2016中考数学复习-二次函数与三角形的面积问题

合集下载

二次函数中三角形面积问题

二次函数中三角形面积问题

二次函数中三角形面积问题【典型例题】:如图,二次函数y=-x²+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【方法一】竖割法:过点C作CD⊥x轴,垂足为D,交AB于点E,S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE解:令x=0, y=3 点C的坐标为(0,3);令y=0, 则-x²+2x+3=0 ,解得:x1=-1 x2=3 点B的坐标为(3,0),设AB所在直线的解析式为y=kx+b.求出直线AB所在直线的解析式为y=-x+3.设点E的坐标为(m,-m+3) ,则点C的坐标为(m, -m2+2m+3)CE=y C-y E= -m2+2m+3-(-m+3)= -m2+3mS△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE=1/2×3( -m2+3m)=--3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法二】割补法:连接OC,S△ABC=S△OAC +S△OBC-S△OAB解:S△ABC=S△OAC+S△OBC-S△OAB=1/2×OA·X C+1/2×OB·Y C-1/2×OA×OB=1/2×3×m+1/2×3×(-m2+2m+3)-1/2×3×3=-3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法三】平移法:平移直线AB,当直线AB与抛物线只有一个交点时,此时三角形ABC的面积最大。

解:设和y=-x+3平行的动直线的解析式为y=-x+b,用y=-x+b和y=-x²+2x+3联立方程组得:-x+b=-x²+2x+3,整理得:x²-3x+b-3=0当Δ=0时,b=21/4,此时的点C的坐标为(3/2,9/2)。

二次函数与三角形面积专题

二次函数与三角形面积专题

图像特征
二次函数的图像呈现开口向上或开口向下的 抛物线形状,具有顶点、对称轴等特征。
计算三角形面积的公式
通过底和高计算三角形面积
三角形面积 = 0.5 * 底 * 高
通过两边和夹角计算三角形面积
三角形面积 = 0.5 * 边1 * 边2 * sin(夹角)
二次函数与三角形面积的关系
1 如何利用二次函数计算三角形的面积
2
1. 将二次函数进行因式分解或平方完 成,找到抛物线的开口方向和顶点坐
标。
1. 根据题目给出的三角形面积公式和 已知条件,构建相应的方程。
2. 根据题目中给出的具体条件(如底 和高),计算三角形的面积。
2. 解方程,得到相关的二次函数的特
征参数。
3. 根据特征参数,画出相应的二次函 数图像。
总结
通过将二次函数转化为抛物线图像,确定顶点坐标,然后使用底和高计算三角形的面积。
2 通过实例理解二次函数与三角形面积的关系
通过具体的数学问题,我们将展示如何运用二次函数的知识来解决与三角形面积相关的有二次函数的三角形面
积问题的步骤
解析给定三角形面积求解相关 二次函数问题的步骤
二次函数与三角形面积专 题
在本专题中,我们将深入探讨二次函数与三角形面积的关系,了解二次函数 的定义和图像特征,以及计算三角形面积的公式。通过实例和例题解析,我 们将展示如何利用二次函数来计算三角形的面积。
二次函数的基本概念
定义
二次函数是形如 f(x) = ax^2 + bx + c 的函数, 其中 a、b、c 是常数,且 a ≠ 0。
重点内容回顾
二次函数的基本概念和图像特征,计算三角形面积的公式,以及二次函数与三角形面积的关 系。

二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破一、考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。

这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。

一解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3.根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。

例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。

注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。

4.利用点坐标表示线段长度时注意要用大的减去小的。

5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。

6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。

二、二次函数问题中三角形面积最值问题(一)例题演示1.如图,已知抛物线(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值.DBOAyxC解答:(1)抛物线令y=0,解得x=-2或x=4,∴A(-2,0),B(4,0).∵直线经过点B(4,0),∴,解得,∴直线BD解析式为:当x=-5时,y=3,∴D(-5,3)∵点D(-5,)在抛物线上,∴,∴.∴抛物线的函数表达式为:.(2)设P(m,)∴∴△BPD面积的最大值为.【试题精炼】2.如图,在平面直角坐标系中,抛物线()与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:与y轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;HF解答:1)A(-1,0)∵CD=4AC,∴点D的横坐标为4∴,∴.∴直线l的函数表达式为y=ax+a(2)过点E作EH∥y轴,交直线l于点H设E(x,ax2-2ax-3a),则H(x,ax+a).∴∴.∴△ADE的面积的最大值为,∴,解得.∴抛物线的函数表达式为.【中考链接】3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;解答:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B (0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;二、二次函数问题中直角三角形问题(一)例题演示如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使△BPC为直角三角形的点P的坐标.解答:(1)依题意得:,解得,∴抛物线解析式为.把B(,0)、C(0,3)分别代入直线y=mx+n,得,解得,∴直线y=mx+n的解析式为y=x+3;(2)设P(,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(+3)2+t2=4+t2,PC2=()2+(t-3)2=t26t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解得:t=;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解得:,.综上所述P的坐标为(,)或(,4)或(,)或(,).【试题精炼】如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2))求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1);(2)证明见解析;(3)以线段GF、AD、AE 的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】试题分析:(1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.试题解析:解:(1)将C (0,-3)代入函数表达式得,∴.(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN,∴.设点E的坐标为(x,),∴,∴x=4m.∴为定值.(3)存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH 中,∵tan∠CGO=,tan∠FGH=,∴=.∴OG=“3m,“由勾股定理得,GF=,AD=∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.考点:1.二次函数综合题;2.定值和直角三角形存在性问题;3.曲线上点的坐标与方程的关系;4.二次函数的性质;5.勾股定理和逆定理;6相似三角形的判定和性质;7.锐角三角函数定义.【中考链接】如图所示,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线y=x2+x-2的图像上,过点B作BD⊥x轴,垂足为D,且B点的横坐标为-3.(1)求BC所在直线的函数关系式.(2)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.解答:(1)∵C点坐标为(-1,0),∴BD=CO=1.∵B点的横坐标为-3,∴B点坐标为(-3,1)设BC所在直线的函数关系式为y=kx+b,则有,解得∴BC所在直线的函数关系式为y=x.(2)①若以为AC直角边,点C为直角顶点,如图所示,作CP1⊥AC,因为BC⊥AC,所以点P1为直线BC与对称轴直线的交点,即点P1的横坐标为-。

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法二次函数是一种广泛应用于数学解题中的重要运算工具,有时需要根据给定的几何图形求解相关表达式,比如求出三角形的面积。

