[)0,4a ∈时,210ax ax -+>的解集为R . 故选:D.3.(2022·山东省青岛第五十八中学高一期中)已知函数()()23++2,<1=+,1a x a x f x ax x x --≥⎧⎨⎩在(),-∞+∞上单调递减,则实数a 的取值范围为( ). A .()0,3B .1,32⎡⎫⎪⎢⎣⎭C .2,33⎡⎫⎪⎢⎣⎭D .2,33⎛⎫ ⎪⎝⎭【答案】C【解析】因为函数()()23++2,<1=+,1a x a x f x ax x x --≥⎧⎨⎩在(),-∞+∞上单调递减, ∴3<0>011221+1a a a a a -≤-≥-⎧⎪⎪⎪⎨⎪⎪⎪⎩,解得233a ≤<, 即a 的取值范围是2,33⎡⎫⎪⎢⎣⎭,故选:C.4.(2022·山东省青岛第五十八中学高一期中)已知数学符号{}max ,a b 表示取a 和b 中最大的数,若对任意R x ∈,函数()231max 3,,4322f x x x x x ⎧⎫=-++-+⎨⎬⎩⎭,则()f x 的最小值为( )A .5B .4C .3D .2【答案】D【解析】在同一直角坐标系中,画出函数2123313,,4322y x y x y x x =-+=+=-+的图象,根据{}max ,a b 的定义,可得()f x 的图象(实线部分),由()f x 的图象可知,当=1x 时,()f x 最小,且最小值()12f =, 故选:D5.(2022·山西太原·高一阶段练习)设()()2,0=1+++4,>0x a x f x x a x x-≤⎧⎪⎨⎪⎩,若()0f 是()f x 的最小值,则a 的取值范围为( ) A .[]0,3 B .()0,3 C .(]0,3 D .[)0,3【答案】A【解析】当0x >时,由基本不等式可得()114246f x x a x a a x x=+++≥⋅+=+, 当且仅当=1x 时,等号成立;当0x ≤时,由于()()0f x f ≥,则0a ≥,由题意可得()()2min 06f x f a a ==≤+,即260a a --≤,解得23a -≤≤,故03a ≤≤.因此,实数a 的取值范围是[]0,3. 故选:A.6.(2022·福建·厦门双十中学高一阶段练习)已知函数()()22,f x x g x x =-+=,令()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩,则不等式()74h x >的解集是( )A .1<2x x -⎧⎨⎩或17<<24x ⎫⎬⎭B .{<1x x -或71<<4x ⎫⎬⎭C .11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭D .{1<<1x x -或7>4x ⎫⎬⎭【答案】C【解析】由()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩可知,()h x 的图像是()f x 与()g x 在同个区间函数值大的那部分图像,由此作出()h x 的图像,联立2=+2=y x y x -⎧⎨⎩,解得=2=2x y --⎧⎨⎩或=1=1x y ⎧⎨⎩,故12x =-,21x =,所以()2,2=+2,2<<1,>1x x h x x x x x ≤---⎧⎪⎨⎪⎩,又由()74h x >可知,其解集为()h x 的函数值比74大的那部图像的所在区间,结合图像易得,()74h x >的解集为{34<<x x x x 或}5>x x联立2=+27=4y x y -⎧⎪⎨⎪⎩,解得1=27=4x y -⎧⎪⎪⎨⎪⎪⎩或1=27=4x y ⎧⎪⎪⎨⎪⎪⎩,故312x =-,412x =,联立=7=4y x y ⎧⎪⎨⎪⎩,解得7=47=4x y ⎧⎪⎪⎨⎪⎪⎩,故574x =,所以()74h x >的解集为11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭.故选:C..7.(2022·浙江·高一阶段练习)设函数1,>0()=0,=0-1,<0x f x x x ⎧⎪⎨⎪⎩,则方程2(1)4x f x -=-的解为( )A .2x =-B .3x =-C .=2xD .=3x【答案】A【解析】因为1,>0()=0,=0-1,<0x f x x x ⎧⎪⎨⎪⎩,由2(1)4x f x -=-知,2-1>01=-4x x ⋅⎧⎨⎩,2-1=00=-4x x ⋅⎧⎨⎩,2-1<0(-1)=-4x x ⋅⎧⎨⎩, 解得2x =-. 故选:A .8.(2022·湖北黄石·高一期中)已知函数()f x x x =,若对任意[,1]x t t ∈+,不等式()24()f x t f x +≤恒成立,则实数t 的取值范围是( ) A .15[-- B .15-+ C .1515[---+ D .15[-+ 【答案】B【解析】()22,0,0x x f x x x x x ⎧≥⎪==⎨-<⎪⎩,因为2yx 在0x ≥上单调递增,2y x =-在0x <上单调递增,所以()f x x x =在R 上单调递增,因为)24(2)4(2x x x x x x f f ===,且()24()f x t f x +≤,所以()2(2)f x t f x +≤,所以22x t x +≤,即()222110x x t x t -+=-+-≤在[,1]x t t ∈+恒成立,所以()()22201210t t t t t t ⎧-+≤⎪⎨+-++≤⎪⎩即22010t t t t ⎧-≤⎪⎨+-≤⎪⎩,解得150t -+≤≤, 所以实数t 的取值范围是15-+, 故选:B9.(2022·江西·于都县新长征中学高一阶段练习)已知函数()21,=,2x c f x xx x c x ⎧-<⎪⎨⎪-≤≤⎩ ,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,则实数c 的范围是( ) A .11,2⎡⎤--⎢⎥⎣⎦B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎡⎤-⎢⎥⎣⎦D .[)1,-+∞【答案】A【解析】当=2x 时,()()221112422,244f f x x x x ⎛⎫=-==-=--≥- ⎪⎝⎭,()f x 值域为1,2,4⎡⎤-∴⎢⎥⎣⎦当x c <时,由()12f x x =-=,得12x =-,此时12c ≤-,由()22f x x x =-=,得220x x --=,得=2x 或=1x -,此时112c -≤≤-,综上112c -≤≤-,即实数c 的取值范围是11,2⎡⎤--⎢⎥⎣⎦,故选:A 二、多选题10.(2022·浙江省永嘉县碧莲中学高一期中)我们用符号min 示两个数中较小的数,若x ∈R ,(){}2min 2,f x x x =-,则()f x ( )A .最大值为1B .无最大值C .最小值为1-D .无最小值【答案】AD【解析】在同一平面直角坐标系中画出函数22y x =-,y x =的图象,如图:根据题意,图中实线部分即为函数()f x 的图象. 由22x x -=,解得12x =-,21x =,所以()222,2,212,1x x f x x x x x ⎧-≤-⎪=-<≤⎨⎪->⎩,∴当1x =时,()f x 取得最大值,且()max 1f x =,由图象可知()f x 无最小值, 故选:AD.11.(2022·黑龙江·哈尔滨三中高一期中)定义{},min ,,a a ba b b a b ≤⎧=⎨>⎩,若函数{}2()min 33,|3|3f x x x x =-+--+,且()f x 在区间[,]m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[,]m n 长度可以是( )A .74B .72C .114D .1【答案】AD【解析】令23333x x x -+≤--+①,当3x ≥时,不等式可整理为2230x x --≤,解得13x -≤≤,故3x =符合要求, 当3x <时,不等式可整理为2430x x -+≤,解得13x ≤≤,故13x ≤<, 所以不等式①的解为13x ≤≤;由上可得,不等式23333x x x -+>--+的解为1x <或3x >, 所以()233,1333,13x x x f x x x x ⎧-+≤≤⎪=⎨--+⎪⎩或,令23334x x -+=,解得32x =,令27334x x -+=,解得52x =或12, 令3334x --+=,解得34x =或214,令7334x --+=,解得74x =或174,所以区间[],m n 的最小长度为1,最大长度为74.故选:AD.12.(2022·四川省宣汉中学高一阶段练习)设函数()y f x =的定义域为R ,对于任意给定的正数m ,定义函数(),()(),()m f x f x m f x m f x m ≥⎧=⎨<⎩,若函数()2211f x x x =-++,则下列结论正确的是( )A .()338f =B .()3f x 的值域为[]3,12C .()3f x 的单调递增区间为[]2,1-D .()31f x +的图像关于原点对称【答案】ABC【解析】由22113x x -++≥, 解得:24x -≤≤,故23211,24()3,42x x x f x x x ⎧-++-≤≤=⎨><-⎩或,A .23(3)323118f =-+⨯+=,本选项符合题意;B .当24x -≤≤时,2321112x x ≤-++≤; 当42x x -或><时,3()3f x =, 故值域为[3,12],本选项符合题意;C .当24x -≤≤时,23()211f x x x =-++,图像开口向下,对称轴为1x =, 故3()f x 在[]2,1-上单调递增,本选项符合题意;D .2312,33(1)3,33x x y f x x x ⎧-+-≤≤=+=⎨><-⎩或,故函数3(1)y f x =+为偶函数,本选项不符合题意.故选:ABC .13.(2022·福建·厦门双十中学高一阶段练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(LEJBrouwer ),简单的讲就是对于满足一定条件的图象不间断的函数()f x ,存在一个点0x ,使()00=f x x ,那么我们称该函数为“不动点”函数,0x 为函数的不动点,则下列说法正确的( )A .()1f x x x -=为“不动点”函数B .()253f x x x -=+的不动点为2±C .()221,1=2,>1x x f x x x ≤⎧-⎪⎨-⎪⎩为“不动点”函数D .