常用逻辑用语测试题2

合集下载

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.下列选项中,p 是q 的必要不充分条件的是( )A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 3.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤0 4.命题“a ∀∈R ,20a >或20a =”的否定形式是( )A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.“x y <”是“1122log log x y >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.命题“,40x x ∀∈>R ”的否定是( ) A .,40x x ∀∉<R B .,40x x ∀∈≤R C .00,40xx ∃∉<RD .00,40x x ∃∈≤R8.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( ) A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥9.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭10.命题“21,1x x ∀>>”的否定是( ) A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -12.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要二、填空题13.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________. 14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 15.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;16.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________. 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________. 20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.三、解答题21.已知2:760p x x -+≤,22:230q x ax a -≤-.(1)若1a =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围. 23.已知集合{}3A x x a =<+,501x B x x ⎧⎫-=>⎨⎬+⎩⎭.(1)若2a =-,求()RAB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 24.命题:p 函数()0,1xy cc c =>≠是R 上的单调减函数;命题:120q c -<.若p q∨是真命题,p q ∧是假命题,求常数c 的取值范围.25.在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. 26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.A解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.3.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.A解析:A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l , 若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件, 故选:A6.B解析:B 【分析】根据充分条件、必要条件的定义判断即可; 【详解】解:若0x y <<,则1122log log x y >不成立,故不具有充分性,因为12log y x =单调递减,若1122log log x y >,所以x y <,故有必要性,故选:B .7.D解析:D 【分析】利用全称命题的否定可得出结论. 【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D.8.C解析:C 【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可. 【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>. 故选:C9.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.10.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A12.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.二、填空题13.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②15.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥, 故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.16.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.【分析】等价于在恒成立即得解【详解】命题使是真命题等价于时恒成立所以在恒成立所以故答案为:【点睛】本题主要考查全称命题的真假求参数的问题的求解意在考查学生对该知识的理解掌握水平解析:0a ≤. 【分析】等价于2a x ≤在x ∈R 恒成立,即得解. 【详解】命题“x R ∀∈,使20x a -≥”是真命题等价于x ∈R 时,2x a ≥恒成立. 所以2a x ≤在x ∈R 恒成立, 所以0a ≤. 故答案为:0a ≤ 【点睛】本题主要考查全称命题的真假求参数的问题的求解,意在考查学生对该知识的理解掌握水平.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假. 【详解】解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】 解:p 是q 的充分而不必要条件,p q ∴⇒,20x x a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.(1)(][)1,13,6-;(2)(,6][2,)-∞-⋃+∞.【分析】(1)分别解二次不等式求出命题p 、q 为真命题时x 的范围,由已知条件可得p ,q 一真一假,讨论p 真q 假、p 假q 真即可求解;(2)若p 是q 的充分不必要条件,可得不等式2760x x -+≤的解集是不等式22230x ax a --≤解集的真子集,讨论0a ≥和0a <时22230x ax a --≤的解集,借助数轴即可求解. 【详解】(1)由276(1)(6)0x x x x -+=-≤-,解得16x ≤≤.当1a =时,由223(3)(1)0x x x x --=-≤+,解得13x -≤≤. 因为“p q ∨”为真命题,“p q ∧”为假命题,所以p ,q 一真一假. 当p 真q 假时,[]1,6x ∈且(,1)(3,)x ∈-∞-⋃+∞,所以(]3,6x ∈; 当p 假q 真时,()(,6,1)x ∈-∞+∞且[]13,x ∈-,所以[)1,1x ∈-.故实数x 的取值范围为(][)1,13,6-.(2)根据(1)知,:16p x ≤≤.因为22:23(3)()0q x ax a x a x a -=-+≤-,且p 是q 的充分不必要条件,所以当0a ≥时,:3q a x a -≤≤,则136a a -≤⎧⎨≥⎩,解得2a ≥;当0a <时,:3q a x a ≤≤-, 则31,6a a ≤⎧⎨-≥⎩,解得6a ≤-. 综上,实数a 的取值范围为(,6][2,)-∞-⋃+∞. 【点睛】结论点睛:用集合的观点看充分不必要条件:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}12x x <<;(2)2m ≥ 【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解. 【详解】 (1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<;(2)若x ∈A 是x ∈B 的充分不必要条件,则A B , 1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1){}11x x -<≤;(2)(],4-∞-.【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤, 当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-.24.()10,1,2⎛⎤+∞ ⎥⎝⎦.【分析】由p q ∨是真命题,p q ∧是假命题,得到,p q 一真一假,分两种情况,求出c 的范围.【详解】解:∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个是真命题,一个是假命题.若p 真q 假,则有01,120,c c <<⎧⎨-≥⎩解得012c <≤; 若p 假q 真,则有1,120,c c >⎧⎨-<⎩解得1c >. 综上可知,满足条件的c 的取值范围是()10,1,2⎛⎤+∞ ⎥⎝⎦.本题考查了命题真假的应用,逻辑连结词的理解与应用,还考查转化与化归思想,分类讨论思想,属于中档题.25.(1)见解析;(2)见解析.【分析】(1)直线方程与抛物线方程联立,消去x 后利用韦达定理判断2121212121()4OA OB x x y y y y y y ⋅=+=+的值是否为3,从而确定此命题是否为真命题; (2)根据四种命题之间的关系写出该命题的逆命题,然后再利用直线与抛物线的位置关系知识来判断其真假.【详解】(1)证明:设过点(,)30T 的直线l 交抛物线22y x =于点1122(,),(,)A x y B x y ,当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l 与抛物线相交于(3,A B ,所以963OA OB ⋅=-=,当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,22(3)y x y k x ⎧=⎨=-⎩,得2260ky y k --=, 则126y y =-, 又因为22112211,22x y x y ==, 所以212121212136()6344OA OB x x y y y y y y ⋅=+=+=-=, 综上所述,命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题;(2)逆命题是:“设直线l 与抛物线2y =2x 相交于A 、B 两点,如果OA OB ⋅=3,那么该直线过点2(1)3y x =+”,该命题是假命题, 例如:取抛物线上的点1(2,2),(,1)2A B ,此时OA OB ⋅=3,直线AB 的方程为2(1)3y x =+,而T (3,0)不在直线AB 上. 【点睛】该题考查的是有关判断命题真假的问题,涉及到的知识点有四种命题之间的关系,直线与抛物线的位置关系,向量的数量积,属于简单题目.26.(1)112a >;(2)11124a <<.(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。

高二数学第一章 常用逻辑用语测试题及答案

高二数学第一章 常用逻辑用语测试题及答案

高二数学(选修1-1 第一章 常用逻辑用语)姓名:_________班级:________ 得分:________一:选择题1、判断下列语句是真命题的为( ). (供题)A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>151.已知P :A ∩¢=¢,Q: A ∪¢=A,则下列判断错误的是( )(铁一中 张爱丽 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )(十二厂 闫春亮 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。

( 金台中学 唐宁 供题 两个数学符号教材未涉及,可以换为文字语言)A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2.在下列命题中,真命题是( )(十二厂 闫春亮 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2.在下列命题中,真命题是( )(铁一中 张爱丽 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2. “2x >”是“24x >”的( ). (斗鸡中学 张永春 供题)A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.已知P:(2x -3)2<1, Q:x(x -3)<0, 则P 是Q 的( )(铁一中 张爱丽 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件2、设,,l m n 均为直线,其中,m n 在平面a 内,则“”l α⊥是“l m ⊥且”l n ⊥的( )( 金台中学 唐宁 供题)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ). (斗鸡中学 张永春 供题)A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )(十二厂 闫春亮 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件二:填空题11.在下列四个命题中,①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件正确的有________.(填序号)(斗鸡中学 张永春 供题)11、已知命题p :x ∀∈R ,sin x x >,则p ⌝形式的命题是__ ( 金台中学 唐宁 供题)三:解答题15.已知集合{}{}22320,20A x x x B x x x m =-+==-+=且AB A =,求m 的取值范围.(斗鸡中学 张永春 供题)17.(命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。

常用逻辑用语测试题

常用逻辑用语测试题

选修2-1常用逻辑用语测试题一.选择题(每小题5分,共60分)1.一个命题与他们的逆命题、否命题、逆否命题这4个命题中( )A 真命题与假命题的个数相同B 真命题的个数一定是奇数C 真命题的个数一定是偶数D 真命题的个数可能是奇数,也可能是偶数 2.(06天津)设集合M={x|0<x ≤3},N={x|0<x ≤2},那么“a ∈M”是“a ∈N”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 3.下列命题中正确的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题②“正多边形都相似”的逆命题③“若m>0,则x 2+x -m=0有实根”的逆否命题④“若3-x 是有理数,则x 是无理数”的逆否命题 A ①②③④ B ①③④ C ②③④ D ①④ 4.(05北京)“m=21”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 5.“a ≠1或b ≠2”是“a +b ≠3”的() A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要 6.“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题( ) A 若x =a 且x =b ,则x 2-(a +b )x +ab =0B 若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0D 若x =a 或x =b ,则x 2-(a +b )x +ab =07.(06北京)若a 与b -c 都是非零向量,则“a ·b =a•c ”是“a ⊥(b -c )”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分又不必要条件8.(07山东)命题“对任意的R x ∈, 0123≤+-x x ”的否定是( ) A 不存在R x ∈,0123≤+-x x B 存在R x ∈,0123≤+-x xC 存在R x ∈, 0123>+-x xD 对任意的R x ∈,0123>+-x x9.(04天津)已知数列{a n },那么“对任意的n ∈N *,点P n (n,a n )都在直线y=2x+1上”是“{a n }为等差数列”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分又不必要条件10.数列{a n }的前n 项和S n =2•3n-a,“a=2”是“数列{a n }为公比等于3的等比数列”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 11.已知p :{}0⊆∅,q :∅⊆∅,则命题q p ∨, q p ∧和p ⌝形式的命题中,真命题个数为( )A0 B1 C2 D312.(07湖北)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s的必要条件,现有下列命题:①r 是q 的充要条件; ②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④┐p 是┑s 的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是 A ①④⑤ B ①②④ C ②③⑤ D ②④⑤ 二.填空题(每小题4分,共16分) 13.命题“若ab=0,则a 、b 至少有一个为0”的的逆否命题是14.用符号“∀”与“∃”表示含有量词的命题: (1)实数的平方大于等于0_____(2)存在一对实数,使2x +3y +3>0成立_________ 15.关于x 的方程062)1(22=++-+a x a x 有一正一负两实数根的充要条件是 16.集合}1{>=x x A ,}2{<=x x B ,则“B x A x ∈∈或 ”是“B A x ∈”的 条件 三.解答题(共74分) 17.写出命题:“若1<m ,则042=++m x x 有实数根”的逆否命题,并判断真假,给出理由18.若022>++bx ax 的充要条件是⎭⎬⎫⎩⎨⎧<<-3121x x ,试求a+b 的值19. 01,0200>-+∈∃x ax R x ,求a 的取值范围20.ABC ∆中A ,B 的对边分别是a ,b ,证明:A>B 的充要条件是sinA>sinB21.已知a>0且a ≠1,设p:函数y =a x在(-∞,+∞)上是减函数;q:方程0212=++x ax 有两个不等的实数根.若“p ∧q ”为假命题,“p ∨q ”为真命题,求a 的取值范围22.已知2311:≤--x p , 012:22≤-+-m x x q ,且p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围答案CBBAB DCCACC CB13.若a ≠0且b ≠0,则ab ≠0 14.(1)∀R x ∈,02≥x(2) ∃(x,y)∈{(x,y)∣x ∈R ,y ∈R},2x+3y+3≥0 15.a<-316.必要不充分17.若042=++m x x 无实数根,则1≥m ,真命题18.-14 19.a>-1/4 20.略21.1/2≤a<122.m ≤-9,或m ≥9。