三角形面积问题在很多学科中都有着广泛的应用,下面将介绍三种求解三角形面积的方法,这三种方法均基于二次函数的概念。

第一种求解三角形面积的方法是通过使用二次函数的半径求解。

首先,根据给定的三角形边长,使用勾股定理求出该三角形的半径,然后用半径公式计算出三角形的面积,半径公式为πr/2,其中π是常数3.14159。

这种方法的优点是简单易行,只需要掌握勾股定理和半径公式即可求解三角形的面积。

第二种求解三角形面积的方法是使用三角函数求解。

有些三角形的边长有着特殊的关系,可以使用三角函数求出三角形的面积。

举例来说,如果某三角形的三条边长分别为a,b,c,那么可以使用以下公式求出此三角形的面积:S= a*b*sin(c)/2。

这种方法的优点是可以准确求出三角形的面积,但是要掌握的知识比较多,需要熟练掌握三角函数的概念。

第三种求解三角形面积的方法是使用二次函数求解。

如果给定三角形的三条边长都可以用二次函数表示,那么可以使用椭圆公式求解三角形的面积。

椭圆公式为S=∫ab√(f(x))dx,其中f(x)表示三角形边长可以表示为二次函数的表达式,a,b表示积分下限和上限。

这种方法的优点是准确度高,但使用难度也比较大,需要掌握椭圆公式和二次函数的概念。

以上就是介绍了三种求解三角形面积的方法。

不同的求解方法都有各自的优势和局限性,在不同场景下要根据实际情况选择合适的求解方法,使用二次函数可以有效地求出三角形的面积。

二次函数中有关三角形面积的计算

二次函数中有关三角形面积的计算

二次函数中有关三角形面积的计算
例1 如图,经过点A(8,0)、B(0,4)的抛物线y=ax c
x 27
2(1)求抛物线的解析式;
(2)若一条与y 轴重合的直线l 以每秒2个单位长度的速度向右平移,分别交线段OA 、AB 和抛物线于点C 、D 和点E ,连接EA 、EB 、AB ,设直线l 移动的时间为t (0<t<4)秒,当t 为何值时,△ABE 的面积最大,最大面积是多少?
2.如图,已知抛物线c
y2经过A、B两点,A、B两点的坐标分
x
bx
别为(-1,0)、(0,-3)
(1)求抛物线的解析式;
(2)点E为抛物线的顶点,点C为抛物线与x 轴的另一个交点,点D为y 轴上一点,若DC=DE,求点D的坐标;
(3)在(2)的条件下,若点P为第四象限内抛物线上一动点,点P的横坐标为m , △DCP面积为S,求S关于m的函数关系式,并求出S的最大值。

初中数学二次函数中三角形面积问题解析

初中数学二次函数中三角形面积问题解析

∙∙∙∙初中数学二次函数中三角形面积问题解析一、命题意图二次函数中三角形面积相结合的题目是近年来中考数学中常见的问题,题型常考常新,体现了数形结合、化归转化、分类讨论数学思想等。

如果将三角形这一平面图形问题与二次函数相结合,就需要学生以逻辑思维和空间思维相结合的方式进行学习,以培养学生逻辑思维与空间思维能力相结合的基本数学思想,让学生学会自主思考问题的过程。

二、考点及对应的考纲要求初中数学课程教学中关于三角形面积问题的讨论一直是教学重点,这其中牵涉了二次函数与几何问题的融合,是初中数学课程中的一个难点。

求面积常用的方法:(1)直接法,若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的高,那么三角形的面积能直接用公式算出来。

(2)简单的组合,解决问题的途径常需要进行图形割补、等积变形等图形变换。

(3)面积不变同底等高或等底等高的转换,利用平行线得到三角形同底等高进行面积转化。

(4)如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”. 可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半。

三、试题讲解过程如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,-4)三点.(1)求该抛物线的解析式; (2)若点D 是该抛物线上一动点,且在第四象限,当∆面积最大时,求点D 的坐标.解:(1)解法一: 由题意得,c=-4, ∴⎩⎨⎧=-+=--0441604b a b a ,解得:⎩⎨⎧-==31b a , ∴=x y 解法二: 由题意得,设y=a (x+1)(x-4), ∴∴y=(x+1)(x-4), ∴432--=x x y ,(2)解法一:由(1)可知,y=x 2-3x -4,设点D 为(x, x 2-3x -4),过点D 作DE ∥OC 交BC 设直线BC 的解析式为y=kx +b,则∙∙∙⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4, ∴E (x, x -4)∴DE=(x -4)-(x 2-3x -4)= -x 2+4x,∵a=-1<0, ∴当x=2时, DE 取最大值,S △BCD 解法二:由(1)可知,y=x 2-3x -4, 设点D 为(x,y ),过点D 作DF ⊥OB 于点F,S △BCD =S 梯形OCDF +S △BDF -S △OBC=21x (4-y )+21(-y )(4-x )-8 =2x -2y -8=2x -2(x 2-3x -4)-8=-2x 2+8x,∵a=-2<0, ∴当x=2时, S △BCD 取最大值,∴D (2,-6解法三:由(1)可知,y=x 2-3x -4, 过点D 作DE ∥设直线BC 的解析式为y=kx +b, 则⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4,∴设直线DE 的解析式为y=x +d,则x 2-3x -4=x +d, x 2∴当△=(-4)2-4(-4-d )=0, d=-8, S △BCD 取最大值, ∴x 2-4x +4=0, ∴(x-2)2=0, ∴x 1=x 2=2, ∴D (2,-6). 四、试题的拓展延伸及变式分析如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,3)三点.(1)若点D 是抛物线的对称轴上一点,当ACD ∆求点D 的坐标;(2)在(1)的情况下,抛物线上是否存在除点A 得PCD ∆ 的面积与ACD ∆P 的坐标;若不存在,请说明理由.解:(1)∵抛物线c bx ax y ++=2经过A (1,0),B (3∴抛物线的对称轴l 是x=231+=2, ∵△ACD 的周长=AD+AC+CD, AC 是定值, ∴当AD+CD 最小时,△ACD 的周长最小,∵点A 、点B 关于对称轴l 对称,∴连接BC 交l 于点D ,即点D 为所求的点, 设直线BC 的解析式为n kx y +=,∴ ⎩⎨⎧=+=033n k n ,∴⎩⎨⎧=-=31n k ,∴直线BC 的解析式为3+-=x y ,∙∙当x=2时,y=-x+3=-2+3=1,∴点D 的坐标是(2,1).(2)解:由(1)可知,∵抛物线c bx ax y ++=2经过A (1,0),B (3,0),C (0,3)三点,∴c=3, ∴⎩⎨⎧=++=++033903b a b a ,解得:⎩⎨⎧-==41b a ,∴342+-=x x y ,解法一:如图,①过点A 作AP 1∥CD 交抛物线于点P 1,∴设直线AP 1的解析式为d x y +-=, ∴∴d=1,∴直线AP 1的解析式为1+-=x y , 解方程1+-x =342+-x x ,(x-1)(x-2)∴x 1=1, x 2=2,当x 1=1时,11+-=x y =0当x 2=2时,12+-=x y =-1,∴点P 1②设直线AP 1交y 轴于点E (0,1)把直线BC 向上平移2个单位交抛物线于P 2得直线P 2P 3的解析式为5+-=x y ,解方程5+-x =342+-x x , x 2-3x -2=0,∴x 3=2173+, x 4=2173-, 当x 3=2173+时,53+-=x y =2177-, 当x 4=2173-时,54+-=x y =2177+, ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 解法二:如图,过A 点作AE∥y 轴,交BC 于点E .则E 点的纵坐标为231=+-.∴ AE=2. 设点P 为(n ,342+-n n ),过P 点作PF∥y 轴,交BC 于点F ,则点F 为(n ,n -3),PF∥AE. 若PF =AE ,则△PCD 与△ACD 的面积相等.∙∙①若P 点在直线BC 的下方,则PF =(n -3)-(342+-n n )=n 2-∴n n 32+-=2.解得21=n ,12=n .当2=n 时,3-n-2∴P 1点坐标为(2,-1). 同理 当1=n 时,P 点坐标为(1,0)(不合题意,舍去).②若P 点在直线BC 的上方,则PF=(342+-n n )-(n -3)=n n 32-∴232=-n n .解得21733+=n ,4=n 当21733+=n 时,P 点的纵坐标为2177221733-=++-; 当21734-=n 时,P 点的纵坐标为2177221733+=+--. ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 在以上问题的分析中研究思路为:(1)分析图形的成因;(2)识别图形的形状;(3)找出图形的计算方法。