若定义在R 上有且仅有一个不动点的函数()f x 满足()()()22f f x x x f x x x --+=+,则()2+1f x x x -= 【答案】ABC【解析】对于A ,令()f x =x ,得1x x x -=,解得2x =22f =⎝⎭(有一个满足足矣),所以()1f x x x-=为“不动点”函数,故A 说法正确;对于B ,令()f x =x 253x x x -+=253x +=,即259x +=,解得2x =±,即()22f =和()22f -=-,所以()253f x x x -=+的不动点为2±,故B 说法正确;对于C ,当1x ≤时,()221f x x -=,令()f x =x ,得221x x -=,解得12x =-或=1x ;当1x >时,()2f x x -=,令()f x =x ,得2x x -=,即2x x -=±,解得=1x (舍去); 综上:1122f ⎛⎫-=- ⎪⎝⎭和()11f =,所以()f x 为“不动点”函数,故C 说法正确;对于D ,不妨设该不动点为t ,则()f t t =,则由()()()22f f x x x f x x x --+=+得()()()22f f t t t f t t t --+=+,即()22++f t t t t t t --=,整理得()2222f t t t t --+=+,所以22t t -+也是()f x 的不动点,故22t t t -+=,解得=0t 或1t =-,即0,1都是()f x 的不动点,与题设矛盾,故D 说法错误. 故选:ABC 三、填空题14.(2022·广东·高一期中)已知函数(2),1(),1aa x x f x x x -<⎧=⎨≥⎩是定义在R 上的增函数,则a 的取值范围是________. 【答案】)1,2⎡⎣【解析】由已知,函数(2),1(),1aa x x f x x x -<⎧=⎨≥⎩是定义为在R 上的增函数, 则(2)y a x =-为单调递增函数,a y x =为单调递增函数,且(2)11a a -⨯≤,所以20021a a a ->⎧⎪>⎨⎪-≤⎩,解得12a ≤<,所以a 的取值范围是:)1,2⎡⎣. 故答案为:)1,2⎡⎣.15.(2022·山西·晋城市第一中学校高一阶段练习)若函数222,0(),0x ax x f x bx x x ⎧+≥=⎨+<⎩为奇函数,则a b +=__________. 【答案】1-【解析】利用奇函数的定义()()f x f x -=-,求.当0x <时,则0x ->,所以222()2()()f x x ax f x bx x bx x -=-=-=-+=--, 所以2b =-,1a =,即2,1b a =-= 故1a b +=-. 故答案为:1-.16.(2022·安徽淮南·高一阶段练习)若函数()()2,113,1ax x x f x a x a x ⎧-<⎪=⎨--≥⎪⎩满足对1x ∀,2x ∈R ,且12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是______.【答案】21,52⎡⎤⎢⎥⎣⎦【解析】根据题意,任意实数12x x ≠都有()()12120f x f x x x -<-成立,所以函数()f x 是R 上的减函数,则分段函数的每一段单调递减且在分界点处113a a a -≥--,所以0112130113a a a a a a ≥⎧⎪-⎪-≥⎪⎨⎪-<⎪-≥--⎪⎩,解得2152a ≤≤,所以实数a的取值范围是21,52⎡⎤⎢⎥⎣⎦.故答案为:21,52⎡⎤⎢⎥⎣⎦17.(2022·广东·深圳市高级中学高一期中)已知()22f x x x =-,()1g x x =+,令()()(){}max ,M x f x g x =,则()M x 的最小值是___________.513- 【解析】令221x x x -≥+,解得313x +≥313x -≤ 则()()(){}23133132,max ,313313x x x x M x f x g x x x ⎧+--≥⎪⎪==⎨-+⎪+<<⎪⎩,当313x +≥313x -≤()min 313513M x M --==⎝⎭, 313313x -+<<513- 513- 513- 四、解答题18.(2022·四川·宁南中学高一阶段练习)已知函数()f x 的解析式()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩.(1)求12f f ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭; (2)若()2f a =,求a 的值;【解析】(1)函数()f x 的解析式()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩. 11115222f ⎛⎫∴=+= ⎪⎝⎭,11111283222f f f ⎛⎫⎛⎫⎛⎫==-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)因为()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩且()2f a =,所以3+5=20a a ≤⎧⎨⎩,解得1a =-;或+5=20<<1a a ⎧⎨⎩,解得3a =-(舍去); 或2+8=2>1a a -⎧⎨⎩,解得=3a .综上:1a =-或=3a .19.(2022·浙江·玉环市玉城中学高一阶段练习)(1)已知函数()f x 是一次函数,且满足()()3+121=2+17f x f x x --,求()f x 的解析式;(2)已知函数()2+2,1=,1<<22,2x x f x x x x x ≤≥⎧⎪⎨⎪⎩①求()2f ,()()1f f -②若()3f a =,求a 的值【解析】(1)设()=+,0f x kx b k ≠,则:()+1=++f x kx b k ,()1=+f x kx b k --,故()()3++2+=2+17kx b k kx b k x --,即++5=2+17kx b k x ,故=2k ,=7b .所以()27f x x =+(2)函数()2+2,1=,1<<22,2x x f x x x x x ≤≥⎧⎪⎨⎪⎩,①()2=2?2=4f ,()()()()1=1+2=1=3f f f f --.②当1a ≤时,()=+2=3f a a ,解得=1a ,成立;当12a <<时,()2==3f a a ,解得3a =3a =-;当2a ≥时,()=2=3f a a ,解得3=2a (舍去). 故a 31. 20.(2022·辽宁·高一阶段练习)已知函数()22122f x x x a a =+++,()22122g x x x a a =-+-,R a ∈.设函数()()()()()()(),,f x f x g x M x g x g x f x ⎧≥⎪=⎨>⎪⎩. (1)若1a =,求()M x 的最小值;(2)若()M x 的最小值小于52,求a 的取值范围. 【解析】(1)由题意可得,当()()f x g x ≥时,()()2222112224022f x g x x x a a x x a a x a ⎛⎫-=+++--+-=+≥ ⎪⎝⎭,当()()f x g x <时,()()2222112224022f x g x x x a a x x a a x a ⎛⎫-=+++--+-=+< ⎪⎝⎭, 所以()()(),2,,2.f x x a M x g x x a ⎧≥-⎪=⎨<-⎪⎩当1a =时,()2213,2,211, 2.2x x x M x x x x ⎧++≥-⎪⎪=⎨⎪--<-⎪⎩作出()M x 的图象,如图1: 由图可知()M x 的最小值为()512f -=.(2)()222212,2,212,2,2x x a a x a M x x x a a x a ⎧+++≥-⎪⎪=⎨⎪-+-<-⎪⎩且()f x ,()g x 图象的对称轴分别为直线=1x -,1x =.①如图2,当21a -≤-,即12a ≥时,()M x 在(),1-∞-上随x 的增大而减小,在()1,-+∞上随x 的增大而增大,所以()()2min 1122M x f a a =-=+-,由215222a a +-<,解得31a -<<,故112a ≤<.②如图3,当121a -<-≤,即1122a -<≤时,()M x 在(),2a -∞-上随x 的增大而减小,在()2,a -+∞上随x 的增大而增大,所以()()2min 23M x f a a =-=,则2532a <,解得3030a <<1122a -<≤.③如图4,当21a ->,即12a <-时,()M x 在(),1-∞上随x 的增大而减小,在()1,+∞上随x 的增大而增大,所以()()2min 1122M x g a a ==--,由215222a a --<,解得13a -<<,故112a -<<-. 综上,a 的取值范围为()1,1-.21.(2022·全国·高一课时练习)定义域为R 的函数f (x )满足2(f x f x k k ∈Z)()=(+)及f (-x )=-f (x ),且当()0,1x ∈时2()41xx f x =+.(1)求()f x 在[1,1]-上的解析式;(2)求()f x 在[]21)1,2(k k k Z -+∈上的解析式;(3)求证:()f x 在区间()0,1上单调递减.【解析】(1)∵当(1,0)x ∈-时,(0,1)x , ∴22()()4141x xx x f x f x --=--=-=-++. 由题意,知(0)0f =,又()()11f f -=-,()()()1121f f f -=-+=, ∴()()110f f -==,∴()()()2,1,0412,0,1410,1,0,1xx xx x f x x x ⎧-∈-⎪+⎪⎪=∈⎨+⎪=-⎪⎪⎩,(2)当[21,21]x k k ∈-+时,2[1,1]x k -∈-, ∴()()()22222,21,2412()(2),2,21410,21,2,21x kx k x kx k x k k f x f x k x k k k Z x k k k ----⎧-∈-⎪+⎪⎪=-=∈+∈⎨+⎪=-+⎪⎪⎩(3)设任意的1x ,2(0,1)x ∈,且12x x <, ∵2211221212122(22)(21)()()4141(41)(4)x x x x x x x x x x f x f x ++---=-=+++,且21220x x ->,12210x x +->, ∴12()()f x f x >,即()f x 在区间()0,1上单调递减.。
人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)