高中数学 第一章 常用逻辑用语单元测试(二)新人教A版高二选修2-1数学试题

高中数学 第一章 常用逻辑用语单元测试(二)新人教A版高二选修2-1数学试题

word第一章 常用逻辑用语注意事项:1.答题前,先将自己的某某、某某号填写在试题卷和答题卡上,并将某某号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知原命题“若2a b +>,则a 、b 中至少有一个不小于1”,原命题与其逆命题的真假情况是( ) A .原命题为假,逆命题为真 B .原命题为真,逆命题为假 C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题2.已知命题p :∀x ∈R ,0x a >(a >0且a ≠1),则( ) A .¬p :∀x ∈R ,0x a ≤ B .¬p :∀x ∈R ,0x a > C .¬p :0x ∃∈R ,00x a >D .¬p :0x ∃∈R ,00x a ≤3.若命题“p ∧q ”为假,且“¬p ”为假,则( ) A .p 或q 为假 B .q 为假C .q 为真D .不能判断q 的真假4.“a =-3”是“圆22=1x y +与圆()224x a y ++=相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知p 是R 的充分不必要条件,s 是R 的必要条件,q 是s 的必要条件,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.设x 、y 、z ∈R ,则“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知命题p :对任意x ∈R ,总有20x >;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝8.命题“t a n x =0”是命题“co sx =1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.已知命题p :“对x ∀∈R ,m ∃∈R ,使4210x x m ++=”.若命题¬p 是假命题, 则实数m 的取值X 围是( ) A .-2≤m ≤2 B .m ≥2C .m ≤-2D .m ≤-2或m ≥210.下列命题中,错误的是( )A .命题“若2560x x -+=,则x =2”的逆否命题是“若x ≠2,则2560x x -+≠”B .已知x ,y ∈R ,则x =y 是22x y xy +⎛⎫≥ ⎪⎝⎭成立的充要条件C .命题p :x ∃∈R ,使得210x x ++<,则¬p :x ∀∈R ,则210x x ++≥D .已知命题p 和q ,若p q ∨为假命题,则命题p 与q 中必一真一假 11.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;word②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆2212x y +=相切. 其中真命题的序号是( ) A .①②③B .①②C .①③D .②③12.设a 、b ∈R ,现给出下列五个条件:①a +b =2;②a +b >2;③a +b >-2; ④ab >1;⑤log ab <0,其中能推出:“a ,b 中至少有一个大于1”的条件为( ) A .②③④ B .②③④⑤C .①②③⑤D .②⑤二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.命题“若|x |>1,则x >1”的否命题是__________________.(填“真”或“假”) 14.写出命题“若方程()200ax bx c a -+=≠的两根均大于0,则0ac >”的一个等价命题是______________________________________________.15.已知p (x ):220x x m +->,如果p (1)是假命题,p (2)是真命题,则实数m 的取值X 围是__________________.16.若p 的逆命题是r ,r 的否命题是s ,则s 是p 的否命题的__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)命题:已知a 、b 为实数,若关于x 的不等式20x ax b ++≤有非空解集,则240a b -≥,写出命题的逆命题、否命题、逆否命题,并判断这些命题的真假.18.(12分)写出下列命题的否定,并判断其真假: (1)p :∀m ∈R ,方程20x x m +-=必有实数根; (2)q :∃x ∈R ,使得210x x ++≤.word19.(12分)已知P ={x |a -4<x <a +4},{}2430Q x x x =-+<,且x P ∈是x Q ∈的必要条件,某某数a 的取值X 围.20.(12分)已知命题p :1,[]1m -∀∈,不等式253a a --≥;命题q :∃x ,使不等式220x ax ++<.若p 或q 是真命题,¬q 是真命题,求a 的取值X 围.word21.(12分)求使函数()()()2245413f x a a x a x +---+=的图象全在x 轴上方成立的充要条件.22.(12分)已知命题p :方程2220x ax a +-=在[-1,1]上有解;命题q :只有一个实数0x 满足不等式200220x ax a ++≤,若命题“p 或q ”是假命题,求a 的取值X 围.word2018-2019学年选修2-1第一章训练卷常用逻辑用语(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】逆否命题为:a ,b 都小于1,则a +b ≤2是真命题,所以原命题是真命题, 逆命题为:若a 、b 中至少有一个不小于1,则2a b +>,例如,当a =2,b =﹣2时,满足条件,当()220a b +=+-=,这与2a b +>矛盾,故为假命题.故选B . 2.【答案】D【解析】∵命题p 为全称命题,∴¬p 为特称命题,由命题的否定只否定结论知0x a >的否定为0xa ≤,∴故选D . 3.【答案】B【解析】∵“¬p ”为假,∴p 为真,又∵p ∧q 为假,∴q 为假,p 或q 为真.故选B . 4.【答案】A【解析】当3a =-时,圆()2234x y -+=的圆心为()3,0,半径12R =, 与圆221x y +=相外切,当两圆相内切时,a =±1,故选A . 5.【答案】A【解析】图示法/p R s q⇒⇐⇒⇒,故/q p ⇒,否则q ⇒p ⇒R ⇒q ⇒p ,则R ⇒p ,故选A . 6.【答案】A【解析】由题意得,“lg y 为lg x ,lg z 的等差中项”,则22lg lg lg y x z y xz =+⇒=,则“y 是x ,z 的等比中项”;而当2y xz =时,如1x z ==,1y =-时,“lg y 为lg x ,lg z 的等差中项”不成立, 所以“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的充分不必要条件, 故选A . 7.【答案】D【解析】命题p 是真命题,命题q 是假命题,所以选项D 正确.判断复合命题的真假,要先判断每一个命题的真假,然后做出判断. 8.【答案】B【解析】x =π时,t a n x =0,但co sx =-1;co sx =1时,s in x =0,故t a n x =0. 所以“t a n x =0”是“co sx =1”的必要不充分条件. 9.【答案】C【解析】由题意可知命题p 为真,即方程4210x x m ++=有解,∴4122x x m +=-≤--,当且仅当0x =时取等号,所以m ≤-2.10.【答案】D【解析】由逆否命题的定义知A 正确;当x =y 时,22x y xy +⎛⎫≥ ⎪⎝⎭成立;22x y xy +⎛⎫≥ ⎪⎝⎭||2x y +≥,故x =y ,∴B 为真命题;由特称命题的否定为全称命题知C 为真命题;∵p q ∨为假,∴p 假且q 假,∴D 为假命题. 11.【答案】C【解析】对于①,设球半径为R ,则34π3V R =,12R R =, ∴33141π1π3268R V R V ⎛⎫=⨯== ⎪⎝⎭,故①正确; 对于②,两组数据的平均数相等,标准差一般不相等; 对于③,圆心()0,0,圆心()0,0到直线的距离d =,故直线和圆相切,故①,③正确. 12.【答案】D【解析】①2a b +=可能有1a b ==;word②a +b >2时,假设a ≤1,b ≤1,则a +b ≤2矛盾; ③a +b >-2可能a <0,b <0; ④ab >1,可能a <0,b <0;⑤log ab <0,∴0<a <1,b >1或a >1,0<b <1,故②⑤能推出.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】真【解析】原命题的否命题为“若|x |≤1,则x ≤1”, ∵|x |<1,∴-1<x <1,故原命题的否命题为真命题.14.【答案】若a c≤0,则方程()200ax bx c a -+=≠的两根不全大于0. 【解析】根据原命题与它的逆否命题是等价命题可直接写出. 15.【答案】3≤m <8【解析】∵p (1)是假命题,p (2)是真命题,∴3080m m -≤⎧⎨->⎩,解得3≤m <8.16.【答案】逆命题【解析】解法1:依据四种命题的关系图解.由图示可知?处应为互逆关系. 解法2:用特殊命题探究p :若x >2,则x >1,r :若x >1,则x >2,s :若x ≤1,则x ≤2,p 的否命题:若x ≤2,则x ≤1,故s 是p 的否命题的逆命题.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】逆命题,已知a 、b 为实数,若240a b -≥,则关于x 的不等式20x ax b ++≤有非空解集.否命题:已知a 、b 为实数,若关于x 的不等式20x ax b ++≤没有非空解集, 则240a b -<.逆否命题:已知a 、b 为实数,若240a b -<,则关于x 的不等式20x ax b ++≤没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题. 18.【答案】(1)见解析;(2)见解析.【解析】(1)¬p :∃m ∈R ,使方程20x x m +-=无实数根.若方程20x x m +-=无实数根,则140Δ=m +<,∴14m <-,∴¬p 为真.(2)¬q :∀x ∈R ,使得210x x ++>.∵22131024x x x ⎛⎫++=++> ⎪⎝⎭,∴¬q 为真.19.【答案】-1≤a ≤5.【解析】P ={x |a -4<x <a +4},Q ={x |1<x <3}.∵x P ∈是x Q ∈的必要条件,∴x Q ∈⇒x P ∈,即Q ⊆P . ∴4143a a -≤⎧⎨+≥⎩,51a a ≤⎧⎨≥-⎩,∴-1≤a ≤5.20.【答案】221a -≤≤-.【解析】根据p 或q 是真命题,¬q 是真命题,得p 是真命题,q 是假命题.∵,1[]1m ∈-2822,3m ⎡⎤+⎣⎦. 因为1,[]1m -∀∈,不等式22538a a m --=+2533a a --≥,∴a ≥6或a ≤-1.故命题p 为真命题时,a ≥6或a ≤-1.又命题q :∃x ,使不等式220x ax ++<,∴280Δ=a ->,∴22a >22a <- 从而命题q 为假命题时,2222a -≤word所以命题p 为真命题,q 为假命题时,a 的取值X 围为1a -≤≤-. 21.【答案】1≤a <19.【解析】∵函数()f x 的图象全在x 轴上方,∴()()22245016144530a a Δa a a ⎧+->⎪⎨=--+-⨯<⎪⎩,或245010a a a ⎧+-=⎨-=⎩, 解得1<a <19或a =1,故1≤a <19.所以使函数()f x 的图象全在x 轴的上方的充要条件是1≤a <19. 22.【答案】{a |a >2或a <-2}.【解析】由2220x ax a +-=得(2x -a )(x +a )=0,∴2ax =或x =-a , ∴当命题p 为真命题时12a≤或|-a |≤1,∴|a |≤2. 又“只有一个实数0x 满足200220x ax a ++≤”,即抛物线222y x ax a =++与x 轴只有一个交点,∴2480Δ=a a -=,∴a =0或a =2. ∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2. ∵命题“p 或q ”为假命题,∴a >2或a <-2. 即a 的取值X 围为{a |a >2或a <-2}.。

完整版)集合与常用逻辑用语测试题及详解

完整版)集合与常用逻辑用语测试题及详解

完整版)集合与常用逻辑用语测试题及详解本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.(文)(2011·巢湖市质检)设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()。

A。

A⊆BB。

A∩B={2}C。

A∪B={1,2,3,4,5}D。

A∩(∁U B)={1}答案:C解析:由集合的定义可知,XXX表示A是B的子集,即A中的每个元素都在B中出现。

显然,A不是B的子集,排除A选项。

XXX表示A和B的交集,即A和B中都出现的元素构成的集合。

根据A和B的定义可知,它们的交集为{2,3},因此排除B选项。

A∪B表示A和B的并集,即A和B中所有元素构成的集合。

根据A和B的定义可知,它们的并集为{1,2,3,4,5},因此选C。

A∩(∁U B)表示A和B的补集的交集,即除去B中所有元素后,A中剩余的元素构成的集合。

根据A和B的定义可知,它们的补集分别为{4,5}和{1},因此A∩(∁U B)={1},排除D选项。

2.(2011·安徽百校联考)已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N的关系是()。

A。

M=NB。

MNC。

NMD。

M∩N=∅答案:C解析:根据集合N的定义可知,N中的元素是由M中的元素相乘得到的,其中a≠b。

因此,当a=-1时,b为0或1,x 为-1或0;当a=0时,x为0;当a=1时,b为-1或0,x为-1或0.综上所述,N={-1,0},因此M和N的关系是NM。

3.(2011·福州期末)已知p:|x|<2;q:x^2-x-2<0,则綈p是綈q的()。

A。

充分不必要条件B。

必要不充分条件C。

充要条件D。

高中数学必修第一册,第1章 集合与常用逻辑用语单元测试题(2)

高中数学必修第一册,第1章 集合与常用逻辑用语单元测试题(2)

第一章集合与常用逻辑用语单元测试题总分:120分时间:120分钟一、单选题(总分48分,每题4分)1.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A.B.C.D.2.下列元素与集合的关系表示正确的是()①N*;②∉Z;③∈Q;④π∈QA.①②B.②③C.①③D.③④3.设命题,则为().A.B.C.D.M=()4.已知全集U=R,集合M={x|-1≤x≤3},则∁UA.{x|-1<x<3}B.{x|-1≤x≤3}C.{x|x<-1或x>3}D.{x|x≤-1或x≥3}5.是的_________条件;()A.必要不充分B.充要C.充分不必要D.既不充分也不必要6.设全集,,,则()A.B.C.D.7.下列各式中,正确的个数是:①;②;③;④;⑤;⑥.A.1B.2C.3D.48.已知集合A={x|y,x∈Z},则集合A的真子集个数为()A.32B.4C.5D.319.已知M,N都是U的子集,则图中的阴影部分表示()A.M∪N B.∁U (M∪N)C.(∁U M)∩N D.∁U (M∩N)10.设M ,P 是两个非空集合,定义M 与P 的差集M -P ={x |x ∈M 且x ∉P },则M -(M -P )等于()A.PB.MC.M ∩PD.M ∪P11.已知集合M 满足{1,2}⊆M ⊆{1,2,3,4,5},那么这样的集合M 的个数为()A.5B.6C.7D.812.对于实数,“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题(总分16分,每题4分)13.若,且,则的可能取值组成的集合中元素的个数为_____.14.已知集合,则A 中元素的个数为_____.15.已知集合,,且,则实数的取值范围是_________。

16.有下列命题:①“若,则”的否命题;②“矩形的对角线相等”的否命题;③“若,则的解集是”的逆命题;④“若是无理数,则是无理数”的逆否命题.其中正确命题的序号是____________三、解答题(总分56分,17、18、19每题8分,20、21题10分,22每题12分.)17.已知集合,或.(1)若,求;(2)若,求实数的取值范围.18.若A={3,5},B={x|x2+mx+n=0},A∪B=A,A∩B={5},求m,n的值.19.已知全集,集合,.(1)求;(2)若,求实数的取值范围.20.已知集合,.(1)当时,求,;(2)若,求实数a的取值范围.21.已知集合,集合.(1)当时,求;(2)设,若“”是“”的必要不充分条件,求实数的取值范围.22.求证:方程有两个同号且不相等的实根的充要条件是.第一章集合与常用逻辑用语(答案与解析)总分:120分时间:120分钟一、单选题(总分48分,每题4分)1.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A.B.C.D.【答案】B【解析】∵,∴.故选B.2.下列元素与集合的关系表示正确的是()①N*;②∉Z;③∈Q;④π∈QA.①②B.②③C.①③D.③④【答案】B【解析】①不是正整数,∴N*错误;②是无理数,∴正确;③是有理数,∴正确;④π是无理数,∴π∈Q错误;∴表示正确的为②③.故选:B.3.设命题,则为().A.B.C.D.【答案】C【解析】命题,则为:,故选C.M=()4.已知全集U=R,集合M={x|-1≤x≤3},则∁UA.{x|-1<x<3}B.{x|-1≤x≤3}C.{x|x<-1或x>3}D.{x|x≤-1或x≥3}【答案】C【解析】由题意,全集,集合,所以或,故选C.5.是的_________条件;()A.必要不充分B.充要C.充分不必要D.既不充分也不必要【答案】C【解析】因为,但是,所以,是的充分不必要条件,故选C。

常用逻辑用语(单元测试卷)-2020-2021高中数学新教材训练(人教A版必修第一册)(解析版)

常用逻辑用语(单元测试卷)-2020-2021高中数学新教材训练(人教A版必修第一册)(解析版)