二次函数与三角形面积问题

二次函数与三角形面积问题

二次函数与三角形面积问题二次函数与三角形面积问题的关系是通过求解二次函数图像与x轴交点来得到三角形的面积。

具体而言,如果给定二次函数的表达式,我们可以求解方程f(x) = 0的解,这些解就是二次函数图像与x轴交点的横坐标。

通过这些横坐标,我们可以确定三角形的底边的长度。

同时,我们可以求解二次函数的最值来确定三角形的高,进而计算出三角形的面积。

首先,让我们来回顾一下二次函数的定义和性质。

二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c是实数且a不等于零。

二次函数的图像是一个抛物线,它的开口方向由a的正负号决定,当a 大于零时开口向上,当a小于零时开口向下。

二次函数的顶点是抛物线的最值点,当a大于零时顶点是最小值点,当a小于零时顶点是最大值点。

现在,让我们将二次函数与三角形面积问题联系起来。

假设我们有一个给定的二次函数f(x) = ax^2 + bx + c,我们希望求解该二次函数图像与x轴交点的横坐标,并计算出通过这些交点确定的三角形的面积。

首先,我们需要求解方程f(x) = 0,也就是求解ax^2 + bx + c = 0。

这可以通过使用求根公式来进行计算。

根据求根公式,对于一个二次方程ax^2 + bx + c = 0,它的解为x = (-b ± √(b^2 - 4ac)) / (2a)。

根据这个公式,我们可以求解出具体的x值。

假设我们求解得到了两个根,x1和x2。

接下来,我们可以通过计算这两个根之间的距离来确定三角形的底边的长度。

根据数学知识,我们知道两个点(x1, 0)和(x2, 0)之间的距离等于|x2 - x1|。

因此,通过计算|x2 - x1|,我们可以得到底边的长度。

接下来,我们需要确定三角形的高。

为了做到这一点,我们需要找到二次函数的顶点。

二次函数的顶点的横坐标可以通过使用公式x = -b / (2a)来计算。

通过计算出的顶点横坐标,我们可以计算出顶点在x轴上的纵坐标。

最新中考数学二次函数专题复习超强整理

最新中考数学二次函数专题复习超强整理

中考数学二次函数专题复习超强整理初三——二次函数归类复习一、二次函数与面积面积的求法:①公式法:S=1/2*底*高 ②分割法/拼凑法 1、说出如何表示各图中阴影部分的面积?2、抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD , (1)求四边形BOCD 的面积.(2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程)x yO M E NA 图五O xy DC 图四xy ODCEB图六PxyOAB D 图二Exy OA BC 图一xyOAB图三3、已知抛物线4212--=x x y 与x 轴交与A 、C 两点,与y 轴交与点B , (1)求抛物线的顶点M 的坐标和对称轴; (2)求四边形ABMC 的面积.4、已二次函数322--=x x y 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为P.(1)结合图形,提出几个面积问题,并思考解法;(2)求A 、B 、C 、P 的坐标,并求出一个刚刚提出的图形面积; (3)在抛物线上(除点C 外),是否存在点N ,使得ABC NAB S S ∆∆=,若存在,请写出点N变式一:在抛物线的对称轴上是否存点N ,使得ABC NAB S S ∆∆=,若存在直接写出N 的坐标;若不存在,请说明理由.变式二:在双曲线3y x=上是否存在点N ,使得ABC NAB S S ∆∆=,若存在直接写出N 的坐标;若不存在,请说明理由.5、抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C ,若点E 为第二象限抛物线上一动点, 点E 运动到什么位置时,△EBC 的面积最大,并求出此时点E 的坐标和△EBC 的最大面积.A x yB OC 变式一图 A x y OBC 变式二图C P x O A B y【模拟题训练】1.(2015•三亚三模)如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(﹣1,0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.二、二次函数与相似【相似知识梳理】二次函数为背景即在平面直角坐标系中,通常是用待定系数法求二次函数的解析式,在求点的坐标过程中需要用到相似三角形的一些性质,如何利用条件找到合适相似三角形是需要重点突破的难点。

中考数学二次函数与三角形面积专项复习训练测试题(附答案解析)

中考数学二次函数与三角形面积专项复习训练测试题(附答案解析)