2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.【答案】(1)6;(2);(3).【解析】(1)利用奇函数的性质进行转化计算即可;(2)因为当时,,利用奇函数的性质先求出时的解析式,最后写出函数的解析式即可;(3)根据函数的单调性,求解不等式即分别求解不等式组与,最后取并集即可.试题解析:(1)∵是奇函数∴ 3分(2)设,则,∴∵为奇函数,∴ 5分∴ 6分(3)根据函数图像可得在上单调递增 7分当时,解得 9分当时,解得 11分∴区间为 12分.【考点】1.函数的奇偶性;2.函数的解析式;3.指数函数的性质.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.7.已知定义在R上的奇函数满足=(x≥0),若,则实数的取值范围是________.【答案】(-3,1)【解析】∵函数f(x)=x2+2x(x≥0),是增函数,且f(0)=0,f(x)是奇函数,f(x)是R上的增函数.由f(3-a2)>f(2a),,于是3-a2>2a,因此,解得-3<a<1.【考点】奇函数;函数单调性的性质.点评:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力.8.关于函数,有下面四个结论:(1)是奇函数;(2)恒成立;(3)的最大值是; (4) 的最小值是.其中正确结论的是_______________________________________.【答案】(2)(4)【解析】根据题意,由于函数,,那么利用奇偶性定义可知,函数为偶函数因此(1)错误。
高一数学分段函数练习题
高一数学函数的定义与分段函数测试题1 x4),则 f (3)1、给出函数 f (x)( 2) (x( )f ( x1) ( x 4)A.-23B.1C.1 D.1 81119242、若 f(x)=x 2 ( x0)x(x 0),则当 x<0 时, f[ (x)]=()x(x0)( x)x 2 ( x0)A. - xB. - x 23、以下各组函数表示同一函数的是( )x(x0)x 24, g(x)=x+2x 2, g(x)=x+2① f(x)=|x|, g(x)=③ f(x)=x(x ② f(x)=0)x2④ f(x)= 1 x 2x 21 g(x)=0 x ∈ { -1,1}A. ①③B. ①C. ②④D. ①④| x 1 | 2,| x | 114、设 f(x)=1)]=( )2 ,|x |1 ,则 f[f(1 x2A.1B. 4C. -9D. 252135415、设函数 f ( x)x 3,( x 10),则 f (5) =。
f ( f ( x 5)),( x10)x 2 2, ( x2)-4)=___________, 若 f(x 0)=8 ,则 x 0=________设函数 f(x)=2)则 f(2x,( x6. 、函数 y = + 的定义域为 ( )A . { x | x ≤ 1}B . { x | x ≥ 0}C . { x | x ≥ 1 或 x ≤ 0}D . { x |0 ≤ x ≤1}7、 . 函数 f ( x ) = 的定义域为 ( ) A . [1,2) ∪(2,+∞ ) B . (1 ,+∞ ) C. [1,2) D. [1 ,+∞ )8、函数 的定义域是( )A .B .C .D .9、函数的定义域为()A.B. C . D .10. 函数的定义域为()A.B.C. D .11、 . 函数的定义域为()A.B.C.D.12、 . 函数f ( x)=的定义域为()A. [0 ,+∞) B.(1,+∞)C .[0,1)(1, +∞) D . [0 ,1)13、 . 函数定义域是 ( )A. (-,+ ) B .[-1 ,+) C .[0,+]D.(-1,+ )14、 . 函数定义域是()A.B. C . D .15、已知会合 A= {1 , 3, 5, 7, 9} , B= {0 , 3, 6, 9, 12} ,则 A∩ B= ()A.{3,5}B. {3 ,6}C.{3 ,7}D.{3,9}16、设会合 A={x|2 ≤ x< 4} , B= {x|3x -7≥ 8- 2x} ,则 A∪ B 等于 ()A.{x|x ≥ 3}B.{x|x ≥ 2}C.{x|2 ≤ x< 3} D .{x|x ≥ 4}17、会合 A= {0 , 2, a} , B= {1 ,a2 } .若 A∪ B={0 , 1,2, 4, 16} ,则 a 的值为 ()A. 0B. 1C.2D.418、. 已知全集 U=R,会合 A={x ︱-2 ≤ x≤3},B={x︱x< -1 或 x> 4},那么会合A∩( CUB)等于().A.{x ︱-2 ≤ x< 4}B.{x︱ x≤ 3 或 x≥ 4} C. {x ︱ -2 ≤ x<-1 } D.{-1︱ -1 ≤ x≤ 3}19. 、函数的定义域是_____________.20、 . 函数的定义域为_____________.21、函数定义域是_____________.22、 . 求以下函数的定义域.(1)f ( x)=; (2) f ( x)=;(3)f ( x)=+.23、 . 求以下函数的定义域.(1) y=-x2+1;(2) y=;(3) y=;(4)y=++2;(5) y=+;(6)y=( a为常数 ) .24、已知全集= R,函数y =+的定义域为会合,函数y=的定义域为U A 会合 B.(1)求会合 A 和会合 B;(2)求会合 (? U A)∩(? U B).25、已知函数 f ( x)=-.(1)求函数 f ( x)的定义域(用区间表示);(2)求 f (-1),f (12)的值.。
高一数学 分段函数
12
y
6
x 0 2 4 6 8 10 12 14 16
思考题:甲、乙两人分别骑自行车与摩托车从 A城出发到B城旅游.甲、乙两人离开A• 城的路 程与时间之间的函数图象如图所示.根据图象 你能得到甲、乙两人旅游的哪些信息?
参考答案: 根据图象能得到甲、乙两人旅游的以下一些信息: 1.甲骑自行车从A城去B城用了8个小时.乙骑 摩托车从A城去B城用了2个小时. 2.甲比乙早4个小时出发,晚2个小时到达. 3.甲骑自行车在出发后第一个2小时内行驶了40 千米,第二个2小时内行驶了20千米,然后停留 了1个小时,又在1个小时内行驶了20千米,最后 用2个小时行驶了20千米完成全程到达B城. 4.乙骑摩托车在2小时内行驶了100千米路程到 达B城. 5.甲、乙在距A城60多千米的地方相遇一次.
4. 研究函数y = f(x)与函数y = |f(x)|图象之间的 关系.
5. 研究函数y = f(x)与函数y = f(|x|) 图象之间的 关系.
分段函数
例1. 已知一个函数y=f(x)的定义域是[0, 2], 当x∈[0, 1]时,对应法则为y=x,当x∈(1, 2] 时,对应法则为y=2-x,试用解析法和图 象法分别表示这个函数。
解:已知函数用解析法可表示为
x [0,1] x, y 2 x, x (1,2]
函数的图象如下图.
2 y
1ห้องสมุดไป่ตู้
x 0 1 2
例2. 国内投寄信函(外埠),每封信不超过
20g,付邮资80分,质量超过20g,但不超40g
付160分,质量超过40g,但不超60g付240分,
依次类推,每封x g(0<x≤100)的信函应付的
邮资为y(单位:分),试写出以x为自变量的
高一数学分段函数抽象函数与复合函数试题答案及解析
高一数学分段函数抽象函数与复合函数试题答案及解析1.已知函数,则的值是()A.4B.48C.240D.1440【答案】C【解析】因为,所以,故选C.【考点】分段函数求函数值的问题.2.设函数则的值为A.B.C.D.【答案】D【解析】由已知函数可得,,故D为正确答案.【考点】分段函数求值.3.已知函数则______.【答案】【解析】由题可得.【考点】分段函数的求值.4.设,则()A.B.0C.D.【答案】C【解析】,故选C【考点】分段函数5.已知函数,则的值是.【答案】【解析】因为,而,所以.【考点】本题考查的知识点是分段函数求函数值的方法,属基础题.6.已知函数,则( )A.0B.1C.-2D.-1【答案】B【解析】分段函数求函数时,要注意自变量的取值范围.。
【考点】分段函数.7.若函数,则=()A.0B.1C.2D.3【答案】B【解析】复合函数求值由内向外的求解是关键,代入计算时注意不同的自变量对应的表达式,先计算,再计算,最后计算故选B【考点】分段函数的值.8.设,则【答案】【解析】由分段函数有.【考点】分段函数的定义域不同解析式不同.9.在上是减函数,则的取值范围是()A.[B.[ ]C.( D.( ]【答案】A【解析】由于两段函数都是一次的形式,依题意减函数可以得,斜率小于零,即,另外(3-1)x+4在x=1的值不小于-x在x=1的值,即(3-1)+4a≥-,所以,综上.故选A.【考点】 1.分段函数的单调性的问题.2.处理分界点的函数值的大小.10.如图(1)四边形ABCD为直角梯形,动点P从B点出发,由B→C→D→A沿边运动,设点P运动的路程为x,ΔABP面积为f(x).若函数y=f(x)的图象如图(2),则ΔABC的面积为A.10B.16C.18D.32【答案】B【解析】观察图(2),可知,,,由平面几何的知识易求得,∴,选B.【考点】分段函数.11.已知则的值等于().A.-2B.4C.2D.-4【答案】B【解析】本题是分段函数,求值时,要注意考察自变量的范围,,,.【考点】分段函数.12.函数满足: ,且,则【答案】【解析】本题给出的函数是一个递归式,可以按照原来函数的样子递归到1,再回推出4。
高一数学分段函数抽象函数与复合函数试题答案及解析
高一数学分段函数抽象函数与复合函数试题答案及解析1.设,求的值。
【答案】【解析】先求出来,再由求出,一定要注意定义域选择好解析式.又,而【考点】分段函数的求值2.已知函数,若,则实数的值为 .【答案】【解析】当时,则有,解得或(舍去);当时,则有,解得,所以.【考点】分段函数的求值.3.已知函数的定义域为集合.(1)若函数的定义域也为集合,的值域为,求;(2)已知,若,求实数的取值范围.【答案】(1);(2).【解析】(1)对数定义域真数大于零求定义域,有真数范围,求值域;(2解不等式(注意移项通分)化分式不等式为整式不等式,,对大小关系分三类讨论,再分别求满足的值.试题解析:(1)由,得,, 2分, 3分当时,,于是,即, 5分,。
7分(2))由,得,即. .8分当时,,满足; 9分当时,,因为,所以解得, 11分又,所以;当时,,因为,所以解得,又,所以此时无解; 13分综上所述,实数的取值范围是. 14分【考点】1.函数定义域值域;2.分类讨论思想;3.集合运算.4.设,则()A.B.0C.D.【答案】C【解析】,故选C【考点】分段函数5.设,则【答案】【解析】由分段函数有.【考点】分段函数的定义域不同解析式不同.6.已知函数,则【答案】【解析】假设,则,所以=,即.【考点】本题考查的是复合函数的知识点,本题的解法是常用的思维方式,要切记.7.已知 (且)在上是的减函数,则的取值范围是()A.B.C.D.【答案】B【解析】是定义域内的减函数,又是定义域内的增函数,由复合函数的单调性知(且)在定义域内单调递减,所以对于此题只需恒成立,即恒成立,,,又所以.故选B.【考点】复合函数的单调性8.函数,则()A.5B.4C.3D.2【答案】D【解析】,所以答案选.【考点】分段函数的求值9.如果函数f(x)的定义域为,且f(x)为增函数,f(xy)=f(x)+f(y)。