《常用逻辑用语》单元测试卷一、单选题1.(2019·山东济宁·高一月考)命题“2,220x x x ∃∈++≤R ”的否定是( )A .2,220x x x ∀∈++>RB .2,220x R x x ∀∈++≤C .2,220x x x ∃∈++>RD .2,220x x x ∃∈++≥R【答案】A【解析】 特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.2.(2020·安徽省六安中学高二期中(文))设p :x<3,q :-1<x<3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【解析】∵:3p x <,:13q x -<<∴q p ⇒,但,∴p 是q 成立的必要不充分条件,故选C. 3.(2020·湖南怀化·高三二模(文))除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的( ). A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意可得,“获取胜利”是“收兵”的必要条件故选:B4.(2020·湖南天心·长郡中学高三其他(文))已知命题:p x R ∃∈,2230x x ++<,则命题p 的否定是( )A .x R ∃∈,2230x x ++>B .x R ∀∈,2230x x ++≤C .x R ∀∈,2230x x ++≥D .x R ∀∈,2230x x ++>【答案】C【解析】命题p 为特称命题,其否定为:p x R ⌝∀∈,2230x x ++≥.故选:C.5.(2020·全国高一课时练习)下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“最高气温30℃时我就开空调”不是命题C .命题“对角线互相垂直的四边形是菱形”是真命题D .语句“当a >4时,方程x 2-4x +a =0有实根”是假命题【答案】D【解析】对于A ,改写成“若p ,则q ”的形式应为“若两个角都是直角,则这两个角相等”,则A 错误;对于B ,所给语句是命题,则B 错误;对于C ,边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形,对角线相互垂直,但不是菱形,则C 错误;对于D ,当5a =时,16450∆=-⨯<,方程x 2-4x +a =0无实根,则D 正确;故选:D6.(2020·全国高一课时练习)下列语句:①32>;②作射线AB ;③sin 3012=;④210x -=有一个根是-1;⑤1x <. 其中是命题的是( )A .①②③B .①③④C .③D .②⑤ 【答案】B【解析】解析②是祈使句,故不是命题,⑤无法判断真假,故不是命题.①③④符合命题的定义,故选:B.7.(2020·全国高一课时练习)已知不等式x +3≥0的解集是A ,若a ∈A 是假命题,则a 的取值范围是( ) A .a ≥-3 B .a >-3C .a ≤-3D .a <-3【答案】D【解析】∵x +3≥0,∴A ={x |x ≥3-},又∵a ∈A 是假命题,即a ∉A ,∴a <3-.故选:D 8.(2020·湖南雨花·雅礼中学高三其他(理))设集合{}1,2M =,{}2N a=,则“1a =-”是“N M ⊆”的( )A .充分不必要条件B .必要不充分条件.C .充分必要条件D .既不充分又不必要条件 【答案】A【解析】当1a =-时,{}1N =,满足N M ⊆,故充分性成立; 当N M ⊆时,{}1N =或{}2N =,所以a 不一定满足1a =-,故必要性不成立.故选:A.9.(2019·内蒙古集宁一中高三月考)命题“存在实数x,,使x > 1”的否定是( )A .对任意实数x, 都有x > 1B .不存在实数x ,使x ≤1C .对任意实数x, 都有x ≤1D .存在实数x ,使x ≤1【答案】C【解析】特称命题的否定是全称命题,否定结论的同时需要改变量词.∵命题“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”故选C .10.(2019·浙江湖州·高二期中)已知a R ∈,那么“1a >”是“21a >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】当1a >时,21a >成立,取2a =-,此时21a >成立,但是1a >不成立,“1a >”是“21a >”的充分不必要条件,故选:A.二、多选题11.(2020·浙江高一单元测试)下列不等式中可以作为21x <的一个充分不必要条件的有( ) A .1x <B .01x <<C .10x -<<D .11x -<<【答案】BC【解析】解不等式21x <,可得11x -<<, {}11x x -<< {}1x x <,{}11x x -<< {}01x x <<,{}11x x -<< {}10x x -<<,因此,使得21x <的成立一个充分不必要条件的有:01x <<,10x -<<.故选:BC.12.(2020·迁西县第一中学高二期中)下列命题的否定中,是全称命题且是真命题的是( )A .21,04x R x x ∃∈-+<B .所有正方形都是矩形C .2,220x R x x ∃∈++=D .至少有一个实数x ,使310x += 【答案】AC【解析】由题意可知:原命题为特称命题且为假命题. 选项A. 原命题为特称命题,2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以原命题为假命题,所以选项A 满足条件. 选项B. 原命题是全称命题,所以选项B 不满足条件.选项C. 原命题为特称命题,在方程2220x x ++=中4420∆=-⨯<,所以方程无实数根,所以原命题为假命题,所以选项C 满足条件.选项D. 当1x =-时,命题成立. 所以原命题为真命题,所以选项D 不满足条件.故选:AC13.(2020·山东省桓台第一中学高二期中)(多选)对任意实数a ,b ,c ,给出下列命题:①“a b =”是“ac bc =”的充要条件;②“5a +是无理数”是“a 是无理数”的充要条件;③“4a <”是“3a <”的必要条件;④“a b >”是“22a b >”的充分条件.其中真命题是( ).A .①B .②C .③D .④【答案】BC【解析】①由“a b =”可得ac bc =,但当ac bc =时,不能得到a b =,故“a b =”是“ac bc =”的充分不必要条件,故①错误;②因为5是有理数,所以当5a +是无理数时,a 必为无理数,反之也成立,故②正确;③当4a <时,不能推出3a <;当3a <时,有4a <成立,故“4a <”是“3a <”的必要不充分条件,故③正确.④取1a =,2b =-,此时22a b <,故④错误;故答案为:BC14.(2020·全国高一单元测试)下列命题中,是全称量词命题的有( )A .至少有一个x 使2210x x ++=成立B .对任意的x 都有2210x x ++=成立C .对任意的x 都有2210x x ++=不成立D .存在x 使2210x x ++=成立 E.矩形的对角线垂直平分【答案】BCE【解析】A 和D 中用的是存在量词“至少有一个”“存在”,属存在量词命题;B 和C 用的是全称量词“任意的”,属全称量词命题,所以B 、C 是全称量词命题;E 中命题“矩形的对角线垂直平分”省略量词“任意”,是全称量词命题.故选:BCE三、填空题15.(2020·全国高一课时练习)把命题“当x =2时,x 2-3x +2=0”改写成“若p ,则q ”的形式:____________________________.【答案】若x =2,则x 2-3x +2=0【解析】命题“当x =2时,x 2-3x +2=0”可以改写成“若x =2,则x 2-3x +2=0”故答案为:若x =2,则x 2-3x +2=016.(2020·安徽金安·六安一中高二期中(文))命题“0,210x x ∃>-≤”的否定是________. 【答案】0,210x x ∀>->【解析】命题为特称命题,则命题的否定为“0x ∀>,210x ”.故答案为:0x ∀>,210x .17.(2020·浙江高一单元测试)已知命题:1p x <-或3x >,命题:31q x m <+或2x m >+,若p 是q 的充分非必要条件,则实数m 的取值范围是________ 【答案】21,32⎡⎤-⎢⎥⎣⎦ 【解析】因为p 是q 的充分非必要条件,所以()(),13,-∞-⋃+∞是()(),312,m m -∞+⋃++∞的真子集,故31123m m +≥-⎧⎨+≤⎩解得:2-13m ≤≤,又因为312m m +≤+,所以12m ≤,综上可知21-32m ≤≤,故填21,32⎡⎤-⎢⎥⎣⎦. 四、双空题18.(2020·全国高一课时练习)已知命题:弦的垂直平分线经过圆心并且平分弦所对的弧,若把上述命题改为“若p ,则q ”的形式,则p 是____________________,q 是__________________.【答案】一条直线是弦的垂直平分线 这条直线经过圆心且平分弦所对的弧【解析】已知中的命题改为“若p ,则q ”的形式为“若一条直线是弦的垂直平分线,则这条直线经过圆心且平分弦所对的弧”,p :一条直线是弦的垂直平分线;q :这条直线经过圆心且平分弦所对的弧.故答案为:一条直线是弦的垂直平分线;这条直线经过圆心且平分弦所对的弧19.(2020·上海)“0x >”的一个充分非必要条件可以为________;一个必要非充分条件可以为________.【答案】2x =(答案不唯一) 1x >-(答案不唯一)【解析】“0x >”的充分非必要条件可以为2x =;一个必要非充分条件可以为1x >-;故答案为:2x =(答案不唯一);1x >-(答案不唯一)20.(2019·宁波中学高二期中)下列语句是命题的有______,其中是假命题的有______.(只填序号) ①等边三角形是等腰三角形吗?②作三角形的一个内角平分线③若x y +为有理数,则x ,y 也都是有理数.④8x >.【答案】③ ③【解析】①②不是陈述句,④不能判断真假,均不符合命题定义,不是命题③是可以判断真假的陈述句,是命题;当x =y =时,x y +为有理数,但,x y 不是有理数 ∴③是假命题本题正确结果:③;③21.(2020·广东中山·高二期末)命题p :0x R ∃∈,200250x x ++=是__________(填“全称命题”或“特称命题”),它是_________命题(填“真”或“假”).【答案】特称命题 假【解析】由题知命题p :0x R ∃∈,200250x x ++=中条件为0x R ∃∈,故命题为特称命题,又因为方程2250x x ++=中2245160∆=-⨯=-<,故方程2250x x ++=没有根,所以命题为假命题.故答案为:特称命题;假.五、解答题22.(2020·全国高一课时练习)将下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)6是12和18的公约数;(2)当1a >-时,方程2210ax x 有两个不等实根;(3)平行四边形的对角线互相平分;(4)已知,x y 为非零自然数,当2y x -=时,4,2y x ==.【答案】答案见解析.【解析】(1)若一个数是6,则它是12和18的公约数,是真命题.(2)若1a >-,则方程2210ax x 有两个不等实根,因为当0a =时,原方程只有一解,所以原命题是假命题.(3)若一个四边形是平行四边形,则它的对角线互相平分,是真命题.(4)已知,x y 是非零自然数,若2y x -=,则4,2y x ==,是假命题.23.(2020·浙江)判断下列命题的真假.(1)2,560x R x x ∀∈-+=.(2)2,10x x ∃∈+=R .(3)*22,,20a b N a b ∃∈+=.【答案】(1)假命题;(2)假命题;(3)真命题.【解析】(1)假命题,因为只有2x =或3x =时满足2560x x -+=.(2)假命题,因为不存在实数x ,使210x +=成立.(3)真命题,因为存在正整数2和4,使222420+=.24.(2020·全国高一)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假.(1)∀x ∈N ,2x +1是奇数;(2)存在一个x ∈R ,使11x -=0; (3)对任意实数a ,|a |>0;【答案】(1)是全称量词命题;是真命题;(2)是存在量词命题;是假命题;(3)是全称量词命题;是假命题.【解析】(1)是全称量词命题.因为,21x N x ∀∈+都是奇数,所以该命题是真命题.(2)是存在量词命题.因为不存在x ∈R ,使101x =-成立,所以该命题是假命题.(3)是全称量词命题.因为00=,所以||0a >不都成立,因此,该命题是假命题.25.(2020·全国高一)判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直; (2)至少有一个整数n ,使得2n n +为奇数;(3){|x y y ∃∈是无理数},2x 是无理数.【答案】(1)真命题;(2)假命题;(3)真命题【解析】(1)真命题,因为正方形的两条对角线互相垂直;(2)假命题,因为若n 为整数,则(1)n n +必为偶数;(3)真命题,因为π是无理数,2π是无理数.26.(2020·全国高一)写出下列命题的否定:(1)所有人都晨练;(2)2,10x x x ∀∈++>R ;(3)平行四边形的对边相等;(4)2,10x x x ∃∈-+=R .【答案】(1)有的人不晨练;(2)2,10x x x ∃∈++≤R ;(3)存在平行四边形,它的对边不相等;(4);2,10x x x ∀∈-+≠R【解析】(1)因为命题“所有人都晨练”是全称命题,所以其否定是“有的人不晨练”.(2)因为命题“2,10x x x ∀∈++>R ”是全称命题,所以其否定是“2,10x x x ∃∈++≤R ”.(3)因为命题“平行四边形的对边相等”是指任意一个平行四边形的对边相等,是一个全称命题, 所以它的否定是“存在平行四边形,它的对边不相等”.(4)因为命题“2,10x x x ∃∈-+=R ”是特称命题,所以其否定是“2,10x x x ∀∈-+≠R ”.27.(2020·浙江)写出下列命题的否定并判断真假.(1)不论m 取何实数,方程20x x m ++=必有实数根.(2)所有末位数是0或5的整数都能被5整除.(3)某些梯形的对角线互相平分.(4)被8整除的数能被4整除.【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【解析】(1)这一命题可以表述为“对所有的实数m ,方程20x x m ++=都有实数根”, 其否定为“存在实数m ,使得20x x m ++=没有实数根”,注意到当140m ∆=-<, 即14m >时,一元二次方程没有实根,因此其否定是真命题; (2)命题的否定是“存在末位数字是0或5的整数不能被5整除”,是假命题; (3)命题的否定是“任何一个梯形的对角线都不互相平分”,是真命题; (4)命題的否定是“存在一个数能被8整除,但不能被4整除”,是假命题.。

常用逻辑用语练习题

常用逻辑用语练习题

常用逻辑用语练习题逻辑用语是数学和哲学中非常重要的工具,它帮助我们清晰地表达思想和论证。

以下是一些常用的逻辑用语练习题,旨在帮助学生熟悉和掌握这些基础概念。

# 练习题1:命题逻辑1. 给出命题P:今天是星期三。

命题Q:明天是星期四。

写出这两个命题的逻辑表达式。

2. 判断命题P和Q的逻辑关系,是互斥的、等价的还是既不互斥也不等价?3. 写出命题P或Q的逻辑表达式。

4. 写出命题P且Q的逻辑表达式。

5. 写出命题非P的逻辑表达式。

# 练习题2:条件语句1. 将“如果今天是星期三,那么明天是星期四”这个条件语句转化为逻辑表达式。

2. 给出一个条件语句的例子,并说明其真假条件。

3. 判断以下条件语句的真假:如果今天是星期一,那么明天是星期二。

# 练习题3:逻辑等价1. 证明以下两个逻辑表达式是等价的:(P → Q) ≡ ¬P ∨ Q。

2. 给出一个逻辑表达式,并找出它的逻辑等价表达式。

3. 使用逻辑等价规则简化以下表达式:(P ∨ Q) ∧ (¬P ∨ ¬Q)。

# 练习题4:逻辑推理1. 已知命题P:如果下雨,我就不去跑步。

命题Q:今天下雨了。

请使用逻辑推理判断我今天是否去跑步。

2. 给出一个包含两个前提的逻辑推理问题,并解答它。

3. 使用逻辑推理证明以下命题:如果所有的人都是动物,那么苏格拉底是动物。

# 练习题5:逻辑运算1. 给出命题P:今天是晴天。

命题R:我会去公园。

写出命题P且R的逻辑表达式。

2. 写出命题P或R的逻辑表达式。

3. 使用逻辑运算符,将命题P和R组合成一个复合命题,并判断其真假。

# 练习题6:逻辑谬误1. 识别并解释以下论证中的逻辑谬误:所有的鸟都会飞,企鹅是鸟,所以企鹅会飞。

2. 给出一个常见的逻辑谬误的例子,并解释为什么它是谬误。

3. 判断以下论证是否包含逻辑谬误:如果一个学生学习努力,他就会取得好成绩。

小明学习努力,所以小明会取得好成绩。

# 练习题7:量化逻辑1. 将“有些学生喜欢数学”这个命题转化为量化逻辑表达式。

(完整版)逻辑连接词测试题

(完整版)逻辑连接词测试题

常用逻辑用语检测题1. 用反证法证明命题“a 、b ∈N *,ab 可被5整除,那么a 、b 中至少有一个能被5整除”,那么假设内容是 ( )A.a 、b 都能被5整除B.a 、b 都不能被5整除C.a 不能被5整除D.a 、b 有一个不能被5整除2. 命题∃ x ∈R,x+1<0的否定是 ( )A.∃ x ∈R,x+1≥0B.∀ x ∈R,x+1≥0C.∃ x ∈R,x+1>0.D.∀∃ x ∈R,x+1>03.若﹁p 是﹁q 的必要不充分条件,则p 是q 的 ( )A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件 4. 若条件p :|x +1|≤4,条件q :x 2<5x -6,则⌝p 是⌝q 的 ( )A.必要不充分条件B. 充分不必要条件C.充要条件D.既不充分又不必要条件5. “0<x <5”是“不等式|x -2|<3”成立的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.不充分不必要条件6. 若p r q p ⇒⇔,则q 是r 的( )条件。

