2020年高校对口单招数学模拟试题
2020年职业教育对口数学模拟试题(带答案)
机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.已知集合A={ x 1≤x≤4},B={ x x- a>0}, 若A ⊆ B,则实数a的取值范围为()(A) (1,+∞) (B) (-∞,1)(C) [1,+∞) (D) (-∞,1]2.已知方程x2 +a x+ (a+3)=0有实根,则a的取值范围()(A) {a|a>6或a<- 2} (B) {a| -2≤a ≤6}(C) {a|a≥6或a≤- 2} (D) {a| -2< a < 6}3. 已知圆的方程为22-+-=,则点(1,2)(3)(5)16x y-().(A)在圆内(B)在圆上(C)在圆外(D)与圆心重合4.函数y=f (x) 的图象与直线x=k (k 是常数)的交点的个数()(A) 有且只有一个(B) 至少有一个(C) 至多有一个(D) 有一个或两个5.若x > y > 0, 0 < a < 1, 则下列各式成立的是()(A) a x≤a y(B) log a x < log a y(C) a x ≥a y(D) log a x > log a y6. 设a , b是实数,则a2+b2 ≠ 0的充要条件是()(A) a ≠ 0 (B) b ≠ 0 (C) a ≠ 0且b ≠ 0 (D) a ≠ 0或b ≠ 0 7.二次函数 y =x 2+px +q 的顶点在第二象限, 则p 和q 的符号是( )(A) p > 0, q >0 (B) p > 0, q < 0 (C) p < 0, q < (D) p < 0, q > 0 8.在数列3,4,7,12,x ,28, … 中,x 的值是( ).(A ) 18 (B ) 19 (C ) 20 (D ) 21 9. 过点()1,0且平行于y 轴的直线方程是( ).(A )1y = (B ) 1y =- (C )1x = (D ) 1x =-10.在四边形ABCD 中,若→A B = 2→a ,→C D = - 3 →a , ∣→A D ∣=∣→B C ∣ , 则 四边形ABCD 是( ) (A) 平行四边形 (B)菱形 (C) 等腰梯形 (D) 矩形 11.函数y =3 sin (ω x + π3 )(ω > 0)的最小正周期为π3, 则ω等于( )(A) 3 (B) 6 (C) 52(D) 912. 若平面α∥平面β,P 是平面α、β外一点,过P 的两条直线AB 、CD 交平面α于A 、C ,交平面β于B 、D ,且P A =6,AB =2,BD =12,则AC 的长是( ). (A ) 10 (B ) 9 (C ) 8 (D ) 713. 若双曲线的焦点在x 轴上,并且6a =、2b =,则双曲线的标准方程为( ). (A) 221364x y -= (B ) 221436x y -= (C ) 22162x y -= (D ) 22126x y -=14. 某数学兴趣小组成员的数学中考成绩如下:116 99 108 93 100 111 98 95 106 113 若102分以上(包括102)为优秀, 则优秀率为( ).(A ) 0.30 (B ) 0.40 (C ) 0.50 (D ) 0.60 15.0.3()log (2)f x x =,若()0f a =,则实数a 的值是( ).(A )16 (B ) 1 (C ) 0 (D ) 1216. 抛甲、乙两粒骰子,甲骰子点数不小于乙骰子点数的概率是( ). (A )512 (B ) 12 (C ) 712 (D ) 2317. 若椭圆的方程为224312x y +=,则它的焦点坐标为( ). (A ) ()()1,01,0-、 (B ) ()()0,10,1-、(C ) ((0,、 (D ))()、18.有四条线段,长度分别是2cm ,3cm ,4cm ,5cm ,从中任取两条, 长度之和不小于8cm 的概率是( ).(A) 14(B) 12(C) 13(D) 119.不等式 | 3- 2x | ≥ 5 的解集是( )(A) [-1, 4 ] (B) (- ∞, - 1]∪[ 4,+∞) (C) (- ∞, - 4)∪[ 1,+∞) (D) [- 4, 1]20.已知f (x )是奇函数,且x ≥ 0时,f (x )= 2x -x 2,则当x < 0时,f (x ) 的解析式为( )(A) f (x ) = x 2+2x (B) f (x ) = - x 2- 2x (C) f (x ) = x 2- 2x (D) f (x ) = - x 2+2x 21.设函数log ()4a x f x =,且1(16)2f =,则a 的值为( ). (A ) 4 (B ) 8 (C )18(D ) 1422.已知∣→a ∣= 4,→b 在 →a 方向上的射影的数量为- 3,则 →a ·→b =( ) (A) - 12 (B) - 7 (C) - 34 (D) 3423. 若抛物线的焦点在x 轴正半轴上,焦点到准线的距离是12,则它的 标准方程是( ).