(1)证明:;(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范围。
高一数学分段函数抽象函数与复合函数试题答案及解析
高一数学分段函数抽象函数与复合函数试题答案及解析1.对于函数的性质,①是以为周期的周期函数②的单调递增区间为,③的值域为④取最小值的的取值集合为其中说法正确的序号有_____________.【答案】①②【解析】画出函数的图像,可知,函数的周期为,单调递减区间为,函数的值域为,函数取最小值的的取值集合为【考点】1.分段函数;2.函数的图像与性质.2.设,则()A.B.0C.D.【答案】C【解析】,故选C【考点】分段函数3.已知,若,则的值是A.1或2B.2或-1C.1或-2D.±1或±2【答案】C【解析】由已知得,当时,则,解得,故;当时,则,解得,故.综上得或,所以正确答案为C.【考点】分段函数4.设函数,则=.【答案】5【解析】由题知【考点】分段函数的解法,已知解析式求值.5.已知函数则等于()A.B.C.D.【答案】D【解析】分段函数的函数值计算要注意自变量的取值范围,,.【考点】分段函数.6.已知函数,则的值是()A.4B.C.8D.【答案】C【解析】由函数的解析式知,所以.故选C.【考点】分段函数求值7.如果函数f(x)的定义域为,且f(x)为增函数,f(xy)=f(x)+f(y)。
(1)证明:;(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范围。
【答案】(1)证明如下(2)【解析】解:(1)∵∴(2)∵f(3)=1,f(a)>f(a-1)+2∴,∴∵f(x)是增函数,∴,∴,又a>0,a-1>0∴a的取值范围是。
【考点】函数的单调性点评:看一个函数在一个区间内是增函数还是减函数,只要看这个函数在这个区间内y随x的变化而怎样变化,若y随x的增大而增大,则函数是增函数;若y随x的增大而增小,则函数是减函数。
8.已知,则f(3)为()A.2B. 3C. 4D.5【答案】A【解析】因为,所以f(3)=f(3+2)=f(5)=f(5+2)=f(7)=7-5=2,故选A。
湖南省桃江四中高一数学《函数》综合测试题(1)
湖南省桃江四中高一数学《函数》综合测试题(1)时间:120分钟 满分:150分一、选择题(每小题5分,共40分)1.4.下列函数中,表示同一函数的是( )A.y y ==ln ln x x y e y e ==与 C.(1)(3)31x x y y x x -+==+-与 D. 001y x y x==与 5.函数41()2x xf x +=的图像关于 对称 ( ) A.原点 B.直线y x = C.x 轴 D.y 轴11.已知2(1)lg ,f x x+=那么()f x = 12.函数2123x x y -=+的值域是 13.不等式01lg lg 22>--x x 的解集为14.函数22()21x x a a f x ⋅+-=+是定义域为R 的奇函数,则a = 15.设1()lg 1x f x x +=-,则1()()()2x g x f f x=+的定义域是16.17.定义在区间()0,1上的函数21,0()11()1,110m x m x f x g x mx m x ⎧-<<⎪⎪=⎨⎪-++≤<⎪⎩已知2()9f m =(I )求实数m 的值; (II )解不等式()1f x <11;11020m x =<<18. 设4()42x x f x =+,(1)求()(1)f x f x +-的值;(2)求1210()()()111111f f f +++的值.18.(1)已知2(1)lg ,f x x+=求()f x ; (2).已知2212()()(0)f x f x x x+=>,求()f x19.已知函数()f x 的定义域为(2,2)-,函数()(1)(32).g x f x f x =-+-(1).求()g x 的定义域;(2)若()f x 是奇函数,且在定义域上单调递减,求不等式()g x ≤0的解集.20.已知函数()(0,0)a f x x x a x=+>>的图像如右所示。
高一数学分段函数练习题.docx
高三 数 学 分 段 函 数 练 习 题知识点: 1、分段函数的定义在函数定义域内, 对于自变量 x 的不同取值范围, 有着不同的对应法则, 这样的函数叫做分段函数;2、分段函数定义域,值域;分段函数定义域各段定义域的并集,其值域是各段值域的 并 集 (填“并”或“交” ) 3、分段函数图象画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象;练习:1、设f ( x)2e x 1,x 2,则 f ( f (2)) 的值为()log 3 x 2 1 , x 2A. 0B.1C.2D.3| x 1 | 2,| x | 1 12、设 f(x)=1 2 ,|x |1 ,则 f[f( )]=()1 x2A.1 B.4 C. -9 D.252135413、 (2009 山东卷 ) 定义在 R 上的函数log 2 (4 x), x 0f ( x) 满足 f ( x) =1) f (x 2), x,f ( x则 f (3) 的值为( )A . -1B. -2C. 1D. 21 x4),则 f (log 2 3)4、给出函数f (x)( 2 ) 1)(x()f ( x ( x 4)A.-23B.1 C.1 D.1 81119245、函数 f ( x)sin( x 2 ), 1 x 0, 1f a 2, 则 a 的所有可能值为(ex 1, x 0., 若 f)A.1B.6、( 2009 天津卷)设函数2 C. 1,2 D.12,222x 2 4x 6, x 0 f ( x)f (1) 的解集是(f ( x)6, x ,则不等式)x 0A. ( 3,1) (3,)B. ( 3,1) (2, )C. (1,1) (3, )D. (, 3) (1,3)2 x 1,x0,7、设函数f (x)1若f (x 0 ) 1 ,则 x 0 的取值范围是()x 2 ,xA . ( 1,1)B . (-1, )C .( , 2) (0, )D .( , 1) (1,)8、设函数 f ( x)x 2 bx c( x 0),若 f ( 4) f (0), f ( 2) 2 ,则关于 x 的方程 f (x)x2( x 0)的解的个数为( )A . 1B . 2C . 3D . 4f (x)log 2 x( x 0),若 f (a) f ( a) ,则实数 a 的取值范围是 (9、(2010 天津卷)设函数log 1 ( x) ( x 0) )2A . ( 1,0) (0,1)B .(, 1) (1, )C . ( 1,0) (1,)D . (, 1) (0,1)lg x , (0 x 10)10、( 2010 全国卷)已知函数 f ( x) 1 x 6,( x,若 a,b,c 互不相等,且10)2f (a)f (b)f (c) ,则实数 abc 的取值范围是()A . (1,10)B . (5,6)C . (10,12)D . ( 20,24)11、( 2010 天津卷)设函数 g(x)x22( x g(x) x 4, x g( x) R) , f ( x)g( x) x ,x,则 f (x) 的g( x)值域是( )A . [9,0] (1, )B .43 xa( x 0)12、设 f ( x)1)( x,若f ( x 0)[0, )C .[9,) D .[ 9,0](2, )44f (x)x 有且仅有三个解,则实数a 的取值范围是()A . [1,2]B .,2 C . 1,D . ,1x 2 2, (x 2)则 f( -4)=___________,若 f(x 0 ,则2)2 x, ( xlog 2 x 1 , x 0, 。
高一数学分段函数抽象函数与复合函数试题答案及解析
高一数学分段函数抽象函数与复合函数试题答案及解析1.对于函数的性质,①是以为周期的周期函数②的单调递增区间为,③的值域为④取最小值的的取值集合为其中说法正确的序号有_____________.【答案】①②【解析】画出函数的图像,可知,函数的周期为,单调递减区间为,函数的值域为,函数取最小值的的取值集合为【考点】1.分段函数;2.函数的图像与性质.2.已知函数,则的值是()A.4B.48C.240D.1440【答案】C【解析】因为,所以,故选C.【考点】分段函数求函数值的问题.3.已知,若,则的值是A.1或2B.2或-1C.1或-2D.±1或±2【答案】C【解析】由已知得,当时,则,解得,故;当时,则,解得,故.综上得或,所以正确答案为C.【考点】分段函数4.函数,函数,则 .【答案】5【解析】【考点】复合函数求函数值.5.已知函数,则【答案】【解析】假设,则,所以=,即.【考点】本题考查的是复合函数的知识点,本题的解法是常用的思维方式,要切记.6.已知函数在上单调递减,则实数的取值范围是 .【答案】【解析】当时,是单调递减函数,故,解得;当时,是单调递减函数,故;当趋近于1时,,解得;综上所述,实数的取值范围是:.故答案为:【考点】1.分段函数的图像;2.分段函数的单调性.7.函数,则()A.5B.4C.3D.2【答案】D【解析】,所以答案选.【考点】分段函数的求值8.设函数则实数的取值范围是 .【答案】【解析】当时,得,无解;当时,得,得或(舍去),故实数的取值范围是.【考点】分段函数的最值.9.已知函数,若关于的方程有3个不同的实根,则实数的取值范围是_________________.【答案】【解析】画出函数的图象,观察有3个不同交点的情况,即得关于的方程有3个不同的实根时,实数的取值范围是。
【考点】分段函数的概念,幂函数、指数函数的图象,方程的根。
点评:简单题,利用数形结合思想,研究函数的图象交点情况,确定k的范围。
分段函数求值和解析式专项练习——高一上学期数学人教A版必修第一册期中复习
分段函数求值和解析式专题练习题型一.分段函数
1.已知函数f(x)=,则f(f(5))=()
A.0B.﹣2C.﹣1D.1
2.已知函数y=,若f(a)=10,则a的值是()
A.3或﹣3B.﹣3或5C.﹣3D.3或﹣3或5 3.已知f(x)=使f(x)≥﹣1成立的x的取值范围是()A.[﹣4,2)B.[﹣4,2]C.(0,2]D.(﹣4,2] 4.函数则不等式f(x)≥1的解集是()A.B.