A.充分不必要条件B.必要不充分条件C.充要条件D.非充分又非必要条件7. a= -1是直线ax+(2a-1)y+1=0和直线3x+ay+3=0垂直的A.充分不必要条件B.必要不充分条件C.充要条件D.不充分也不必要条件8. 已知p 且q 为真,则下列命题中真命题的个数为 ( ) ① p ② q ③p 或q ④非pA.1B.2C.3D.49. 下列理解错误的是 ( )A.命题3≤3是p 且q 形式的复合命题,其中p :3<3,q :3=3.所以“3≤3”是假命题B.“2是偶质数”是一个p 且q 形式的复合命题,其中p :2 是偶数,q :2是质数C.“不等式|x |<-1无实数解”的否定形式是“不等式|x |<-1有实数解”D.“2001>2008或2008>2001”是真命题10. 已知命题p 、q ,则“命题p 或q 为真”是“命题p 且q 为真”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11. 命题“若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是 ( )A.若△ABC 是等腰三角形,则它的任何两个内角相等B.若△ABC 任何两个内角不相等,则它不是等腰三角形C.若△ABC 有两个内角相等,则它是等腰三角形D.若△ABC 任何两个角相等,则它是等腰三角形12. 已知命题p: | x – 2 | < a (a > 0 ), 命题q :| x 2 – 4 | < 1 , 若p 是q 的充分不必要条件,则实数a 的取值范围是 .13. 命题“若b a ,都是偶数,则b a +是偶数”的否命题是_________14. “两个角是对顶角”是“这两个角相等”的 条件;15. “至少有一组对应边相等”是“两个三角形全等”的 条件;16. 命题p :∀x ∈R ,2x 2+ 1>0的否定是________。

逻辑学练习题

逻辑学练习题

逻辑学练习题逻辑学是一门研究推理和论证的学科,通过训练逻辑思维能力,有助于提高人们的思维能力和解决问题的能力。

在逻辑学的学习过程中,练习题是必不可少的一部分,它们可以帮助我们巩固所学的知识,并训练我们的逻辑思维能力。

下面是一些逻辑学练习题,希望能对你的逻辑思维能力有所帮助。

题目一:推理判断以下是一组陈述,请根据陈述提供的信息进行推理判断。

陈述:1. 所有猫都喜欢吃鱼。

2. 汤姆是一只猫。

3. 汤姆喜欢吃鱼。

题目二:逻辑关系以下是一组陈述,请根据陈述之间的逻辑关系填入合适的连词。

陈述:1. 彼得没有去上学,___他生病了。

2. 爸爸在家里,___妈妈去上班了。

3. 杰克想要吃苹果,___他去买了一些。

题目三:推理谬误以下是一组陈述,请判断其中是否存在推理谬误,如果存在,请指出具体谬误的类型。

陈述:1. 所有人都喜欢吃巧克力,我不喜欢吃巧克力,所以我不是人。

2. 如果A发生,则B发生。

B没有发生,所以A也没有发生。

3. 你喜欢吃苹果,所以你一定是个健康的人。

题目四:逻辑推理以下是一组陈述,请根据陈述进行逻辑推理。

陈述:1. 如果今天下雨,那么我会带伞。

2. 今天下雨了。

结论:我会带伞。

题目五:逻辑迷题以下是一个逻辑迷题,请思考并给出答案。

问题:如果喜欢吃火锅的人都喜欢喝豆浆,那么喜欢喝豆浆的人是否一定喜欢吃火锅?以上是一些逻辑学练习题,希望能帮助你提高逻辑思维能力。

通过针对性的训练和练习,我们可以逐渐提升自己的推理能力和解决问题的能力。

如果你在练习过程中遇到困难或有任何问题,请多和他人讨论,共同解决,相信你的逻辑思维能力会得到提高的。

祝你取得好成绩!。

常见的逻辑用语——选择题【100道】

常见的逻辑用语——选择题【100道】

常见的逻辑用语——选择题【100道】一、单选题1.命题p :|1|1x -<,命题q :2280x x --<,则p 是q 的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件3.已知,a b R ∈,下列四个条件中,使a b >成立的充分不必要的条件是4.“k=5”是“两直线kx+5y-2=0和(4-k)x+y-7=0互相垂直”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知直线1:(1)10l x a y +--=,2:220l ax y ++=,则“1a =-”是“12l l //”的( ) A .充分非必要 B .必要非充分条件 C .充要条件 D .既不充分又不必要条件8.如果命题“”为假命题,则A .,p q 中至少有一个为真命题B .,p q 均为假命题C .,p q 均为真命题D .,p q 中至多有一个为真命题9.下列有关命题的叙述,错误的个数为①若p q 为真命题,则p q 为真命题. ②“5x >”是“”的充分不必要条件.③命题P :x ∈R,使得x +x-1<0,则p :x ∈R,使得x +x-1≥0.④命题“若,则x=1或x=2”的逆否命题为“若x 1或x 2,则”.A .1B .2C .3D .4A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.有四个命题:(1)对于任意的α、β,都有()sin sin cos cos sin αβαβαβ+=-; (2)存在这样的α、β,使得()sin sin cos cos sin αβαβαβ+=-; (3)不存在无穷多个α、β,使得()sin sin cos cos sin αβαβαβ+=-; (4)不存在这样的α、β,使得()sin sin cos cos sin αβαβαβ+=+. 其中假命题...的个数是( ) A .1B .2C .3D .4A .20,20x x x m ∀+-厔B .20,20x x x m ∃+->…C .20,20x x x m ∀<+-…D .20,20x x x m ∃<+-…A .1q ,3qB .1q ,4qC .2q ,3qD .2q ,4qA .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件15.已知命题“若p ,则q ”为真命题,则下列命题中一定为真命题的是A .若q ,则pB .若p ⌝,则q ⌝C .若q ⌝,则p ⌝D .若p ,则q ⌝16.设命题p :函数1()2x f x -=在R 上为单调递增函数;命题q :函数()cos 2f x x =为奇函数,则下列命题中真命题是( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件18.命题“存在实数m ,使关于x 的方程210x mx +-=有实数根”的否定是( )A .命题p q ∨是假命题B .命题p q ∧是真命题C .命题()p q ∧⌝是真命题D .命题()p q ∨⌝是假命题20.为非零向量,“”是“函数为一次函数”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不必要也不充分条件21.如果命题p q ∨为真命题,p q ∧为假命题,那么( ).A .命题p ,q 均为真命题B .命题p ,q 均为假命题C .命题p ,q 有且只有一个为真命题D .命题p 为真命题,q 为假命题22.下列命题正确的是( )A .若p q ∧为假命题,则,p q 都是假命题B .a b >是ln ln a b >的充分不必要条件C .命题“若cos cos αβ≠,则αβ≠”为真命题D .命题“00,60x R x ∃∈+<”的否定是“0060x R x ∀∉+≥,”A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件24.等比数列{}n a 公比为()1q q ≠,若()123n n T a a a n a *=∈N ,则“数列{}n T 为递增数列”是“10a >且1q >”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件25.下列各组命题中,满足α是β的充要条件的是26.记n S 为数列{}n a 的前n 项和,“对任意正整数n ,均有0n a <”是“{}n S 为递减数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件27.已知命题p :N⊆Q :命题q :∀x >0,e lnx x ,则下列命题中的真命题为( )A .p q ∧B .p q ∧¬C .p q ∧¬D .p q ∧¬¬28.“函数y=sin(x +φ)为偶函数”是“φ=”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件30.等比数列{n a }的首项为1a ,公比为q ,前n 项和为n S ,则“10a >”是“{n S }是递增数列”的( )A .充分而非必要条件B .必要而非充分条件C .充要条件D .既不充分也不必要条件32.对于平面α和直线,,a b c ,命题:p 若,,a b b c 则a c P ;命题:q 若,,a b αα 则a b ∥.则下列命题为真命题的是 ( )A .p q ∧B .p q ⌝∨C .p q ∧⌝D .()p q ⌝∨A .0B .1C .2D .334.下列命题中是全称量词命题且真命题的是( )A .所有的素数都是奇数B .有些梯形是等腰梯形C .平行四边形的对角线互相平分D .x ∃∈R ,20x <A .1p ,3pB .1p ,2pC .2p ,3pD .3p ,4p36.已知,a b ∈R .下列四个条件中,使a b >成立的必要而不充分的条件是37.数列{}n a 的通项公式为2n a n kn =+,那么“1k ≥-”是“{}n a 为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件38.已知命题p :{}2|02320x x x x x ∀∈≤≤-+>,,则p ⌝是( )39.“0?“00?xy x y ===是且成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件40.已知命题2:R,220p x x x ∀∈-+>,则p ⌝是( )A .2000R,220x x x ∃∈-+≤ B .2R,220x x x ∀∈-+≤ C .2000R,220x x x ∃∈-+> D .2R,220x x x ∀∈-+<41.命题:p 任意圆的内接四边形是矩形,则p ⌝为( )A .每一个圆的内接四边形是矩形B .有的圆的内接四边形不是矩形C .所有圆的内接四边形不是矩形D .存在一个圆的内接四边形是矩形 42.“0x =”是“20x x +=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件43.“m>2”是“x ∃∈R ,()222110x m x m +-+-≤是假命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A .1个B .2个C .3个D .4个45.下列命题中,属于真命题的是( )A .四条边都相等的四边形是正方形B .矩形的对角线互相垂直C .三角形一条边的中线把三角形分成面积相等的两部分D .菱形的对角线相等46.“直线,a b 不相交”是“直线,a b 为异面直线”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件47.在ABC ∆中,“sin sin cos cos B C B C =”是“ABC ∆为直角三角形”( )A .充分条件B .必要条件C .充要条件D .非充分非必要条件48.设R a ∈,复数(i)(1i)z a =+-,则“z 在复平面内对应的点位于第一象限”的一个充分不必要条件是( )A .10a -<<B .11a -<<C .10a -≤<D .11a -≤<49.设,a b ∈R ,则“a b >”是“()20a b a ->”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件51.已知函数3()f x x x =-,则“120x x +=”是“12()()0f x f x +=”的( )A .p ⌝B .p q ∧C .()p q ⌝∨D .()p q ∧⌝53.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且120a =-,则“35d <<”是“n S 的最小值仅为6S ”的( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假55.命题:“(),0,34x xx ∀∈-∞≥”的否定为( )A .[)0000,,34x xx ∃∈+∞<B .[)0000,,34x xx ∃∈+∞≤C .()000,0,34x xx ∃∈-∞< D .()000,0,34x xx ∃∈-∞≤56.已知x ,()0,y ∈+∞,则“1xy ≥”是“1x ≥且1y ≥”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件58.设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件59.已知A ,B 是平面α上的点,1A ,1B 是平面β上的点,且有11//AA BB ,则//αβ是11AA BB =的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件60.“”是“”的.A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件61.下列命题中是全称量词命题并且是真命题的是( )“”A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件64.下列说法正确的是A .命题“若3320x x -+=,则1x =”的否命题是“若3320x x -+=,则1x ≠”B .命题“n ∃∈N ,22n n >”的否定是“N n ∀∈,22n n <”65.已知命题p :1x >,命题q :2x x >,则q ⌝是p ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件66.已知命题p :存在n ∈N,2n>1 000,则非p 为( )A .任意n ∈N,2n≤1 000B .任意n ∈N,2n>1 000C .存在n ∈N,2n≤1 000D .存在n ∈N,2n<1 00067.设命题:2p x ∀>,2e x x <,则命题p 的否定为( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件 D .充要条件69.已知命题p :x ∀∈R ,sin cos 2x x +<.则p ⌝为( ).A .0x ∃∈R ,00sin cos 2x x +>B .x ∀∈R ,sin cos 2x x +≥C .0x ∃∈R ,00sin cos 2x x +≥D .x ∀∈R ,sin cos 2x x +> 70.命题“存在,使”的否定是.存在,使 .不存在,使.对于任意,都有 .对于任意,都有A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件72.命题“(2,0)x ∀∈-,220x x +<”的否定是A .2000(2,0),20x x x ∃∉-+… B .2000(2,0),20x x x ∀∈-+… C .2000(2,0),20x x x ∀∉-+< D .2000(2,0),20x x x ∃∈-+…73.下列命题错误的是( )A .命题“若x 2﹣3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2﹣3x +2≠0”B .若p :∀x ≥0,sinx ≤1,则¬p :∃x 0≥0,sinx 0>1C .若复合命题:“p ∧q ”为假命题,则p ,q 均为假命题D .“x >2”是x 2﹣3x +2>0”的充分不必要条件 74.下列命题中,真命题的是( )75.已知函数()283640f x x x =-+-在[)1,2上的值域为A ,函数()2xg x a =+在[)1,2上的值域为B .若x A ∈是x B ∈的必要不充分条件,则a 的取值范围是A .[)4,-+∞B .(]14,4--C .[]14,4--D .()14,-+∞76.已知向量1e ,2e 为平面内的一组基底,12a e me =+ ,12b me e =+ ,则“a b ”是“幂函数()f x =()21mm m x +-在(0,)+∞上为增函数”的( )条件.A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要77.命题“25,23x x x ∀<-+≥"的否定是( )A .25,23x x x ∀<-+<B .25,23x x x ∃≥-+<C .25,23x x x ∃<-+<D .25,23x x x ∃<-+≤78.设命题2:,2021p x R x ∃∈>,则p ⌝为( )A .2,2021x R x ∀∈≤B .2,2021x R x ∀∈>C .2,2021x R x ∃∈≤D .2,2021x R x ∃∈<80.命题“1,()x ∃∈+∞,213x x +≤”的否定是( )A .(,1]x ∀∈-∞,213x x +>B .(1,)x ∀∈+∞,213x x +≤C .(,1]x ∃∈-∞,213x x +≤D .(1,)x ∀∈+∞,213x x +>二、多选题81.已知25a a +=,则( )A .“x a >”是“3x >”的充要条件B .“x a >”是“2x >”的必要不充分条件C .“x a >”是“1x >”的充分不必要条件D .“x a <”是“3x <”的充分不必要条件83.下列四个命题中,真命题的是( )84.下列说法中正确的有( )85.命题“2[1,2],x x a ∃∈≤”为真命题的一个充分不必要条件是( )A .1a ≥B .4a ≥C .2a ≥-D .=1a86.下列命题中为真命题的是( )A .若x AB ∈ ,则x A B ∈U B .x ∀∈R ,22x x <88.21x ≤的一个充分不必要条件是( )A .10x -≤<B .1x ≥C .01x <≤D .11x -≤≤89.命题“[]1,3x ∀∈,20x a -≤”是真命题的一个充分不必要条件是( )A .7a ≥B .8a ≥C .10a ≥D .11a ≥90.下列命题中,真命题的是( )93.下列说法错误的是( )95.下列说法正确的是( )A .若不等式220ax x c ++>的解集为{12}xx -<<∣,则2a c += B .若命题:(0,)p x ∀∈+∞,1ln x x ->,则p 的否定为(0,)x ∃∈+∞,1ln x x -≤ C .若0x >,0y >,8xy x y ++=,则+x y 的最大值为4D .若2320mx x m ++<对[0,1]∀∈m 恒成立,则实数x 的取值范围为(2,1)-- 96.下列命题正确的是( )97.设a 、b 是两条不同的直线,α、β、γ是三个不同的平面,则//αβ的一个充分条件是( )A .存在一条直线a ,//a α,//a βB .存在一条直线a ,a α⊂,//a βC .存在一个平面γ,满足//αγ,//βγD .存在两条异面直线a ,b ,a α⊂,b β⊂,//a β,//b αD .经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为20x y +-= 99.下列说法正确的是( )参考答案: 是两直线和“”“”是一次函数若为偶函数,2则;选考点:1三角函数的性质;∴“1k ≥-”是“{}n a 为递增数列”的充分不必要条件. 故选:A. 38.B【分析】根据全称命题的否定的性质进行求解即可.【详解】因为命题p :{}2|02320x x x x x ∀∈≤≤-+>,,所以p ⌝是{}2|02320x x x x x ∃∈≤≤-+≤,,故选:B 39.B【分析】根据集合之间包含关系确定充要性.【详解】因为0xy =等价于00x y ==或,所以“0?“00?xy x y ===是且成立的必要非充分条件,选B.【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 40.A【分析】含有一个量词的命题的否定形式,全称量词命题的否定是存在量词命题. 【详解】全称量词命题的否定是存在量词命题,命题2:R,220p x x x ∀∈-+>,则p ⌝是2000R,220x x x ∃∈-+≤.故选:A. 41.B【分析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A ,C 不符合题意,同时对结论进行否定,所以p ⌝:有的圆的内接四边形不是矩形, 故选:B.借助集合思想化抽象为直观外,还可转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理. 59.A【分析】在前提条件下,设:p //αβ,11:AA q BB = ,然后p q ⇒和q p ⇒是否成立即可. 【详解】A ,B 是平面α上的点,1A ,1B 是平面β上的点,且有11//AA BB ,设:p //αβ,11:AA q BB =,充分性:p q ⇒,若//αβ,1,AA A α⋂= 11,AA A β⋂=1,BB B α⋂=11,BB B β⋂=且有11//AA BB ,所以11//AB A B ,所以四边形11AA B B 为平行四边形,所以11AA BB =,故充分性成立必要性:q p ⇒,若11:AA q BB =,且有11//AA BB ,则四边形11AA B B 为平行四边形, 所以11//AB A B ,因为A ,B 是平面α上的点,1A ,1B 是平面β上的点,所以AB α⊂,11A B β⊂ ,只有两直线平行无法得出//αβ,所以必要性不成立 所以//αβ是11AA BB =的充分不必要条件, 故选:A【点睛】本题主要考查充要条件的判断,涉及立体几何知识,属于中档题. 60.B【详解】试题分析:因为,所以sin 1α=±;但,可得,所以“”是“”的必要不充分条件.考点:充分、必要条件的判断. 61.B【分析】先判断AB 是全称量词命题,再判断A 为假命题,B 为真命题得到答案. 【详解】四个选项中AB 是全称量词命题对于A :2,210x R x x ∀∈++>当=1x -时,不成立,为假命题. 对于B :根据菱形定义知:所有菱形的4条边都相等,为真命题. 故选B“”存在,使”存在,使”的否定是:对于任意,都有.【分析】由向量共线定理,求出a b∥时m 的值,由幂函数的定义及性质,求出符合题意的m 得值,由推断关系判断充分性和必要性.【详解】因为a b ∥,所以存在实数λ使得a b λ= ,即1mm λλ=⎧⎨=⎩,解得1m =±,因为幂函数()2()1mf x m m x =+-在()0,∞+上为增函数,所以211m m +-=且0m >,解得1m =,又因为1m =±是1m =的必要不充分条件,所以a b ∥是幂函数()2()1mf x m m x =+-在()0,∞+上为增函数的必要不充分条件,故选:B. 77.C【分析】全称量词命题的否定是存在量词命题,把任意改为存在,把结论否定. 【详解】命题“25,23x x x ∀<-+≥"的否定是“25,23x x x ∃<-+<". 故选:C 78.A【分析】由特称命题否定的定义求解即可.【详解】由特称命题否定的定义知,p ⌝为2,2021x R x ∀∈≤ 故选:A 79.C【分析】利用向量共线的充要条件列出方程求解即可. 【详解】解:知向量(1,2)a x =- ,(2,1)b = ,//a b可得14x -=,可得5x =. 故选:C .80.D【分析】特称量词的否定是全称量词,据此得到答案. 【详解】特称量词的否定是全称量词:命题“1,()x ∃∈+∞,213x x +≤”的否定是(1,)x ∀∈+∞,213x x +> 故选:D【点睛】本题考查了特称量词的否定,意在考查学生的推断能力.【详解】对于A :若x A B ∈ ,则x A ∈且x B ∈,所以x A B ∈U ,故A 正确; 对于B :当0x =时,22x x =,故B 错误; 对于C :假设x ,y 都不大于1,即1x ≤,1y ≤,由加法的可加性可得,2x y +≤,与x ,R y ∈且2x y +>,矛盾, 故若x ,R y ∈且2x y +>,则x ,y 至少有一个大于1,故C 正确, 对于D :若x ∃∈R ,20x m +≤,即x ∃∈R ,2m x ≤-,因为()2max0x -=,所以0m ≤,故D 正确; 故选:ACD 87.BD【分析】由关于x 的不等式220x ax a -+>对x ∀∈R 恒成立,可求得01a <<,再由真子集关系,即可得到答案;【详解】由题意得:2(2)4001a a a ∆=--<⇒<<,∴所选的正确选项是01a <<的必要不充分条件, ∴01a <<是正确选项应的一个真子集,故选:BD 88.AC【解析】由不等式21x ≤,求得11x -≤≤,结合充分条件、必要条件的判定方法,即可求解. 【详解】由不等式21x ≤,可得11x -≤≤,结合选项可得: 选项A 为21x ≤的一个充分不必要条件; 选项B 为21x ≤的一个既不充分也不必要条件; 选项C 为21x ≤的一个充分不必要条件; 选项D 为21x ≤的一个充要条件, 故选:AC. 89.CD【解析】由命题为真可得9a ≥,再由充分条件、必要条件的定义即可得解. 【详解】若命题“[]1,3x ∀∈,20x a -≤”是真命题, 则20x a -≤即2a x ≥在[]1,3x ∈上恒成立,所以22max ()39a x ≥==,直线y x b =+与曲线234y x x =--有公共点,则直线当直线和圆相切时,|23|2b -+=|2-3+,由于,所以。