中考数学二次函数与三角形面积专项复习训练测试题(附答案解析)1、(12分)已知抛物线y=ax2+bx-3经过(-1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为3102若存在,求出k的值;若不存在,请说明理由.第1题图2、如图所示,已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由;(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.第2题图3、如图所示,已知抛物线y =-12x 2+bx +c 与坐标轴分别交于点A (0,8)、B (8,0)和点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动.(1)直接写出抛物线的解析式:____________________;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积,若存在,求出P 点的坐标;若不存在,请说明理由.第3题图4、(10分)如图所示,在平面直角坐标系xOy 中,一次函数y =x 与二次函数y =x 2+bx 的图象相交于O 、A 两点,点A (3,3),点M 为抛物线的顶点. (1)求二次函数的表达式;(2)长度为22的线段PQ 在线段OA (不包括端点)上滑动,分别过点P 、Q 作x 轴的垂线交抛物线于点P 1、Q 1,求四边形PQQ 1P 1面积的最大值;(3)直线OA 上是否存在点E ,使得点E 关于直线MA 的对称点F 满足S △AOF =S △AOM ?若存在,求出点E 的坐标;若不存在,请说明理由.第4题图中考数学二次函数与三角形面积专项复习训练测试题(附答案解析) 1.解:(1)令x =0,得y =-3, ∴C (0,-3),把(-1,0)和(3,0)代入y =ax 2+bx -3中,得309330a b a b --=⎧⎨+-=⎩,解得12a b =⎧⎨=-⎩,∴抛物线的解析式为y =x 2-2x -3;…………………………(3分)(2)联立方程组223y x x y kx⎧=--⎪⎨=⎪⎩,解得11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩,∵O 是AB 的中点,∴x 1+x 2=0,即22022k k +++-+= 解得k =-2,∴11x y ⎧=⎪⎨=-⎪⎩或22x y ⎧=⎪⎨=⎪⎩, ∴A (-3,23),B (3,-23);…………………………(7分); (3)不存在实数k 使得△ABC 的面积为3102.理由如下: 假设存在实数k 使得△ABC 的面积为3102,联立方程组223y x x y kx⎧=--⎪⎨=⎪⎩,解得1212222k x k k y ⎧++=⎪⎪⎨++⎪=⎪⎩,2222222k x k k y ⎧+-=⎪⎪⎨+-⎪=⎪⎩,则A(222,22k k k +-+-), B(222,22k k k ++++), ∴S △ABC =12OC (x B -x A )=3102, ∴12×3×=3102, ∴k 2+4k +16=10,即k 2+4k +6=0, ∵b 2-4ac =16-24<0, ∴此方程无解,∴不存在实数k 使得△ABC 的面积为3102.………………(12分)2.解:(1)把点A (-1,0),B (3,0)代入y =-x 2+bx +c ,得10930b c b c --+=⎧⎨-++=⎩,解得23b c =⎧⎨=⎩,∴y =-x 2+2x +3;【一题多解】由题意可知点A (-1,0),点B (3,0)是抛物线与x 轴的两个交点,∴抛物线解析式为y =-(x +1)(x -3)=-x 2+2x +3. (2)存在点D ,使得△BCD 的面积最大.设D (t ,-t 2+2t +3),如解图①,作DH ⊥x 轴于点H ,C 点坐标为(0,3),第2题解图①则S △BCD =S 四边形DCOH +S △BDH -S △BOC =12t (-t 2+2t +3+3)+12(3-t )(-t 2+2t +3)-12×3×3=-32t 2+92t ,∵-32<0,即抛物线开口向下,在对称轴处取得最大值, ∴当t =-922×(-32)=32时,S △BCD =-32×(32)2+92×32=278,即点D 的坐标为(32,154)时,S △BCD 有最大值,且最大面积为278; (3)存在点Q ,使得△QMB 与△PMB 的面积相等.如解图②,∵P (1,4),过点P 且与BC 平行的直线与抛物线的交点即为所求Q 点之一,第2题解图②∵直线BC 为y =-x +3,∴过点P 作BC 的平行直线l 1,设l 1为y =-x +b ,将P (1,4)代入即可得到直线l 1的解析式为y =-x +5,联立方程组2523y x y x x =-+⎧⎪⎨=-++⎪⎩,解得1123x y =⎧⎨=⎩, 2214x y =⎧⎨=⎩, ∴Q 1(2,3);∵直线PM 为x =1,直线BC 为y =-x +3, ∴M (1,2),设PM 与x 轴交于点E , ∵PM =EM =2,∴过点E 作BC 的平行直线l 2,则过点E 且与BC 平行的直线l 2与抛物线的交点也为所求Q 点之一,即将直线BC 向下平移2个单位得到直线l 2,解析式为y =-x +1,联立方程组2123y x y x x =-+⎧⎪⎨=-++⎪⎩,解得11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩,∴Q 2(3122++-),Q 3(3122---), ∴满足条件的Q 点为Q 1(2,3),Q 2(),Q 3(). 3.解:(1)y =-12x 2+3x +8;【解法提示】把点A (0,8)、B (8,0)代入y =-12x 2+bx +c 可得,83280c b c =⎧⎨-++=⎩,解得38b c =⎧⎨=⎩,∴抛物线解析式为y =-12x 2+3x +8.(2)在y =-12x 2+3x +8中,当y =0时,-12x 2+3x +8=0, 解得x 1=-2,x 2=8, ∴E (-2,0),∴BE =10,∵S △CED =12DE ·OC , ∴S =12t (10-t )=-12t 2+5t ,∴S 与t 的函数关系式为:S =-12t 2+5t , ∵S =-12t 2+5t =-12(t -5)2+252,∴当t =5时,△CED 的面积最大,最大面积为252;(3)存在,当△CED 的面积最大时,t =5,即BD =DE =5,此时,要使S △PCD =S △CED ,CD 为公共边,故只需求出过点B 、E 且平行于CD 的直线即可,如解图.第3题解图设直线CD 的解析式为y =kx +b , 由(2)可知OC =5,OD =3, ∴C (0,5),D (3,0),把C (0,5)、D (3,0)代入y =kx +b ,得530b k b =⎧⎨+=⎩,解得535k b ⎧=-⎪⎨⎪=⎩,∴直线CD 的解析式为y =-53x +5, ∵DE =DB =5,∴过点B 且平行于CD 的直线解析式为y =-53(x -5)+5, 过点E 且平行于CD 的直线解析式为y =-53(x +5)+5, 分别与抛物线解析式联立得:方程①:-12x 2+3x +8=-53(x -5)+5, 解得x 1=8,x 2=43,方程②:-12x 2+3x +8=-53(x +5)+5, 解得x 3=343,x 4=-2(舍去),分别将x 值代入抛物线解析式,得y 1=0,y 2=1009,y 3=-2009, 又∵P 点不与E 点重合,∴满足题意的P 点坐标有3个,分别是P 1(8,0),P 2(43,1009),P 3(343,-2009). 4.解:(1)由题意知,A (3,3)在二次函数y =x 2+bx 的图象上, 将x =3,y =3代入得9+3b =3, 解得b =-2,∴二次函数表达式为y =x 2-2x ;……………………………(2分) (2)如解图①所示,过点P 作PB ⊥QQ 1于点B ,第4题解图①∵PQ =22,且在直线y =x 上,∴PB =QB =2 ,………………………………………………(3分) 设P (a ,a ),则Q (a +2,a +2),P 1(a ,a 2-2a ),Q 1(a +2,(a +2)2-2(a +2)), 即Q 1(a +2,a 2+2a ), ∴四边形PQQ 1P 1的面积为:22(2)(22)22a a a a a a S -+++--=⨯=-2a 2+2a +2=-2(a -12)2+52,…………………………(4分) 当Q 运动到点A 时,OP =OQ -PQ =2,a =1, ∴a 的取值范围为0<a <1,∴当a =12时,四边形PQQ 1P 1的面积最大,最大值为52;…(5分) (3)存在,点E 的坐标为E 1(43,43),E 2(143,143), 如解图②所示,连接OM ,第4题解图②∵点M 为抛物线顶点, ∴M (1,-1),又∵OA 所在直线为y =x , ∴OM ⊥OA ,即∠AOM =90°,在△AOF 和△AOM 中,以OA 为底,当面积相等时,则两三角形OA 边上的高相等, 又∵OM ⊥OA ,且OM =2,∴可作两条与OA 互相平行且距离为2的直线,…………(6分)如解图②所示,在直线HD 、MC 上的点F 均满足S △AOF =S △AOM ,∴只需满足E 点的对称点F 在这两条直线上即可.如解图②,过点A 作AC ⊥MC 于点C ,易得四边形OACM 为矩形,AM 为该矩形的一条对角线,取AM 中点O ′,过O ′作AM 垂线,交OA 于点E 1,交MC 于点F 1,OA =32,∴AM ===,∴AO ′=5,∵△AO′E 1∽△AOM ,…………………………………………(7分)∴11AE AO OE AO AO AM AM '-==,∴=, 解得OE 1=423, ∵点E 1在y =x 上,∴E 1(43,43),……………………………………………………(8分) 同理可得HF 2=GE 2=423, 又∵OG =2OA =62,∴OE 2=62-423=1423,∴E 2(143,143).综上所述,符合条件的E 点的坐标为:E 1(43,43)、 E 2(143,143).…(10分)。

初中二次函数三角形面积问题研究

初中二次函数三角形面积问题研究

初中二次函数三角形面积问题研究引言在初中数学学习中,我们学习过二次函数和三角形的面积计算。

我们是否想过将这两个知识点结合起来,在实际问题中进行研究和应用呢?本文将结合二次函数和三角形面积问题进行深入探讨,通过具体的数学计算和实际案例,探索二次函数在三角形面积问题中的应用和意义,希望能够给初中生带来启发和帮助。