C.D.5.已知函数f(x)=2x﹣1,g(x)=求f[g(x)]和g[f(x)]的解析式.
题型二.求解析式
6.已知一次函数f(x)在R上单调递增,且满足f(f(x))=9x﹣2,则f(x)=.7.已知f(x)+2f()=2x,求f(x )的解析式为.
8.已知f()=+,则f(x)的解析式为.
9.(1)若一次函数f(x)满足f(x)+2f(1﹣x)=x,则f(x)的解析式
(2)已知,求f(x)的解析式.
(3)已知函数f(x)是定义域为R的奇函数,当x>0时,f(x)=x2﹣2x,求出函数f(x)在R 上的解析式.
10.如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(t>0)左侧的图形的面积为f (t).
(1)求函数f(t)解析式;
(2)画出函数y=f(t)的图象;
11.函数f(x)=[x]的函数值表示不超过x的最大整数,例如,[﹣3.5]=﹣4,[2.1]=2.(1)当x∈[﹣1,2)时,写出该函数的解析式;(2)求函数的值域.。
分段函数1
每件价格 37 (单位:元)
某人有现金2900元,最多可购买该产品的件数为( C) A.108 B.107 C.97 D.96
小结:求分段函数的值,要先弄清自变量 所在区间, 然后代入对应的解析式求值。
巩固练习
1.设函数 则
1 f f (2)
1 x 2, x ≤ 1, f ( x) 2 x x 2,x 1,
例三、下列映射是不是A到B的一一映射?
A 1 2 3 4 (1) B A B
f
3 5 7
1
2 3 4
f
3 5 7 不是。由于B中元素1在集合A 中没有原像
(1)映射与一一映射有何区别? 答:主要有两点区别: (1) 映射只要求A中的元素在B中有唯一的 像,而一一映射不仅要求A中的元素在B中 有唯一的像,还要求A中不同的元素在B中 有不同的像; (2) 映射不需要B中的元素都有原像,而一 一映射则要求B中的每一个元素都必须有 原像。
2.5 x 2, 2 x 1 1 x 0 0 x 1 1 x 2 2 x3 x3
x 1 x2 5.已知函数 f(x) 2x 1 x 2 x2 x2 2 7 (1)求 f f f( ) 4
小结:
1、分段函数的定义 (含绝对值的函数一 般都是分段函数) 2、分段函数是一个函数
3、分段函数的写法,定义域是各段定义 域的并集,值域也是各段值域的并集
课后作业:
1.小芳以200米/分的速度起跑后,先匀加速跑5分钟,每 分提高速度20米/分,又匀速跑10分钟,试写出跑步速度 y与跑步时间x的函数关系式,并画出函数图象
y=3x (3)当x≤2时y与x之间的函数关系式是___________。
高一数学分段函数练习题
高一数学分段函数练习题高一数学分段函数练习题数学是一门重要的学科,也是学生们在学业中常常遇到的难题之一。
在高一阶段,学生们开始学习更加复杂的数学知识,其中包括分段函数。
分段函数是一种特殊的函数,它在不同的区间内具有不同的定义域和值域。
掌握分段函数的概念和解题方法对学生们来说至关重要。
下面,我们就来看一些高一数学分段函数练习题,帮助学生们更好地理解和应用这一知识。
1. 设函数f(x)如下所示:f(x) =3x + 1, x ≤ 2x^2 - 2, x > 2要求:求函数f(x)的定义域和值域。
解析:对于定义域,我们需要找出函数f(x)的所有可能取值的范围。
根据题目中的条件,当x ≤ 2时,函数f(x)的定义域为(-∞, 2];当x > 2时,函数f(x)的定义域为(2, +∞)。
因此,函数f(x)的定义域为(-∞, 2]∪(2, +∞)。
对于值域,我们需要找出函数f(x)的所有可能输出的值。
当x ≤ 2时,函数f(x)的值域为f(x) = 3x + 1;当x > 2时,函数f(x)的值域为f(x) = x^2 - 2。
因此,函数f(x)的值域为(-∞, +∞)。
2. 设函数g(x)如下所示:g(x) =x + 2, x < -22x - 1, -2 ≤ x < 1x^2, x ≥ 1要求:求函数g(x)的定义域和值域。
解析:对于定义域,我们需要找出函数g(x)的所有可能取值的范围。
根据题目中的条件,当x < -2时,函数g(x)的定义域为(-∞, -2);当-2 ≤ x < 1时,函数g(x)的定义域为[-2, 1);当x ≥ 1时,函数g(x)的定义域为[1, +∞)。
因此,函数g(x)的定义域为(-∞, -2)∪[-2, 1)∪[1, +∞)。
对于值域,我们需要找出函数g(x)的所有可能输出的值。
当x < -2时,函数g(x)的值域为g(x) = x + 2;当-2 ≤ x < 1时,函数g(x)的值域为g(x) = 2x - 1;当x ≥ 1时,函数g(x)的值域为g(x) = x^2。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).2.在f1(x)=x,f2(x)=x2,f3(x)=2x,f4(x)=log x四个函数中,x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是A.f1(x)=x B.f2(x)=x2C.f3(x)=2x D.f4(x)=log x【答案】A【解析】主要考查基本初等函数的图象和性质。
由图形可直观得到:只有f1(x)=x为“上凸”的函数.3.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。
【答案】4或8【解析】主要考查对数方程解法。
解:原方程可变形为:4.已知,若,则的值是()A.B.或C.,或D.【答案】D【解析】该分段函数的三段各自的值域为,而∴∴;5.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).6.若方程有解,则a的取值范围是()A.a>0或a≤-8B.a>0C.D.【答案】D【解析】主要考查解指数方程的换元法,一元二次方程根的分布讨论。
解答过程中巧妙地转化为求函数的值域。
解:方程有解,等价于求的值域∵∴,则a的取值范围为,故选D。
7.函数(1),(2) ,(3) ,(4) 中在上为增函数的有[ ]A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)【答案】C【解析】主要考查函数单调性的概念及函数单调性判定方法。
解:当时为减函数。
为④两函数在(-∞,0)上是增函数.8.如果函数在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥-3B.a≤-3C.a≤5D.a≥3【答案】B【解析】主要考查函数单调性的概念及二次函数单调区间判定方法。
高一数学复习知识点专题讲义16---分段函数
义,提高学生数学建模、数学运算的能力.(重点) 养数学建模素养.
栏目导航
3
分段函数 如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着 不同的对应关系,则称这样的函数为分段函数. 思考:分段函数是一个函数还是几个函数? 提示:分段函数是一个函数,而不是几个函数.
栏目导航
1.下列给出的式子是分段函数的是( ) x2+1,1≤x≤5,
(2)画出f(x)的图象;
(3)写出函数f(x)的值域.
[思路点拨] (1)分-2<x<0和0≤x≤2两种情况讨论,去掉绝对值可
把f(x)写成分段函数的形式;
(2)利用(1)的结论可画出图象;
(3)由(2)中得到的图象,找到图象最高点和最低点的纵坐标,可得值
域.
栏目导航
[解] (1)当0≤x≤2时,f(x)=1+x-2 x=1, 当-2<x<0时, f(x)=1+-x2-x=1-x, ∴f(x)=11,-0x,≤-x≤22<,x<0. (2)函数f(x)的图象如图所示. (3)由(2)知,f(x)在(-2,2]上的值域为[1,3).
栏目导航
28
1.分段函数是一个函数,而不是几个函数. 2.分段函数求值要先找准自变量所在的区间;分段函数的定义域、 值域分别是各段函数的定义域、值域的并集. 3.分段函数的图象 分段函数有几段,它的图象就由几条曲线组成.在同一直角坐标系 中,根据分段函数每段的定义区间和表达式依次画出图象,要注意确定 每段图象的端点是空心点还是实心点,各段函数图象组合到一起就可得 到整个分段函数的图象.