(A ) 2y x =- (B ) 2y x = (C ) 2x y =- (D ) 2x y = 24.5人参加4项比赛,每人限报一项,报名方法有( )(A) 45 (B) 54 (C) 20 (D) 25 25.函数y = 2sin 2x +4sin x +2 的最大值和最小值分别为( )(A) 6, 0 (B) 6, - 1 (C) 8, 0 (D) 8, - 1 26.等差数列前10项和1060S =,则110a a +等于( ).(A )10 (B ) 11 (C ) 12 (D ) 13 27. 函数()f x 在()5,5-上是增函数,下列选项错误的是( ).(A ) (2)(0)f f ->(B ) (1)(1)f f -< (C ) (2)(3)f f < (D ) (0)(4)f f < 28.△ABC 中:AB =10,S △= 160, 则边AC 的最小值为( )(A) 32 (B) 16 (C) 8 (D) 16 3 29.函数22y x x =+与22y x x =-的图像( ).(A ) 关于x 轴对称 (B ) 关于y 轴对称(C ) 关于原点对称 (D ) 关于x 轴和y 轴都不对称 30.在等比数列{a n }中,a 1+ a 2=30,a 3+ a 4=120,那么a 5+ a 6 =( ) (A) 210 (B) 240 (C) 480 (D) 700第Ⅱ卷(非选择题,共40分)二、填空题(本大题共4小题,每小题3分,共12分)31. 某超市大米3.5元/千克,现设x表示购买大米的重量(千克),y表示应付款数(元),将,x y 的函数关系用列表法表示为:32.若正四棱锥的体积为12,底面对角线的长为_____.33. 若圆的方程222230x y by b+--=,则圆心坐标为_______,半径为_______.34.已知t anα是方程x2-2x-3=0的一个根,且α是第一象限的角,则cosα·tanα= . 三、解答题(本大题共4小题,共28分)35. (7分)设二次函数的图象的顶点是(-2, 32)与x轴的两个交点之间的距离是6,求这个二次函数的解析式.36. (7分) 角α.37.(7分) 如图,正三棱柱ABC —A 1B 1C 1的底面边长为a ,在侧棱BB 1上取BD =2a,在侧棱CC 1上截取CE =a ,过A 、D 、E 作棱柱的截面,试证明截面ADE 与侧面ACC 1A 1垂直。
2020届对口高考数学综合模拟试题(1)讲课讲稿
2020年对口升学数学模拟试卷(1)时量120分钟 满分120分一、单项选择题(每小题4分,共40分) 1.设集合{}{}10,1<<=>=x x B x x A ,则等于( )A. {}0>x xB.{}1≠x xC.{}10≠>x x x 或 D. {}10≠>x x x 且2. “2x >”是“211x ->”的( ) A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件3.已知四边形ABCD 的三个顶点()()()1,3,2,1,2,0C B A --,且 AD BC 2=,则顶点D 的坐标为( ) A. ⎪⎭⎫ ⎝⎛27,2 B. ⎪⎭⎫⎝⎛-21,2 C.()2,3 D. ()3,1 4.已知{}n a 是等差数列, 28,48721=+=+a a a a ,则该数列前10项和=10S ( ) A.64B. 100C.110D. 1205.在ABC ∆中,已知222a bc b c +=+,则A=( )A. 30︒B. 45︒C. 60︒D. 120︒6.有ABCDEF 六人站成一排照相且E 必须排在AC 两个人的中间并相邻的排法有( )A. 3344P P 种B. 2233P P 种 C 2244P P 种 D 3355P P 种7. 下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) 21.()A f x x =2.()1B f x x =+ 3.()C f x x =.()2x D f x -=8.已知过点A(1,a ),和B(2,4)的直线与直线x-y+1=0垂直,则a 的值为( ) A.15B.13C.3D.59. 已知ABC PA 平面⊥,ο90=∠BAC ,PA=AC=AB=4,则点A 到平面PBC 的距离是 ( )A. 34B.338 C.334 D.38 10.已知点P (-2,3),点Q 在圆22(1)(1)4x y -++=上移动,则PQ 的取值范围为 ( ) A.[]1,7B. []1,9C. []3,7D. []3,9二、填空题。
2020年江苏省对口单招数学试卷
2020年江苏省对口单招数学试卷一、单项选择题1.已知集合M={1,4},N={1,2,3},则M∪N等于A。
{1} B。
{2,3} C。
{2,3,4} D。
{1,2,3,4}解析:M∪N表示M和N的并集,即M和N中所有元素组成的集合,所以M∪N={1,2,3,4},选D。