【优教通,同步备课】高中数学(北师大版)选修2-1教案:第1章 单元测试:常用逻辑用语2

【优教通,同步备课】高中数学(北师大版)选修2-1教案:第1章 单元测试:常用逻辑用语2

单元测试 常用逻辑用语2一、选择题 1.若命题“p q ∧”为假,且“p ⌝”为假,则( )A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假2.在△ABC 中,“︒>30A ”是“21sin >A ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题; 其中真命题为( )A .①②B .②③C .①③D .③④4.设a R ∈,则1a >是11a< 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件5.命题:p 若,a b R ∈,则1a b +>是1a b +>的充分而不必要条件;命题:q 函数y =的定义域是(][),13,-∞-+∞,则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真 6.若,a b R ∈,使1a b +>成立的一个充分不必要条件是( )A .1a b +≥B .1a ≥C .0.5,0.5a b ≥≥且D .1b <- 二、填空题7.有下列四个命题:①、命题“若1=xy ,则x ,y 互为倒数”的逆命题;②、命题“面积相等的三角形全等”的否命题;③、命题“若1m ≤,则022=+-m x x 有实根”的逆否命题;④、命题“若A B B =,则A B ⊆”的逆否命题。

其中是真命题的是 (填上你认为正确的命题的序号)。

8.已知,p q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则s 是q 的 ______条件,r 是q 的 条件,p 是s 的 条件.9.“△ABC 中,若090C ∠=,则,A B ∠∠都是锐角”的否命题为 ;10.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q , 则q p 是的 条件。

集合与常用逻辑用语测试题和答案

集合与常用逻辑用语测试题和答案

集合与常用逻辑用语测试题一、选择题(本大题共12小题,每小题5分,共60分)1.(2013·新课标全国卷Ⅰ)已知集合A={x|x2-2x>0},,则( )A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B2.(2014·昆明模拟)已知集合S={1,2},集合T={a},∅表示空集,如果S∪T=S,那么a的值构成的集合是( )A.∅B.{1}C.{2}D.{1,2}3.已知命题p:∃x0∈R,-3x0+3≤0,则下列说法正确的是( )A.p:∃x 0∈R,-3x0+3>0,且p为真命题B.p:∃x 0∈R,-3x0+3>0,且p为假命题C.p:∀x∈R,x2-3x+3>0,且p为真命题D.p:∀x∈R,x2-3x+3>0,且p为假命题4.(2013·辽宁高考)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=( )A.{0}B.{0,1}C.{0,2}D.{0,1,2}5.已知ab>0,若a>b,则<的否命题是( )A.已知ab≤0,若a≤b,则≥B.已知ab≤0,若a>b,则≥C.已知ab>0,若a≤b,则≥D.已知ab>0,若a>b,则≥6.(2014·西城模拟)已知集合{1,2,3,4,5}的非空子集A具有性质P:当a∈A时,必有6-a ∈A.则具有性质P的集合A的个数是( )A.8B.7C.6D.57.设a,b为实数,则“0<ab<1”是“b<”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(2014·哈尔滨模拟)给定下列两个命题:①“p∨q”为真是“p”为假的必要不充分条件;②“∃x0∈R,使sinx0>0”的否定是“∀x∈R,使sinx≤0”.其中说法正确的是( )A.①真②假B.①假②真C.①和②都为假D.①和②都为真9.(2013·山东高考)给定两个命题p,q,若p是q的必要而不充分条件,则p是q的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10.(2014·金华模拟)给出下列命题:(1)等比数列{a n}的公比为q,则“q>1”是“a n+1>a n(n∈N*)”的既不充分也不必要条件;(2)“x≠1”是“x2≠1”的必要不充分条件;(3)函数y=lg(x2+ax+1)的值域为R,则实数-2<a<2;(4)“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件.其中真命题的个数是( )A.1B.2C.3D.411.已知函数f(x)=x2+bx+c,则“c<0”是“∃x0∈R,使f(x0)<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12.已知下列四个命题:①命题“若α=,则tanα=1”的逆否命题为假命题;②命题p:∀x∈R,sinx≤1,则p:∃x 0∈R,使sinx0>1;③“φ=+kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件;④命题p:“∃x 0∈R,使sinx0+cosx0=”;命题q:“若sinα>sinβ,则α>β”,那么(p)∧q 为真命题.其中正确的个数是( )A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2014·银川模拟)若命题“∃x0∈R,+(a-3)x0+4<0”为假命题,则实数a的取值范围是.14.(2014·青岛模拟)已知A=,B={x|log2(x-2)<1},则A∪B= .15.(2014·玉溪模拟)已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点;命题q:函数y=x2-a在(0,+∞)上是减函数.若p且q为真命题,则实数a的取值范围是.16.已知下列四个结论:①命题“若p,则q”与命题“若q,则p”互为逆否命题;②命题p:∃x0∈[0,1],≥1,命题q:∃x0∈R,+x0+1<0,则p∨q为真;③若p∨q为假命题,则p,q均为假命题;④“若am2<bm2,则a<b”的逆命题为真命题.其中正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知A={x||x-a|<4},B={x||x-2|>3}.(1)若a=1,求A∩B.(2)若A∪B=R,求实数a的取值范围.18.(12分)已知命题p:方程x2+mx+1=0有两个不相等的负实根,命题q:不等式4x2+4(m-2)x+1>0的解集为R.若p∨q为真命题、p∧q为假命题,求实数m的取值范围.19.(12分)(2014·黄山模拟)已知全集U=R,集合A={x|(x-2)(x-3)<0},B={x|(x-a)(x-a2-2)<0}.(1)当a=时,求(∁U B)∩A.(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.20.(12分)(2014·枣庄模拟)设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围.(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)求证:方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.22.(12分)(能力挑战题)已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0,求p的取值范围.集合与常用逻辑用语测试题答案解析1.选B2.选D.3.选C.4.选B.5.选C.6.选B.7.选D.8.【选D9.选A.10.【解析】选B.若首项为负,则公比q>1时,数列为递减数列,a n+1<a n(n∈N*),当a n+1>a n(n∈N*)时,包含首项为正,公比q>1和首项为负,公比0<q<1两种情况,故(1)正确;“x≠1”时,“x2≠1”在x=-1时不成立,“x2≠1”时,“x≠1”一定成立,故(2)正确;函数y=lg(x2+ax+1)的值域为R,则x2+ax+1=0的Δ=a2-4≥0,解得a≥2或a≤-2,故(3)错误;“a=1”时,“函数y=cos2x-sin2x=cos2x的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=〒1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故(4)错误.故选B.11.【解析】选A 12.【解析】选B.①中的原命题为真,所以逆否命题也为真,所以①错误.②根据全称命题的否定是特称命题知,②为真.③当函数为偶函数时,有φ=+kπ(k∈Z),所以为充要条件,所以③正确.④因为sinx+cosx=sin的最大值为<,所以命题p 为假命题,p为真,三角函数在定义域上不单调,所以q为假命题,所以(p)∧q为假命题,所以④错误.所以正确的个数为2,故选B..13.答案:[-1,7] 14.答案:{x|1<x<4} 15.答案:(1,2]16.【解析】根据四种命题的关系,结论①正确;②中命题p为真命题、q为假命题,故p∨q 是真命题,结论②正确;根据或命题的真假判断方法知结论③正确;④中命题的逆命题是“若a<b,则am2<bm2”,这个命题在m=0时不成立,结论④不正确.答案:①②③17.实数a的取值范围是(1,3).18. m的取值范围是(1,2]∪[3,+≦).19.∁U B=, (∁U B)∩A=.(2)由若q是p的必要条件知p⇒q,可知A⊆B.由a2+2>a知B={x|a<x<a2+2}.所以解得a≤-1或1≤a≤2.即a∈(-≦,-1]∪[1,2].20.实数x的取值范围是(2,3).(2)由x2-4ax+3a2<0,得(x-a)(x-3a)<0.①当a>0时,p:a<x<3a,由题意,得(2,3](a,3a),所以即1<a≤2;②当a<0时,p:3a<x<a,由题意,得(2,3](3a,a),所以无解.综上,可得a∈(1,2].21.【证明】充分性:当a=0时,方程为2x+1=0,其根为x=-,方程只有一负根.当a=1时,方程为x2+2x+1=0,其根为x=-1,方程只有一负根.当a<0时,Δ=4(1-a)>0,方程有两个不相等的根,且<0,方程有一正一负两个根.必要性:若方程ax2+2x+1=0有且只有一负根.当a=0时,符合条件.当a≠0时,方程ax2+2x+1=0有实根,则Δ=4-4a≥0,所以a≤1,当a=1时,方程有一负根x=-1.当a<1时,若方程有且只有一负根,则所以a<0.综上,方程ax2+2x+1=0有且只有一个负根的充要条件为a≤0或a=1.22.【解析】记p的取值范围是I,原题可作为命题:若p∈I,则函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0.若函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上对任意的x都有f(x)≤0,则p∈∁I. 由对任意的x都有f(x)≤0,结合图形知⇒⇒p≤-3或p≥,即∁I=,所以I=,故所求p的取值范围为.。