一、二次函数的基本概念我们先来回顾一下二次函数的基本概念。

二次函数是指一个关于自变量的二次方程,一般的二次函数可以写成 f(x) = ax^2 + bx + c的形式,在数学中,一般认为a≠0。

二次函数的图像是一个抛物线,当a>0时,抛物线开口向上,称为正向抛物线;当a<0时,抛物线开口向下,称为负向抛物线。

二次函数的图像对应了三种经典的情况,即抛物线与x轴相交成两个实根;抛物线与x轴相切成一个实根;抛物线与x轴无交点,没有实根。

二、三角形面积计算方法三角形是初中数学教学的重要内容之一,面积计算是三角形的基本技能。

三角形的面积计算有多种方法,最常用的是利用底和高的乘积再除以2,即S=1/2 * 底 * 高。

也可以通过三边长求解半周长再利用海伦公式进行计算。

对于直角三角形,我们还可以利用勾股定理进行计算。

这些方法都是计算三角形面积的有效手段,灵活运用可以更好地解决实际问题。

三、二次函数在三角形面积问题中的应用在实际问题中,我们可以通过二次函数来解决三角形面积问题。

给定一个顶点坐标为(0,0),三角形的另外两个顶点分别为(a, 0)和(b, f(b)),其中f(x)是一个已知的二次函数。

我们需要求解这个三角形的面积。

根据三角形面积计算方法,我们知道需要求解这个三角形的底和高,即底为|b-a|,高为f(b)。

三角形的面积可以表示为S=1/2 *|b-a| * f(b)。

接下来,我们以一个具体的案例来说明二次函数在三角形面积问题中的应用。

假设已知二次函数f(x)=2x^2+3x-2,在直角坐标系中,三角形的顶点A(0,0),B(1,0),C (3,f(3))。

二次函数背景下三角形面积最值问题的几种解法

二次函数背景下三角形面积最值问题的几种解法

数学篇纵观近年来各地中考数学试题,一类以二次函数为载体,探讨图形面积的最值问题频频出现.这类试题整合了代数和几何的部分重要知识,并融合了许多数学方法,难度颇高.如何根据题目提供的信息,依据图形的变化特征,抓住解答问题的关键,从而化难为易,正确解题呢?对此,笔者介绍四种常用方法,希望能给同学们攻破难题带来帮助.一、割补法在平面直角坐标系中,当三角形任意一边均不在坐标轴上,或者不与坐标轴平行时,一般采用割补法求解.割补法分为两部分,割是指将图形分解成几部分分别求解;补是指将所求图形填上一部分,然后用补后的图形面积减去所补部分的面积.两种方法的实质都是将二次函数中图形面积的最值问题通过“转化”思想,化为“线段(和)”最值问题,间接地求出图形面积的最值.例1如图1,在平面直角坐标系中,二次函数y =x 2+2x -3交x 轴于点A ,B ,在y 轴上有一点E (0,1),连接AE .(1)求直线AE 的解析式;(2)若点D 为抛物线在x 轴负半轴下方的一个动点,求△ADE面积的最大值.图1解:(1)∵y =x 2+2x -3=(x +3)(x -1),∴当y =0时,x 1=-3,x 2=1,∴点A 的坐标为(-3,0),设直线AE 的解析式为y =kx +b ,∵过点A (-3,0),E (0,1),∴ìíî-3k +b =0,b =1,解得:ìíîïïk =13,b =1,∴直线AE 的解析式为y =13x +1;(2)如图1,过点D 作DG ⊥x 轴于点G ,延长DG 交AE 于点F ,设D (m ,m 2+2m -3),则F (m ,13m +1),∴DF =-m 2-2m +3+13m +1=-m 2-53m +4,∴S △ADE =S △ADF +S △DEF=12×DF ×AG +12DF ×OG =12×3×DF =32(-m 2-53m +4)=-32(m +56)2+16924,∴当m =-56时,△ADE 的面积取得最大值为16924.二、铅垂法如图2,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可以得出一种计算三角形面积的新方法:即三角形面积等于水平宽与铅垂高乘积的一半.这种方法我们称之为铅垂法.求二次函数中三角形面积的最值,往往可以转化为求铅垂高的最值,当铅垂高取得最大值时,三角形的面积最大.二次函数背景下三角形面积最值问题的几种解法四川绵阳陈霖数苑纵横23数学篇例2已知:如图3,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?图3解:(1)∵抛物线过点B(6,0)、C(-2,0),∴设抛物线解析式为y=a(x-6)(x+2),将点A(0,6)代入,得:-12a=6,解得:a=-12,所以抛物线的解析式为y=-12(x-6)(x+2)=-12x2+2x+6;(2)如图3,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:ìíîb=6,6k+b=0,解得:ìíîk=-1,b=6,则直线AB的解析式为y=-x+6,设P(t,-12t2+2t+6),其中0<t<6,则N(t,-t+6),所以PN=PM-MN=-12t2+2t+6-(-t+6)=-12t2+3t,所以S△PAB=S△PAN+S△PBN=12PN⋅AG+12PN⋅BM=12PN(AG+BM)=12PN⋅OB=12×(-12t2+3t)×6=-32(t-3)2+272,所以当t=3,P位于(3,152)时,△PAB三、切线法切线法体现了数学中最为常见的数形结合思想,将三角形的一边作为三角形的底,只要求出高的最大值就可以求出面积的最值.将底边所在的直线平移,与抛物线只有一个交点,即相切时,两直线的距离即高的长度最大,然后将直线与抛物线的解析式联立方程组,求出切点的坐标,此时不用求出三角形面积的解析式就可直接运用三角形的面积公式求出最值.例3如图4,在平面直角坐标系xOy中,直线y=-x-4与x轴,y轴分别交于点A和点B.抛物线y=ax2+bx+c经过A,B两点,且对称轴为直线x=-1,抛物线与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S.图4解:(1)在y=-x-4中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线x=-1,可得方程组ìíîïïïï-b2a=-1,16a-4b+c=0,c=-4,解方程组可得:ìíîïïïïa=12,b=1,c=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)设点E的坐标为(m,12m2数苑纵横数学篇上且距AB 最远,此时E 点所在直线与AB 平行,且与抛物线相切,只有一个交点,设点E 所在直线为l :y =-x +b ,联立得方程组:ìíîïïy =-x +b ,y =12x 2+x -4,消去y ,得:12x 2+2x -4-b =0,据题意得Δ=22-4×12(-4-b )=0,解得b =-6,∴直线l 的解析式为y =-x -6,联立方程,得ìíîïïy =-x -6,y =12x 2+x -4,解得:ìíîx =-2,y =-4,∴点E (-2,-4),过点E 作y 轴的平行线交直线AB 于H ,此时点N (-2,-2),EN =-2-(-4)=2,∴S △ABE =12EN ×AO =12×2×4=4,△ABE 面积的最大值为4.四、三角函数法对于三角形问题,三角函数的引入可以为求线段长度提供新的解题思路.在直角三角形中,只需要知道一边的长度和除直角外任意一个角的度数,就可以用三角函数式表示出其余的边长或高.然后将三角函数式带入三角形面积公式,求出三角形面积的解析式,利用二次函数的性质即可求得面积最值.例4如图5,已知抛物线y =-x 2+bx +c 经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)设抛物线交y 轴于点C ,在抛物线上的第一象限上是否存在一点P ,使△PAC 的面积最大?若存在,求出点P 的坐标及△PAC 面积的最大值;若不存在,请说明理由.图5解:(1)把A (-1,0),B (3,0)代入y =-x 2+bx +c ,可得,{-1+b +c =0,-9-3b +c =0,解得{b =-2,c =3,∴抛物线的解析式为:y =-x 2-2x +3.(2)如图5,作PE ⊥x 轴于点E ,交AC 于点F ,作PM ⊥AC 于点M .设直线AC 的解析式为y =mx +n ,把B (-3,0)、C (0,3),代入得{-3m +n =0,n =3,解得{m =1,n =3,故直线BC 的解析式为y =x +3.设点P 的坐标为(x ,-x 2-2x +3)(-3<x <0),则点F 的坐标为(x ,x +3).由A 、C 坐标可知,AC =32,S ΔPAC =12AC ∙PM=12×32PF ∙sin ∠PFM =]()-x 2-2x +3-()x +3∙sin ∠ACO =32()-x 2-3x =-32æèöøx +322+278,当x =-32时,-x 2-2x +3=154,即P (-32,154).所以存在一点P ,使△PAC 的面积最大,最大值为278,P 点坐标为(-32,154).通过对以上四种方法的分析介绍,相信同学们对二次函数背景下三角形面积的最值问题的解法有了一定的了解.同学们只要掌握好了这四种方法,在二次函数的综合题中,再出现求图形面积的最值问题,就能轻松应对了.数苑纵横25。