图象如图所示.
栏目导航
19
1.当目标在不同区间有不同的计算表达方式时,往往需要用分段函 数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.
高一上学期数学经典真题-分段函数与方程的解-计算起来有点复杂
高一上学期数学经典真题,分段函数与方程的解,计算起来有点复杂一、分段函数的概念分段函数是指定义域不同的函数组成的总函数,即在不同的定义域中采用不同的解析式。
其形式可以表示为:$$y=\begin{cases}f_{1}(x), & x\in D_{1}\\f_{2}(x), & x\in D_{2}\\\cdots & \\f_{n}(x), & x\in D_{n}\end{cases}$$其中 $f_{1}(x),f_{2}(x),\cdots,f_{n}(x)$ 分别是定义在$D_{1},D_{2},\cdots,D_{n}$ 上的函数。
例如以下分段函数:$$y=\begin{cases}1, & x < 0\\x^{2}, & 0 \leq x < 1\\\sqrt{x}, & x \geq 1\end{cases}$$二、分段函数的求值对于分段函数的求值,首先需要根据自变量 $x$ 所在的定义域,找出该自变量所对应的函数解析式。
然后将自变量代入该函数解析式中,得出函数值。
例如对于上述分段函数,在$x=-1$ 的时候,自变量$x$ 的值小于$0$,因此对应的函数解析式是$f_{1}(x)=1$。
将$x=-1$ 代入$f_{1}(x)$ 中,得到函数值 $y=1$。
三、分段函数的图像分段函数的图像通常由各段函数的图像组合而成。
因此,需要先画出各段函数的图像,再将它们组合起来。
四、分段函数的极值计算分段函数的极值时,需要先判断各段函数的极值,然后从中选取最大值或最小值。
对于上述分段函数,在 $x=0$ 和 $x=1$ 的时候,函数的极小值分别为$0$ 和 $0.5$;在 $x=0.5$ 的时候,函数的极大值为 $0.25$。
因此,该分段函数的极大值为 $0.25$。
五、方程的解法解分段函数组成的方程时,需要将方程分解为各段函数的方程,然后分别求解。
数学高一上期末经典习题(含答案解析)(1)
一、选择题1.(0分)[ID :12117]设a b c ,,均为正数,且122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c <<B .c b a <<C .c a b <<D .b a c <<2.(0分)[ID :12113]已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( )A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞3.(0分)[ID :12095]已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =-4.(0分)[ID :12089]已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( )A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦ C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭5.(0分)[ID :12085]已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >>B .y x z >>C .y z x >>D .x z y >>6.(0分)[ID :12121]若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞)C .[-2,+∞)D .(-∞,-2]7.(0分)[ID :12107]德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值为( )A .0B .1C .2D .38.(0分)[ID :12105]已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>9.(0分)[ID :12082]设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]10.(0分)[ID :12077][]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1 B .2C .3D .411.(0分)[ID :12036]已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<12.(0分)[ID :12071]已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( ) A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,213.(0分)[ID :12065]已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .114.(0分)[ID :12064]下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =15.(0分)[ID :12050]已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞二、填空题16.(0分)[ID :12204]已知f (x )是定义域在R 上的偶函数,且f (x )在[0,+∞)上是减函数,如果f (m ﹣2)>f (2m ﹣3),那么实数m 的取值范围是_____.17.(0分)[ID :12190]己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______.18.(0分)[ID :12185]如图,矩形ABCD 的三个顶点,,A B C 分别在函数22logy x=,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为______.19.(0分)[ID :12176]若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.20.(0分)[ID :12171]对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________21.(0分)[ID :12165]已知函数2()2f x x ax a =-+++,1()2x g x +=,若关于x 的不等式()()f x g x >恰有两个非负整数....解,则实数a 的取值范围是__________. 22.(0分)[ID :12163]对于函数()y f x =,若存在定义域D 内某个区间[a ,b ],使得()y f x =在[a ,b ]上的值域也为[a ,b ],则称函数()y f x =在定义域D 上封闭,如果函数4()1xf x x=-+在R 上封闭,则b a -=____. 23.(0分)[ID :12154]已知函数()f x 满足:()()1f x f x +=-,当11x -<≤时,()x f x e =,则92f ⎛⎫= ⎪⎝⎭________.24.(0分)[ID :12152]已知函数()211x x xf -=-的图象与直线2y kx =+恰有两个交点,则实数k 的取值范围是________.25.(0分)[ID :12131]高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题26.(0分)[ID :12327]某种商品的销售价格会因诸多因素而上下浮动,经过调研得知:2019年9月份第x (130x ≤≤,x +∈N )天的单件销售价格(单位:元20,115()50,1530x x f x x x +≤<⎧=⎨-≤≤⎩,第x 天的销售量(单位:件)()(g x m x m =-为常数),且第20天该商品的销售收入为600元(销售收入=销售价格⨯销售量). (1)求m 的值;(2)该月第几天的销售收入最高?最高为多少?27.(0分)[ID :12280]为保障城市蔬菜供应,某蔬菜种植基地每年投入20万元搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入2万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的经验,发现种西红柿的年收入()f x 、种黄瓜的年收入()g x 与大棚投入x 分别满足()8f x =+1()124g x x =+.设甲大棚的投入为a ,每年两个大棚的总收入为()F a .(投入与收入的单位均为万元) (Ⅰ)求(8)F 的值.(Ⅱ)试问:如何安排甲、乙两个大棚的投入,才能使年总收人()F a 最大?并求最大年总收入.28.(0分)[ID :12258]已知函数21()f x x x =-是定义在(0,)+∞上的函数. (1)用定义法证明函数()f x 的单调性;(2)若关于x 的不等式()220f x x m ++<恒成立,求实数m 的取值范围. 29.(0分)[ID :12238]已知集合{}121A x a x a =-<<+,{}01B x x =<<. (1)若B A ⊆,求实数a 的取值范围; (2)若AB =∅,求实数a 的取值范围.30.(0分)[ID :12231]已知函数()()20f x ax bx c a =++≠,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)当[]1,2x ∈-时,求函数的最大值和最小值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.C 3.C 4.B 5.A 6.B 7.D 8.C 9.D 10.B 11.C 12.C 13.B 14.A 15.C二、填空题16.(﹣∞1)(+∞)【解析】【分析】因为先根据f(x)是定义域在R上的偶函数将f (m﹣2)>f(2m﹣3)转化为再利用f(x)在区间0+∞)上是减函数求解【详解】因为f (x)是定义域在R上的偶函数且f17.或【解析】【分析】由函数对称轴与区间关系分类讨论求出最大值且等于2解关于的方程即可求解【详解】函数对称轴方程为为;当时;当即(舍去)或(舍去);当时综上或故答案为:或【点睛】本题考查二次函数的图像与18.【解析】【分析】先利用已知求出的值再求点D的坐标【详解】由图像可知点在函数的图像上所以即因为点在函数的图像上所以因为点在函数的图像上所以又因为所以点的坐标为故答案为【点睛】本题主要考查指数对数和幂函19.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【20.-1【解析】由题意可得:结合集合元素的互异性则:由可得:或当时故当时故综上可得:21.【解析】【分析】由题意可得f(x)g(x)的图象均过(﹣11)分别讨论a>0a<0时f(x)>g(x)的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题22.6【解析】【分析】利用定义证明函数的奇偶性以及单调性结合题设条件列出方程组求解即可【详解】则函数在R上为奇函数设即结合奇函数的性质得函数在R上为减函数并且由题意可知:由于函数在R上封闭故有解得:所以23.【解析】【分析】由已知条件得出是以2为周期的函数根据函数周期性化简再代入求值即可【详解】因为所以所以是以2为周期的函数因为当时所以故答案为:【点睛】本题主要考查函数的周期性和递推关系这类题目往往是奇24.【解析】【分析】根据函数解析式分类讨论即可确定解析式画出函数图像由直线所过定点结合图像即可求得的取值范围【详解】函数定义域为当时当时当时画出函数图像如下图所示:直线过定点由图像可知当时与和两部分图像25.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题三、解答题26.27.28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.C解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.3.C解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=,且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=-故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.4.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.5.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】 解:0.1x 1.11.11=>=, 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.6.B解析:B【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.7.D解析:D 【解析】 【分析】采用逐层求解的方式即可得到结果. 