高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)

高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)

一、选择题1.已知命题p :x ∀∈R ,210x x -+<;命题 q :x ∃∈R ,23x x >,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝2.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠” 3.下列说法正确的个数是( )①“若4a b +≥,则,a b 中至少有一个不小于2“的逆命题是真命题 ②命题“设,a b ∈R ,若6a b +≠,则3a ≠或3b ≠”是一个真命题 ③“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x ->” ④1a b +>是a b >的一个必要不充分条件 A .0B .1C .2D .34.下列说法中错误的是( )A .命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”.B .在ABC 中,sin sin cos cos A B A B A B <⇔<⇔>.C .已知某6个数据的平均数为3,方差为2,现又加入一个新数据3,则此时这7个数的平均数和方差不变.D .从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立.5.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假6.已知0a b >>,给出下列命题:①1=,则1a b -<; ②若331a b -=,则1a b -<; ③若1a b e e -=,则1a b -<; ④若ln ln 1a b -=,则1a b -<. 其中真命题的个数是( )A .1B .2C .3D .47.下列有关命题的说法错误的是( ) A .“若22am bm <,则a b <”的逆命题为假命题B .命题“如果()()150x x +-=2=”的否命题是真命题C .若p q ∧为假命题,则p 、q 均为假命题D .若p q ∨为假命题,则p 、q 均为假命题8.已知p :2+2=5;q :3>2,则下列判断错误的是( ) A .“p ∨q ”为真,“¬q ”为假 B .“p ∧q ”为假,“¬p ”为真 C .“p ∧q ”为假,“¬p ”为假 D .“p ∨q ”为真,“¬p ”为真9.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题 10.若函数()sin f x x x =,则对a ,,22b ππ⎛⎫∈- ⎪⎝⎭,不等式()()f a f b >成立的一个充要条件是( ) A .a b >B .a b <C .a b >D .22a b >11.记不等式()()22124x y -+-≤表示的平面区域为D .命题p :()x y D ∀∈,,28x y +≤;命题q :(),x y D ∃∈,21x y +≤-.下面给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝.这四个命题中,所有真命题的编号是( ) A .①③B .②④C .②③D .①④12.将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度后,得到函数()f x 的图象,则“6π=ϕ”是“()f x 是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.若12,[3,4]x x ∀∈∃∈R ,使2211221225x x x x x ax +++-成立,则实数a 的取值范围是______. 14.下列说法中:①命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤”;②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”是“函数()y f x =在区间D 上的最小值为M ”的必要不充分条件;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()()()1212f x f x f x x +=; ④若1x ,2x ∈R ,12x x ≠,则函数()2xf x =满足()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭.所有正确说法的序号______.(把满足条件的序号全部写在横线上)15.若命题“x ∃∈R ,220x x a --<”是假命题,则实数a 的取值范围是______. 16.“14a =”是“对任意的正数x ,均有1ax x +≥”的________条件.17.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5,0,1,2,3,4k n k n Z k =+∈=.给出如下四个结论:①[]20111∈, ②[]33-∈,③[][][][][]01234Z =⋃⋃⋃⋃,④整数,a b 属于同一类的充要条件是[]0a b -∈. 其中正确的个数是___________ 18.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③x R ∃∈命题“,使得210x x +-<”的否定是:“x R ∀∈,均有210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题 其中所有正确命题的序号是________. 19.下列说法:(1)设a ,b 是正实数,则“a >b >1”是“log 2a >log 2b”的充要条件; (2)对于实数a ,b ,c ,如果ac >bc ,则a >b ; (3)“m=12”是直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的充分不必要条件;(4)等比数列{a n }的公比为q ,则“a 1>0且q >1”是对任意n ∈N +,都有a n+1>a n 的充分不必要条件;其中正确的命题有______ 20.给出下列四个命题中:①命题“若x ≥2且y ≥3,则x +y ≥5”为假命题.②命题“若x 2-4x +3=0,则x =3”的逆否命题为:“若x ≠3,则x 2-4x +3≠0”. ③“x >1”是“|x |>0”的充分不必要条件④关于x 的不等式|x +1|+|x -3|≥m 的解集为R ,则m ≤4. 其中所有正确命题的序号是______.三、解答题21.设命题p :实数x 满足()(3)0x a x a --<,其中0a >,命题:q 实数x 满足428x ≤≤.(1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.22.已知:()2:,21p x R x m x ∀∈>+,0:,q x R ∃∈200210x x m +--=,(1)若q 是真命题,求实数m 的取值范围; (2)若()p q ∧⌝为真命题,求实数m 的取值范围.23.已知p :2430x x -+<,q :()()210x m x m m R -++<∈.(1)求不等式2430x x -+<的解集;(2)若q 是p 的必要不充分条件,求m 的取值范围.24.定义:如果存在实数x ,y 使c xa yb =+,那么就说向量c 可由向量a b ,线性表出.给出命题:p :空间三个非零向量a b c ,,中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a b c ,,共面.判断p 是q 的什么条件,并证明你的结论. 25.已知集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}220C x x mx =-+=.(1)若命题p :“x B ∀∈,都有x A ∈”为真命题,求实数a 的取值集合; (2)若C ≠∅,且“x A ∈”是“x C ∈”的必要条件,求实数m 的取值集合. 26.已知命题p :任意2,230x R x mx m ∈-->成立;命题q :存在2,410x R x mx ∈++<成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题,p q 中恰有一个为真命题,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别判断两个命题p , q 的真假,结合复合命题真假关系进行判断即可. 【详解】对于命题p ,取1x =时,10<不成立,故命题p 为假命题, 对于命题 q ,1x =-时,23(1)(1)->-成立,故命题 q 为真命题,所以p q ∧为假命题,p q ⌝∧为真命题,p q ∧⌝为假命题,p q ⌝∧⌝为假命题,故选:B 【点睛】本题主要考查复合命题真假关系的判断,结合条件判断命题p ,q 的真假是解决本题的关键.2.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式. 所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.3.C解析:C 【解析】对于①,原命题的逆命题为:若,? a b 中至少有一个不小于2,则4a b +≥,而4,?4a b ==-满足,? a b 中至少有一个不小于2,但此时0a b +=,故①是假命题;对于②,此命题的逆否命题为“设,?a b R ∈,若3a =且3b =,则6a b +=”,此命题为真命题,所以原命题也是真命题,故②是真命题;对于③“20000x R x x ∃∈-<,”的否定是“20x R x x ∀∈-≥,”,故③是假命题;对于④,由a b >可推得1a b >-,故④是真命题,故选C .点睛:本题考查了简易逻辑的判定方法、特称命题的否定等基础知识与基本技能,考查了推理能力与计算能力,属于中档题;四种命题的关系中,互为逆否命题的两个命题真假性相同,当判断原命题的真假比较复杂时,可转化为其逆否命题的真假,充分条件、必要条件的判定相当于判定原命题、逆命题的真假.4.C解析:C 【分析】选项A 根据命题的否定判断,选项B 根据正弦定理及两角和的余弦公式判定即可,选项C 可根据均值及方差的性质判断,选项D 根据互斥事件与对立事件的定义判断即可. 【详解】A 中根据命题的否定可知,命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”正确;B 中A B <可知a b <,根据正弦定理可得sin sin A B <,同理可知由sin sin A B <可得a b <,可得A B <,即sin sin A B A B <⇔<,因为cos y x =在(0,)x π∈上单调递减,且(0,),(0,)A B ππ∈∈,所以cos cos A B A B <⇔>,故正确;C 中设原数据中方差为2s ,则加入一个新数据3后平均值为63337⨯+=,方差为2226(33)677s s ⨯+-=,故不正确;D 中,事件“至多一个红球”与“都是红球”不能同时发生,而且在一次试验中有且只有一个事件发生, 故互斥且对立正确. 故选:C 【点睛】本题主要考查了命题的否定,三角形中的充要条件,平均值与方差,互斥与对立事件,属于中档题.5.D解析:D 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.6.B解析:B 【分析】①1=1,然后两边平方,再通过作差法即可得解; ②若331a b -=,则331a b -=,然后利用立方差公式可知23(1)(1)a a a b -++=,再结合0a b >>以及不等式的性质即可判断;③若1abe e -=,则111a b a bb b b e e e e e e-+===+,再利用0b >,得出1b e >,从而求得a be -的范围,进而判断;④取特殊值,a e =,1b =即可判断. 【详解】解:①1=,1,所以1a b =++所以11a b -=+,即①错误; 若331a b -=, 则331a b -=,即23(1)(1)a a a b -++=, 因为0a b >>, 所以22a b >, 所以221a a b ++>,所以1a b -<,即1a b -<,所以②正确; 若1a b e e -=, 则111a b a bb b b e e ee e e-+===+, 因为0b >,所以12a b e e -<<<, 所以1a b -<,即③正确;④取a e =,1b =,满足1lna lnb -=, 但1a b ->,所以④错误; 所以真命题有②③, 故选:B . 【点睛】本题考查命题真假的判断,涉及根据不等式的性质证明不等式、指对运算法则、立方差公式等,考查学生的分析能力和运算能力.7.C解析:C 【分析】写出逆命题和否命题,判断正误,根据或和且的命题真假判断命题真假得到答案. 【详解】逆命题为:若a b <,则22am bm <,当0m =是不成立,故为假命题,A 正确;否命题为:如果()()150x x +-≠2≠,为真命题,B 正确; 若p q ∧为假命题,则p 、q 不同时为真,C 错误;若p q ∨为假命题,则p 、q 均为假命题,D 正确; 故选:C . 【点睛】本题考查了逆命题和否命题,或和且命题的判断,意在考查学生的推断能力.8.C解析:C【分析】先判定命题p 为假命题,命题q 为真命题,再结合复合命题的真假判定,即可求解. 【详解】由题意,命题:225p +=为假命题,命题:32q >为真命题,所以命题p q ∧为假命题,p ⌝为真命题,命题p q ∨为真命题,q ⌝为假命题, 故选:C . 【点睛】本题主要考查了复合命题的真假判定,其中解答中正确判定命题,p q 的真假,熟记复合命题的真假判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.C解析:C 【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D. 【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C 错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是 “若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C. 【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.10.D解析:D 【分析】先分析函数的奇偶性,由导数得出函数的单调性,利用这两个性质求解. 【详解】()sin f x x x =,()sin()sin ()f x x x x x f x -=--==,()f x 是偶函数,()sin cos f x x x x '=+,在02x π≤<时,()0f x '≥,()f x 递增,所以22()()()()f a f b f a f b a b a b >⇔>⇔>⇒>. 故选:D. 【点睛】本题考查函数的奇偶性与单调性,用函数的这两个性质求解不等式.本题还考查了导数与单调性的关系.掌握用导数研究不等式的方法是解题关键.11.B解析:B 【分析】画出平面区域D ,直线28x y +=和直线21x y +=-,根据图像判断出命题p 和命题q 的真假,从而得到答案. 【详解】平面区域为D 满足不等式()()22124x y -+-≤, 画出其图像如图所示,再画出直线28x y +=和直线21x y +=-,根据图像可得存在(),x y D ∈,在直线28x y +=的上方, 所以命题p :()x y D ∀∈,,28x y +≤,是假命题, 不存在(),x y D ∈,在直线21x y +=-的下方 所以命题q :(),x y D ∃∈,21x y +≤-,是假命题.所以①p q ∨为假命题;②p q ⌝∨为真命题;③p q ∧⌝为假命题;④p q ⌝∧⌝为真命题. 故选:B.【点睛】本题考查判断含有逻辑联结词命题的真假,根据不等式画可行域,判断点是否在可行域内,属于中档题.12.A解析:A 【分析】求出函数()y f x =的解析式,由函数()y f x =为偶函数得出ϕ的表达式,然后利用充分条件和必要条件的定义判断即可. 