求二次函数之内接三角形求面积的方法

求二次函数之内接三角形求面积的方法

S CAB

1 32 2
3
(3)、假设存在符合条件的点 P,设 P 点的横坐标为 x,△PAB 的铅垂高为 h,
则 h y1 y2 (x2 2x 3) (x 3) x2 3x
9 由 S△ PAB= 8 S△ CAB
1 3 (x2 3x) 9 3
= 1 ������������ × ������������
2
AD 即为铅垂高,BF 即为 B 点与 C 点的水平宽。
明白了这个原理,让我们一起来看一下二次函数内接三角形求面积的题型。
例题 1:
如图 12-2,抛物线顶点坐标为点 C(1,4),交 x 轴于点 A(3,0),交 y 轴于点 B.
(1)求抛物线和直线 AB 的解析式;
设直线 AB 的解析式为: y2 kx b
由 y1 x2 2x 3求得 B 点的坐标为 (0,3)
y C
BDLeabharlann 1 O1x A图 12-2
把 A(3,0) , B(0,3) 代入 y2 kx b 中,解得: k 1,b 3 ,所以 y2 x 3 .
(2)、因为 C 点坐标为(1,4),所以当 x=1时,y1=4,y2=2,所以 CD=4-2=2 ,
向下的函数,所以把二次函数一般式化成顶点式即可求出面积的最大值。
讲了这么多,相信同学们已经跃跃欲试了,请自己动手做一下面这个习题↓↓↓
得: 2
8
化简得: 4x2 12x 9 0
|PE|即为铅垂高 h,h 等于 P,E 两点纵坐标之差
x 3 解得, 2

x

3 2
代入
y1

x2

中考数学中二次函数压轴题分类总结

中考数学中二次函数压轴题分类总结

二次函数的压轴题分类复习一、抛物线关于三角形面积问题例题 二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,4-). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.练习:1. 如图.平面直角坐标系xOy 中,点A 的坐标为(-2,2),点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标; (2)求抛物线的函数解析式;(3)点F 为线段OB 上的一个动点(不与O 、B 重合),直线EF 与抛物线交与M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求∆BON 的面积的最大值,并求出此时点N 的坐标;yBAMEF2. 如图,已知抛物线4212++-=x x y 交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式;(2)设),(y x P (0>x )是直线x y =上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作正方形PEQF .若正方形PEQF 与直线AB 有公共点,求x 的取值范围;(3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值.二、抛物线中线段长度最小问题例题 如图,对称轴为直线x =-1的抛物线y =ax 2+bx +c (a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(-3,0). (1)求点B 的坐标;(2)已知a =1,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且S △POC =4S △BOC ,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴,QD 交抛物线于点D ,求线段QD 长度的最大值.OABP EQFxyEN MDCBAOyx练习:1. 如图, Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上.(1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.三、抛物线与线段和最小的问题例题 如图,已知抛物线()()()120y x x a a a=-+>与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线过点M (﹣2,﹣2),求实数a 的值; (2)在(1)的条件下,解答下列问题; ①求出△BCE 的面积;②在抛物线的对称轴上找一点H ,使CH+EH 的值最小,直接写出点H 的坐标.练习:1. 如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1, 0)和点B (0,-5). (1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P ,使得△ABP2. 如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出H 的坐标;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大?并求出最大面积.四、抛物线与等腰三角形例题:已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习:1. .如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线12 x=-(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.2. 如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.3. 如图,已知抛物线于x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形,若存在,求出符合条件的点P的坐标;若不存在,请说明理由:(3)若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标。

专题 二次函数与面积有关的问题(知识解读)-中考数学(全国通用)

专题  二次函数与面积有关的问题(知识解读)-中考数学(全国通用)

专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。

特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。

与面积有关的问题,更是常见。

本节介绍二次函数考试题型种,与面积问题的常用解法。

同学们,只要熟练运用解法,炉火纯青,在考试答题的时候,能够轻松答题。

【知识点梳理】类型一:面积等量关系类型二:面积平分方法一:利用割补将图形割(补)成三角形或梯形面积的和差,其中需使三角形的底边在坐标轴上或平行于坐标轴;(例如以下4、5两图中,连结BD解法不简便。

)方法二: 铅锤法铅锤高水平宽⨯=21S方法三 :其他面积方法如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比. 如图3,同高三角形的面积比等于底的比.如图1 如图2 如图3【典例分析】【类型一:面积等量关系】【典例21】(2022•盘锦)如图,抛物线y =x 2+bx +c 与x 轴交于A ,B (4,0)两点(A 在B 的左侧),与y 轴交于点C (0,﹣4).点P 在抛物线上,连接BC ,BP .(1)求抛物线的解析式;(2)如图1,若点P 在第四象限,点D 在线段BC 上,连接PD 并延长交x 轴于点E ,连接CE,记△DCE的面积为S1,△DBP的面积为S2,当S1=S2时,求点P的坐标;【变式1】(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A (﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.【类型二:面积平分】【典例2】(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;【变式2】(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为1:5两部分,求点P的坐标.【典例3】(深圳)如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB =OC.(1)求抛物线的解析式及其对称轴;(2)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.【变式3】(2021秋•合川区)如图,抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(6,0),与y轴交于点C,点P为第一象限内抛物线上一动点,过点P作x轴的垂线,交直线BC于点D,交x轴于点E,连接PB.(1)求该抛物线的解析式;(2)当△PBD与△BDE的面积之比为1:2时,求点P的坐标;专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法
二次函数中三角形面积问题的三种求解方法
求二次函数中三角形面积问题是一个常见的数学问题,很多学生和老师都有求解它的困惑。