【详解】∵(] 121∈-∞,,∴112f ⎛⎫= ⎪⎝⎭, 则110102f ⎛⎫=⎪⎝⎭,∴()1(())21010f f f =, 又∵[)102∈+∞,,∴()103f =,故选D . 【点睛】本题主要考查函数的基础知识,强调一一对应性,属于基础题.8.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c 的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=, 又因为(133331log log 4log 3,log 334a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.9.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.10.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.11.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.12.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增;当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减;当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增. 简称为“同增异减”.13.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 14.A解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增 0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A15.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.二、填空题16.(﹣∞1)(+∞)【解析】【分析】因为先根据f (x )是定义域在R 上的偶函数将f (m ﹣2)>f (2m ﹣3)转化为再利用f (x )在区间0+∞)上是减函数求解【详解】因为f (x )是定义域在R 上的偶函数且f 解析:(﹣∞,1)(53,+∞) 【解析】 【分析】因为先根据f (x )是定义域在R 上的偶函数,将 f (m ﹣2)>f (2m ﹣3),转化为()()223f m f m ->-,再利用f (x )在区间[0,+∞)上是减函数求解.【详解】因为f (x )是定义域在R 上的偶函数,且 f (m ﹣2)>f (2m ﹣3), 所以()()223fm f m ->- ,又因为f (x )在区间[0,+∞)上是减函数, 所以|m ﹣2|<|2m ﹣3|, 所以3m 2﹣8m +5>0, 所以(m ﹣1)(3m ﹣5)>0, 解得m <1或m 53>, 故答案为:(﹣∞,1)(53,+∞). 【点睛】本题主要考查了函数的单调性与奇偶性的综合应用,还考查了转化化归的思想和运算求解的能力,属于中档题.17.或【解析】【分析】由函数对称轴与区间关系分类讨论求出最大值且等于2解关于的方程即可求解【详解】函数对称轴方程为为;当时;当即(舍去)或(舍去);当时综上或故答案为:或【点睛】本题考查二次函数的图像与解析:1-或2. 【解析】 【分析】由函数对称轴与区间关系,分类讨论求出最大值且等于2,解关于a 的方程,即可求解. 【详解】函数()22221()1f x x ax a x a a a =-++-=--+-+,对称轴方程为为x a =;当0a ≤时,max ()(0)12,1f x f a a ==-==-;当2max 01,()()12a f x f a a a <<==-+=,即210,a a a --==(舍去),或152a (舍去); 当1a ≥时,max ()(1)2f x f a ===, 综上1a =-或2a =. 故答案为:1-或2. 【点睛】本题考查二次函数的图像与最值,考查分类讨论思想,属于中档题.18.【解析】【分析】先利用已知求出的值再求点D 的坐标【详解】由图像可知点在函数的图像上所以即因为点在函数的图像上所以因为点在函数的图像上所以又因为所以点的坐标为故答案为【点睛】本题主要考查指数对数和幂函解析:11,24⎛⎫⎪⎝⎭【解析】 【分析】先利用已知求出,A B C x x y ,的值,再求点D 的坐标. 【详解】由图像可知,点(),2A Ax 在函数y x=的图像上,所以2Ax =,即212A x ==⎝⎭.因为点(),2B B x 在函数12y x =的图像上,所以122Bx =,4B x =.因为点()4,C Cy 在函数2x y ⎛=⎝⎭的图像上,所以4124C y ⎛== ⎝⎭.又因为12D A x x ==,14D C y y ==, 所以点D 的坐标为11,24⎛⎫⎪⎝⎭. 故答案为11,24⎛⎫⎪⎝⎭【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.19.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【 解析:25[,)6-+∞ 【解析】 【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值. 【详解】设x x t e e -=-,1xxx x t e e e e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x xxx a e eee ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立,0t =时,显然成立,3(0,]2t ∈,4a t t -≤+对3[0,]2t ∈上恒成立,由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =,∴256a -≤,即256a ≥-.综上,256a ≥-.故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.20.-1【解析】由题意可得:结合集合元素的互异性则:由可得:或当时故当时故综上可得:解析:-1 【解析】由题意可得:21,1b a == ,结合集合元素的互异性,则:1b =- , 由21c b ==- 可得:c i = 或c i =- , 当c i = 时,bc i S =-∈ ,故d i =- , 当c i =- 时,bc i S =∈ ,故d i = , 综上可得:1b c d ++=- .21.【解析】【分析】由题意可得f (x )g (x )的图象均过(﹣11)分别讨论a >0a <0时f (x )>g (x )的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题解析:310,23⎛⎤⎥⎝⎦【解析】 【分析】由题意可得f (x ),g (x )的图象均过(﹣1,1),分别讨论a >0,a <0时,f (x )>g (x )的整数解情况,解不等式即可得到所求范围. 【详解】由函数2()2f x x ax a =-+++,1()2x g x +=可得()f x ,()g x 的图象均过(1,1)-,且()f x 的对称轴为2ax =,当0a >时,对称轴大于0.由题意可得()()f x g x >恰有0,1两个整数解,可得(1)(1)310(2)(2)23f g a f g >⎧⇒<≤⎨≤⎩;当0a <时,对称轴小于0.因为()()11f g -=-,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得a 的范围是310,23⎛⎤⎥⎝⎦. 故答案为:310,23⎛⎤⎥⎝⎦.【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.22.6【解析】【分析】利用定义证明函数的奇偶性以及单调性结合题设条件列出方程组求解即可【详解】则函数在R 上为奇函数设即结合奇函数的性质得函数在R 上为减函数并且由题意可知:由于函数在R 上封闭故有解得:所以解析:6 【解析】 【分析】利用定义证明函数()y f x =的奇偶性以及单调性,结合题设条件,列出方程组,求解即可. 【详解】44()()11x xf x f x x x--=-==-+-+,则函数()f x 在R 上为奇函数设120x x ≤<,4()1xf x x=-+ ()()()2112121212444()()01111x x x x f x f x x x x x --=-+=>++++,即12()()f x f x > 结合奇函数的性质得函数()f x 在R 上为减函数,并且(0)0f = 由题意可知:0,0a b <>由于函数()f x 在R 上封闭,故有4141()()a bab f a b f b aa b-=-⎧⎪=⎧⎪⇒⎨⎨=⎩-=+⎪⎪⎩ ,解得:3,3a b =-=所以6b a -= 故答案为:6 【点睛】本题主要考查了利用定义证明函数的奇偶性以及单调性,属于中档题.23.【解析】【分析】由已知条件得出是以2为周期的函数根据函数周期性化简再代入求值即可【详解】因为所以所以是以2为周期的函数因为当时所以故答案为:【点睛】本题主要考查函数的周期性和递推关系这类题目往往是奇【解析】 【分析】由已知条件,得出()f x 是以2为周期的函数,根据函数周期性,化简92f ⎛⎫⎪⎝⎭,再代入求值即可. 【详解】 因为()()1f x f x +=-,所以()()()21f x f x f x +=-+=,所以()f x 是以2为周期的函数, 因为当11x -<≤时,()xf x e = ,所以129114222f f f e ⎛⎫⎛⎫⎛⎫=+=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为.【点睛】本题主要考查函数的周期性和递推关系,这类题目往往是奇偶性和周期性相结合一起运用.24.【解析】【分析】根据函数解析式分类讨论即可确定解析式画出函数图像由直线所过定点结合图像即可求得的取值范围【详解】函数定义域为当时当时当时画出函数图像如下图所示:直线过定点由图像可知当时与和两部分图像 解析:(4,1)(1,0)--⋃-【解析】 【分析】根据函数解析式,分类讨论即可确定解析式.画出函数图像,由直线所过定点,结合图像即可求得k 的取值范围. 【详解】 函数()211x x xf -=-定义域为{}1x x ≠当1x ≤-时,()2111x x x f x -==---当11x -<<时,()2111x x x f x -==+-当1x <时,()2111x x xf x -==---画出函数图像如下图所示:直线2y kx =+过定点()0,2由图像可知,当10k -<<时,与1x ≤-和11x -<<两部分图像各有一个交点; 当41-<<-k 时,与11x -<<和1x <两部分图像各有一个交点. 综上可知,当()()4,11,0k ∈--⋃-时与函数有两个交点 故答案为:()()4,11,0--⋃- 【点睛】本题考查了分段函数解析式及图像画法,直线过定点及交点个数的求法,属于中档题.25.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题 解析:{}1,0,1-【解析】 【分析】求出函数()f x 的值域,由高斯函数的定义即可得解. 【详解】2(1)212192()2151551x x x xe f x e e e +-=-=--=-+++, 11x e +>,1011xe ∴<<+, 2201xe ∴-<-<+, 19195515x e ∴-<-<+,所以19(),55f x ⎛⎫∈- ⎪⎝⎭,{}[()]1,0,1f x ∴∈-,故答案为:{}1,0,1- 【点睛】本题主要考查了函数值域的求法,属于中档题.三、解答题 26.(1)40m =;(2)当第10天时,该商品销售收入最高为900元. 【解析】 【分析】(1)利用分段函数,直接求解(20)(20)600f g =.推出m 的值.(2)利用分段函数分别求解函数的最大值推出结果即可. 【详解】(1)销售价格20,115,()50,1530,x x f x x x +<⎧=⎨-⎩第x 天的销售量(单位:件)()(g x m x m =-为常数), 当20x时,由(20)(20)(5020)(20)600f g m =--=,解得40m =.(2)当115x <时,(20)(40)y x x =+-2220800(10)900x x x =-++=--+,故当10x =时,900max y =,当1530x 时,22(50)(40)902000(45)25y x x x x x =--=-+=--,故当15x =时,875max y =,因为875900<,故当第10天时,该商品销售收入最高为900元.【点睛】本题考查利用函数的方法解决实际问题,分段函数的应用,考查转化思想以及计算能力,是中档题.27.(Ⅰ)39万元(Ⅱ)甲大棚投入18万元,乙大棚投入2万元时,最大年总收入为44.5万元.【解析】【分析】(I )根据题意求得()F a 的表达式,由此求得()8F 的值.(II )求得()F a 的定义域,利用换元法,结合二次函数的性质,求得()F a 的最大值,以及甲、乙两个大棚的投入.