2.若复数z满足z(2−i)=1+3i,则z的模等于A。
√2 B。
√3 C。
2 D。
3解析:将z(2-i)=1+3i展开得到2z-iz=1+3i,化简得到z=(1+3i)/(2-i)。
将分子分母都乘以2+i得到z=(1+3i)(2+i)/(5)=(-1+7i)/5,所以|z|=√((-1/5)^2+(7/5)^2)=√2,选A。
3.若数组a=(2,-3,1)和b=(1,x,4)满足条件a·b=0,则x的值是A。
-1 B。
0 C。
1 D。
2解析:XXX表示a和b的点积,即a1b1+a2b2+a3b3.将a 和b代入得到2×1+(-3)×x+1×4=0,解得x=1,选C。
4.在逻辑运算中,“A+B=”是“A·B=”的A。
充分不必要条件 B。
必要不充分条件 C。
充分必要条件 D。
既不充分也不必要条件解析:A+B=表示A或B成立,XXX表示A和B同时成立。
A+B=是A·B=的必要不充分条件,选B。
5.从5名男医生,4名女医生中任选5人组成一个医疗小分队,要求其中男医生、女医生均不少于2人,则有所不同的组队方案数是A。
80 B。
100 C。
240 D。
300解析:分别从男医生和女医生中选出2人,然后从剩下的7人中选出1人,共有C(5,2)×C(4,2)×C(7,1)=6×6×7=252种方案,但是有男女对调的重复情况,即2个男医生和3个女医生的情况和2个女医生和3个男医生的情况是重复的,所以实际方案数为252/2=126,选D。
6.过抛物线(y-1)^2=4(x+2)的顶点,且与直线x-2y+3=0垂直的直线方程是A。
2020年湖南省普通高等学校对口招生考试数学试题
2020年湖南省普通高等学校对口招生考试数学试题1.已知集合 $A=\{1,a\}$,$B=\{1,2,3,4\}$,$A\capB=\{1,4\}$,则 $a=$ ()。
A。
1 B。
2 C。
3 D。
42.$\sin120^\circ=$()A。
$\frac{1}{2}$ B。
$-\frac{1}{2}$ C。
$\frac{3}{2}$ D。
$-\frac{3}{2}$3.“$x=1$”是“$x^2-1=$”的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件4.点 $M(1,3)$,$N(3,t)$ 在函数 $y=\frac{k}{x}$ 的图象上,则 $t$ 的值为()。
A。
1 B。
3 C。
6 D。
95.平行四边形 $ABCD$ 中,$AC$ 与 $BD$ 交于点 $M$,$AB=a$,$AD=b$,则 $AM=$()。
A。
$\frac{1}{2}(a-\frac{1}{2}b)$ B。
$\frac{1}{2}(a+\frac{1}{2}b)$ C。
$a+b$ D。
$a-b$6.函数 $f(x)=\log_2(x-1)$ 的定义域为()。
A。
$\{x|x>0\}$ B。
$\{x|x\neq1\}$ C。
$\{x|x>2\}$ D。
$\{x|x>1\}$7.$(x-\frac{1}{x})^6$ 展开式中的常数项为()。
A。
$-20$ B。
$20$ C。
$-120$ D。
$120$8.已知 $a=\sin20^\circ$,$b=\cos40^\circ$,$c=\tan80^\circ$,则 $a,b,c$ 的大小关系为()。
A。
$a>b>c$ B。
$b>c>a$ C。
$c>b>a$ D。
$c>a>b$9.已知函数 $f(x)=2x$,若 $f(a-2)<f(2)$,则 $a$ 的取值范围是()。
2020职业学校对口单招数学模拟试题
B. 2 1, 2 1
C. 2 1, 2 1
D.
0, 2 1
8.直线
xy
5 3
3t 3t
(为参数)的倾斜角为
A . 300
B . 600
D. 150 0 9.平面 与平面 , 都相交,则这三个平面可能有
C . 1200
A.1 条或 2 条交线
B. a1 a 2 D. a 2 a 2
4.首项为 15 的等差数列,从第 6 项开始为正数,则公差 d 的取值范围为
A. d 3
B . d 15 4
C . 3 d 15 4
D. 3 d 15 4
5.若 a 2,3, b 4,1 y,且源自a // b ,则 y 6
2
(1)求 f 0; (2)求 f x 的解析式; (3)设 0, ,则 f 3 ,
2
2 2
求 的值.
19.已知数列an 是等差数列,且 a1 2 , a1 a2 a3 12 . (1)求数列an 的通项公式; (2)令 bn an 3n n N ,求数列 bn 前 n
项和 Sn .
20.为了对某课题进行研究,用分层抽样的方法从三所高校 A,B,C 的相关人中 抽取若干人组成研究小组,有关数据如下表(单位:人).
高校
相关人数
抽取人数
A
54
x
B
36
2
C
72
y
(1)求 x , y ;(2)若从高校 B,C 抽取的人中选 2 人作专题发言,求这 2 人均来自
高校 C 的概率.