那么,我们应该如何求解这个问题呢?答案是:有三种求解方法。

第一种求解方法是使用牛顿勒让公式进行计算。

牛顿勒让公式是一种高级数学方法,它试图用参数表示二次函数上的点,然后把它们连接起来从而确定三角形的面积。

第二种求解方法是使用初等函数进行计算。

初等函数是指利用函数的一阶导数或二阶导数计算函数的极值,进而求得存在的三角形的面积。

第三种求解方法是使用微积分中的定积分。

定积分是指将该函数在指定的范围内进行积分,解出积分值,从而得出三角形的面积。

通过以上三种方法,我们可以求出二次函数中三角形的面积。

其中,牛顿勒让公式是一种高级数学方法,初等函数是一种直接使用函数的导数,定积分是把函数分段积分的方法。

而这三种方法对求解二次函数中三角形面积问题都有用处,都可以取得精确而完整的结果。

二次函数三角形面积

二次函数三角形面积

二次函数三角形面积二次函数是高中数学中的重要内容之一,而二次函数与三角形面积之间的关系也是数学中的一个经典问题。

本文将通过简单的例子和详细的讲解,介绍二次函数与三角形面积的关系。

我们来看一个简单的例子:假设有一个三角形,它的底边长为3,高为2。

我们想要求这个三角形的面积。

这时我们可以使用二次函数来求解。

二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数,x为自变量,y为因变量。

而三角形的面积可以通过底边长和高来计算,公式为S = 1/2 * 底边长 * 高。

我们可以将三角形的面积S表示为二次函数的形式,即S = ax^2 + bx + c。

由于我们已知底边长为3,高为2,代入公式可得2 = a * 3^2 + b * 3 + c。

接下来,我们需要求解二次函数的系数a、b、c。

由于已知三个点(3,2),我们可以通过代入这三个点的坐标来求解。

代入第一个点(3,2),可得2 = 9a + 3b + c。

接着,代入第二个点(0,c),可得c = a * 0^2 + b * 0 + c,即 c = c。

最后,代入第三个点(-3,2),可得2 = 9a - 3b + c。

通过以上三个方程,我们可以解得a、b、c的值。

进一步求解,我们可以得到二次函数的解析式。

在得到二次函数的解析式之后,我们可以进一步求解三角形的面积。

将求得的系数a、b、c代入二次函数的解析式中,我们可以得到三角形的面积函数S(x)。

通过对S(x)进行化简,我们可以得到一个简化的表达式,即二次函数与三角形面积的关系式。

在进一步讨论之前,我们可以先来看一下二次函数的图像。

由于二次函数是一个抛物线,它的图像可以分为两种情况:开口向上和开口向下。

当二次函数的系数a大于0时,它的图像开口向上;当系数a小于0时,它的图像开口向下。

对于开口向上的二次函数,它的最低点即为抛物线的顶点。

而顶点的横坐标就是二次函数的极值点。

我们可以通过求导来找到这个极值点。

中考数学专题复习教案 二次函数中的面积问题

中考数学专题复习教案 二次函数中的面积问题

教学目标1.掌握利用二次函数的解析式求出相关点的坐标,从而得出相关线段的长,利用割补法求图形的面积,会将非轴边图形转化为轴边图形.2.通过解决二次函数背景下的三角形面积问题,体会数形结合思想和转化思想的应用.3.通过解决已知三角形的面积关系得出相关线段的长,从而求出点的坐标的问题,体会分类讨论思想和数形结合思想的应用.教学重点解决二次函数背景下的三角形面积问题,体会分类讨论思想、转化思想的运用.教学难点由已知面积问题,转化为点线距问题,通过作平行线,得出等面积,体会平行条件下的等积变形.问题情境师生活动设计意图活动一活动一.已知抛物线223y x x=+-与x轴交于A、B两点,其中A点位于B点的左侧,与y轴交于C点,顶点为P.(1)写出下列点的坐标:A____,B___,C____,P____.(2)求出下列线段的长:AO=____,CO=___,AB=___.(3)写出下列三角形的面积S△AOC=____,S△PAB=____,S△COP=____.(4)求出△APC的面积.师:本节课我们进行一个专题学习:二次函数中的面积问题-----三角形面积.教师板书课题.学生独立完成第(1)(2)(3)小题,并口答.教师板书知识框图.师生得出第(3)小题中的三角形的共同特征, 总结求轴边三角形面积的方法.第(4)小题学生独立进行求解,教师巡视,了解学生采用的不同方法,然后让学生讲解思路.师生共同总结:利用割补法,将非轴边图形转化为轴边图形求面积.并观察特征,发现它是直角三角形,可直接求解.体会通法与特法.通过活动一的学习,学生掌握已知二次函数的解析式,求出相关点的坐标,得出线段的长,研究三角形的面积的问题,总结利用割补法将非轴边图形转化为轴边图形求解.课题二次函数中的面积问题----三角形面积第1页共3页第2页 共3页(请尝试用不同的方法求解) 活动二活动二.已知抛物线的顶点P 的坐标为(1,4),交y 轴于点C (0,3).(1) 求抛物线的解析式,并求出 抛物线与x 轴的交点A 、B 的坐标(A点在B点的左侧).(2)抛物线上是否存在一点D ,使△ABD 的面积等于△ABC 的面积,如果存在,求出点D 的坐标;若不存在,请说明理由. (3)抛物线上是否存在一点E ,使△ECB的面积等于△PCB 的面积,如果存在,求出点E 的坐标,若不存在,请说明理由.学生独立完成第(1)小题,并回答.学生独立思考第(2)小题,然后由学生来讲解解题思路.教师关注由线段的长转化为点的坐标时,是否进行了分类讨论.利用平行线间的距离处处相等,体会平行条件下的等积变形,得出“过已知点作已知线段的平行线”的方法,并根据位置进行分类讨论,得出另一条平行线,突破本题的难点. 学生先独立思考第(3)小题,教师了解情况,及时进行引导,仍然运用“平行线间距离处处相等”的性质,得出过已知点作已知线段的平行线的方法,然后根据图形位置,进行分类讨论.活动二已知三角形的面积关系,得出线段的长,利用平行线间的距离处处相等,得出作平行线的方法,体会平行条件下的等面积问题.运用分类讨论思想,求出符合条件的所有点的坐标.活 动 三小结:由学生总结本节课的收获.学生结合框图和例题进行总结, 教师强调:由线段的长到点的坐标需进行分类讨论,体会数形结合思想、转化思想、分类讨论思想的应用.总结本节课的内容板书设计:二次函数中的面积问题-----三角形的面积绝对值第3页 共3页例2.(2)解: (3)点的坐 标 分类 讨论非轴边图形线段的长 图形 面积轴边图形转 化割 补 二次函数解析式 (及其它函数点线距点 点距。