【详解】(Ⅰ)由题意知11()8(20)122544F a a a =+-+=-+,所以1(8)825394F =-⨯+=(万元). (Ⅱ)依题意得2,218202a a a ⎧⇒⎨-⎩.故1()25(218)4F a a a =-+.令t =t ∈,2211()25(5744G t t t =-++=--+,显然在上()G t 单调递增,所以当t =18a =时,()F a 取得最大值,max ()44.5F a =.所以当甲大棚投入18万元,乙大棚投入2万元时,年总收入最大,且最大年总收入为44.5万元.【点睛】本小题主要考查函数在实际生活中的应用,考查含有根式的函数的最值的求法,属于中档题.28.(1)证明见解析(2)m 1≥【解析】【分析】(1)12,(0,)x x ∀∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据单调性得到221x x m ++>,即()221212m x x x >--=-++,得到答案.【详解】(1)函数单调递减,12,(0,)x x ∀∈+∞,且12x x <,()()()()2221121212122222121211x x x x x x f x f x x x x x x x -++⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭∵120x x <<,∴210x x ->,2212120x x x x ++>,22110x x > ∴12()()f x f x >,∴()f x 在(0,)+∞单调递减;(2)()()2201f x x m f ++<=,故221x x m ++>, ()221212m x x x >--=-++,(0,)x ∈+∞,故m 1≥.【点睛】本题考查了定义法证明函数单调性,利用单调性解不等式,意在考查学生对于函数性质的灵活运用. 29.(1)[]0,1;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【解析】【分析】(1)由题得10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩解不等式即得解;(2)对集合A 分两种情况讨论即得实数a的取值范围.【详解】(1)若B A ⊆,则10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩解得01a ≤≤.故实数a 的取值范围是[]0,1.(2)①当A =∅时,有121a a -≥+,解得2a ≤-,满足AB =∅.②当A ≠∅时,有121a a -<+,解得 2.a >- 又A B =∅,则有210a +≤或11a -≥,解得12a ≤-或2a ≥, 122a ∴-<≤-或2a ≥.综上可知,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题主要考查根据集合的关系和运算求参数的范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.30.(1)()222f x x x =-+;(2)增区间为()1,+∞,减区间为(),1-∞;(3)最小值为1,最大值为5.【解析】【分析】(1)利用已知条件列出方程组,即可求函数()f x 的解析式;(2)利用二次函数的对称轴,看看方向即可求函数()f x 的单调区间;(3)利用函数的对称轴与[]1,2x ∈-,直接求解函数的最大值和最小值.【详解】(1)由()02f =,得2c =,又()()121f x f x x +-=-,得221ax a b x ++=-, 故221a ab =⎧⎨+=-⎩ 解得:1a =,2b =-.所以()222f x x x =-+; (2)函数()()222211f x x x x =-+=-+图象的对称轴为1x =,且开口向上, 所以,函数()f x 单调递增区间为()1,+∞,单调递减区间为(),1-∞;(3)()()222211f x x x x =-+=-+,对称轴为[]11,2x =∈-,故()()min 11f x f ==,又()15f -=,()22f =,所以,()()max 15f x f =-=.【点睛】本题考查二次函数解析式的求解,同时也考查了二次函数单调区间与最值的求解,解题时要结合二次函数图象的开口方向与对称轴来进行分析,考查分析问题和解决问题的能力,属于中等题.。
高一数学分段函数
一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这种函数,叫作分段函数.例1 在国内投递外埠平信,每封信不超过20g 付邮资80分,超过20g 不超过40g 付邮资160分,超过40g 不超过60g 付邮资240分,依此类推,每封x g(0<x ≤100)的信应付多少邮资(单位:分)?写出函数表达式,作出函数图象.分析:由于当自变量x 在各个不同的范围内时,应付邮资的数量是不同的.所以,可以用分段函数给出其对应的函数解析式.在解题时,需要注意的是,当x 在各个小范围内(如20<x ≤40)变化时,它所对应的函数值(邮资)并不变化(都是160分).解:设每封信的邮资为y (单位:分),则y 是x 的函数.这个函数的解析式为80,(0,20]160(20,40]240,940,80]320(60,80]400,(80,100]x x y x x x ∈⎧⎪∈⎪⎪=∈⎨⎪∈⎪∈⎪⎩ 由上述的函数解析式,可以得到其图象如图2.2-9所示.例2如图9-2所示,在边长为2的正方形ABCD 的边上有一个动点P ,从点A 出发沿折线ABCD 移动一周后,回到A 点.设点A 移动的路程为x ,ΔPAC 的面积为y .(1)求函数y 的解析式;(2)画出函数y 的图像;(3)求函数y 的取值范围.分析:要对点P 所在的位置进行分类讨论.解:(1)①当点P 在线段AB 上移动(如图2.2-10①),即0<x ≤2时,y =12AP BC ⋅=x ;C P图 2.2②当点P在线段BC上移动(如图2.2-10②),即2<x<4时,y=12PC AB⋅=1(4)22x-⋅=4-x;③当点P在线段CD上移动(如图2.2-10③),即4<x≤6时,y=12PC AD⋅=1(4)22x-⋅=x-4;④当点P在线段DA上移动(如图2.2-10④),即6<x<8时,练习:1.(1)作函数12y x x=-++的图象。
(2)作函数12y x x=--+的图象。
高一数学必修1第一章分段函数-学生
(2)适用范围:元素个数较少的集合.(3)使用方法:把元素写在封闭曲线的内部.7.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B 中的元素,就说这两个集合有包含关系,称集合A是集合B的子集A⊆B(或B⊇A)8.集合相等与真子集的概念定义符号表示图表示集合相等如果A⊆B且B⊆A,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素x∈B,且x∉A,称集合A是B的真子集A B(或B A)9.空集(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.10.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.11.并集和交集的概念及其表示类别概念自然语言符号语言图形语言并集由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”)A∪B={x|x∈A,或x∈B}交集由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”)A∩B={x|x∈A,且x∈B}12.并集与交集的运算性质并集的运算性质交集的运算性质A∪B=B∪A A∩B=B∩AA∪A=A A∩A=AA∪∅=A A∩∅=∅A⊆B⇔A∪B=B A⊆B⇔A∩B=A13.全集(1)定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.14.补集文字语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言15.补集的性质∁U U=∅,∁U∅=U,∁U(∁U A)=A.【新知识梳理与重难点点睛】1.函数的概念(1)函数的定义:设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . (2)函数的定义域与值域:函数y =f (x )中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.2.区间概念(a ,b 为实数,且a <b)定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b } 开区间 (a ,b ) {x |a ≤x <b } 半开半闭区间 [a ,b ) {x |a <x ≤b }半开半闭区间(a ,b ]3.其他区间的表示定义 R {x |x ≥a } {x |x >a } {x |x ≤a } {x |x <a } 符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )4.函数相等如果两个函数定义域相同,并且对应关系完全一致,我们称这两个函数相等.要点一 分段函数求值例1 已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f [f (-52)]的值;(2)若f (a )=3,求实数a 的值.①M =N =R ,f :x →y =1x ,x ∈M ,y ∈N ;②M =N =R ,f :x →y =x 2,x ∈M ,y ∈N ;③M =N =R ,f :x →y =1|x |+x ,x ∈M ,y ∈N ;④M =N =R ,f :x →y =x 3,x ∈M ,y ∈N . A .①② B .②③ C .①④ D .②④1.下列集合A 到集合B 的对应中,构成映射的是( )2.函数y =|x |的图象是( )3.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤12x ,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.1394.设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0. 若f (α)=4,则实数α等于( )A .-4或-2B .-4或2C .-2或4D .-2或25.某客运公司确定车票价格的方法是:如果行程不超过100千米,票价是每千米0.5元;如果超过100千米,超过部分按每千米0.4元定价,则客运票价y (元)与行程x (千米)之间的函数关系式是________.【新方法、新技巧练习与巩固】一、基础达标 1.以下几个论断①从映射角度看,函数是其定义域到值域的映射; ②函数y =x -1,x ∈Z 且x ∈(-3,3]的图象是一条线段;③分段函数的定义域是各段定义域的并集,值域是各段值域的并集; ④若D 1,D 2分别是分段函数的两个不同对应关系的值域,则D 1∩D 2=∅. 其中正确的论断有( )A .0个B .1个C .2个D .3个2.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-1003.函数f (x )=x +|x |x的图象是( )4.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为( ) A .(1,3) B .(1,6) C .(2,4) D .(2,6)5.设f :x →ax -1为从集合A 到B 的映射,若f (2)=3,则f (3)=________.6.函数f (x )=⎩⎪⎨⎪⎧x 2+1(x ≥0),2-x (-2≤x <0)的值域是________.7.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f [f (2)]的值; (2)若f (x 0)=8,求x 0的值.二、能力提升8.已知f (x )=⎩⎪⎨⎪⎧x -5,x ≥6,f (x +2), x <6,则f (3)为( )A .2B .3C .4D .59.已知函数f (x )的图象是两条线段(如图所示,不含端点),则f [f ⎝⎛⎭⎫13]等于( )A .-13 B.13C .-23 D.2310.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1,则f ⎝⎛⎭⎫1f (2)的值是________.11.已知函数y =|x -1|+|x +2|. (1)作出函数的图象; (2)写出函数的定义域和值域.三、探究与创新12.“水”这个曾经被人认为取之不尽,用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费,如果某人本季度实际用水量为x (x ≤7)吨,试计算本季度他应交的水费y (单位:元).13.如图所示,在边长为4的正方形ABCD边上有一点P,由点B(起点)沿着折线BCDA,向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求y与x之间的函数解析式.。