22.铁矿石 A 和 B 的含铁率 a ,冶炼每万吨铁矿石的 CO2 的排放量 b 及每万吨铁
2020年对口高职高考数学预测模拟试卷
2020年对口高职高考数学模拟试卷一、 选择题1. 设集合M={ x |X 2>16},N={ x |log 3x >1},则M ∩N=( ).A. {x |x >3}B. {x |x >4}C. {x |x <−4}D. {x |x >4或x <4}2.下列函数既是奇函数又是增函数的是()A.y =x −1B. y =x 3C. y =log 2xD.y=2x 3.直线(√3−√2)x+y=3和x+(√2−√3)y=2的位置关系是( )A.相交不垂直B. 垂直C. 平行D.重合4.等差数列{a n }中, a 1+a 4+a 7=39, a 3+a 6+a 9=27,则数列{a n }的前9项和S n =( )A.66B. 99C. 144D.2975.若抛物线y 2=2px(p>0)过点M(4,4),则点M 到准线的距离d=( ).A.5B. 4C. 3D.26.设全集U={ x |4≤X ≤10,X ≥∈N },A={4,6,8,10},则C U A=( ).A.{5}B.{5,7}C. {5,7,9}D.{7,9} 7. “a>0且b>0”是“ab>0”的( )条件。
A. 充分不必要B.充分且必要C.必要不充分D. 以上答案都不对8.如果f(X)=a x 2+bx+c(a ≠0)是偶函数,那么g(X)=a x 3+b x 2−cx 是( ). A.偶函数 B.奇函数C.非奇非偶函数D. 既是奇函数又是偶函数9.设函数f(X)= log a x(a>0且a ≠1),f(4)=2,则f(8)=( ). A.2 B.3 C.3 D.13 10.sin 800-√3cos 800−2 sin 200的值为( )。
A.0 B.1 C.−sin200 D.4sin200 11.等比数列的前4项和是203,公比q=−13,则a 1=( ). A.-9 B.3 C.9 D.13 12.已知(23) y =(32) x2+1,则y 的最大值是( )。
2020年职业教育对口数学模拟试题(带答案)
机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.设集合A={1,2,4,5},B={2,5,6,7},则A ∪B 等于﹙ ﹚ (A ){2,5}(B ){1,2,,3,4,5,6,7}(C ){1,2,4,5,6,7} (D ){2,4,5} 2. 对于命题p :x >3,命题q :x >1,则p 是q 的﹙ ﹚ (A )充分条件 (B )必要条件(C )充要条件 (D )既不充分也不必要条件 3.函数y =2x -1的定义域是( )(A ){x ︱x >0} (B ){x ︱x <0} (C ){x ︱x =0} (D )x ∈R 4.设log a 13>1,则a 的取值范围是( )(A )(13 ,1) (B )(0,13)(C)(0,1) (D)(1,+∞)5.等差数列{a n}中,a1=3, a100=36,则a5+a96=()(A)39 (B)36 (C)38 (D)426.已知:∣→a∣= 4, ∣→b∣= 3,<→a,→b>= 60°,则∣→a+2→b∣=()(A)13 (B)10 (C)27(D)219 7.已知f (2x)=x2+x+1,则f (-2) = ( )(A)0 (B)1 (C)3 (D)68.直线y-3=k (x+2)恒过点()(A)(3,-2)(B)(-2,3)(C)(2,-3) (D)(-3,2)9.某同学到4个景点旅游,每个景点游览一天,则不同的游览次序有()种。
最新2020年对口升学数学试卷
最新2020年对⼝升学数学试卷学⼤教育对⼝升学考试数学模拟试卷(⼀)⼀、单项选择题(每⼩题3分,共45分)1.已知全集{1,2,3,4,5,6,7,8},{3,4,5},{1,3,6},{2,7,8}U A B ===则集合是() A .A B U B .A B I C .U U C A C B U D .U UC A C B I 2.若2(2)2,(2)f x x x f =-=则()A .0B .1-C .3D .23.已知点(,3),(5,2),(4,5),,A x B y AB x y -=u u u r且则的值为()A .1,10x y =-=B .1,10x y ==C .1,10x y ==-D .1,10x y =-=- 4.关于余弦函数cos y x =的图象,下列说法正确的是() A .通过点(1,0) B .关于x 轴对称C .关于原点对称D .由正弦函数sin 2y x x π=的图象沿轴向左平移个单位⽽得到5.6220.5与的等⽐中项是() A .16 B .2± C .4 D .4±6.2210,C x xy y C -++=如果曲线的⽅程为那么下列各点在曲线上的是() A .(1,2)- B .(1,2)- C .(2,3)- D .(3,6)7.直线10x -+=的倾斜⾓是()A .6π B .3πC .23πD .56π8.