【详解】将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度,得到的图象对应函数的解析式为()sin 3sin 393f x x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 若函数()y f x =为偶函数,则()32k k Z ππϕπ+=+∈,解得()6k k Z πϕπ=+∈,当0k =时,6π=ϕ. 因此,“6π=ϕ”是“()y f x =是偶函数”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.二、填空题13.【分析】先整理为关于的不等式恒成立求出相应的最值后得不等式在时能成立分离参数整理为求出诉最大值可得结论【详解】由得∴当时取得最小值∴使成立即使成立设设则∴即∴在时是增函数∴在上有∴故答案为:【点睛】 解析:(,5]-∞【分析】先整理为关于1x 的不等式恒成立,求出相应的最值后,得不等式222222154x x x ax -+--+-在2[3,4]x ∈时能成立,分离参数整理为223414x a x ≤++,求出223414x x ++诉最大值可得结论. 【详解】由2211221225x x x x x ax ≥++-+,得2212122(2)5x x x x ax +-≥-+-, ∴当2112x x =-时,()21212x x x +-取得最小值()22222221211224x x x x x ⎛⎫⎛⎫-+--=-+- ⎪ ⎪⎝⎭⎝⎭ ∴2[3,4]x ∃∈,使222222154x x x ax -+--+-成立,即2[3,4]x ∃∈,使223414a x x ++成立. 设3414t y t=++,设1234t t ≤<≤,则12120,316t t t t -<>, ∴12121212121233()(316)44444t t t t t t y y t t t t ---=+--=0<,即12y y <, ∴3414t y t=++在[3,4]∈时,是增函数. ∴223414x y x =++在[3,4]上有max 5y =,∴5a ≤. 故答案为:(,5]-∞. 【点睛】思路点睛:本题考查双变量不等式恒成立求参数范围.解题方法是先整理为以1x 为变量的不等式恒成立,又转化为关于2x 的不等式能成立,分离参数后求得函数的最值.14.②③④【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用;③对数的运算关系式的应用;④根据基本不等式可得答案;【详解】①命题对任意的有的否定为存在有故①错误;②对于任意的总解析:②③④ 【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用; ③对数的运算关系式的应用; ④根据基本不等式可得答案; 【详解】①命题“对任意的1x >,有21x >”的否定为“存在1x >,有21x ≤”,故①错误; ②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”由于没有说明0x D ∈()0f x M =,所以“函数()y f x =在区间D 上的最小值为M ”不一定成立;函数()y f x =在区间D 上的最小值为M ,总有()f x M ≥(M 为常数)成立,故②正确;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()1212log log log a a a x x x x =+, 所以()()()1212f x f x f x x +=成立,故③正确;④若1x ,2x ∈R ,12x x ≠,()()1212,33x x f x f x ==,1212232x xx x f ++⎛⎫= ⎪⎝⎭, 因为()30xf x =>,所以()()1212122322x x f x f x x x f +++⎛⎫>=== ⎪⎝⎭,故④正确.故答案为:②③④.【点睛】本题考查了命题的否定、函数的最小值和充分条件和必要条件的应用、对数的运算关系、不等式比较大小的问题.15.【分析】由题意可知恒成立结合二次函数的性质可求的最小值从而可求出实数的取值范围【详解】原命题否定为真命题即∴因为图象开口向上对称轴为则∴故答案为:【点睛】本题考查了由不等式恒成立求参数的取值范围考查 解析:(],1-∞-【分析】由题意可知22a x x ≤-恒成立,结合二次函数的性质可求22x x -的最小值,从而可求出实数a 的取值范围. 【详解】原命题否定,x ∀∈R ,220x x a --≥为真命题,即22a x x ≤-,∴()2min2a x x≤-,因为22y x x =-图象开口向上,对称轴为1x =,则()2min2121x x-=-=-,∴1a ≤-,故答案为: (],1-∞-.本题考查了由不等式恒成立求参数的取值范围,考查了已知命题的真假性求参数的取值范围.本题的关键是由已知得不等式恒成立.16.充分不必要【分析】当时对任意的正数x 均有反过来当对任意的正数x 均有时通过讨论有成立即可判断【详解】当时对任意的正数x 均有当且仅当时等号成立;当对任意的正数x 均有时当时令此时不符合题意;当时显然不满足解析:充分不必要 【分析】当14a =时,对任意的正数x ,均有141a x x x x+=+≥,反过来,当对任意的正数x ,均有1a x x +≥时,通过讨论有14a ≥成立,即可判断.【详解】 当14a =时,对任意的正数x ,均有141a x x x x +=+≥==, 当且仅当12x =时等号成立; 当对任意的正数x ,均有1ax x+≥时,当0a <时,令0x =>,此时0ax x+=,不符合题意; 当0a =时,1≥x ,显然不满足题意;当0a >时,有1ax x+≥, 解得有14a ≥, 所以“14a =”是“对任意的正数x ,均有1ax x +≥”的充分不必要条件故答案为:充分不必要 【点睛】本题考查了充分性和必要性的判断,属于一般题.17.3【分析】根据2011被5除的余数为1可判断①;将=可判断②;根据整数集就是由被5除所得余数为01234可判断③;令根据类的定理可证明④的真假【详解】①由2011÷5=402…1所以2011∈1故①解析:3根据2011被5除的余数为1,可判断①;将3-=52-+,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令115a n m =+,225b n m =+,根据“类”的定理可证明④的真假. 【详解】①由2011÷5=402…1,所以2011∈[1],故①正确; ②由()3512-=⨯-+ 所以[]33-∉,故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,③正确; ④假设115a n m =+,225b n m =+,()12125a b n n m m -=-+-,,a b 要是同类. 则 12m m =,即120m m -=,所以[]0a b -∈,反之若[]0a b -∈,即120m m -=,所以12m m =,则,a b 是同类. ④正确; 故答案为:3 【点睛】本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理.属中档题.18.④【分析】①根据命题的否命题和原命题之间的关系判断②利用充分条件和必要条件的定义判断③利用特称命题的否定判断④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若则所以解析:④ 【分析】①根据命题的否命题和原命题之间的关系判断.②利用充分条件和必要条件的定义判断.③利用特称命题的否定判断.④利用逆否命题的等价性进行判断. 【详解】解:①根据否命题的定义可知命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以②“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为④. 【点睛】本题主要考查命题的真假判断,以及四种命题的真假关系的判断,比较基础.19.(3)(4)【分析】利用充要条件不等式性质两直线垂直的充要条件等比数列为递增数列的条件逐一判断即可【详解】对于(1)求得所以是的充分不必要条件所以错误对于(2)不成立所以错误对于(3)直线与直线相互解析:(3)(4) 【分析】利用充要条件、不等式性质、两直线垂直的充要条件、等比数列为递增数列的条件,逐一判断即可. 【详解】对于(1)22"log log "a b >求得0a b >>,所以"1"a b >>是22"log log "a b >的充分不必要条件,所以错误对于(2)0c <不成立,所以错误对于(3)直线()2310m x my +++=与直线()()2230m x m y -++-=相互垂直,12m =或2m =-,所以正确 对于(4)1"0a >且1"q >可以推出对任意n N +∈,都有1n n a a +>,反之不成立,如数列16,8,4,2----,所以正确故答案为(3)(4) 【点睛】本题考查了命题真假的判断,涉及到不等式性质、充要条件、等比数列的单调性等知识,属于中档题.20.②③④【分析】命题的判断一一进行判断即可对于①显然为假命题;对于②逆否命题条件和结论都否定正确;对于③若x >1则|x|>0若|x|>0则x 不一定大于1;对于④f (x )=|x+1|+|x ﹣3|表示数轴解析:②③④ 【分析】命题的判断,一一进行判断即可.对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和. 【详解】对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和,最小为4,所以m 4≤.故答案为②③④. 【点睛】本题考查命题真假的判断,综合考查了不等式性质及绝对值的意义,属于中档题.三、解答题21.(1)[)2,3;(2)12a <<. 【分析】(1)当1a =时,分别求出p ,q 成立的等价条件,利用p q ∧为真可得x 的取值范围; (2)由题可得q 是p 的充分不必要条件,得Q P ,从而可得a 的取值范围. 【详解】(1)当1a =时,由()()130x x --<,得p :13x <<, 由428x ≤≤,得:q 23x ≤≤,由p ∧q 为真,即p ,q 均为真命题,因此x 的取值范围是[)2,3. (2)若¬p 是¬q 的充分不必要条件,可得q 是p 的充分不必要条件,由题可得命题p 对应的集合{}3P x a x a =<<,命题q 对应的集合{}23Q x x =≤≤, 所以Q P ,因此2a <且33a <,解得12a <<. 即实数a 的取值范围是12a <<. 【点睛】本题考查充分必要条件的定义和应用,考查复合命题的真假判断,考查分析解决问题的能力,属于基础题.22.(1)2m ≥-;(2)2m <-. 【分析】(1)由题意知,q 是真命题等价于方程2210x x m +--=有实根,利用判别式0∆≥即可求解;(2)由题意知,分别求出p 、q ⌝为真命题时实数m 的取值范围,然后再取交集即可. 【详解】(1)因为0:R,q x ∃∈200210x x m +--=为真命题, 所以方程2210x x m +--=有实根, 所以判别式()4410m ∆=++≥, 所以实数m 的取值范围为2m ≥-.(2)()221x m x >+可化为220mx x m -+<, 若:R,p x ∀∈()221x m x >+为真命题,则220mx x m -+<对任意的x ∈R 恒成立, 当0m =时,不等式可化为20x -<,显然不恒成立;当0m ≠时,有2440m m <⎧⎨-<⎩,1m ∴<-, 由(1)知,若q ⌝为真命题,则2m <-, 又()p q ∧⌝为真,故p 、q ⌝均为真命题,所以实数m 需满足12m m <-⎧⎨<-⎩,解得2m <-,所以实数m 的取值范围为2m <-. 【点睛】本题考查利用复合命题的真假求参数的取值范围;考查运算求解能力和逻辑思维能力;熟练掌握复合命题的真假判断是求解本题的关键;属于中档题. 23.(1){}3|1x x <<(2)()3,+∞ 【分析】(1)分解因式得()()130x x --<,进而求解即可;(2)先将命题q 中不等式分解为()()10x m x --<,所以讨论m 与1的大小,当1m 时,不等式()210x m x m -++<的解是1x m <<,由q 是p 的必要不充分条,则2430x x -+<的解集是()210x m x m -++<(1m )解集的真子集,即可求解,同理讨论当1m <与1m =时的情况.【详解】解:(1)因为2430x x -+<,所以()()130x x --<,所以13x <<, 所求解集为{}|13x x <<.(2)因为q :()()210x m x m m R -++<∈,则()()10x m x --<当1m 时,不等式()210x m x m -++<的解是1x m <<,因为q 是p 的必要不充分条件,所以2430x x -+<的解集是()210x m x m -++<(1m )解集的真子集,所以3m >;当1m <时,不等式()210x m x m -++<的解是1m x <<,因为{}{}||131x x x m x <<⋂<<=∅,不合题意; 当1m =时,不等式2430x x -+<的解集为∅,不合题意. 综上,m 的取值范围是()3,+∞. 【点睛】本题考查含参数的一元二次不等式的解法,考查由充分必要条件求参数的范围,考查运算能力与分类讨论思想.24.充分不必要条件,证明见解析. 【分析】利用给出的定义、向量共面定理即可判断出关系. 【详解】p :空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a ,b ,c 共面.p 是q 的充分不必要条件.证明如下:若空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出, 不妨设c xa yb =+,则由向量共面定理知,a ,b ,c 共面, 即p q ⇒,反之不成立,例如,三个非零向量a ,b ,c 共面,且//a b ,而c 与a ,b 不共线,则c 无法用a ,b 线性表示. p ∴是q 的充分不必要条件.【点睛】本题考查了向量共线共面定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.25.(1){2,3};(2){3}. 【分析】(1)解方程确定集合,A B ,再根据命题p 为真求得a ; (2)题意说明x C ∈是x A ∈的充分条件,由此可求得m 值. 【详解】 由题意{1,2}A =,(1)2a =时,{1}B =满足题意,2a ≠时,{1,1}B a =-, 则∵x B ∀∈,都有x A ∈,∴12a -=,3a =, ∴a 的取值集合是{2,3};(2)∵“x A ∈”是“x C ∈”的必要条件,∴x C x A ∈⇒∈.若280m ∆=-=,即m =±C =或{C =均不合题意, 又C ≠∅,∴0∆>,因此12{,}C x x =,又12,x A x A ∈∈, 因此不妨设11x =,22x =,则123m x x =+=.∴m 的取值集合是{3}.【点睛】关键点点睛:本题考查由充分必要条件求参数,解题方法是根据充分条件,必要条件的定义得出集合中元素的性质,从而得出结论.也可由充分必要条件与集合包含之间的关系确定集合的关系,从而得出结论. 26.(1)(3,0)-;(2)(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【分析】(1)只需24120m m ∆=+<,然后求解m 的取值范围; (2)分p 真q 假、p 假q 真两种情况讨论求解. 【详解】解:(1)若命题p 为真命题,则24120m m ∆=+<,解得30m -<<,故实数m 的取值范围(3,0)-(2)若命题q 为真命题,则21640m ∆=->,解得12m <-或12m > ∵命题,p q 中恰有一个为真命题, ∴命题,p q 一真一假①当p 真q 假时,301122m m -<<⎧⎪⎨-≤≤⎪⎩,解得:102m -≤<②当p 假q 真时,301122m m m m ≤-≥⎧⎪⎨-⎪⎩或或,解得:3m ≤-或12m >.综上,实数m 的取值范围(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【点睛】本题考查根据命题的真假求解参数的取值范围,考查二次不等式恒成立与有解问题,难度一般.。

常用逻辑用语测试(人教A版)(含答案)

常用逻辑用语测试(人教A版)(含答案)