二次函数与三角形最大面积的3种求法

二次函数与三角形最大面积的3种求法

二次函数与三角形最大面积的3种求法一.解答题(共7小题)1.(2012•广西)已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.2.(2013•茂名)如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).(1)求a的值和抛物线的顶点坐标;(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.3.(2011•茂名)如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标;(3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.第1页(共12页)4.(2012•黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M.(1)求抛物线对应的函数解析式和对称轴;(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标;(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由.5.(2013•新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.6.(2009•江津区)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.7.如图,已知二次函数y=ax2+bx+c经过点A(1,0),C(0,3),且对称轴为直线x=﹣1.(1)求二次函数的表达式;(2)在抛物线上是否存在点P,使△PAB得面积为10,请写出所有点P的坐标.二次函数与三角形最大面积的3种求法参考答案与试题解析,解得=1,解得(PN OA(y×(,(=((﹣+时,x=+2x+3=,∴(,,)﹣×﹣﹣﹣﹣﹣(()+∴顶点坐标为(﹣,x x+2,,解得y=y=×y=,解得x﹣于点,x+2﹣×(﹣的坐标为(﹣BC==,y=x x+4=(,==5t﹣﹣t+4,﹣t+4x+4﹣(t﹣﹣NG+NG OC=(﹣t),t=时,,t=,得:y=t+4=,﹣,y=(=﹣x+4=﹣==5t﹣﹣x+4,﹣x+4﹣(t﹣﹣NG+CE=OC=(﹣t),t=时,,t=,得:y=t+4=,﹣5.(2013•新疆),解得,解得联立,﹣x=,﹣=,,﹣,﹣1=×=,=3×,此时,﹣..((解得﹣BE PE+((﹣时,=时,﹣,))根据题意得:AB。

二次函数与三角形的面积问题

二次函数与三角形的面积问题

二次函数与三角形的面积问题【教学目标】1.能够根据二次函数中不同图形的特点选择合适的方法解答图形的面积。

2.通过观察、分析、概括、总结等方法了解二次函数面积问题的基本类型,并掌握二次函数中面积问题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。

3.掌握利用二次函数的解析式求出相关点的坐标,从而得出相关线段的长度,利用割补方法求图形的面积。

【教学重点和难点】1.运用2铅垂高水平宽⨯=s;2.运用y;3.将不规则的图形分割成规则图形,从而便于求出图形的总面积。

【教学过程】类型一:三角形的某一条边在坐标轴上或者与坐标轴平行例1.已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求:(1)抛物线解析式;(2)抛物线与x轴的交点A、B,与y轴交点C;(3)求下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。

解题思路:求出函数解析式________________;写出下列点的坐标:A______;B_______;C_______;求出下列线段的长:AO________;BO________;AB________;OC_________。

求出下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。

一般地,这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标;3.求出相关线段的长;4.选择合适方法求出图形的面积。

变式训练1.如图所示,已知抛物线()02≠++=a c bx ax y 与x 轴相交于两点A ()0,1x , B ()0,2x ()21x x <,与y 轴负半轴相交于点C ,若抛物线顶点P 的横坐标是1,A 、 B 两点间的距离为4,且△ABC 的面积为6。

(1)求点A 和B 的坐标; (2)求此抛物线的解析式; (3)求四边形ACPB 的面积。

类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。

(歪歪三角形拦腰来一刀)关于2铅垂高水平宽⨯=∆S 的知识点:如图1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半.想一想:在直角坐标系中,水平宽如何求?铅垂高如何求?例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D y ; 铅垂高D C y y CD -=,注意线段的长度非负性;分析P 点在直线AB 的上方还是下方?xA BOCyPBC铅垂高水平宽 ha 图1图-2xCOy ABD 1 1变式训练2.如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△P AB是否有最大面积?若有,求出此时P点的坐标及△P AB的最大面积;若没有,请说明理由.变式训练3.如图,抛物线cbxxy++-=2与x轴交于A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.一般地,①所谓的铅垂高度,实际上就是横坐标相同的两个点的纵坐标差的绝对值,数学表达式为DC y y CD-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016中考数学复习-二次函数与三角形的面积问题
二次函数与三角形的面积问题
1.运用
2铅垂高
水平宽⨯
=
s;
2.运用y;
3.将不规则的图形分割成规则图形,从而便于求出图形的总面积。

类型一:三角形的某一条边在坐标轴上或者与坐标轴平行
例1.已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求:
(1)抛物线解析式;
(2)抛物线与x轴的交点A、B,与y轴交点C;
(3)求下列图形的面积△ABD、△ABC、△
ABE、△OCD、△OCE。

一般地,这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标;3.求出相关线段的长;4.选择合适方法
求出图形的面积。

训练1.如图所示,已知抛物线()
02
≠++=a c bx ax y 与x 轴相交于
两点A ()0,1
x , B ()0,2
x ()2
1
x x
<,与y 轴负半轴相交于点C ,若抛物线
顶点P 的横坐标是1,A 、 B 两点间的距离为4,且△ABC 的面积为6。

(1)求点A 和B 的坐标; (2)求此抛物线的解析式; (3)求四边形ACPB 的面积。

类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。

(歪歪三角形拦腰来一刀)
关于2
铅垂高
水平宽⨯=

S
的知识点:如图1,过△ABC 的
三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.
x A B O C
y B
铅垂高
水平宽
h
a
图1
我们可得出一种计算三角形面积的新方法:ah S
ABC
2
1=
∆,即
三角形面积等于水平宽与铅垂高乘积的一半.
想一想:在直角坐标系中,水平宽如何求?铅垂高如何求?
例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB
S
∆;(3)是否存在一点P ,使S
△PAB =8
9
S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.
解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D
y ;
铅垂高D
C
y y CD -=,注意线段的长度非负性;分析P 点在直线AB
的上方还是下方?
图-2
x
C O y A
B
D
1
1
训练2.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.
C
B
A
O
y
x
D
B
A
O
y
x
P
(3)
x
y
A B
C
P
E O
x
y A B C
Q O
训练 3.如图,抛物线
c
bx x y ++-=2与x 轴交于
A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在()中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.
一般地,①所谓的铅垂高度,实际上就是横坐标相同的两个点的纵坐标差的绝对值,数学表达式为
D
C y y C
D -=。

为了保证这个差值是正数,同学们可以用在铅垂线上靠上点的纵坐标减去靠下点的纵坐标.
因此,求出点D 的坐标,是求铅垂高度CD 的关键;
②所谓的水平宽,实际上就是,两个点的横坐标差的绝对值,数学表达式为
B
A x x A
B -=.为了保证这个
差值是正数,同学们可以用这两个靠右点的横坐标减去靠左点的横坐标.因此,求出点A 、B 的坐标,是求水平宽的关键.
③在解这类存在性问题时,通常先假设所要的点是存在的,然后利用给出的条件,认真加以推理求解.
练习
1.已知如图,矩形OABC 的长3,宽OC=1,将△AOC 沿AC 翻折得△APC 。

(1)填空:∠PCB=____度,P 点坐标为( , );
(2)若P ,A 两点在抛物线y=-43
x 2+bx+c 上,求b ,c 的值,并说明点C 在此抛物线上; (3)在(2)中的抛物线CP 段(不包括C ,P 点)上,是否存在一点M ,使得四边形MCAP 的面积最大?若存在,求出这个最大值及此时M 点的坐标;若不存在,请说明理由。

第1题图
2.如图①,已知抛物线3
2+
y(a≠0)与x轴交于点
=bx
ax
+
A(1,0)和点B(-3,0),与y轴交于点C.(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
图①图②
3.如图,在平面直角坐标系中,二次函数c
+
=2的图
x
y+
bx
象与x轴交于A、B
两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,
点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP/C,那么是否存在点P,使四边形POP/C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四
边形ABPC的面积最大并求出此时
P点的坐标和四边形ABPC的最大
面积.
4.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .
(1)求抛物线的函数解析式,并写出顶点D 的坐标;
(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;
(3)若点K 在x 轴上方的抛物线上运动,
当K 运动到什么位置时,△EFK 的面积
最大?并求出最大面积.
K N C E D G A x y O B F。

相关文档
最新文档