若40,,x x x x>+要使取最⼩值则必须等于()A .1B .2±C .—2D .29.若圆柱的轴截⾯的⾯积为S,则圆柱的侧⾯积等于()A .S πB .2S C .2S D .2S π 10.如图,在正⽅体11111,ABCD A B C D AC BD -中异⾯直线与所成的⾓是() A .90oB .60oC .45oD .30o11.四名学⽣与两名⽼师排成⼀排拍照,要求两名⽼师必须站在⼀起的不同排法共有() A .720种 B .120种 C .240种 D .48种12.双曲线221259y x -=的渐近线⽅程是() A .53y x =±B .35y x =±C .43y x =±D .34y x =± 13.抛物线20y x +=的焦点在()A .x 轴正半轴上B .y 轴正半轴上C .x 轴负半轴上D .y 轴负半轴上 14.若1sin cos ,sin 23x x x -==则() A .89 B .89- C .23 D .23-15.tan18tan121tan18tan12+-o oo o的值等于() A .33 B 3 C .33- D .3-⼆、填空题(每⼩题5分,共30分) 16.293π-弧度的⾓是第象限的⾓ 17.圆22230x y x y +-+=的⾯积等于18.到两定点A (1,2),B (2,5)距离相等的点的轨迹⽅程是 19.函数22y x x=--的定义域可⽤区间表⽰为20.已知⾓,-,y x αα=为第⼆象限的⾓且终边在直线上则⾓的余弦值为 21.函数3cos y x x = -的最⼤值、周期分别是三、解答题(共75分,解答就写出⽂字说明或演算步骤)22.(本题满分6分)在△ABC 中,已知2,30,a b B C ==∠=∠o 求23.(本题满分8分)计算:21233711125()log 343()227--++-24.(本题满分8分)解不等式:62(3)3(4)2xx x -<+<-25.(本题满分8分)求椭圆224936x y +=的长轴和短轴的长,离⼼率,焦点和顶点的坐标26.(本题满分8分)求过直线32102350x y x y ++=-+=与的交点,且平⾏于直线:6250l x y -+=的直线⽅程.27.(本题满分9分)求81)x+展开式的中间项28.(本题满分9分,每⼩题3分)已知数列{}n a 是等差数列,2,n n n =前项的和S 求:(1)4a 的值;(2)数列的通项公式;(3)和式13525a a a a ++++的值.29.(本题满分9分,第1⼩题4分,第2⼩题5分)(如图所⽰)已知三棱锥A —BCD 的侧棱AD 垂直于底⾯BCD,侧⾯ABC 与底⾯成45o的⼆⾯⾓,且BC=2,AD=3,求:(1)△BCD 中BC 边上的⾼;(2)三棱锥A —BCD 的体积;30.(本题满分10分)某公司推出⼀新产品,其成本为500元/件,经试销得知,当销售价为650元/件时⼀周可卖出350件;当销售价为800元/件时⼀周可卖出200件,如果销售量y 可近似地看成销售价x 的⼀次函数y kx b =+,求销售价定为多少时,此新产品⼀周能获得的利润最⼤,并求出最⼤利润.学⼤教育对⼝升学考试模拟试卷⼆⼀、选择题(本⼤题共17⼩题,每⼩题4分,共68分,每⼩题列出的四个选项中,只有1项是符合题⽬要求的,把所选项前的字母填在题后括号内.)1、设集合}31|{≤≤=x x M ,}42|{≤≤=x x N ,则N M I =()A .}41|{≤≤x xB .}32|{≤≤x xC .}21|{≤≤x xD .}43|{≤≤x x 2、如果c 为实数,且⽅程032=--c x x 的⼀个根的的相反数是032=++c x x 的⼀个根,那么032=--c x x 的根是()A .1,2B .-1,-2C .0,3D .0,-3 3、()4.03.0-,4.0log 3.0,4log 3.0三个数的⼤⼩关系是()A .()4.03.0-<4.0log 3.0<4log 3.0 B .()4.03.0-<4log 3.0<4.0log 3.0C .4log 3.0<()4.03.0-<4.0log 3.0 D .4log 3.0<4.0log 3.0<()4.03.0-4、3212-+=x x y 的最⼩值是() A .-3 B .213- C .3 D .2135、求sin660的函数值6、6⼈参加打球、唱歌、跳舞三项活动,每项2⼈,不同的分组⽅法有() A .15种 B .30种 C .60种 D .90种7、函数2sinxy =,(1))()(π+=x f x f ;(2))4()(π+=x f x f ;(3))()(x f x f -=-;(4))()(x f x f =-,对任意恒成⽴的式⼦是() A .(1)与(3) B .(2)与(3) C .(1)与(4) D .(2)与(4) 8、1cos sin 22=+ααy x 表⽰双曲线,则α所在象限() A .第三 B .第⼆ C .第⼆或第四 D .第三或第四 9、ααcos 2sin =,则α2tan 的值为() A .34-B .54C .-4D .32-10、1F 、2F 为椭圆192522=+y x 的焦点,P 为椭圆上任⼀点,则21F PF ?