常用逻辑用语测试(人教A版)一、单选题(共10道,每道10分)1.命题“若,则”的逆否命题是( )A.若,则B.若,则C.若,则D.若,则答案:C解题思路:试题难度:三颗星知识点:四种命题2.设原命题:若,则中至少有一个不小于1,则原命题与逆命题的真假情况是( )A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题答案:A解题思路:试题难度:三颗星知识点:四种命题的真假关系3.在某次跳台滑雪空中技巧比赛赛前训练中,甲、乙两位队员各跳一次,设命题是“甲落地站稳”,是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:逻辑联结词4.下列选项叙述错误的是( )A.命题“若,则”的逆否命题是“若,则”B.“”是“”的充分不必要条件C.若命题,则,使得D.若为假命题,则均为假命题答案:D解题思路:试题难度:三颗星知识点:逻辑联结词5.“”是“方程有实数解”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解题思路:试题难度:三颗星知识点:必要条件6.“”是“”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解题思路:试题难度:三颗星知识点:必要条件7.“”的含义为( )A.都不为零B.至少有一个为零C.至少有一个不为零D.不为零且为零,或不为零且为零答案:C解题思路:试题难度:三颗星知识点:逻辑联结词8.命题“,”的否定是( )A.,B.,C.,D.,答案:C解题思路:试题难度:三颗星知识点:逻辑联结词9.设全集为U,若命题,则命题是( )A. B.或C. D.答案:C解题思路:试题难度:三颗星知识点:逻辑联结词10.已知命题,的否定为假命题,则实数的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:逻辑联结词。

2022高一数学同步单元测试卷 第2章 常用逻辑用语

2022高一数学同步单元测试卷 第2章 常用逻辑用语

第1 页共18 页一、单选题1.设p:角是钝角,设角满足,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.设命题函数在上递增,命题中,则,下列命题为真命题的是()A.B.C.D.3.“” 是“函数在区间上为增函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.已知的内角所对的边分别是,,则“”是“有两解”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设A,B是两个集合,则“A∩B=A”是“A⊆B”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第II卷(非选择题)请点击修改第II卷的文字说明二、填空题7.下列说法错误..的是_____________.①.如果命题“”与命题“或”都是真命题,那么命题一定是真命题.②.命题:,则③.命题“若,则”的否命题是:“若,则”④.特称命题“,使”是真命题.8.已知命题:,,则为_________________.9.的内角所对的边为,则“”是“”的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中的一个)10.已知c>0,设命题p:函数y=c x为减函数.命题q:当x∈时,函数f(x)=x+恒成立.如果“p∨q”为真命题,“p∧q”为假命题,则c的取值范围是________. 11.已知命题p:对任意x>1,,若¬p是真命题,则实数a的取值范围是________. 12.命题“同位角相等”的否定为__________,否命题为__________.13.下列命题:①“x>2且y>3”是“x+y>5”的充要条件;②“b2﹣4ac<0”是“不等式ax2+bx+c<0解集为R”的充要条件;③“a=2”是“直线ax+2y=0平行于直线x+y=1”的充分不必要条件;④“xy=1”是“lgx+lgy=0”的必要而不充分条件.其中真命题的序号为_____.14.对任意x>3,x>a恒成立,则实数a的取值范围是__________.15.已知p:(x+2)(x-3)≤0,q:|x+1|≥2,若“p∧q”为真,则实数x的取值范围是____. 16.设计如图所示的四个电路图,条件p:“开关S闭合”;条件q:“灯泡L亮”,则p是q的充分不必要条件的电路图是__________.第3 页共18 页17.已知p,q都是r的必要条件,s是r的充分条件,则s是q的________条件,r是q的________条件,p是s的________条件.18.p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,那么p是q的______________条件.19.设集合,,则“”是“”的______条件从如下四个中选一个正确的填写:充要条件、充分不必要条件、必要不充分条件、既不充分也不必要条件三、解答题20.设p:实数x满足x2-4ax+3a2<0,其中a>0. q:实数x满足。

逻辑推理能力测试题

逻辑推理能力测试题

逻辑推理能力测试题逻辑推理能力测试题:1. 条件推理题:- 问题:如果一个物体是红色的,那么它不是绿色的。

现在有一个物体是红色的,请问它是什么颜色的?- 答案:不是绿色的。

2. 因果推理题:- 问题:张三每次下雨都会带伞,今天张三带了伞,请问今天是否下雨了?- 答案:不能确定,因为带伞可能有其他原因。

3. 类比推理题:- 问题:如果“苹果”对于“水果”相当于“汽车”对于什么? - 答案:交通工具。

4. 序列推理题:- 问题:下列序列遵循什么规律?2, 4, 8, 16, ...- 答案:每个数是前一个数的两倍。

5. 空间推理题:- 问题:如果一个立方体的一面是红色,另一面是蓝色,那么红色面和蓝色面之间有几个面?- 答案:4个面。

6. 假设推理题:- 问题:如果所有的猫都怕水,那么一只怕水的动物一定是猫吗?- 答案:不一定,因为可能还有其他怕水的动物。

7. 逻辑谜题:- 问题:在一个房间里有三个人,每个人都戴着一顶帽子,帽子只有黑色和白色两种。

每个人都能看到其他人的帽子颜色,但看不到自己的。

如果他们知道至少有一个人的帽子是黑色的,他们能通过观察其他人的帽子颜色来确定自己的帽子颜色吗?- 答案:如果三个人的帽子都是白色的,他们将无法确定自己的帽子颜色。

但如果至少有一个人的帽子是黑色的,他们可以通过排除法确定自己的帽子颜色。

8. 逻辑判断题:- 问题:如果所有的A都是B,且所有的B都是C,那么所有的A 都是C吗?- 答案:是的。

9. 逻辑分析题:- 问题:有五个盒子,每个盒子里都有一个苹果。

如果从每个盒子里取出一个苹果,那么剩下多少个苹果?- 答案:0个。

10. 逻辑选择题:- 问题:如果一个命题是真,那么它的逆命题、否命题、和逆否命题中,哪些命题也是真的?- 答案:逆命题和逆否命题。

集合与常用逻辑用语测试卷

集合与常用逻辑用语测试卷

集合与常用逻辑用语测试卷一、选择题(每题5分,共60分)1. 设集合A = {xx^2-3x + 2 = 0},则A=()A. {1}B. {2}C. {1,2}D. varnothing2. 若集合A={x - 1,B = {xx≥slant1},则A∩ B=()A. {x1≤slant x < 3}B. {x1 < x < 3}C. {xx > - 1}D. {xx≥slant1}3. 已知集合A={xx^2-4x + 3 = 0},B={xx^2-ax + a - 1 = 0},若B⊆ A,则a=()A. 2B. 3C. 2或3D. 1或2或34. 设全集U={1,2,3,4,5},集合A = {1,2,3},B={3,4,5},则∁_U(A∩ B)=()A. {1,2,4,5}B. {1,2,3,4,5}C. {3}D. varnothing5. 命题“∀ x∈ R,x^2+1>0”的否定是()A. ∃ x∈ R,x^2+1≤slant0B. ∀ x∈ R,x^2+1≤slant0C. ∃ x∈ R,x^2+1<0D. ∀ x∈ R,x^2+1<06. “x = 1”是“x^2-3x + 2 = 0”的()A. 充分不必要条件。

B. 必要不充分条件。

C. 充要条件。

D. 既不充分也不必要条件。

7. 若p:x>1,q:x^2>1,则p是q的()A. 充分不必要条件。

B. 必要不充分条件。

C. 充要条件。

D. 既不充分也不必要条件。

8. 设集合A={xx^2-x - 6≤slant0},B = {xx - 1>0},则A∩ B=()A. {x1 < x≤slant3}B. {x2≤slant x≤s lant3}C. {xx > - 2}D. {xx≥slant1}9. 已知集合M={xy=√(x - 1)},N={yy = x^2+1},则M∩ N=()A. [1,+∞)B. (1,+∞)C. [0,+∞)D. (0,+∞)10. 命题“若x^2=1,则x = 1或x=-1”的逆否命题是()A. 若x≠1且x≠ - 1,则x^2≠1B. 若x = 1且x=-1,则x^2=1C. 若x^2≠1,则x≠1且x≠ - 1D. 若x≠1或x≠ - 1,则x^2≠111. 设集合A={xx∈ Z且 - 10≤slant x≤slant - 1},B={xx∈ Z且x≤slant5},则A∪ B 中的元素个数为()A. 11B. 10C. 16D. 1512. 若命题p:∃ x∈ R,ax^2+ax + 1<0是假命题,则实数a的取值范围是()A. [0,4]B. (0,4)C. (-∞,0)∪(4,+∞)D. (-∞,0]∪[4,+∞)二、填空题(每题5分,共20分)13. 已知集合A = { - 1,0,1},B={xx^2<1},则A∩ B=______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用逻辑用语单元测试题
一、选择题
1、下列语句中是命题的个数是( )
①空集是任何集合的真子集; ②求0432=--x x 的根; ③满足023>-x 的整数有哪些? ④把门关上; ⑤垂直于同一条直线的两条直线一定平行吗? ⑥自然数是偶数。

A 、1个
B 、2个
C 、3个
D 、4个
2、对于实数c b a ,,有下列命题:其中真命题的个数是( )
①若b a >,则bc ac >; ②若22bc ac >,则b a >;
③若220b ab a b a >><<,则; ④若0011<>>>b a b
a b a ,,则,。

A 、1 B 、2 C 、3 C 、4
3、命题“若3662==a a ,则”与其逆命题、否命题和逆否命题这四个命题中,真命题的个数是( ) A 、0 B 、2 C 、3 C 、4
4、已知”的”是“,则“、00≠≠∈mn m R n m ( )
A 、充分不必要条件
B 、必要不充分条件
C 、充要条件
D 、既不充分也不必要条件
5、设5<∈x R x ,那么成立的一个必要不充分条件是( )
A 、5<x
B 、4<x
C 、252<x
D 、40<<x
6、已知命题{}{}00)3)(2(|1=<-+∈φ:,命题:
q x x x p ,下列判断正确的是( ) A 、p 假q 真 B 、”“q p ∨为真 C 、”“q p ∧为真 D 、p ⌝为真
7、由”:,:“31678>=+πq p 构成的复合命题,下列判断正确的是( )
A 、”“q p ∨为真,”“q p ∧为假,“p ⌝”为真
B 、”“q p ∨为假,”“q p ∧为假,“p ⌝”为真
C 、”“q p ∨为真,”“q p ∧为假,“p ⌝”为假
D 、”“q p ∨为假,”“q p ∧为真,“p ⌝”为真
8、,:若;命题全为、,则满足、:若实数已知命题b a q y x y x y x p >=+0022b
a 11<则。

给出下列四个复合命题:①;q p ∧②q p ∨③p ⌝④q ⌝。

其中真命题的个数为( )
A 、1
B 、2
C 、3 C 、4
9、给出以下命题:其中正确的有( )
①24x x R x >∈∀,有; ②αααsin 33sin =∈∃,使得R ;③022<++∈∀a x x R x ,使对。

A 、0
B 、1
C 、2 C 、3
二、填空题
”的逆否命题是”,则“且、若“00011≤+≤≤n m n m _______________________________。

”的否定是,、命题“对任意的011223≤+-∈x x R x ________________________________。

13、下列命题中_______________为真命题。

①“0022全为、,则若y x y x =+”的否命题;②“全等三角形是相似三角形”的逆命题; ③“圆内接四边形对角互补”的逆否命题。

14、(填“充要条件”、“充分不必要条件”、“必要不充分条件”、“既不充分也不必要条件”)
(1)”的”是“都是实数,那么“、已知b a b a b a >>22__________________。

(2)”的”是命题乙“命题甲“6
21sin παα≠≠_________________________。

15、若命题:“0122>++∈∀x ax R x ,”是真命题,则实数a 的取值范围是___________________________。

常用逻辑用语单元测试题2
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题4分,共40分)。

1、命题“若B A A B A ⊆=⋂则,”的逆否命题是( )
A 、若
B A A B A ⊇≠⋃则, B 、若B A A B A ⊆≠⋂则,
C 、若A B A B A ≠⋂⊄则
D 、若A B A B A ≠⋂⊇则
2、下列命题中正确的是( )
①“若不全为零则y x y x ,,022≠+”的否命题; ②“正三角形都相似”的逆命题; ③“有实根则若0,02=-+>m x x m ”的逆否命题;
④“若是无理数是有理数,则x x 2-”的逆否命题
A 、①②③④
B 、①③④
C 、①④
D 、②③④
3、命题:“存在数列{}n a 既是等差数列又是等比数列” ( ).
A 、是特称命题并且是真命题
B 、是特称命题并且是假命题
C 、是全称命题并且是真命题
D 、是全称命题并且是假命题
4、命题p :012,2>+∈∀x R x ,则﹁p 是( )
A 、012,2≤+∈∀x R x
B 、012,200>+∈∃x R x
C 、012,200<+∈∃x R x
D 、012,2
00≤+∈∃x R x
5、用a,b,c 表示三条不同的直线,γ表示平面,给出下列命题是真命题的序号是( )
①若c a c b b a ||,||,||则 ②若c a c b b a ⊥⊥⊥则,,
③若b a b a ||,||,||则γγ ④若b a b a ||,,则γγ⊥⊥
A 、①②
B 、②③
C 、①④
D 、③④
6、命题p:“x>0”是“x 2>0”的必要不充分条件;q:在△ABC 中“A>B ”是“sinA>sinB ”的充要条件,则( )
A 、p 真q 假
B 、p ∧q 为真
C 、p ∨q 为假
D 、p 假 q 真
7、“m=2
1”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( )条件。

A 、充分不必要
B 、必要不充分
C 、充要
D 、既不充分也不必要
8、下列说法正确的是( )
A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”
B 、“1x =-”是“2560x x --=”的必要不充分条件
C 、
命题“存在x R ∈,使得210x x ++<”的否定是:“对任意x R ∈, 均 有210x x ++<” D 、命题“若x y =,则sin sin x y =”的逆否命题为真命题
9、函数1)(2++=mx x x f 的图象关于直线x=1对称的充要条件是( )
A 、m=-2
B 、m=2
C 、m=-1
D 、m=1
二、填空题(每小题4分,共16分)
11、如果“p q ∨”和“p ⌝”都是真命题,则命题q 为 命题;如果“p q Λ”及“p ⌝”
都是假命题,则命题q 为 命题。

12、给出下列命题:①命题“若1xy =,则,x y 互为倒数”的逆命题;②“x R ∃∈,2230x x ++<”;
③命题“面积相等的三角形全等”的否命题;④若p 是q 的充分不必要条件,则p ⌝是q ⌝的充分不必要条件.其中是真命题的是 。

(填写序号)
13、已知}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的_____________条件。

三、解答题(共44分)
15、(8分)写出下列命题的否定,并判断真假:
(1)所有自然数的平方是正数。

(2)任何实数x 都是方程5x-12=0的根。

(3)对于任意实数x ,存在实数y ,使x +y>0。

(4)有些质数是奇数。

相关文档
最新文档