的周长为() A .16 B .18 C .20 D .不能确定11、直线052=+-x y 与圆022422=++-+y x y x 图形之间关系是() A .相离 B .相切 C .相交但不过圆⼼ D .相交且过圆⼼ 12、在同⼀坐标系中,aax y 11-=,22ax y =的图象只可能是()A B C D⼆、填空题(本⼤题共8题,每⼩题5分,共40分,把答案填在题中的横线上.)13、8lg 5lg )5(lg )2(lg 33++=__________. 14、在等差数列}{n a 中,已知公差21=d 且4019531=++++a a a a Λ,则前20项的和20S =__________.15、在数字0、1、2、3中,可以组成没有重复数字的三位数有______个.16、1531???? ?-a a 展开式⾥不含a 的项等于__________.17、满⾜31sin =α,且)3,0(πα∈的⾓α有__________个. 18、)3,2(M 是线段),3(m A ,)1,(-n B 的中点,则m =_______,n =_______. 19、直线l :1) ()32(222-=-+-+m y m m x m m 的倾斜⾓为4π,则 m =__________.20、在ABC ?中,54cos =A ,1312cos =B ,则C cos =__________. 三、解答题(本⼤题共5题,共62分.)21、解不等式:4932522<--x x22、4个整数前三个成等⽐数列,后三个成等差数列,且第⼀个数与第四个数的和是14,第⼆个数与第三个数的和是12,求这四个整数.23、过抛物线x y 42=的焦点且斜率为2的直线l 交抛物线于A 、B 两点,求:(1)直线l 的⽅程;(2)AB 的距离.24、已知线段PA 垂直于正⽅形ABCD 所在平⾯,且a PA =,a AB =,求:(1)P 到BC 的距离;(2)PC 与BD 所成的⾓.25、如图,半圆O 的直径为2,OA=2,B 为半圆上⼀点,以AB 为边作正三⾓形ABC,问B 在什么位置时四边形OACB ⾯积最⼤,并求最⼤值.学⼤教育对⼝升学考试模拟试卷三⼀、选择题(本⼤题共12⼩题,每⼩题4分,共48分,每⼩题列出的四个选项中,只有1项是符合题⽬要求的,把所选项前的字母填在题后括号内.)1、设R U =,集合}14|{<<-=x x A ,}4|{-≤=x x B ,}1|{≥=x x C ,则() A .C B A =I B .C B A =Y C .C B A C U =)(I D .C B A C U =)(Y2、给定0>>b a ,R c ∈,下列各式中不正确的是() A .b a >B .2b ab >C .c b c a +>+D .bc ac >3、下列函数中,在)1,0(上为减函数的是()A .x y 2log =B .x y ??=21 C .31x y = D .x x y 22+=4、设3log 25log 22+=M ,则M 的值所在区间为() A .(3,4) B .(4,5) C .(5,6) D .(6,7)5、已知直线c b a ,,及平⾯α,具备下列哪个条件时,b a ||() A .b a ,没有公共点 B .c a ⊥且c b ⊥ C .c a ||且c b || D .α||a 且α||b6、若54cos -=θ,53sin =θ,则θ2的终边在() A .第⼀象限 B .第⼆象限 C .第三象限 D .第四象限 7、在同⼀坐标系中,曲线x y sin =与x y cos =的交点的横坐标为() A .)(2Z k k x ∈=π B .)(4Z k k x ∈+=ππC .)(2Z k k x ∈+=ππ D .)(Z k k x ∈=π8、下列命题中错误的是()A .垂直于三⾓形两边的直线⼀定垂直于第三边B .平⾏于三⾓形两边的直线⼀定平⾏于第三边C .与三⾓形三个顶点距离相等的平⾯平⾏于这个三⾓形所在的平⾯D .平⾏于三⾓形所在平⾯的直线与垂直于该三⾓形所在平⾯的直线⼀定相互垂直 9、ABC ?中,若B A 2tan 2tan -=,那么这个三⾓形⼀定是()A .直⾓三⾓形B .等边三⾓形C .钝⾓三⾓形D .锐⾓三⾓形 10、设A 、B 异号,且直线0=++C By Ax 的倾斜⾓α满⾜21|tan |=α,则直线的斜率为() A .34 B .34- C .4 D .-411、有房5间,现有8⼈投宿,其中某⼀指定房间必须且只能住4⼈,余下的⼈任意选房,问不同的住法有() A .P C 4448? B .C C 4448? C .4484?C D .P P 4448? 12、已知⽅程13522=-+-k y k x 表⽰的曲线是椭圆,则13522=-+-ky k x 曲线的焦点坐标是()A .)0,28(k -±B .)0,2(±C .)0,2(±D .)28,0(k -± ⼆、填空题(本⼤题共8题,每⼩题5分,共40分,把答案填在题中的横线上.)13、写出抛物线y x 22-=的准线⽅程__________.14、若函数)0(sin >+=k b x k y 的最⼤值为2,最⼩值为-4,则k =______,b =______. 15、若⼀个球的半径扩⼤⼀倍,则它的体积扩⼤到原来体积的______倍. 16、两条平⾏直线01243=-+y x 和0386=++y x 间的距离为__________. 17、在平⾯直⾓坐标系XOY中,ABCD为平⾏四边形,已知)2,1(--=,)1,3(-=,)1,3(=,则OD =__________.18、⽤半径为cm 3,中⼼⾓为?120的扇形铁⽪卷成圆锥形容器,则此圆锥的体积为__________.19、?-25cos 70sin 20sin 2的值为__________. 209)12(xx -展开式中含3x 的项为__________. 三、解答题(本⼤题共5题,共62分.)21、公差不为零的等差数列}{n a 的前7项之和为70,⼜731,,a a a 成等⽐数列,求此等差数列的通项公式.22 ⼆次函数过点(0,3)且对称轴是x=2,最⼤值是4,求函数的解析式,并求其值域和单调区间 23、已知53)sin(-=+απ,παπ325<<;512)2tan(=-βπ,20πβ<<.求2tan α和)2cos(βα-.24、设函数2||3)(2+-=x x x f ,]4,4[-∈x . (1)按定义讨论)(x f 的奇偶性;(2)画出)(x f 的图象,并写出单调区间;(3)求不等式2)(>x f 的解集.25、已知圆C :01022=-+x y x ,过原点的直线l 被圆C 所截得的弦长为8,求以圆C 的圆⼼为⼀个焦点,以l 为渐近线的双曲线⽅程.。
2020届对口高考数学综合模拟试题
JP2020年对口升学数学模拟试卷时量120分钟 满分120分一、单项选择题(每小题4分,共40分) 1.设集合{}{}10,1<<=>=x x B x x A ,则等于( )A. {}0>x xB.{}1≠x xC.{}10≠>x x x 或 D. {}10≠>x x x 且2. “2x >”是“211x ->”的( ) A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件3.已知四边形ABCD 的三个顶点()()()1,3,2,1,2,0C B A --,且 AD BC 2=,则顶点D 的坐标为( ) A. ⎪⎭⎫ ⎝⎛27,2 B. ⎪⎭⎫⎝⎛-21,2 C.()2,3 D. ()3,1 4.已知{}n a 是等差数列, 28,48721=+=+a a a a ,则该数列前10项和=10S ( ) A.64B. 100C.110D. 1205.在ABC ∆中,已知222a bc b c +=+,则A=( )A. 30︒B. 45︒C. 60︒D. 120︒6.有ABCDEF 六人站成一排照相且E 必须排在AC 两个人的中间并相邻的排法有( )A. 3344P P 种B. 2233P P 种 C 2244P P 种 D 3355P P 种7. 下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) 21.()A f x x =2.()1B f x x =+ 3.()C f x x =.()2x D f x -=8.已知过点A(1,a ),和B(2,4)的直线与直线x-y+1=0垂直,则a 的值为( ) A.15B.13C.3D.59. 已知ABC PA 平面⊥,90=∠BAC ,PA=AC=AB=4,则点A 到平面PBC 的距离是 ( )A. 34B.338 C.334 D.38 10.已知点P (-2,3),点Q 在圆22(1)(1)4x y -++=上移动,则PQ 的取值范围为 ( ) A.[]1,7B. []1,9C. []3,7D. []3,9二、填空题。
2020届对口高考数学综合模拟试题
2020年对口升学数学模拟试卷时量120分钟 满分120分一、单项选择题(每小题4分,共40分)1.设集合{}{}10,1<<=>=x x B x x A ,则A ∪B 等于( ) A. {}0>x x B.{}1≠x x C.{}10≠>x x x 或 D. {}10≠>x x x 且2. “2x >”是“211x ->”的( ) A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件3.已知四边形ABCD 的三个顶点()()()1,3,2,1,2,0C B A --,且 AD BC 2=,则顶点D 的坐标为( ) A. ⎪⎭⎫ ⎝⎛27,2 B. ⎪⎭⎫⎝⎛-21,2 C.()2,3 D. ()3,1 4.已知{}n a 是等差数列, 28,48721=+=+a a a a ,则该数列前10项和=10S ( ) A.64B. 100C.110D. 1205.在ABC ∆中,已知222a bc b c +=+,则A=( )A. 30︒B. 45︒C. 60︒D. 120︒6.有ABCDEF 六人站成一排照相且E 必须排在AC 两个人的中间并相邻的排法有( )A. 3344P P 种B. 2233P P 种 C 2244P P 种 D 3355P P 种7. 下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) 21.()A f x x =2.()1B f x x =+ 3.()C f x x =.()2x D f x -=8.已知过点A(1,a ),和B(2,4)的直线与直线x-y+1=0垂直,则a 的值为( ) A.15B.13C.3D.59. 已知ABC PA 平面⊥,ο90=∠BAC ,PA=AC=AB=4,则点A 到平面PBC 的距离是 ( )A. 34B.338 C.334 D.38 10.已知点P (-2,3),点Q 在圆22(1)(1)4x y -++=上移动,则PQ 的取值范围为 ( ) A.[]1,7B. []1,9C. []3,7D. []3,9二、填空题。
2020对口高职数学试卷
2020年对口高职模拟考试一、选择题:本大题共14小题,每小题5分,共70分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 2-的绝对值是A. 2B. 2-C. 2±D.2.将6371000用科学技术法表示为A. 70.637110⨯ B.66.37110⨯ C. 76.37110⨯ D. 36.37110⨯3.如图所示的几何体的主视图是4. 下列计算正确的是A.32a a a-=B.33y y y÷=C.33m n m n+=D.326()x x=5. ,则x的取值范围是A. 2x≤ B. 2x≥ C. x<2 D. x﹥26.菱形的两条对角线的长分别是6和8,则这个菱形的面积是A.5B.20C.10D.247.下列多边形中,既是轴对称图形又是中心对称图形的是A.平行四边形B.等边三角形C.正五边形D.圆8.如图,中间是一个直角三角形,外面三个正方形的面积分别为1S、2S、3S,则A.123S S S+=B.222123S S S+=C=D.以上都不对9.有一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子,掷一次骰子,向正面S2S3S1上一面的点数为1的概率是A .0 B.C.D .110.母线长为5,底面半径长为3的圆锥的侧面积为A .12πB .15πC .24πD .30π 11.不等式1x -<0的解集在数轴上表示为A .B .C .D . 12.抛物线28y x =-+的顶点坐标是A .(0, 8)B .(8, 0)C .(0, 8)-D .(1-, 8) 13. 已知集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合AB =A . {}2,5B . {}3,6C . {}2,5,6D . {}1,2,3,4,5,6,7 14. 数据1,2-,3,4-,3的中位数和众数分别是A . 1, 3B . 2-, 3C . 3, 1D . 4-, 3 二、填空题:本大题共6小题,每小题5分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高校对口单招数学模拟题
1.已知集合M ={0,1,2},N ={2,3},则M ∪N 等于 ( )
A.{2}
B.{0,3}
C.{0,1,3}
D.{0,1,2,3}
2.已知数组a =(1,3,-2),b =(2,1,0),则a -2b 等于 ( )
A.(-3,1,-2)
B.(5,5,-2)
C.(3,-1,2)
D.(-5,-5,2) 3.若复数z =5-12i ,则z 的共轭复数的模等于 ( )
A.5
B.12
C.13
D.14 4.下列逻辑运算不.正确的是
( )
A.A+B=B+A
B.AB+AB —
=A
C.0—·0—
=0 D.1+A =1
5.过抛物线y 2=8x 的焦点,且与直线4x -7y +2=0垂直的直线方程为
A.7x +4y -44=0
B.7x +4y -14=0
C.4x -7y-8=0
D.4x -7y-16=0
6.“a =4
”是“角α的终边过点(2,2)”的 A.充分不必要条件 B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
7.若一个底面边长为23,高为2的正四棱锥的体积与一个正方体的体积相等,则该正方体的棱长为 A.1
B.2
C.3
D.4
8.将一枚骰子先后抛掷两次,所得的点数分别为m ,n ,则点(m ,n
(θ是参数)上的概率为 A.
36
1 B.
18
1 C.
12
1 D.
6
1
9.已知函数f (x
是奇函数,则g (-2)的值为
A.0
B.-1
C.-2
D.-3
10.设m >0,n >0,且4是2m 与8n 的等比中项,则m 3+n
4
的最小值为
A.23
B.
4
17 C.43 D.4
27
二、填空题(本大题5小题,每小题4分,共20分)
11.题11图是一个程序框图,若输入x 的值为3,则输出的k 值是
.
12.题12图是某工程的网络图(单位:天),若总工期为27天,则工序F 所需的工时x (天)的取值范围为 .。